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Abstract

Test-time adaptation (TTA) aims to adapt a source model to a target domain using
only test data. Existing methods predominantly rely on unsupervised entropy
minimization or its variants, which suffer from degeneration, leading to trivial
solutions with low-entropy but inaccurate predictions. In this work, we identify
entropy-deceptive (ED) samples, instances where the model makes highly confident
yet incorrect predictions, as the underlying cause of degeneration. Further, we
reveal that the gradients of entropy minimization in TTA have an intrinsic low-
dimensional structure, driven primarily by entropy-truthful (ET) samples whose
gradients are highly correlated. In contrast, ED samples have scattered, less corre-
lated gradients. Leveraging this observation, we show that the detrimental impact of
ED samples can be suppressed by constraining model updates within the principal
subspace of backward gradients. Building on this insight, we propose LCoTTA,
a lifelong continual TTA method that tracks the principal subspace of gradients
online and utilizes their projections onto this subspace for adaptation. Further, we
provide theoretical analysis to show that the proposed subspace-based method can
enhance the robustness against detrimental ED samples. Extensive experiments
demonstrate that LCoTTA effectively overcomes degeneration and significantly
outperforms existing methods in long-term continual adaptation scenarios. Code is
available at https://github.com/ThunderDavid/LCoTTA.

1 Introduction

Test-time adaptation (TTA) aims to address domain shifts by adapting the model to the target domain
during inference, without requiring access to source data [1, 2, 3, 4, 5, 6, 7, 8]. This need for on-the-fly
adaptation arises broadly across other tasks under distribution shifts[9, 10, 11, 12, 13], motivating
TTA as a general deployment-time solution. Unlike traditional domain adaptation methods, TTA
operates in a fully unsupervised manner. It leverages only the unlabeled test data received during
inference, enabling the model to adaptively improve its performance when faced with domain shift
on-the-fly. As a fully unsupervised online learning paradigm, TTA methods predominantly rely on
unsupervised learning objectives, such as entropy minimization or its variants [2, 14]. However, such
methods are prone to instability. For instance, entropy minimization suffers from a trivial solution
that assigns all predicted probability to the most probable (but may be incorrect) class. Consequently,
these methods are susceptible to performance degeneration during continual adaptation.

To address this, various methods have been proposed. For example, [2] leverages entropy minimiza-
tion at the batch level while restricting updates to only the normalization parameters. Moreover,
some approaches employs teacher-student networks, where a teacher model provides stable guid-
ance through a moving average of parameters to prevent collapse [8, 6, 4]. Furthermore, model
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resetting strategies, which periodically reset partial or full model parameters to their initial states,
have demonstrated effectiveness in mitigating error accumulation during adaptation [8, 7, 15, 16].
Generally, these strategies have shown effective under the current mainstream evaluation protocol,
which typically involves single-epoch adaptation on a test set. However, in more realistic lifelong
scenarios, where the model is required to adapt continually over the long term, these methods still
face challenges in maintaining consistently robust performance.

Although numerous heuristic approaches have been proposed to mitigate the degeneration, an in-depth
analysis of its underlying cause remains lacking. In this work, we delve into the underlying cause
of the degeneration problem and provide novel insights to address it at its core. Specifically, we
show that a main underlying cause of the degeneration in entropy-minimization based methods is the
presence of entropy-deceptive (ED) samples, where the model produces highly confident yet incorrect
predictions. These samples frequently arise when facing out-of-distribution data in the TTA setting,
which mislead model updates and exacerbate error accumulation over time, especially in long-term
continual adaptation scenarios.

Furthermore, we show that the backward gradients of the entropy loss in TTA exhibit an intrinsic
low-dimensional structure. It is primarily driven by entropy-truthful (ET) samples, whose gradients
are highly correlated as they tend to share similar update directions. In contrast, gradients from ED
samples are scattered and less correlated. Based on this observation, we present a nontrivial finding
that, the detrimental impact of ED samples can be suppressed by constraining weight updates in a
low-dimensional principal subspace of the gradients. Building on this insight, we propose LCoTTA,
a lifelong continual TTA method that tracks the principal subspace of gradients online and utilizes
their projections for adaptation. This approach can effectively suppress the impact of ED samples and
ensures robust performance in challenging long-term continual adaptation scenarios. In summary, the
main contributions are as follows:

• An observation that the degeneration of the entropy minimization based TTA method in continual
adaptation is primarily caused by ED samples, instances where the model makes highly confident
but incorrect predictions.

• A novel finding that, without using any supervision information, the detrimental impact of ED
samples can be suppressed by exploiting the intrinsic low-dimension structure of the gradients,
which is primarily formed by the correlated gradients of ET samples.

• A lifelong continual TTA method LCoTTA, which tracks the principal subspace of gradients online
and utilizes their projections into this subspace for adaptation. LCoTTA does not suffer from
degeneration and enables robust long-term continual adaptation.

• A theoretical analysis that shows the proposed subspace projection based method can enhance the
robustness against detrimental ED samples.

• Extensive experiments demonstrate that LCoTTA maintains robust performance in long-term
continual adaptation scenarios and significantly outperforms existing continual TTA methods.

While this work focuses on TTA, the method of exploiting ET and ED gradient structure to effectively
distinguish them in an unsupervised manner holds promise for broader applications in unsupervised
learning tasks. The proposed method is complementary to existing approaches for robust TTA, such
as teacher-student networks, model resetting, and weight regularization. Integrating it with these
methods can be expected to further improve performance.

2 Related Work

Test-time Adaptation. [1] first proposed updating the activation statistics of BN to enhance model
robustness. Further, MemBN [17] introduced a memory-based BN approach, which aggregates and
adaptively weights stored statistics to achieve robust TTA. Tent [2], one of the pioneering works,
updates only the affine transformation parameters of BatchNorm layers by entropy-minimization.
SHOT [3] combines entropy minimization with diversity regularization to achieve robust TTA.
DePT [18] leverages visual prompts to efficiently adapt to target domains and bootstrap source
representations. Furthermore, single-sample methods have been explored in [19, 20], while non-
parametric approaches are proposed in [21, 22]. Moreover, neuro-inspired method and energy-based
model have been considered in [23] and [24].
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Continual Test-time Adaptation. Continual TTA aims to adapt a model to dynamic and evolving
target domains. CoTTA [8] introduces a teacher-student framework with consistency loss, while
EcoTTA [6] employs meta-networks and self-distilled regularization to improve memory efficiency.
TTACOPE [25] leverages supervised pretraining on labeled source datasets to improve initialization,
while BECoTTA [26] utilizes a mixture-of-domain low-rank experts for domain-adaptive routing.
Moreover, there exists a number of recent works designed for robust continual TTA [27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 16, 37, 38, 39, 40]. Despite the effectiveness of model-resetting, teacher-student
learning, and weight regularization approaches, they still face challenges in maintaining consistently
robust performance in long-term continual adaptation scenarios. More importantly, there lacks an
in-depth analysis on the underlying cause of degeneration in unsupervised TTA, which is crucial for
understanding and mitigating it.

Low-dimensional learning. The low-dimensional structure of neural-network learning has been
extensively studied [41, 42, 43, 44, 45, 46, 47]. These studies reveal that loss landscapes of neural-
networks reside within an intrinsic dimension, which enables model weights to be optimized in a
low-dimensional subspace. Unlike these works focusing on the low-dimensional structure of weights
sampled along the optimization trajectory, we reveal the low-dimensional structure of batch-based
stochastic gradients during the adaptation process, which is driven by ET samples in TTA and can
help suppress the gradients of ED samples.

3 Analysis on the Degeneration of Entropy-Minimization Based TTA

3.1 Prelimineries

Let f(x; θ) be a model with weights θ pre-trained on a source domain Ds = {(xi, yi)}Ni=1, which
follows a distribution Ps(x). Given the source model f(x; θ), the goal of TTA is to adapt it to test
data Dt = {xi}Mi=1, where the data distribution Pt(x) deviates from the training distribution, i.e.
Pt(x) ̸= Ps(x). Without access to source data and without using any supervision information on test
data, TTA methods typically utilize unsupervised losses, such as the entropy loss [2]

Le = − 1

B

B∑
i=1

C∑
c=1

p̂c(xi) log p̂c(xi), (1)

where p̂(xi) is the model predicted probability on sample xi. It encourages the model to make
confident predictions by minimizing the entropy of the model predictions.

Traditional TTA methods typically focus on adaptation on test data over a limited number of steps,
but real-world scenarios often involve continuously evolving domain shifts, requiring models to adapt
continually over the long term. Lifelong TTA addresses this by adapting a model to sequentially
arriving test data from evolving target domains {Pt : t = 1, 2, · · · }. At each step t, the model predicts
output f(xi; θt) for input xi and updates its parameters for future steps, i.e., θt → θt+1. This setting
is challenging as models relying on unsupervised losses are prone to degradation over time.

3.2 Entropy Reliability of Test Samples

As discussed above, existing TTA methods, operating without access to source data and supervision
on test data, predominantly rely on unsupervised entropy minimization or its variants [2, 8, 4].
While simple and effective, entropy minimization as an unsupervised loss can be unreliable and
mislead model updates. Specifically, entropy minimization has a trivial solution that assigns all
predicted probability to the most probable class. This is particularly problematic for samples
with high-confidence but incorrect predictions, which frequently occur when the target domain
significantly deviates from the source domain. For instance, given a ground-truth label [0,0,0,0,1], a
model prediction of [0.1,0.2,0.4,0.1,0.2] optimized via entropy minimization is likely to converge to
[0,0,1,0,0], resulting in incorrect predictions.

To address this degeneration problem, Tent [2] proposes to jointly optimize batched predictions
while restricting updates to normalization parameters. However, this approach struggles to maintain
satisfactory performance in continual adaptation. Although methods like model resetting and teacher-
student frameworks [2, 8, 48, 49] partially mitigate degeneration, as shown in our experiments
(Figure 4), they still suffer from performance degradation in long-term adaptation scenarios. Press
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et al. [50] further show that EM first improves accuracy by embedding test data close to the class
means of training data, but over many iterations, it pushes test embeddings far from the training data,
resulting in degraded accuracy. Here, we offer a new perspective on EM by focusing on the entropy
reliability of predicted test samples.

To better characterize the reliability of predictions, we introduce the Entropy Reliability Score (ERS).
Let p̂ = [p̂1, p̂2, . . . , p̂C ] denote the model’s predicted probability distribution over C classes, where∑C

i=1 p̂i = 1 and p̂i ∈ [0, 1]. For a sample with ground-truth class c ∈ {1, 2, . . . , C}, its ERS is
defined as

S(p̂) := p̂c −max
i̸=c

p̂i, (2)

where p̂c is the predicted probability for the true class c, and maxi̸=c p̂i is the highest predicted
probability among all incorrect classes. The ERS measures the confidence gap between the true class
and the most competitive incorrect class, providing a quantitative indicator of prediction reliability.
Based on ERS, we further define ET and ED samples.

Definition 1: Given a model prediction p̂ and with the definition of the reliability score in (2), a
sample is classified as entropy-truthful if S(p̂) > 0; otherwise, it is classified as entropy-deceptive.

3.3 The Degeneration of Entropy Minimization

Here we further dive into the underlying cause of the degeneration problem in entropy-minimization
based methods. We present an observation that this issue is primarily driven by ED samples. From
Definition 1, ET samples indicate reliable predictions where the model assigns the highest confidence
to the true class. In contrast, ED samples reflect unreliable predictions, where the model assigns
higher confidence to incorrect classes, potentially misleading optimization processes such as entropy-
minimization. This issue is particularly pronounced for highly confident ED samples, which exhibit
low entropy despite being incorrect.

(a) CIFAR100C (ResNeXt-29) (b) ImageNetC (ResNet-50)

Figure 1: Accuracy of entropy-minimization based continual
TTA using different subsets of the samples. Among the sam-
ples ranked by ERS under Gaussian corruption, the top 58.17%
on CIFAR100C and 11.59% on ImageNetC are identified as ET
samples with S(p̂) > 0.

To analyze the impact of dif-
ferent types of samples on the
adaptation process, we con-
duct experiments under a typi-
cal continual TTA scenario on
the CIFAR100C and ImageNetC
datasets with Gaussian corrup-
tion at severity-5. The sam-
ples are sorted by ERS, and pre-
trained ResNeXt-29 and ResNet-
50 from [51] are adapted using
entropy-minimization with dif-
ferent subsets of these samples.
Among the samples ranked by
ERS, the top 58.17% on CI-
FAR100C and 11.59% on Ima-
geNetC are identified as ET samples with S(p̂) > 0. Figure 1 shows the performance of continual
adaptation over 50 epochs.

The results demonstrate the detrimental impact of ED samples on continual adaptation. For example,
on CIFAR100C, when adaptation is performed exclusively on ET samples (e.g., the top 40% of
samples), the model does not exhibit degeneration during continual adaptation. In contrast, expanding
the sample set to include ED samples (e.g., the top 75% or 80% of samples) leads to significant
degeneration. A similar trend is observed on ImageNetC.

4 Method

The above analysis suggests that the degeneration of entropy-minimization can be avoided by using
only ET samples for adaptation. However, identifying ET samples without supervision is challenging.
In this section, we reveal that the impact of ED samples can be suppressed by leveraging the low-
dimensional structure of ET gradients. Then, we propose a robust lifelong continual TTA method.
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4.1 Correlated ET Gradients Forming A Low-Dimensional Structure

As discussed above, we identified ED samples as the underlying cause of model degeneration. Here,
we show that gradients from ET samples are highly correlated, which form a low-dimensional
subspace. In contrast, gradients from ED samples are scattered and less-correlated.

(a) GradSim (CIFAR100C) (b) PCA (CIFAR100C)

(c) GradSim (ImageNetC) (d) PCA (ImageNetC)

Figure 2: (a) and (c): Pairwise cosine similarity of batch gradients
(GradSim) of test samples sorted by ERS. ET samples exhibit high
gradient similarity, and the boundary (a sharp drop) in similarity closely
aligns with the batch index where ERS=0. (b) and (d): Explained
variance analysis of the gradient matrix G during TTA.

Figure 2 (a) and (c) shows
the correlation between
the gradients of different
batches on CIFAR100C
and ImageNetC (Gaussian
noise with severity-5) for
ResNeXt-29 and ResNet-
50, respectively. The
samples are sorted by their
ERS values from the most
entropy-truthful to the most
entropy-deceptive. It can
be seen that gradients of
ET samples are highly
correlated, while gradients
of ED samples are less
correlated.

This phenomenon arises as
gradients of ET samples
tend to share similar up-
date directions in parame-
ter space, thus are corre-
lated. In contrast, the gradi-
ents of ED samples are less-
correlated, as their update
directions are more scat-
tered and do not have con-
sistent directions. Based on
this analysis, we can expect
that gradients of entropy-
minimization in TTA have a low-dimensional structure, which is primarily formed by the principal
update directions shared by ET sample gradients.

Let gt = ∇θLe(Bt; θ) denote the gradient of the entropy loss Le defined in (1) with respect to
the model parameters θ on a batch of samples Bt. To investigate the low-dimensional structure
of stochastic gradients, we collect T backward gradients G = [g1, g2, · · · , gT ] ∈ Rn×T over T
sequential batches sampled during the adaptation process, where n is the number of model parameters.
Principal component analysis (PCA) of G is then performed using SVD.

Figure 2 shows typical PCA results in the TTA experiments on CIFAR100C (ResNeXt-29) and
ImageNetC (ResNet-50). Gradients are sampled every 50 iterations with T = 50. The bar plot
shows the explained variance of individual principal components, while the red curve represents the
cumulative explained variance. Notably, the first few principal components dominate, with the top 10
components capturing more than 90% of the total variance. This result demonstrates that parameter
gradients during TTA reside in a low-dimensional subspace, formed by ET sample gradients. In
contrast, ED gradients do not have such a structure, as shown in Figure 9 in Appendix J.

4.2 Suppressing Entropy-Deceptive Samples via Low-Dimensional Gradient Structure

We reveal that ET gradients are predominantly concentrated within a low-dimensional principal
subspace, whereas ED gradients exhibit a weaker alignment with this subspace. To show this, we
first construct a r-dimensional principal subspace of the gradients. Specifically, given a collected
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gradient matrix G ∈ Rn×T , we extract a r-dimension subspace of it via the following formulation

max
Ur∈Rn×r

tr
(
U⊤
r GG⊤Ur

)
, s.t. U⊤

r Ur = I, (3)

where Ur ∈ Rn×r contains the orthonormal bases corresponding to the largest r eigenvalues of GG⊤,
which spans the r-dimension principal subspace of G, with r ≪ n. Formulation (3) is a standard
PCA problem that can be solved by eigen-decomposition of GG⊤.

(a) CIFAR100C (ResNeXt-29) (b) ImageNetC (ResNet-50)

Figure 3: The ℓ2-norm ratio ∥g̃t∥
∥gt∥ for different sample types. The

samples are sorted by their ERS values from most entropy-truthful
(left) to most entropy-deceptive (right).

Given an extracted sub-
space spanned by Ur, we
analyze the impact of gra-
dient projection into this
subspace. Specifically, for
a gradient gt, its low-
dimensional representation
is obtained via projection
as U⊤

r gt, and then back-
projected to the original pa-
rameter space as

g̃t = UrU
⊤
r gt. (4)

We then examine the effect
of this principal subspace
representation on ET and
ED samples. Using the same experimental setting as in Figure 1 with the CIFAR100C and Im-
ageNetC, we sort the test samples by their ERS values. With the sorted samples, we compute the
ℓ2-norm ratio ∥g̃t∥/∥gt∥, from the most truthful to the most deceptive samples. Figure 3 presents the
results for different subspace dimensions, where the ratio ∥g̃t∥/∥gt∥ is computed on batched samples.

Interestingly, as shown in Figure 3, the ratio ∥g̃t∥/∥gt∥ generally decreases from the most truthful to
the most deceptive samples. This implies that the principal subspace representation (4) can effectively
differentiate between samples to some extent. Notably, the gradients of ED samples exhibit a more
pronounced decay in this representation, due to the weak correlation with correlated ET gradients.

4.3 Adaptation in Tracked Low-Dimensional Subspace

The above findings offers a way to mitigate the impact of ED samples by leveraging the low-
dimensional structure of ET gradients. We utilize the low-dimensional representation g̃t of the
gradient gt for parameter update. Furthermore, considering that the test data distribution may vary
continuously in continual adaptation scenarios, we dynamically track a low-dimensional principal
subspace of the gradients in an online manner. As evidenced by experiments (Table 4 in Appendix),
using a fixed subspace would degrade performance under varying test data distributions.

Specifically, during adaptation, we compute the gradient of the entropy loss with respect to θ for the
t-th batch as gt = ∇θLe(Bt; θ). To capture the evolving gradient structure, we maintain a queue of
the most recent k gradients Gt = [gt−k+1, gt−k+2, . . . , gt] ∈ Rn×k where n is the dimensionality
of the parameter space. Subsequently, PCA (3) is applied to Gt to extract a r-dimensional principal
subspace represented by the projection matrix Ur,t ∈ Rn×r, where r < k ≪ n.

The projection matrix Ur,t defines the subspace used for parameter update during adaptation, based
on which the component of gt residing within this subspace is obtained by projecting gt into the
subspace and then back-projecting it into the original parameter space: g̃t = Ur,tU

⊤
r,tgt. Then, the

model parameters are updated based on g̃t as

θt+1 = θt − ηg̃t,

where η is the learning rate. This approach ensures that the parameter updates are informed by the
salient components of ET gradients, captured by the dynamically tracked low-dimensional subspace.

However, applying this method to update all model parameters is memory-intensive, as it requires
maintaining the gradient queue Gt of size n× k and the projection matrix Ur,t of size n× r. This
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significantly increases memory consumption, particularly for modern neural networks with large
parameter dimensionality n, which makes it impractical for some on-device adaptation applications.

To address this issue, we restrict updates to the affine parameters of the normalization layers rather
than the entire model. Previous studies [1, 2, 7] have demonstrated that updating normalization layers
alone is sufficient to achieve strong performance in TTA, as they play a crucial role in controlling
the feature distribution and are sensitive to distributional shifts. Notably, the BN and LN parameters
typically constitute less than 1% of the total model parameters. Hence, tracking the subspace of them
introduces minimal computational and memory overhead.

Moreover, we also employ the entropy-based sample filtering (ESF) strategy [15, 7] before subspace
tracking. Note that, ESF alone cannot distinguish between ET and ED samples, as shown in Figure 7 in
Appendix G. As shown in Section 4.1, ET sample gradients form a more prominent low-dimensional
structure, while ED sample gradients are scattered and less-correlated. Thus, removing high-entropy
(ambiguous) samples (Figure 7) enables the subspace to better capture reliable update directions,
which makes ED gradients more orthogonal to it and easier to suppress.

5 Analysis on the Enhanced Stability of Subspace Projected TTA

We present stability analysis to show that the proposed subspace projection method enhances TTA
robustness against detrimental ED samples. Note that TTA is essentially a local fine-tuning of a
source pretrained model. The analysis is restricted to a neighbourhood of any local equilibrium, and
relies on assumptions that ET gradients concentrate in a low-dimensional principal subspace, while
ED gradients have weak inter-sample correlation and approximately isotropic dispersion.

Let θt ∈ Rn be the model parameters updated by mini-batch SGD during TTA. For each step t, the
mini-batch Bt =

{
B̂t, B̆t

}
contains ET samples B̂t and ED samples B̆t. Denote the gradients on Bt

as
gt := ∇θL(θt;Bt) = ĝt + ğt,

where ĝt := ∇θL(θt; B̂t) and ğt := ∇θL(θt; B̆t) denote the gradient components of ET and
ED samples, respectively. From the results in Section 4.1, we make assumptions: a) Mean and
variance models of ET and ED gradients: EB[ĝ] = ḡET, Cov[ĝ] = ΣET, EB[ğ] = ḡED, Cov[ğ] =
ΣED = σ2

EDIn +∆, where ΣET and ΣED are batch-normalized covariance of ET and ED gradients,
respectively, with ∥∆∥ ≪ σ2

ED. Weak correlation between ET and ED gradients: Cov(ĝ − ḡET, ğ −
ḡED) = 0. b) Low–rank structure of ET gradients: ΣET has effective rank r ≪ n, let ΣET = UΛUT

be any eigen-decomposition with Ur = [u1, . . . , ur] being the eigenvectors corresponding to the
largest eigenvalues, and denote Pr := UrU

T
r . c) Small-step limit: As η → 0 the discrete dynamics

of SGD θt+1 = θt − ηgt converge to the stochastic differential equation (SDE) [52]

dθ(t) = −ḡ(θ)dt+
√
ηΣ1/2(θ)dW (t), (5)

where ḡ = ḡET + ḡED and Σ = ΣET +ΣED.

Theorem 1 (Local stability of full-space and subspace-projected TTA). Suppose that the above
assumptions hold. Let θ• be an equilibrium satisfying ḡ(θ•) = 0 (i.e. with zero gradient expectation).
For the full-space SGD, if, for all θ in a neighbourhood of θ•,

ḡTET · (θ − θ•) >
∣∣ḡTED · (θ − θ•)

∣∣+ η
2 tr(Σ), (6)

then the SDE (5) is mean-square stable at θ•. Further, for rank-r subspace projection based learning,
i.e., update in the principal subspace of ET gradients via replacing gt by Prgt, the corresponding
continuous-time SDE

dθ(t) = −Pr ḡ(θ)dt+
√
ηPrΣ

1/2(θ)dW (t), (7)

is mean-square stable at θ• if

(Pr ḡET)
T (θ − θ•) >

∣∣(Pr ḡED)
T (θ − θ•)

∣∣+ η

2
tr
(
PrΣP

T
r

)
. (8)

The proof is given in Appendix A. Theorem 1 provides balance-of-forces conditions for the stability
of both full-space SGD and subspace-projected SGD. Stable local convergence is guaranteed when
the corrective drift from ET gradients exceeds the combined ED bias and diffusion noise. Conversely,
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(a) ResNet-50 on ImageNetC.

(b) ViT-B/16 on ImageNetC

Figure 4: Accuracy of continual adaptation with ResNet-50 and ViT-B/16 over 50 cycles on Ima-
geNetC. Each cycle contains 15 corruptions with 50000 samples for each corruption, resulting in a
total of 3.75× 107 samples used in the 50 cycles.

if the ED contribution outweighs corrective ET drift, the dynamics may diverge or converge to an
inferior minimum, which leads to model degeneration. Comparing the conditions (6) and (8), the
subspace projection method relaxes the stability requirement and thus is more robust.

Specifically, when the ET gradient mean ḡET lies mostly in the subspace Ur, we have Pr ḡET ≈ ḡET.
Meanwhile, projection onto this subspace removes most out-of-subspace component of the ED-
gradient bias such that Pr ḡED ≈ 0 for r ≪ n. Then, the stability condition (8) simplifies to

ḡTET · (θ − θ•) >
η

2

( r∑
i=1

λi + rσ2
ED

)
, (9)

where
∑r

i=1 λi = Tr(PrΣETP
T
r ) with λi being the i-th eigenvalue of ΣET. Compared with the

full-space case with tr(Σ) =
∑n

i=1 λi + nσ2
ED, subspace projection largely reduces the diffusion

energy by a factor
∑r

i=1 λi+rσ2
ED∑n

i=1 λi+nσ2
ED

≈ r
n ≪ 1. This significantly enlarges the admissible range of ED

bias and noise that still satisfies the stability condition. Consequently, the subspace-projected method
is substantially more robust to detrimental ED samples.

6 Experiments

We conduct experiments on the ImageNetC dataset [53], which consists of 15 corruptions each with
5 severity levels. We experiment with two representative model architectures: ResNet-50 with batch
normalization [54] and the ViT-B/16 with layer normalization. Results on CIFAR100C and semantic
segmentation are provided in Appendix K and L.
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We evaluate our method under a challenging long-term continual TTA setting, where the model adapts
continuously over 50 cycles of 15 corruption types (severity=5), a total of 37.5 million test samples.
The model performs unsupervised continual adaptation without any external intervention from the
very first beginning, such as domain-specific information, model resetting, or warm-up. We compare
our method (r = 25) with several SOTA continual TTA methods, including AdaContrast [5], BN [1],
TENT [2], CoTTA [8], SAR [7], RoTTA [4], ETA [15], PETAL [55] and DeYO [56]. Notably,
CoTTA, and RoTTA employ teacher-student networks, while SAR adopts a model resetting strategy.

6.1 Results on ImageNet-to-ImageNetC

Figure 4 presents the results on the ImageNet-to-ImageNetC task over 50 continual adaptation
cycles. Clearly, our method demonstrates robust and superior long-term adaptation performance
on ImageNetC. Most of the compared methods suffer significant degradation during long-term
adaptation. For instance, the accuracy of Tent drops below 10% within the first 10 adaptation
cycles, whilst that of CoTTA gradually declines over continual adaptation. In contrast, our method
consistently achieves high performance throughout the entire adaptation process, attributed to its
ability to effectively suppress the detrimental impact of ED samples. These results demonstrate the
robustness and adaptability of our approach in challenging long-term adaptation scenarios.

Results under a standard TTA setting, where a model adapts to one corruption at a time for a single
epoch, are provided in Tables 2 and 3 in Appendix C, which demonstrate that our method can also
achieve competitive performance in short-term adaptation scenarios.

6.2 Analysis and Ablations

Ablation of subspace projection. We evaluate the effectiveness of the subspace projection method.
As shown in Table 1, the method without using any strategy quickly collapse under entropy-based
continual adaptation. Entropy filtering improves initial performance but still suffers from ED samples
due to the nature of entropy, leading to degeneration in long-term. Our method achieves consistent
robustness over long-term adaptation.

Table 1: Accuracy (%) at different adaptation cycles on ImageNetC with ResNet-50.
Strategy Cycle 1 Cycle 25 Cycle 50 Cycle 75 Cycle 100

/ 39.13 0.70 0.69 0.70 0.70
+Entropy filtering 37.70 36.09 34.79 31.56 28.68
+Subspace 36.71 36.45 36.87 36.34 36.68
+Entropy filtering and Subspace (Ours) 40.70 42.70 43.10 42.79 42.66

Effect of subspace dimension. Figure 5 shows the performance of our method with different
dimensions of the subspace, r ∈ {10, 25, 50, 100}, in continual adaptation on ImagenetC over 50
cycles. Using a reasonably low dimension (e.g., r = 25) can achieve satisfactory performance during
long-term continual adaptation. However, as the rank increases, the restricting effect of the subspace
diminishes, leading to performance degradation in later cycles. On the other hand, too low a rank
would limit the adaptation performance.

Figure 5: Ablation on subspace dimentsion on
ImageNetC with ResNet-50.

Effect of hyperparameters. We conduct exper-
iments on the sampling interval and the length
of the gradient queue k. As shown in Figure 6,
when the queue length k for storing gradients
exceeds a certain threshold (e.g., 25), it cap-
tures sufficient gradient information to compute
a stable subspace, thus maintaining stable per-
formance. Similarly, the model exhibits robust
long-term adaptation performance across a wide
range of sampling intervals. Table 5 in Ap-
pendix E further shows that proposed subspace
method exhibits strong robustness to a wide
range of learning rate choices.
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Figure 6: Results on gradient queue length k (left) and sampling interval(right).

Ablation on subspace tracking. Ablation study on the proposed subspace tracking approach is
provided in Table 4 in Appendix D, which demonstrates the effectiveness and indispensability of it in
achieving robust continual adaptation under continually varying data distributions.

Computational Complexity and Efficiency. Our method only introduces additional memory to
store a gradient queue to compute subspace (Section 4.3), which is typically less than 0.01kn ≈ 0.5n
for k = 50. Thus, it does not incur significant memory and computational costs. Memory and runtime
comparison on ImageNetC with ResNet-50 is given in Table 7 in Appendix I.

7 Conclusion

To address the critical challenge of performance degeneration in unsupervised continual TTA, this
work identified ED samples as an underlying cause of the degeneration in entropy-minimization
methods. Furthermore, we revealed that the backward gradients of entropy-minimization exhibit
an intrinsic low-dimensional structure, and demonstrated that constraining weight updates within a
low-dimensional principal subspace can effectively suppress the detrimental impact of ED samples.
Then, we proposed a novel subspace-based continual TTA method and proved its enhanced robustness
against detrimental ED samples. Extensive experiments demonstrated that LCoTTA can effectively
overcome degeneration and maintain robust performance in long-term adaptation scenarios.

Limitations. In this work, we only consider a fixed subspace dimension r, while an adaptive selection
of r may further improve performance, e.g., larger at the beginning and lower later, or adjusting it
based on the degree of distribution shift and severity changes. Moreover, our theoretical analysis of
the stability of the subspace-based method holds only locally.
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A Proof of Theorem 1

Consider the SGD update rule employed during TTA as

θt+1 = θt − ηg(θt;Bt), (10)

where g(θt;Bt) = ∇θL(θt;Bt) is gradient on the batch Bt. Assume the batch Bt contains both ET
and ED samples, where the ET sample subset is denoted by B̂t whilst the ED sample subset is denoted
by B̆t such that Bt = [B̂t, B̆t]. Denote the gradients on B̂t and B̆t are given by

ĝt := g(θt; B̂t) = ∇θL(θt; B̂t),

ğt := g(θt; B̆t) = ∇θL(θt; B̆t).

Denote the mean and covariance of ET and ED gradients by

EB[ĝ] = ḡET, CovB(ĝ) = ΣET,

EB[ğ] = ḡED, CovB(ğ) = ΣED,

where ΣET and ΣED are the batch-normalized covariance of ET and ED gradients, respectively.
Empirical results in Section 4.1 indicate weak inter-sample correlation among ED-sample gradients.
We therefore model

∇θL(θt; B̆t) = ḡED + ξED, (11)
with E[ξED] = 0, and Cov(ξED) = ΣED, where ḡED is the bias of ED gradients. ξED is scattered noise
with covariance ΣED = σ2

EDIn +∆ with ∥∆∥ ≪ σ2
ED.

TTA operates as a local fine-tuning of a pretrained model. The expected ET gradient ḡET points
toward a nearby local minimum, whereas its covariance ΣET is low-rank (Figure 2), with effective
rank r ≪ n. In contrast, the ED gradient dispersion is almost isotropic, ΣED ≈ σ2

EDIn. Moreover,
assuming EB[(ĝ− ḡET)(ğ− ḡED)

T ] = 0, the mean and covariance of the mini-batch gradient g(θt;Bt)
can be expressed as

EB[g] = ḡET + ḡED, CovB(g) = ΣET +ΣED

When the learning rate η → 0, the discrete dynamics (10) can be approximated by the continuous-time
stochastic differential equation (SDE) [52]

dθ(t) = −ḡ(θ)dt+
√
ηΣ(θ)1/2dW (t). (12)

with drift ḡ(θ) = ḡET + ḡED and diffusion Σ(θ) = ΣET +ΣED.

Define a local expected-gradient equilibrium θ• that

ḡ(θ•) = ḡET(θ
•) + ḡED(θ

•) = 0, (13)

at which ET corrective force balances ED bias. Choose the quadratic Lyapunov function V (θ) =
1
2∥θ − θ•∥2, its infinitesimal generator is

LV = −ḡ(θ)T · (θ − θ•) +
η

2
Tr(Σ(θ)). (14)

Then, a sufficient condition for mean-square stability is given by

ḡTET · (θ − θ•) > −ḡTED · (θ − θ•) +
η

2
Tr(Σ). (15)

In the worst case that the ED bias is opposite to (θ − θ•), it follows from (15) that

ḡTET · (θ − θ•) >
∣∣ḡTED · (θ − θ•)

∣∣+ η

2
Tr(Σ). (16)

If either the bias magnitude ∥ḡED∥ or the noise level Tr(Σ) is too large that exceeds a critical threshold,
stable convergence cannot be guaranteed.

Next, we consider subspace projection based SGD to show its advantage. Retain only the first principal
ET directions Ur and let Pr = UrU

T
r be the projection matrix. With PrΣP

T
r = PrΣ

1/2(PrΣ
1/2)T ,

the subspace projected SDE can be expressed as

dθ(t) = −Pr ḡ(θ)dt+
√
ηPrΣ(θ)

1/2dW (t). (17)
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Similarly, we can derive the corresponding stability condition as

(Pr ḡET)
T · (θ − θ•) >

∣∣(Pr ḡED)
T · (θ − θ•)

∣∣+ η

2
Tr(PrΣP

T
r ). (18)

As ET directions lie almost entirely in Ur, we have Pr ḡET ≈ ḡET. Meanwhile, the subspace projection
eliminates most ED bias outside the subspace, hence for r ≪ n we have Pr ḡED ≈ 0. Moreover,
diffusion noise is greatly reduced by subspace projection as

Tr(PrΣP
T
r ) ≈

r∑
i=1

λi + rσ2
ED, (19)

where λi is the i-th eigenvalue of ΣET, with Tr(PrΣETP
T
r ) =

∑r
i=1 λi. Then, under these assump-

tions and with r ≪ n, the sufficient condition (18) can be simplified as

(ḡET)
T · (θ − θ•) >

∣∣(Pr ḡED)
T · (θ − θ•)

∣∣+ η

2
Tr(PrΣP

T
r )

≈ η

2

(
r∑

i=1

λi + rσ2
ED

)
.

(20)

Compared with the condition (16) for full-space SGD, the noise term Tr(Σ) =
∑n

i=1 λi + nσ2
ED is

largely reduced to
∑r

i=1 λi + rσ2
ED. In the setting of the proposed subspace projection method with

r ≪ n, we have
r∑

i=1

λi + rσ2
ED ≪

n∑
i=1

λi + nσ2
ED. (21)

Consequently, it is easy to see that, the projection onto the subspace Ur can substantially enhance the
robustness of entropy minimization based TTA against the detrimental effect of ED samples.

B Updating in Low-Dimensional Subspaces Constrains the Adaptation

Adapting model parameters within a low-dimensional subspace offers a controlled mechanism for
constraining weight changes during adaptation, which in turn enhances the stability of the process.
Let θs ∈ Rn represent the parameter vector of the pre-trained source model, and Ur ∈ Rn×r denote
an orthonormal basis spanning a r-dimensional subspace, where r ≪ n. Weight updates with and
without subspace constraints can be compared as follows.

When the updates are restricted to the subspace defined by Ur, the updated weights are expressed as
θ̃t = θs+UrU

T
r ∆θ, whereas without the subspace constraint, the updates are given by θt = θs+∆θ.

Let U = [Ur, U
⊥
r ] ∈ Rn×n represent the full orthonormal basis spanning the original parameter

space, where Ur ∈ Rn×r and U⊥
r ∈ Rn×(n−r) span two orthogonal complementary subspaces.

Denote
vs = UT

r θs ∈ Rr, v̆s = U⊥
r

T
θs ∈ Rn−r,

δv = UT
r ∆θ ∈ Rr, δv̆ = U⊥

r

T
∆θ ∈ Rn−r.

Using the orthonormality of U , the weight updates with and without subspace representations can be
expressed as

θ̃t = θs + UrU
T
r ∆θ = U

[
vs + δv

v̆s

]
,

θt = θs +∆θ = U

[
vs + δv
v̆s + δv̆

]
.

Clearly, in the space defined by U , the update θ̃t involves only a much smaller r-dimensional subspace,
as r ≪ n, in contrast to the full update θt. In our experiments, we use r = 5, resulting in an extremely
low-dimensional subspace for adaptation.

Given that Ur has orthonormal columns, satisfying UT
r Ur = Ir×r, for any ∆θ ∈ Rn, we have

∥UrU
T
r ∆θ∥22 = (∆θTUr)(U

T
r ∆θ) = ∥UT

r ∆θ∥22 ≤ ∥∆θ∥22. This implies that the magnitude of the
weight updates is reduced when using subspace projection as

∥UrU
T
r ∆θ∥2 ≤ ∥∆θ∥2.
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Thus, adapting weights within a low-dimensional subspace reduces the magnitude of changes and
ensures that the updated weights retain higher dependency on the source model. This property,
together with the suppression effect of low-dimensional principal subspace on deceptive samples
(Section 4.2), benefits the stability in long-term continual adaptation, with improved robustness to
hyperparameters (see Table 5 in the ablation study).

C Results of Single-Epoch Adaptation on ImageNetC

Table 2 and Table 3 present the performance under the standard TTA setting over a single cycle,
demonstrating that our method can still achieve competitive results in short-term adaptation scenarios.
We also report the performance of several more recent methods including BeCoTTA [26], AEA [57],
and TCA [58]. Since some of these methods do not have publicly available code for reproduction, we
directly cite their reported results from their respective papers for comparison.

Table 2: Comparison of accuracy (%) over a single cycle of 15 corruptions on the ImageNetC dataset
with ResNet-50. †The reported results of BeCoTTA [26], AEA [57], and TCA [58] are directly taken
from their respective original papers.

t −→

Method G
au

ss
ia

n

Sh
ot

N
oi

se

Im
pu

ls
e

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

B
rig

ht
ne

ss

C
on

tra
st

El
as

tic

Pi
xe

la
te

JP
EG

M
ea

n

Source 2.2 2.9 1.8 18.3 10.2 14.8 22.1 16.5 22.9 24.1 58.7 5.5 17.5 20.7 31.4 18.0
CoTTA 15.4 18.1 19.4 18.4 20.9 31.5 41.7 39.4 38.5 51.8 63.6 33.2 52.9 59.4 54.8 37.3
SAR 17.8 25.5 28.1 22.7 26.1 33.7 43.5 38.4 36.9 49.2 62.7 30.2 49.9 54.1 48.8 37.8
RoTTA 11.9 17.4 17.4 9.5 16.1 26.8 39.7 34.1 35.3 46.2 64.5 25.3 45.2 52.2 47.3 32.6
AdaCon 17.1 19.4 21.1 18.0 22.2 26.3 36.3 37.5 36.3 47.2 61.6 33.0 45.1 50.9 46.8 34.6
DeYO 25.8 34.9 35.7 26.4 30.7 35.3 43.3 37.3 36.7 47.9 60.4 33.5 48.7 53.3 50.0 40.0
PETAL 12.9 14.5 15.7 13.6 16.4 26.4 37.5 36.8 36.0 47.6 61.5 26.1 49.9 55.7 49.5 33.3
ETA 24.4 34.2 34.9 26.2 30.3 32.6 38.4 34.2 34.2 42.8 54.6 34.5 46.2 49.8 47.7 37.7
BeCoTTA† 15.9 25.7 27.8 22.6 28.1 36.6 44.9 42.8 38.8 49.3 63.6 33.9 50.8 54.4 51.6 39.1
AEA† 26.2 26.8 27.3 24.2 20.8 40.3 48.1 47.3 41.4 56.0 65.7 9.5 53.4 56.7 49.5 39.5
TCA† 21.7 28.2 26.5 25.6 26.5 36.7 43.5 43.1 40.6 51.9 60.4 40.4 52.8 57.1 55.3 40.7
Ours 24.3 33.7 34.3 26.1 30.4 37.0 44.7 38.7 39.6 48.9 61.3 35.7 50.9 54.2 50.7 40.7

Table 3: Comparison of accuracy (%) over a single cycle of 15 corruptions on the ImageNetC dataset
with ViT-B/16.
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Tent 59.8 63.4 62.9 45.5 50.1 58.6 50.9 63.3 60.5 66.5 78.6 55.4 54.6 69.7 70.2 60.7
BN 50.1 51.0 51.1 31.5 27.6 44.1 39.5 52.5 47.7 44.2 75.2 8.9 44.3 60.9 63.3 46.1
CoTTA 59.9 62.9 62.7 44.4 48.3 55.6 47.4 61.2 65.5 52.2 74.3 23.5 67.5 72.5 71.5 58.0
ETA 59.5 63.7 63.2 52.3 52.4 58.6 55.6 64.6 62.5 63.7 77.9 50.3 59.4 70.1 71.4 61.7
RoTTA 57.7 60.0 60.4 41.9 34.3 51.5 43.5 64.7 63.4 35.8 78.2 21.7 47.7 67.0 68.1 53.1
SAR 59.1 61.2 61.5 54.2 55.3 58.5 55.8 60.9 61.9 64.6 76.8 58.3 58.2 68.4 68.9 61.6
DeYO 59.2 61.6 60.8 44.6 47.9 56.8 49.3 61.8 61.6 62.8 77.0 56.3 54.6 66.2 69.7 59.4
Ours 60.6 62.8 62.5 52.2 55.4 58.9 54.5 65.3 63.4 66.2 78.6 54.5 60.7 69.2 69.2 62.3

D Effectiveness of the Proposed Subspace Tracking Approach

We conduct ablation experiments to evaluate the effect of the proposed subspace tracking approach
on continual adaptation on ImageNetC with ResNet-50. We consider four variants: 1) our method
without using subspace projection of the gradients; 2) our method using a fixed 5-dimensional
subspace extracted from source data, denoted as “from source domain”; 3) our method using a
5-dimensional subspace tracked online but delayed for one corruption type, denoted as “tracked with
delay”; 4) our method using the proposed subspace tracking approach, denoted as “tracked online”.
Table 4 shows the results of these variants for continual adaptation over one-cycle of 15 corruptions,
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which demonstrates the effectiveness and indispensability of the proposed dynamic subspace tacking
approach in achieving robust continual adaptation.

Table 4: Ablation on the effectiveness of the subspace tracking on ImageNetC with ResNet-50.

Subspace Subspace Type ACC (%)

× - 18.0
✓ From Source Domain 27.0
✓ Tracked with delay 24.5
✓ Tracked online 40.7

E Robustness to Learning Rate

Table 5 presents a comparison between Tent and our method across different learning rates in
continual adaptation on ImageNet-C. Consistent with results from previous studies [2, 8], entropy-
minimization-based TTA methods, such as Tent, are highly sensitive to the choice of learning rate.
In contrast, our method is much more robust to variation in learning rate, attributed to its ability
to suppress deceptive samples and constrain updates within a principal subspace. This robustness
substantially alleviates the need for meticulous hyperparameter tuning, offering a more practical and
reliable solution for continual adaptation.

Table 5: ACC (%) of Tent and our method for different learning rates (LR) in continual adaptation on
ImageNetC over one cycle with ResNet-50.

Method
LR 0.0001 0.001 0.002 0.005

Tent 36.71 30.84 11.33 4.51
Subpsace projection 40.36 39.87 38.82 30.85

F Standard Deviation of Our Method

Table 6 presents the standard deviations of our method with different random seeds on CIFAR100-C
with ResNext-29, ImageNetC with ResNet-50, and ImageNetC with ViT-B/16. We use five different
random seeds and report the mean and standard deviation.

Table 6: Standard deviation (%) over 5 different random seeds on various datasets and models.

Dataset & Model Cycle 1 Cycle 10 Cycle 20 Cycle 30 Cycle 40 Cycle 50

ResNeXt-29 on Cifar100 67.85± 0.30 68.24± 0.27 68.22± 0.16 68.07± 0.40 67.98± 0.09 68.09± 0.19
ResNet-50 on ImagenetC 40.70± 0.42 42.95± 0.25 42.83± 0.34 42.81± 0.11 42.70± 0.21 42.60± 0.29
ViT-B/16 on ImagenetC 62.25± 0.17 63.72± 0.18 63.56± 0.05 63.78± 0.43 63.70± 0.28 63.66± 0.12

G Sample Entropy Visualization of Model Prediction

Figure 7 shows the distribution of prediction entropy from the network when the test inputs are sorted
by ERS. It can be observed that a naive entropy filtering strategy can remove samples with high
entropy values in the middle range, thereby robustifying adaptation performance. However,
since many entropy-deceptive (ED) samples can also exhibit low entropy values, they cannot
be filtered out by simple entropy filtering strategy. This phenomenon is more pronounced on the
more challenging ImageNet dataset, which explains why the filtering strategy still fails in long-term
adaptation scenarios.

It can be seen from Figure 7 that, using entropy-based sample filtering (ESF) alone cannot distinguish
between ET and ED samples. Thus, using ESF alone still suffers from degeneration in continual
TTA.
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(a) ResNext-29 on CIFAR100C (Gaussian noise corruption with severity-5)

(b) ResNet-50 on ImageNetC (Gaussian noise corruption with severity-5)

Figure 7: Scatter plot of the sample entropy of model predictions with samples sorted by ERS. (a)
The samples are from the Gaussian noise corruption of CIFAR100C with severity level 5. The
predictions are obtained from a pretrained ResNext-29 model. (b) The samples are from the Gaussian
noise corruption of ImageNetC with severity level 5. The predictions are obtained from a pretrained
ResNet-50 model.

H The Reduction of Entropy-Deceptive Samples During Continual
Adaptation

We conduct experiment to record the number changes of ED samples during the adaptation process.
As shown in Figure 8, during continual adaptation, the number of ED samples gradually reduces.

Figure 8: Decrease of entropy-deceptive (ED) samples during the adaptation process with ResNet-50
on the ImageNetC dataset.
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I Comparison of Computational Complexity and Efficiency

As discussed in Section 6.2, our method only introduces an additional gradient queue and negligible
PCA computation overhead. Table 7 presents a comparison of memory consumption and runtime
among different methods. As can be seen, the computational and time complexity of our method are
comparable to those of Tent, and our approach remains competitive among the compared methods.

Table 7: Runtime and memory comparison for one-cycle on ImageNetC with ResNet-50.

Metrics
Methods CoTTA RoTTA ETA SAR Ada Tent Ours

Runtime (s) 659.9 894.4 232.3 355.7 1297 241.1 257.6
Memory (GB) 10.86 15.47 10.37 10.37 12.22 10.37 10.67

J Low-Dimension Structure of Gradients for ED and ET Samples

As discussed in Section 4.1, ET sample gradients are highly correlated and align well in parameter
space, forming a clear low-dimensional structure. In contrast, ED gradients are scattered and lack
such alignment. To illustrate this, we sort samples by ERS and analyze the top, middle, and last 20%
using PCA. As shown in Figure 9, only ET samples reveal a pronounced low-dimensional subspace.

Figure 9: PCA visualization of sample gradients under different ERS rankings. Left: Top 20% ERS
samples (all ET samples). Middle: Middle 20% ERS samples (mixture of ET and ED samples).
Right: Last 20% ERS samples (all ED samples). The results illustrate that top ERS samples (ET
samples) exhibit a more pronounced low-dimensional structure.

K Results on CIFAR100-to- CIFAR100C

K.1 Results of Continual Adaptation on CIFAR100C

Figure 10 presents the performance comparison in the considered long-term adaptation setting on
the CIFAR100-to- CIFAR100C task over 100 adaptation cycles. Using teacher-student networks
and partial model resetting, CoTTA and ECoTTA mitigate the degeneration but still degrade over
time due to the inherent instability of unsupervised adaptation. AdaContrast achieves strong initial
performance but also degenerates over prolonged adaptation. In contrast, our method maintains
robust performance throughout all adaptation cycles, effectively overcoming the degeneration issue
in long-term continual adaptation.

K.2 Results of Single Epoch on CIFAR100C

Table 8 presents the results of single epoch adaptation on CIFAR100C with ResNeXt-29.
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Figure 10: Accuracy of continual adaptation with ResNext-29 over 100 cycles on Cifar100C. Each
cycle contains 15 corruptions with 10000 samples for each corruption, resulting in a total of 1.5×107

samples used in the 100 cycles.

Table 8: Accuracy (%) comparison of the methods over a single cycle on the CIFAR100C dataset
with ResNeXt-29.
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Tent 62.9 64.3 58.5 62.6 49.1 51.9 51.4 41.3 36.5 29.8 30.2 19.5 15.8 15.3 12.1 40.1
BN 57.7 59.2 56.7 72.3 58.1 70.2 72.1 64.9 65.0 58.3 73.7 69.7 64.4 66.6 58.7 64.5
CoTTA 60.1 62.2 60.1 73.2 62.4 72.0 74.1 66.9 68.3 59.5 75.1 72.8 67.8 72.0 66.5 67.5
RoTTA 50.6 55.1 54.4 69.6 57.5 70.4 74.0 68.1 69.5 62.4 75.4 70.5 67.4 69.9 63.4 65.2
SAR 57.8 60.4 58.3 73.1 60.0 71.4 73.4 66.7 67.1 60.7 75.1 71.6 67.3 69.8 61.9 66.3
ADA 57.4 63.1 61.5 72.3 59.6 70.4 72.4 67.0 69.3 61.8 73.9 71.6 65.4 66.5 63.8 66.4
ETA 62.9 66.8 63.9 72.6 62.3 70.3 72.9 67.5 67.6 64.0 73.2 71.1 66.3 69.8 62.0 67.5
ECoTTA 56.4 59.0 54.9 68.4 56.1 67.6 69.1 63.8 65.2 59.9 71.6 65.2 62.1 67.8 59.6 63.1
Ours 63.4 65.6 63.7 73.3 61.5 71.3 73.7 67.7 68.7 64.0 74.7 71.2 67.1 70.5 61.4 67.9

L Results of Semantic Segmentation

L.1 Results on the Segmentation Task on the CarlaTTA Dataset

In this section, we conduct online continual test-time adaptation experiments using the CARLA
simulator [59] across three domain-shift scenarios with varying weather and visual conditions: day-
to-night, clean-to-fog, and clean-to-rain. As shown in Table 9a to Table 9c, our method not only
adapts well to semantic segmentation tasks, but also consistently outperforms baseline methods across
different scenarios.

L.2 Visualization Results on the Segmentation Task on the Cityscapes Dataset

We further evaluate our method on segmentation tasks using the real-world Cityscapes [60] dataset
under corrupted target domains for a more intuitive demonstration of its effectiveness. As shown in
Figure 11, while Tent performs well after one epoch of adaptation, its performance deteriorates with
prolonged continual adaptation. In contrast, our method maintains stable and accurate segmentation
results even after 10 epochs, demonstrating superior robustness in long-term adaptation scenarios.
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Table 9: Semantic segmentation results (mIoU/%) on Carla simulation

(a) Results on day2night setting.

Method road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person vehicle road line mIoU

CoTTA 96.23 83.59 84.38 55.98 12.51 45.86 69.65 55.59 75.40 13.55 33.54 68.83 88.86 75.49 61.39
Tent 96.04 83.75 84.33 55.83 13.67 45.59 69.56 55.75 74.97 13.69 33.63 69.05 88.90 75.69 61.46
Ours 96.14 83.57 84.38 57.65 15.86 45.97 70.30 56.30 75.58 14.89 33.80 68.72 88.25 75.76 61.94

(b) Results on clear2fog setting.

Method road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person vehicle road line mIoU

CoTTA 86.13 77.33 73.05 44.49 16.66 45.82 66.01 57.00 58.96 21.67 40.28 67.49 66.35 72.03 56.60
Tent 84.71 77.00 72.16 43.42 18.59 44.37 66.11 56.50 58.57 22.24 40.98 67.23 61.07 70.71 55.97
Ours 86.94 77.13 71.65 43.59 20.20 45.34 67.00 57.31 59.27 23.57 39.57 67.93 64.06 71.62 56.89

(c) Results on clean2rain setting.

Method road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person vehicle road line mIoU

CoTTA 95.83 87.12 90.23 72.10 22.30 54.84 81.38 65.73 81.21 21.78 70.45 75.04 90.86 80.45 70.67
Tent 95.63 87.20 90.14 72.83 26.02 54.64 81.40 65.94 80.77 22.35 69.90 75.21 90.18 80.55 70.91
Ours 95.82 87.12 90.39 73.60 27.18 55.21 81.76 66.40 80.99 23.64 71.39 75.36 90.53 80.64 71.43

(d) Results on dynamic setting.

Method road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person vehicle road line mIoU

CoTTA 78.99 63.81 69.22 26.79 7.96 35.46 59.16 46.20 46.79 3.37 30.20 50.32 72.08 58.47 46.34
Tent 78.56 65.95 72.82 37.88 13.01 39.79 64.26 51.60 58.24 4.17 30.20 60.28 66.62 61.44 50.35
Ours 82.21 66.06 73.41 42.96 16.96 41.95 66.80 54.20 60.44 5.76 31.27 61.35 70.12 62.38 52.56

Figure 11: Visualization of segmentation results on the Cityscapes dataset under corruption.
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M Experimental Setup and Hardware Configuration

We conduct the main experiments of 50 cycles TTA in Section 6.1 on a Linux server equipped with 8
NVIDIA V100 GPUs with 32GB memory each, and an Intel(R) Xeon(R) Platinum 8280 CPU @
2.70GHz. All other experiments in Section 6.2 are performed on a PC platform equipped with a
single Nvidia RTX 3090 GPU with 24GB memory, including the efficiency analysis in Table 7.

23



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s main claims, as stated in the abstract and introduction, are clearly
articulated and are well-supported by both the theoretical analysis and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly discusses its limitations in Section 7, including assump-
tions made in the methodology and factors that may affect generalizability, providing a
transparent assessment of where the results may not fully extend.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main theorem in our paper is accompanied by clearly stated assumptions
and is supported by a complete proof provided in Section A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have released the full implementation of our algorithm, and all details
necessary for reproduction are provided. The code and instructions for reproducing the main
experimental results are available via the anonymous repository linked in abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an anonymous repository link in the abstract containing the full
code and instructions needed to reproduce all main experimental results. All datasets used
in our experiments are open source and clearly referenced at the corresponding points in the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings, including data splits, hyperparameters, and opti-
mizer details, are thoroughly described in the main text and appendix to ensure clarity and
reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations across multiple random seeds for our main
experiments, as shown in Section F.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an analysis of computational complexity and efficiency for our
proposed method in Section I, and detailed information about the experimental hardware
configuration, including CPU and GPU specifications, in Section M.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully adheres to the NeurIPS Code of Ethics in all respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our work focuses on foundational research in test-time adaptation algorithm
and is not tied to specific applications or deployments, and does not have direct societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in the paper are properly cited and appropriately credited, with
licenses and terms of use correctly respected in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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