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Abstract

Multi-head attention powers Transformer networks, the primary deep learning architecture
behind the success of large language models (LLMs). Yet, the theoretical advantages of
multi-head versus single-head attention, beyond mere parallel processing, remain underex-
plored. In this paper, we reframe multi-head attention as a system of potentially synergistic
computational graphs, where each head functions as a feedforward directed acyclic graph
(DAG) with a common sink state. We provide intuition and preliminary theoretical anal-
ysis of mixing time and minimax fidelity in this framework. Our results show that multi-
head attention can synergistically enhance information propagation, yielding faster mixing
times and minimax fidelity amplification under specific head-diversity conditions. Finally,
we train single-head and multi-head Transformers, each with the same total number of
parameters, on sequence manipulation tasks and empirically verify the predicted effects.
The code is available at https://github.com/haitzsaezdeocariz/beyondparallelism.
Keywords: Attention, Transformer, Graph Theory, Directed Acyclic Graph, Computa-

tional Graph, Markov Chain, Mixing Time, Minimax Fidelity, Signal Propagation

1. Introduction

In this paper, we adopt a graph-theoretic lens to interpret how multi-head attention pro-
cesses and propagates information. By modeling each head as a feedforward computational
graph, we expose the synergistic computational pathways enabled by parallel attention and
introduce concrete metrics (mixing time and minimax fidelity). We anticipate that these
insights may inspire future actionable interpretability techniques, empowering practition-
ers to diagnose, explain, and optimize attention-based architectures, while also helping us

understand how specific behaviors and computations arise.

In a standard (decoder-only) Transformer with causal
(masked) attention (Vaswani et al., 2017; Brown et al., 2020),
which is omnipresent in language modeling among other ap-
plications, each position in the sequence can only attend to
itself and to earlier positions. Such dependency can be ab-
stracted via a structure with edges going strictly forward in
time: one can view each head’s pattern of attention as a feed-
forward directed acyclic graph (DAG) on n nodes (with the
first node having no incoming edges other than its self-loop).
The position n is the DAG’s sink, since it has edges coming in
from all previous positions but does not feed forward to any
later positions, see Figure 1.
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Figure 1: Example feedfor-
ward DAG with
n = 5 nodes.
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In Vitvitskyi et al. (2025), the authors use a DAG to model the entire forward pass of
the network. On the other hand, in this paper, we will use a similar argument to compare
the (intra-layer) computational graph of single-head attention against that of the ubiqui-
tous multi-head attention, where multiple distinct dynamic graphs (the graph connectivity
strength is input dependent) are used for simultaneous information propagation. We theo-
retically study mizing time and minimaz fidelity. Additionally, we complement our findings
by training single-head and multi-head Transformers on toy datasets and computing empiri-
cal proxies for these quantities. We indeed find that multi-head attention exhibits improved
performance as compared to single-head using the same number of trainable parameters.

2. Multi-Head Mixing Time

Briefly, the mixing time is defined as the time it takes for a probability distribution over
states to converge to a stationary distribution. In Vitvitskyi et al. (2025), the authors argue
that the mixing time is small if and only if there are numerous paths from most nodes in
the graph to the sink. They also claim that since having many paths facilitates efficient
data propagation, the mixing time serves as a meaningful measure of how efficiently our
network will operate under this computational graph. Hence, a lower mixing time would
be better since it generally implies statistical efficiency. In this section we explore the
following question: Does mizing time improve (go down) when we combine multiple parallel
feedforward computational graphs?

2.1. Multi-Head Stationary Distributions

Definition 1 (Feedforward graph) A feedforward graph on n wvertices is a DAG in
which the vertices can be indexed 1,2,...,n so that all edges (j — 1) satisfy j <.

Definition 2 (Unique sink) A unique sink 7 (at position n) is a vertex with no outgoing
edges to distinct vertices (i.e. the only possible edge is the self-loop (T — T)).

Definition 3 (Random walk matrix) Given a directed graph G = (V, E) on n wvertices,
the random walk matrix W s the n X n matriz with entries

{5}, if (j—i) € E,

Wij = .
0, otherwise,

(1)

where 6]-_> 1s the outdegree of node j. For causal attention this matrix is lower-diagonal.

Definition 4 (Stationary distribution) A probability distribution = € R™ on the ver-
tices is called a stationary distribution if W = 7.

Lemma 5 (Stationary Distribution for a Single-Head Unique Sink) Let G be a
feedforward graph on n vertices with a unique sink 7. Then the only stationary distri-
bution for the random walk matrix W s 1;, the distribution taking value 1 at 7 and 0
elsewhere (Vitvitskyi et al., 2025).

As discussed in Vitvitskyi et al. (2025), clearly W 1, = 1, because 7 has no outgoing
edges to other nodes (only possibly a self-loop). In terms of uniqueness, suppose 7 is
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another stationary distribution with © # 1,. Let j < n be the smallest-index vertex with
mj # 0. Because G is feedforward, j has at least one outgoing edge (apart from its self-loop)
(j =) with ¢ > j unless j = 7. This implies 7; will “leak forward” under W, contradicting
stationarity. Thus no such 7 can exist.

Next, we extend the unique-sink argument in Vitvitskyi et al. (2025). Specifically,
we adapt the original derivation used for the full computational graph to model a single
attention head in our analysis (as in Lemma 5) and then compare it to the multi-head
attention setting.

Lemma 6 (Stationary Distribution for a Multi-Head Unique Sink)

Let GO, ... .GW) be H feedforward graphs on n vertices, each having the same unique sink
7. Suppose the final operation merges the heads (via concatenation and a linear projection
or any acyclic merging). Then the only stationary distribution (over the combined state
space) is the one that places all its mass at T.

Proof See Appendix A. |

Thus, even with multiple heads, as long as each head is a feedforward DAG sharing the
same sink 7 (see Figure 2), the unique stationary distribution argument holds.

2.2. Having Multiple Heads can Improve Mixing Time

Definition 7 (Mixing Time) Given a random walk matriz W;; with stationary distri-
bution 7, the mixing time is defined as:

Tinix(€) = min{t > 0 : max ||I/ij —7l|rv < €}, (2)
j

where || - ||ty denotes the total variation distance, and € > 0 is a convergence threshold.

The goal is to identify the earliest possi-
ble time where the distribution is sufficiently
close (within €) to the stationary distribution 7. —rT \%i:
Hence, taking the minimum over ¢ ensures we "' @"Q” ) ~°

. : . U U U )

are finding the fastest convergence time. Addi- \\&\
tionally, the maximum over all initial states j N
ensures a worst-case scenario analysis. In other
words, mixing time guarantees convergence from
every possible starting state: it reflects the slow-
est possible convergence to the stationary distri-
bution across all starting points.

To address the main question of this section,
we derive an upper bound on the mixing time
for a combined multi-head attention system us- Figure 2: Multi-head sink visualization.
ing combinatorial and probabilistic arguments
rather than relying on the standard spectral gap analysis such as those in Horn and Johnson
(1985); Levin and Peres (2017). This is because as pointed out by Vitvitskyi et al. (2025),
the latter does not necessarily apply given that our random walk matrices are lower-diagonal.

Multi-head sink

Head 2
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Let GO, ..., GH) be H feedforward graphs on the same set of n vertices, each with a
unique sink 7. Suppose that, for each head h, the probability of making a forward move
(i.e., a move that brings the state closer to 7) is at least p,. Assume that the heads are
combined via a convex combination W = Zthl ap W with ap, > 0 and Zthl ap = 1.
Define the effective forward probability as p = ZhH:1 Qp, Ph-

Theorem 8 (Multi-Head Mixing Time Bound via Forward Moves) If it requires
at most N = n — 1 forward moves to reach the sink T (with the worst-case being the
leftmost node), then with high probability the mizing time of the combined chain satis-
fies Tmix(W,€) < %, where € is a small constant. In particular, note that since p <

. 2N 2N
2N ~» 2N
maxi<p<H Ph it follows that P = maxich<mDh

arbitrarily, the bound on the mixing time of the combined chain is in general no better than
the mixing time of the fastest individual head, but always better than the worse. However,
if the weights can be selected adaptively:

— 2N

Tix(W,e) S —————— = min Tmix(W(h),e). (3)
maxi<h<H Ph 1<h<H

Thus, if the convexr weights are chosen

Proof See Appendix A, including scope (intra-layer analysis) and modeling assumptions
(convex proxy). [ |

In summary, each head W) corresponds to a Markov chain that propagates informa-
tion along selected edges in the DAG. By merging these heads, additional transition edges
are added, reducing potential bottlenecks. While combining heads via a convex combina-
tion may not always yield a faster mixing time than the best individual head (it is only
guaranteed to be faster than the worse head), adaptive weighting (favoring the head with
the highest pp,) can ensure that the bound on the mixing time of the combined chain is close
to the fastest head. We empirically verify this effect in Section 4.

3. Multi-Head Minimax Fidelity

In a similar spirit to our analysis of multi-head mixing time, we now turn to studying the
fidelity of information propagation when multiple feedforward attention heads are combined.
As pointed out in Vitvitskyi et al. (2025), whereas mixing time measures how quickly
probability mass converges to the unique sink, fidelity quantifies how sharply the signal
from each node is preserved when it reaches the sink.

Definition 9 (Diffusion Matrix) For a single-head feedforward graph, we define a diffu-
sion matriz

Aij =

{(;L if (j »1) €E, @

0, otherwise,
which normalizes by the column (i.e., the in-degree 6;, which is always positive since we

always have self-loops).

Hence, in this notation index 4 corresponds to the receiving node and the second index
7 corresponds to the sending node. In our analysis, the receiving node we are interested in
is the sink, i = 7.
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Definition 10 (Signal at the Sink) If we initialize with a one-hot vector e; (placing all
mass at node j ), then aftert steps the signal at the sink T is given by gzbg-h) (t) = ((A(h))t)Tj.

Definition 11 (Node Fidelity) The node fidelity is defined as the mazimum signal that

node j ever contributes to T: qﬁgh) = maxy ¢§-h) (t) = maxt((A(h))t)Tj.

Definition 12 (Optimal Fidelity Time) We define the optimal fidelity time as the time

at which node j (head h) attains its mazimum signal: tg-h) = arg maxy {(byl) (t)} .

Note that the amount of signal that reaches the sink 7 does not necessarily increase
monotonically, see Proposition 5.1 in Vitvitskyi et al. (2025). Instead, it can rise to a peak
at some intermediate time and then decay as the signal becomes diluted or averaged out by
further propagation. Therefore, even if the signal eventually decays (due to the averaging
nature of the diffusion process), its peak value, captured by the equation above, represents
the most effective transmission from node j. Lastly, by taking the minimum over all nodes
we identify the worst-case (least preserved) signal among all nodes:

Definition 13 (Minimax Fidelity) The minimax fidelity for a single head h at the sink

T s given by d)l(l}fi)n = min; qﬁg.h).

Intuitively, this would be the lowest peak signal produced at the sink by any node in
the DAG (token in the sequence).

3.1. Having Multiple Heads can Amplify Fidelity

Next, we will show that it is possible to observe synergistic effects in terms of signal prop-
agation over parallel heads.

Definition 14 (Multi-Head Diffusion Operator) Let A A pe the diffusion
matrices corresponding to a total of H = |H| feedforward attention heads. We define multi-
head diffusion operator using convex weights {Bn}then (i-e., B > 0 and Y 9 B = 1)
as

N h

By =Y A, (5)

heH

Remark 15 (Cross-Head Pathway Contribution) Taking powers of the multi-head dif-
fusion operator yields the following expression (note non-commutativity: in general AWAR) £
A(h/)A(h)) which promotes additional information propagation pathways:

r=t
@)= (3 ﬁhA(h))t =Y Y (I8 At At (©)
heH hieH hieH r=1

Example 1 Let our nodes be ordered (u,v,7). Head 1 has edges u — v (plus self-loops
everywhere), head 2 has edges v — 7 (plus self-loops). Then the diffusion matrices are:

100 10 0
A =111 0l A®=]01 0
001 03 3
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For a single head: (A(l))iu =0, (A(Q))iu = 0, because head 1 mever has a path
u — T in two steps, nor does head 2. On the other hand when using multi-head attention
we obtain cross-head product terms:

(APAD),, =§x§ =1 >0

The term corresponding to head 1 then head 2 appears with weight B15s:
(A)7, =
= (5% (A(l))Z)Tu + ((B1 A(l))(ﬁ2 A(2)))'ru+
+ (B2 AP) (81 AD)) o + (83 (AP))7 =

1 1
+0+0+51/321 +0=/31ﬁ21 > 0.

so the multi-head diffusion operator captures a contribution. In other words, whenever
one head bridges u — v and another bridges v — T, their composition opens up a two-step
path that neither head has alone.

This would exemplify the trivial case where the fidelity is zero for each individual head,
but not for the multi-head diffusion operator.

Definition 16 (Multi-Head Node Fidelity) We define the multi-head node fidelity as

the node fidelity computed based on the multi-head diffusion operator: qﬁ?““m = maxy ((Z)t> .

7j
Definition 17 (Multi-Head Minimax Fidelity) The multi-head minimax fidelity is given
by ¢multi — minj ¢3nulti'

min

Definition 18 (Best Head Minimax Fidelity) Comparing the minimaz fidelity across
(hs) _

min

heads in the multi-head attention mechanism, the best head minimax fidelity is: ¢

maxpeH ¢I(I];Ll)n
Definition 19 (Best Head) Consequently we define the best head as: h, = arg maxy, {¢$i)n} .

Next we proceed to show a non-trivial case in which the best head minimax fidelity is
not zero (there exists a path connecting all nodes to the sink), yet the multi-head minimax
fidelity is higher:

Example 2 Let our nodes be ordered (u,v,w, 7). Let head 1 be a linear chain with edges
u — v, = w,w — 7 (plus self-loops everywhere), and head 2 a feedforward DAG with
u— w,v = w,v — T,w — 7 (plus self-loops). Also set f = Py = % Then the diffusion
matrices and the multi-head diffusion operator are:

1 0 0 O 1 0 0 O 1 0 0 O
11 1 3
A _ |2z 00 A _ |01 00 ~_|i 1 00
“lo L L of" L 11 g L 5 5
2 % . 3 3 3 6 12 12
11 1 1 1 1 5 5
00 3 3 0 5 3 3 0 5 12 1
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Note that in this case all nodes u,v,w have paths to reach the sink T in both heads
independently, unlike in the previous example. Applying matriz multiplication repeatably
to each diffusion matriz we obtain the result in Figure 3, in which we can clearly see that
the minimaz fidelity for the multi-head system s higher than that of each head, that is

multi — 0 417 > ") = ¢ — 0 375 and gmuti = 0.417 > ¢{"2) = 0.250.

min min min

—w

30 == Gmn 40
20
20
10
0 0

123456 7 8 9101112131415 1617 18 19 20 123456 7 8 91011121314151617 181920 123456 7 8 91011121314 151617 181920
Diffusion steps Diffusion steps Diffusion steps

Signal % at sink

(a) Head 1 (b) Head 2 (¢) Multi-Head

Figure 3: Diffusion of signal from nodes u, v, w to the sink 7 under single-head and multi-
head diffusion kernels. Solid lines show signal arrival percentages over diffusion
steps, while the dashed line ¢,;, indicates the cumulative fidelity.

This example demonstrates that combining multiple feedforward attention heads results
in a multi-head system that can achieve a level of minimax fidelity exceeding that of any
single head, when this is non-trivial (i.e. not zero). In a single computational graph (or
single-head attention mechanism), the diffusion process is governed by one diffusion matrix,
limiting the maximum achievable fidelity to that single pathway. In contrast, the multi-head
setting employs diverse diffusion matrices, each capturing different aspects of signal propa-
gation. Although one might expect the weighted average of individual fidelities to be bounded
by the highest individual fidelity, the multi-head diffusion operator can surpass the best in-
dividual performance. This synergy suggests that multi-head architectures are not merely
parallel computations but can work in concert to enhance the preservation and amplification
of information. For an additional discussion regarding Figure 3 see Appendix B.

4. Experimental Validation

In this section, we empirically validate our theoretical analysis by measuring proxies for mix-
ing time and fidelity. Our experiments are conducted on two toy synthetic tasks concerned
with string manipulation. We first describe the data generation and model configurations,
then detail the algorithms used to compute each proxy, and finally present our experimental
results. Tables and figures for this section can be found in Appendix D.

Data Generation We work with two synthetic datasets. I) We generate sequences of
length 100 from a vocabulary of 256 tokens. Each token is sampled independently from a
discrete uniform distribution. For each sample z = (x1,x2,...,Z100), the target is defined
as x itself: = — z. A total of 5000 such examples are used for training. II) Similarly, we
generate random sequences of length n = 100. However, the target is produced by cyclically
shifting the input by one position: x = (z1, 2, ..., %99, T100) +  (T100,L1,T2,---,L99).
This task requires the model to learn a non-trivial permutation of the sequence.
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Model Architecture and Training We adopt a standard pre-norm (RMSNorm) Trans-
former architecture with causal (decoder-only) attention. The model has 4 transformer lay-
ers with a token embedding dimension of 64 (both for the embedding and attention layers),
a MultiLayer Perceptron (MLP) hidden dimension of 128, and dropout of 0.1 in both atten-
tion and MLP layers. We vary the number of attention heads over {1,4, 8,16} while keeping
the total embedding dimension fixed. Thus, as the head count increases, the per-head di-
mension decreases accordingly. We do so to consider a constant model parameter count,
and to ensure our results are solely dependent on the computational graph structure, rather
than on having more trainable weights. Training is performed using the Adam optimizer
with a learning rate of 1073, a batch size of 50, and for 200 epochs.

4.1. Mixing Time Proxy Estimation

To quantify how rapidly information propagates through the model’s causal attention graph,
we approximate the mixing time by a straightforward (per-layer) Monte Carlo hitting-
time experiment, see Algorithm 1 (Appendix E). We extract the attention tensor of shape
(H,n,n), where H is the number of heads and n = 100 the sequence length. We then form
a single transition matrix by weighting each head according to the model’s own learned
output-projection importances. Thus, we extract each head’s contribution to the next-layer
representation by slicing the model’s output-projection matrix into H equal blocks (one
per head) and computing the norm of each block. These norms serve as raw importance
scores, which we then normalize to sum to one and use to weight the corresponding n x n
attention matrices. The resulting convex combination defines a single forward-transition
matrix over token positions. Interpreting this combined matrix as defining forward-directed
transition probabilities, we simulate many independent random walks starting from each
token position, sampling the next position according to the attention-induced distribution
over successors. Each walk proceeds until it reaches the final token or until a maximum
cutoff of 100 steps is exceeded.

Note that the attention tensor depends on the input, so we run this experiment across
all samples in the dataset. We repeat this process for 500 simulations per start state and
per sample to obtain an empirical mean hitting time. We would like to highlight that
to be faithful to Definition 7, one would need to apply the max operator across starting
positions, rather than the mean as in Algorithm 1. However, we restrict ourselves to the
average hitting time across positions for computational tractability: we find that to obtain
meaningful trends for the worse case mixing time it is necessary to increase the cutoff steps
substantially making the simulation very expensive. In Table 1 and Table 2 we report the
results for mixing time in steps for both tasks and for all layers in the model. We also
plot them in Figure 4(a) and Figure 4(b) in which we can more clearly appreciate the
trend predicted theoretically: adding more heads (under the same parameter count) leads
to faster mixing.

4.2. Minimax Fidelity Proxy Estimation

To quantify how sharply information from every token is preserved when it reaches the
sink, we compute a (per-layer) minimax diffusion fidelity over a fixed diffusion horizon, see
Algorithm 2 (Appendix E). As before, we begin by extracting the attention tensor of shape
(H,n,n) and forming a single forward-transition matrix via a convex combination of heads
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weighted by their learned output-projection norms. We then simulate the diffusion process
up to 100 steps by repeatedly applying matrix multiplication: at each step we record the
probability of mass starting at node j arriving at the sink. For each start node j we retain
its peak arrival probability over all steps, and finally we take the minimum of these peaks
across j to obtain the worst-case (minimax) fidelity for that example. In Table 3, Table 4,
and Figure 4(¢) and Figure 4(d) we can see that the fidelity goes up with the number of
heads, as predicted. Interestingly, Layer 4 of the model trained on cycle sequences appears
to perform poorly in terms of both fidelity and mixing time. Similarly, when comparing
subfigures in Figure 4, drops in mixing time seem to align with increases in fidelity. This
could suggest a correlation between the two metrics, but further investigation is needed.

Note that thus far, we have empirically shown improved minimax fidelity for multi-head
attention compared to single-head models. However, our primary discussion in Section 3
focused on the fact that the fidelity from combining multiple heads can surpass the best
individual head’s fidelity at a given node within the same multi-head model. To this end,
we evaluated each head’s minimax fidelity independently and compared it directly with
the minimax fidelity obtained by combining heads using learned weights. Empirically, we
indeed observed multiple instances across both tasks (copy and cycle) and various head
counts (4, 8, and 16 heads) where the combined multi-head minimax fidelity exceeded the
best individual head minimax fidelity, thus providing experimental support that this effect
takes place in learning-based system too, not only when handcrafted as in our original
example. See Table 5 and Table 6 for details.

5. Conclusion

In this work we introduced a graph-theoretic framework that models multi-head attention
as a collection of synergistic feedforward DAGs, revealing possible benefits beyond mere
computational parallelism. We show that the presence of multiple heads can reduce mixing
time and amplify minimax fidelity. To verify the validity of the intuition, we perform prelim-
inary sequence manipulation experiments with single-head versus multi-head Transformers
with the same parameter count, obtaining satisfactory results. We have often argued that
it may be possible to find configurations that satisfy our theoretical requirements via gra-
dient descent optimization. This is true, but in practice the model is trying to optimize
the downstream loss function: cross-entropy in the case of pre-training for next-token pre-
diction. This implies that mixing time and minimax fidelity can only be optimized as a
consequence of improving downstream performance but not directly. The model must find
them useful for the task at hand.

Finally, we note that previous work such as that by (Voita et al., 2019; Michel et al., 2019)
has found that many attention heads can be pruned without significant loss in performance.
This does not directly contradict our findings: rather, it suggests that the benefits we
identify (reduced mixing time and enhanced minimax fidelity) may plateau or saturate
beyond a certain number of heads. That is, while a few heads could contribute importantly
to synergy, adding more may yield diminishing returns unless head diversity is preserved.
Another interesting observation is that pruning (including head pruning) is usually done
after training (Cheng et al., 2024), which could suggest that additional heads help during
optimization, even if they become redundant at convergence.
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Appendix A. Proofs

This appendix contains the proofs that complement the discussion in the main text.

Proof [Proof of Lemma 6] For any head h, the graph G is feedforward. This means
that any random walk starting at j within head h can only transition to vertices j < 1.
Furthermore, because 7 = n is the unique sink for all heads, probability mass within any
single head h eventually flows towards 7. Specifically, applying the walk matrix W)
repeatedly will concentrate the mass at 7. The merging operation combines the outputs
from each head at each position. Crucially, this merging process is typically local and
acyclic with respect to the sequence positions. For example, concatenating head outputs at
position ¢ and projecting them linearly combines information already arrived at position 4
via paths (j — 4) within the various heads. This merging step does not create new paths
from 7 back to earlier positions j < 7, nor does it allow information at a position j < 7 to
remain indefinitely without flowing towards . |

Proof [Proof of Theorem 8] For each step of the combined Markov chain defined by W,
the probability of making a forward move is at least p. Let X denote the total number of
forward moves made after ¢ independent steps. Then

X ~ Bin(t, p) (7)
and the expected number of forward moves is
E[X] =tp. (8)
Setting the expected number of forward moves to be 2N (i.e., tp = 2N) gives

o
a8

t

Now, by Hoeffding’s inequality (Hoeffding, 1963),

N2
Pr[X < N] < exp<—2<tptN>>. (10)
Substituting tp = 2N yields
2N?
Pr[X < N| < eXp<_2N/p> = exp(—pN). (11)

For fixed p and sufficiently large N, the right-hand side becomes very small (e.g., less than
1/4), meaning that with high probability the chain makes at least N forward moves within
t = 2N steps. In other words, the mixing time is bounded by

Toin(W,€) S 2 (12)

The above refers to the mixing time defined with respect to total variation distance, i.e.,
the time required for the Markov chain to be within € of the stationary distribution. For

11
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the combined chain this quantity is no more than a constant multiple of % (or behaves

asymptotically like %) as the relevant parameters vary.

Next, for H heads with individual forward probabilities p1,...,py and convex weights
ai,...,an (with ag, > 0 and Zthl ap, = 1), the effective forward probability is
H
p= Z Qh Ph- (13)
h=1

Since the weights are nonnegative and sum to 1, by the properties of convex combinations
we have
min <p< max py. 14
\in pp Sp < max py (14)
Hence, if one could choose the weights optimally (let us assume that gradient descent will
likely try to optimize for an optimal combination)—for example, by setting ap+ = 1 for the
head h* that attains the maximum pp and «j, = 0 for all h # h*—then we would have

* _ ) 15
D é}%Xth (15)

In that ideal case, the overall mixing time (which is roughly bounded by %) would be

Toix(Wo6) S — 2N (16)
maxXi<h<H Ph
which is as fast as the fastest individual head. The result simply emphasizes that one
cannot hope for a combined chain to mix faster than the fastest individual chain, though
with optimal (or adaptive) weighting one can match it.

Even if one uses fixed (say, uniform) weights instead of the idealized choice, the presence
of multiple heads means that with high probability at least one head has a relatively high py,.
To show this formally assume that the forward probabilities p1, po,...,pyg for the H heads
are independent random variables with a common cumulative distribution function (CDF),
F(p). For any fixed threshold p such that F(p) < 1, the probability that a single head
satisfies py, > p is

Pr(p > 5) = 1 — F(p). (17)

Since the heads are independent, the probability that all H heads have p,, < p is
. N\H
Pr (p < p) - (F(p)) . (18)
Thus, the probability that at least one head achieves py, > p is
H
Pr(p* > ;5) —1- (F(ﬁ)) . (19)
Since F(p) < 1, as H increases,

lim Pr<p* >p) = 1. (20)

H—o0

N—

12



SYNERGISTIC COMPUTATIONAL GRAPH EFFECTS IN MULTI-HEAD ATTENTION

Consequently, if one could choose weights adaptively to favor the head with the highest
ph, for instance using gradient descent, p will be statistically biased toward higher values.
While the worst-case bound is

2N — 2N
< Tmix(W7 6) <

— S, (21)
maxy Pp ming pp,

the key point is that, statistically, multiple heads increase the chance that a high pj, is

present, thereby allowing the effective mixing time to approach the lower bound of — a%f: o
|

Remark 20 (Scope and Modeling Assumptions in Theorem 8) In real multi-head
attention, heads are concatenated and passed through a linear projection Whyyoj, which pro-
duces a new row-stochastic, input-dependent kernel. This is not literally a convexr combi-
nation of the W . Our model uses such a combination as a tractable analytical proxy to
upper-bound the effective forward propagation strength, assuming Wy.oj preserves the feed-
forward DAG structure. Additionally, we would like to clarify that our mizing time analysis
models information propagation within a single application of multi-head attention (i.e., one
forward pass through an attention layer). For a fized input, each head defines a fized transi-
tion matriz W | and the merged kernel W = >on anW™ s also fized. Thus, the Markov
chain defined by iterating W' s time-homogeneous, and our bound applies directly. Note
that time-inhomogeneous chains arise naturally in multi-layer Transformers, where each
layer applies a distinct attention kernel. Our analysis is restricted to intra-layer dynamics
and does not extend across layers.

Appendix B. Example 2 temporal dynamics discussion

Figure 3 illustrates the temporal dynamics of Example 2. Each head defines a distinct
diffusion pattern: the first head exhibits a gradual but comprehensive propagation from w
to 7, while the second head emphasizes faster, more localized diffusion primarily through
v. When combined into a multi-head system, the resulting diffusion operator integrates
these complementary pathways, producing a joint evolution that exceeds the minimax fi-
delity achievable by either head alone. In the combined diffusion, the node signals display
cooperative behavior: u maintains long-range reachability while v contributes strong early
propagation.

Appendix C. Compute Resources

All experiments were performed on a single HI00 GPU under a Linux environment.

Appendix D. Results: Tables and Figures

In this appendix we include the tables and figures discussed in Section 4.

13
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Table 1: Mixing time steps mean + std dev. for Copy Sequence.
Heads L1 L2 L3 L4
3.8344 +0.1391  77.9281 4 2.8387 78.6635 + 3.2322  73.5020 + 3.6750

1

4 3.7370 £ 0.0259  3.7155 4 0.0365  3.8895 4 0.0704  7.8050 £ 0.5391
8 3.6793 £0.0171  3.6821 £0.0329  3.7952 £0.0661  3.7467 £ 0.0731
16 3.6328 £0.0150  3.6513 £0.0212  3.6391 £ 0.0564  3.6594 % 0.0687

Table 2: Mixing time steps mean =+ std dev. for Cycle Sequence.

Heads L1 L2 L3 L4

1 27.0384 4 2.4355 47.8151 4+ 0.6754 47.2291 +1.3803  43.0723 + 2.8604
4 3.6369 +£0.0161  3.9092 +0.0374  45.7709 +1.9865 31.2925 £ 3.3583
8 3.6426 +£0.0098  3.7756 +0.0290  4.6735+0.0795  47.5304 £ 0.9180
16 3.5859 +0.0118  3.7820 4+ 0.0307  4.3759 £ 0.0583  41.9292 + 1.9165

Table 3: Fidelity % mean + std dev. for Copy Sequence

Heads L1 L2 L3 L4

1 0.3000 % 0.1000  0.0000 + 0.0000  0.0000 = 0.0000  0.0000 = 0.0000
4 0.4500 + 0.0700  0.2800 + 0.0800  0.1800 + 0.0500  0.0100 + 0.0100
8 0.5000 = 0.0800  0.3500 = 0.0800  0.1900 + 0.0800  0.1600 % 0.0600
16 0.5800 %+ 0.0600  0.4900 £ 0.0700  0.3400 £ 0.0700  0.2500 £ 0.0700

Table 4: Fidelity % mean + std dev. for Cycle Sequence

Heads L1 L2 L3 L4

1 0.0000 % 0.0000  0.0000 =+ 0.0000  0.0000 + 0.0000  0.0000 = 0.0000
4 0.5300 % 0.0800  0.4800 = 0.0600  0.0000 £ 0.0000  0.0000 = 0.0000
8 0.5400 4 0.0700  0.6300 = 0.0500  0.5300 £ 0.0700  0.0000 = 0.0000
16 0.6500 = 0.0600  0.6000 = 0.0500  0.5200 = 0.0500  0.0000 % 0.0000

Table 5: Best individual vs combined multi-head fidelity % for Copy Sequence.
Heads L1 L2 L3 L4
4 (Individual) 0.30 011 021 0.00
4 (Combined) 0.56 0.43 0.19 0.00
8 (Individual)  0.59 029 0.18 0.18
8 (Combined) 0.51 0.37 0.10 0.17
16 (Individual) 0.59 0.59 0.52 0.22
16 (Combined) 0.59 0.51 046 0.23

Table 6: Best individual vs combined multi-head fidelity % for Cycle Sequence.

Individual) ~ 0.39  0.39 0.00 0.00
Combined)  0.59 0.50 0.00 0.00

v
il
8 (Individual) ~ 0.35 049 0.51 0.00
80

Combined) 0.59 0.72 0.55 0.00

16 (Individual) 0.65 0.49 0.68 0.00
16 (Combined) 0.67 0.55 0.48 0.00

14



SYNERGISTIC COMPUTATIONAL GRAPH EFFECTS IN MULTI-HEAD ATTENTION

—e— Layer1
—e— Layer2
—e— Layer3
—e— Layer4
@
©
o
)
j=J
L
a
1
@10
%]
—
1 4 8 16

Number of Heads

(a) Mixing time for Sequence Copy-
ing

—e— lLayer 1
0.61 —+ Layer2
—e— Layer 3
—e— lLayer 4

1 4 8 16
Number of Heads

(¢) Fidelity for Sequence Copying

Steps (log scale)

=
o
4

—e— Layer 1
—e— Layer 2
—e— Layer 3
—e— Layer 4

3

1 4 8 16
Number of Heads

(b) Mixing time for Sequence Cy-

S

cling

0.7
0.6
0.5

—e— Layer 1

0.4 —e— Layer 2

—— Layer 3

0.3 —e— Layer4
0.2
0.1
0.0

1 4 8 16

Number of Heads

(d) Fidelity for Sequence Cycling

Figure 4: Mixing time and fidelity for Transformer model trained on synthetic sequence

manipulation tasks.

15



SAEZ DE OCARIZ BORDE

Appendix E. Algorithmic Descriptions
In this appendix, we include the algorithmic descriptions discussed in Section 4.

Algorithm 1: Monte Carlo Mixing-Time Proxy
Require : Dataset D, with samples indexed by b € {1,...,|D|}, attention {Al()h)}thl, head

weights {wlgh)}thl, sequence length n, number of simulations S, max steps M
Compute: Mixing times T},

for b+ 1 to |D| do
(h)

Compute transition matrix Py + ZhH:1 wy (Al()h))—r for i < 1 ton do
for s+ 1to S do
Tyis <0 j<i, t<0
while j #n andt < M do
sample j ~ Py(j)

t+—t+1
end
Tb,i,s — Tb,i,s +1
end
end

end

, 1 11 x~b0=1D] gs=S xi=nogn
Tnia < D] Sn 2ub=1 25:1 Zi:l Thi,s
return 1),

Algorithm 2: Minimax Fidelity Proxy
Require : Dataset D, with samples indexed by b € {1,...,|D|}, attention matrices
{Al()h)}hH:1 for each sample, head weights {wl()h)}thl, diffusion horizon M, target
(sink) position 7.
Compute: Minimax Fidelity ¢™ult

min

for b <+ 1 to |D| do

By « Zthl wl()h) (Al(,h))T Fym—o0j < 1 for m < 1to M do

‘ Fb,m,ij — matmul(Fbym_Lij, Pb)

end
end
o
return ¢

—15P
< |D[7 >0, 2 ming maxy, Fy o i—rj
multi
min
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