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Figure 1: We introduce a new KV cache compression framework for Visual Autoregressive modeling
that preserves pixel-level fidelity. On Infinity-8B, it achieves 10x memory reduction from 85 GB to
8.5 GB with negligible quality degradation (GenEval score remains at 0.79 and DPG score marginally
decreases from 86.61 to 86.49).

Abstract

Visual Autoregressive (VAR) modeling has garnered significant attention for its
innovative next-scale prediction approach, which yields substantial improvements
in efficiency, scalability, and zero-shot generalization. Nevertheless, the coarse-to-
fine methodology inherent in VAR results in exponential growth of the KV cache
during inference, causing considerable memory consumption and computational
redundancy. To address these bottlenecks, we introduce ScaleKV, a novel KV
cache compression framework tailored for VAR architectures. ScaleKV leverages
two critical observations: varying cache demands across transformer layers and
distinct attention patterns at different scales. Based on these insights, ScaleKV
categorizes transformer layers into two functional groups: drafters and refiners.
Drafters exhibit dispersed attention across multiple scales, thereby requiring greater
cache capacity. Conversely, refiners focus attention on the current token map
to process local details, consequently necessitating substantially reduced cache
capacity. ScaleKV optimizes the multi-scale inference pipeline by identifying
scale-specific drafters and refiners, facilitating differentiated cache management
tailored to each scale. Evaluation on the state-of-the-art text-to-image VAR model
family, Infinity, demonstrates that our approach effectively reduces the required
KV cache memory to 10% while preserving pixel-level fidelity. Code is available
athttps://github.com/StargazerX0/ScaleKV.
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Figure 2: By implementing scale-aware layer budget allocation, ScaleKV enables differentiated cache
management tailored to each layer’s computational demands at every scale.
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1 Introduction

Recent advances in Autoregressive (AR) models [51}, 23] 68| [31]] have achieved impressive image
quality and multi-modal capabilities for unified vision understanding and genera-
tion. However, the token-by-token generation approach requires numerous decoding steps. Visual
Autoregressive (VAR) modeling has revolutionized this process through next-scale prediction,
enabling models to decode multiple tokens in parallel. Building upon this framework, several
approaches [16, have demonstrated promising results for VAR-based text-to-image generation.

Despite these advancements, VAR models face a fundamental scalability challenge due to exponential
growth in token sequence across scales. Unlike traditional next-token prediction models, which
process one token per step with linear KV cache growth, VAR models must preserve KV states from
all previous token maps. Generating a 1024 x 1024 image requires processing over 10K tokens across
multiple scales, creating severe memory bottlenecks—with KV cache alone consuming approximately
85 GB of memory when generating 1024 x 1024 images with a batch size of 8 using Infinity-8B [16]],
a text-to-image VAR model. Figure[3[a) illustrates this complexity, where each scale contributes a
new KV cache entry of size hy x wy. The total cache requirement grows cubically with the number of
scales n, while the computational complexity of attention reaches O(n?). These memory constraints
and increased inference latency significantly impede practical deployment.

To address these inefficiencies, we analyze the specific properties of VAR’s next-scale prediction
paradigm. First, we observe that cache demands vary significantly across transformer layers. Next,
we find that different scales exhibit distinct attention patterns. These findings indicate that VAR
requires both layer-adaptive and scale-specific cache management strategies for optimal performance.

Our Approach. Inspired by these observations, we propose Scale-Aware KV Cache (ScaleKV), a
simple yet highly effective method that significantly reduces inference memory while maintaining high
generation quality. Our approach categorizes transformer layers into two functional groups: Drafters
and Refiners. Drafters distribute attention across multiple scales to access global information from
preceding tokens, requiring greater cache capacity. In contrast, refiners focus attention on current
token map to process local details, necessitating substantially reduced cache storage. As illustrated in
Figure 2] ScaleKV optimizes multi-scale inference by identifying scale-specific drafters and refiners,
facilitating differentiated cache management to their computational demands at each scale.

Extensive evaluation demonstrates the effectiveness of our method. As shown in Figure[T} compared
to the original Infinity-8B model, ScaleKV achieves negligible quality degradation (GenEval score
remains at 0.79 and DPG score decreases slightly from 86.61 to 86.49) while requiring merely 10%
of the original GPU memory consumption. These results validate that ScaleKV effectively addresses
the fundamental memory bottlenecks that have constrained the practical deployment of VAR models.

In conclusion, we introduce ScaleKV, a novel KV cache compression framework for VAR. ScaleKV
categorizes transformer layers into drafters and refiners and implements scale-aware layer budget



allocation. Through extensive experiments, our method achieves significant memory reduction while
preserving pixel-level fidelity, enabling efficient deployment in resource-constrained environments.

2 Related Works

Autoregressive Visual Generation. Early works [0} |54] pioneered pixel-by-pixel image genera-
tion, later enhanced by VQVAE [55]] and VQGAN [8]] through image patch quantization. Recent
advances include GPT-style models [51} 34]], mixture-of-experts [23|], linear attention [[26], diffusion-
autoregressive hybrids [[63} |81} [14], and masked approaches [26l 4, 38]]. However, autoregressive
approaches suffer from substantial inference latency due to sequential token generation. VAR [53]]
overcomes this limitation through hierarchical parallel decoding, and has been extended to text-to-
image synthesis [16} 74} 5240, 27, [31]], audio synthesis [45]], and 3D content creation [73].

Efficient Visual Generation. For diffusion models, efficiency optimization methods are already well-
developed. [47,[71}137,148}169] focus on reducing sampling steps while [29} 80, 9, [72] 167, 28| 149, [24]]
optimize models through quantization [24], pruning [9] or knowledge distillation [19]. Several
approaches [41, (59} 76,166 150} 25,139, [79] skip redundant computations during the denoising process.

However, research on memory optimization for VAR image generation remains in its early stages.
LiteVAR [64] and FastVAR [15] enhance inference speed but do not address fundamental memory
bottlenecks, while CoDe [7] improves memory efficiency through collaborative decoding but requires
an additional VAR model. Hack [44] reduces memory via per-head budgets, but its irregular tensor
shapes require specialized kernels. In contrast, our approach directly reduces memory consumption
and integrates with existing techniques to enhance efficiency.

KV Cache Compression. Current KV cache compression techniques for large language models
(LLMs) and vision-language models (VLMs) primarily utilize quantization [36} 70, 22| [17], evic-
tion [78. 135} 142, 146, 130]], and merging [[77, 133} 56} 57] strategies. Quantization reduces precision but
faces granularity limitations; eviction removes less important tokens using attention metrics while
optimizing allocation within budgets [12, 165,10, |11]; and merging consolidates redundant KV pairs.

However, primarily designed for single-sequence processing in LLMs and VLMs, existing techniques
fail to accommodate the multi-scale operational characteristics of VAR and the varying attention
patterns across layers and scales.

3 Methods

3.1 Preliminary

Visual Autoregressive modeling [53]] advances traditional AR approaches by shifting the prediction
paradigm from "next token" to "next scale." Within this framework, each autoregressive operation
produces a token map corresponding to a specific resolution scale, rather than individual tokens.

Given an image feature map f € R"*®*¢ VAR quantizes it into K multi-scale token maps
R = (r1,79,...,rK) with increasingly finer resolutions. The joint probability distribution over these
multi-scale maps is decomposed autoregressively according to:

K
p(ri,re,... . rx) = Hp(Tk | 71,72, TR—1), ey
k=1

where each token map r, € {1,..., V}h*‘xwk‘ contains hy X wjy, discrete tokens, selected from a
vocabulary of size V at scale k. At each autoregressive step k, the model generates all hy X wy,
tokens comprising 7 in parallel, conditioning on previously generated scales (r1,...,7rx_1). While
VAR provides substantial improvements in both inference efficiency and generation quality, this
coarse-to-fine generation strategy significantly expands the sequence length.

3.2 Key Observations

VAR represents an innovative paradigm that diverges from traditional autoregressive approaches. In
this work, we examine the next-scale prediction process to identify properties that can be leveraged
to reduce computational redundancy. Our analysis focuses specifically on attention patterns in VAR.
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Figure 3: (a) Exponential KV cache growth. (b) Visualization of two distinct attention patterns.

Cache demands vary significantly across transformer layers. Our analysis revealed two distinct at-
tention pattern typologies in VAR models, visualized in Figure [3[b). The left pattern (BlockO_Head2)
exhibits a diagonal structure with dispersed attention that spans preceding scales, indicating broad
contextual integration and high cache demand. In contrast, the right pattern (Block31_Head3) demon-
strates highly concentrated attention focused predominantly within the current token map, suggesting
localized processing with minimal cache requirements. Through systematic analysis of these attention
maps, we identified that most layers fall into one of these two categories, which we term Drafters
and Refiners. Drafters distribute attention broadly across historical context, necessitating substantial
KV cache capacity to access multiple scales. Refiners, however, concentrate attention primarily on
local information within the current token map, requiring significantly reduced cache storage.

Different scales exhibit distinct attention patterns. As VAR progresses through its hierarchy, both
groups display scale-dependent evolution. Drafter layers exhibit increasingly dispersed attention
patterns at higher scales to integrate broader contextual information. Conversely, refiners grow
progressively more concentrated, as evidenced by the heightened focus in Scale5_Block31_Head3
compared to its Scale4 counterpart (Figure [3(b)). This bidirectional evolution reveals a specialized
hierarchical process where drafters gather global context while refiners perform localized processing.

These findings challenge both uniform cache allocation [62] and position-based cache reduction [3]
employed by current methods, suggesting that VAR models would benefit from adaptive allocation
strategies accounting for both layer-specific requirements and scale-dependent characteristics.

3.3 Scale-Aware KV Cache

Based on our observations, we propose a simple yet highly effective KV cache compression frame-
work for next-scale prediction called Scale-Aware KV Cache. As illustrated in Figured] ScaleKV
categorizes transformer layers into two functional groups termed Drafters and Refiners, implement-
ing adaptive cache management strategies based on these roles. This approach optimizes multi-scale
inference by identifying each layer’s function at every scale, enabling adaptive cache allocation that
aligns with specific computational demands of each layer.

Identifying Drafter and Refiner Layers. To systematically distinguish between drafter and refiner
layers across different scales, we introduce the Attention Selectivity Index (ASI). This metric
quantifies each layer’s attention patterns by considering two critical factors: (1) the proportion of
attention directed to current token map and (2) the concentration of attention in history sequence.

Let agf]’.k) represent the normalized attention score from query position ¢ in the current map 7y, to
key/value position j in layer [ when processing scale k. The token indices can be partitioned into
history indices Pr_1 (from previously generated maps 1, ..., 7r;_1) and current map indices Cy,
(from 7). The ASI for layer [ at scale k is defined as:

ASION B, [ .5 € ] o [roson (ol 1 7], @

Current Attention Ratio History Top-K Ratio

where E; (s, [-] denotes expectation over query positions ¢ sampled uniformly from the current

map 7%, and TopKSum’(-) computes the sum of the top-K" attention scores directed toward the
history tokens. The parameter K’ controls the number of top scores included in the selectivity term.
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Figure 4: Overview of ScaleKV. Our method categorizes transformer layers into drafters (require

extensive cache for global context) or refiners (process local details with minimal cache). This scale-
wise identification enables adaptive cache allocation based on each layer’s computational demands.

Intuitively, a high AST("-¥) value indicates that the layer either focuses strongly on the current map or
exhibits high selectivity toward specific history tokens, or both. This suggests the layer is functioning
as a refiner. Conversely, a low AST(:%) value indicates the layer distributes attention more broadly
across the prefix context, characteristic of drafter behavior.

Since raw AST("-*) values vary significantly across scales due to differences in token counts and
attention patterns, we normalize these values within each scale using Z-scores. Let S = {(, k) |
1 <1< L,1 <k < K} be the set of all layer-scale pairs. We rank these pairs by their Z-scores and
define the set of drafters D as the N, pairs with the lowest Z-scores:

ASI(Z’k) — Uk

D={(lk)eS|zW <z , Z k) —
{(lLk) eS| < Zing} J—

; 3

where Z ) represents the Ng-th smallest Z-score. The remaining constitute the refiners R = S\ D.

The identification process occurs prior to inference using minimal calibration data. Our experiments
demonstrate that a set of 10 prompts is sufficient to accurately determine the drafters and refiners.

Cache Budget Allocation. After identifying drafters and refiners, we establish an efficient budget
allocation strategy that satisfies the same total memory consumption as uniform budget allocation
Buniform While implementing a scale-dependent reduction for refiners:

K
(N¥ - By(k) + N¥ . B.(k)) = Bunifom - L - K, B,(k) = B.(0) — 6 - k. 4)
k=1

Here, N% and N} represent drafter/refiner layer counts at scale k, while By(k) and B,.(k) denote
their respective cache budgets. The parameter ¢ controls the refiner budget decay rate. By leveraging
the second observation that refiner attention exhibits increasing concentration at higher scales, refiner
cache budgets are linearly reduced from the initial refiner budget B,.(0) as scale k increases. The
saved memory is subsequently reallocated to drafters, ensuring B4(k) > B, (k) to align with the
scale-specific computational demands of each layer.

KV Cache Selection. After establishing cache budgets for drafter and refiner layers, we implement
an efficient token selection strategy to determine which specific KV states should be preserved.

For each token map r, we first partition the map into IV patches and select the centroid token from
each patch to form an observation window W. This sampling approach ensures spatial coverage
across the token map while maintaining a minimal memory footprint. We then evaluate the relative
importance of the remaining tokens based on their attention interactions with the observation window.

Similar to [30], for each attention head h, we compute an importance score s/ for each token i by
measuring the cumulative attention it receives from the observation window tokens:
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Figure 5: Qualitative comparison between the original Infinity-8B model and our proposed ScaleKV.
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Here, A", represents the normalized attention weight from query token j in the observation window to
key token ¢, and dj, denotes the dimension of the key vectors. This formulation effectively quantifies
each token’s contribution to the contextual representation of the observation window.

After calculating cumulative attention, we aggregate these scores through average pooling to produce
a unified importance metric. For each layer I, we then select the top-k! tokens with the highest
aggregated importance scores, where k! corresponds to the layer-specific cache budget determined
by our allocation strategy. Only the KV states of these selected tokens, along with the observation
window tokens, are preserved in the cache for subsequent steps, while all others are efficiently pruned.

The observation window is compact (typically comprising only 16 tokens), enabling efficient attention
score computation between this window and the remaining tokens with negligible computational
overhead. Rather than hindering performance, our experimental results show this approach yields
notable speedups of up to 1.25x through significantly reduced KV cache memory requirements.

4 Experiments

4.1 Experimental Setup

Base Models. We evaluated ScaleKV on two VAR-based text-to-image models of different capacities:
Infinity-2B and Infinity-8B [16]], to validate our method’s generalizability across model scales. To
represent practical deployment scenarios with varying resource constraints, we analyzed performance
under three memory budget constraints: 4%, 10%, and 20% of the original KV cache size.

Dataset and Metrics. We assessed output consistency with the original models using the MS-COCO
2017 validation set, which comprises 5,000 images and captions. Consistency was measured by
the Fréchet Inception Distance (FID) [18]], Learned Perceptual Image Patch Similarity (LPIPS) [[75]],
and Peak Signal-to-Noise Ratio (PSNR). We also used two established image generation benchmarks
GenEval and DPG [20] for perceptual quality and semantic alignment with input prompts. For
memory efficiency, we report the KV cache memory usage measured with a batch size of 8. We
use GPT-40 to generate 10 prompts for calibrating drafters and refiners. Our drafter/refiner
identification method is effective across different calibration prompt sources, with results converging
after analyzing only a small sample of prompts, as detailed in the appendix.



Table 1: Quantitative comparisons of output consistency on MS-COCO 2017 dataset.

Method Budget Infinity-2B Infinity-8B
KV Cache FID| LPIPS| PSNRT KV Cache FID| LPIPS| PSNRT

Full Cache 100% 38550 MB - - - 84328 MB - - -
Sliding Window [1] 20% 7800 MB 5.63 0.17 20.71 17062 MB  4.82 0.14 20.99
StreamingLLM [62] 20% 7800 MB 3.85 0.12 22.00 17062MB  3.94 0.14 21.65
SnapKV [30] 20% 7800 MB 3.25 0.12 22.51 17062 MB  3.10 0.10 22.65
PyramidKV [3] 20% 7800 MB 3.23 0.11 22.62 17062MB  3.03 0.10 22.76
ScaleKV 20% 7800 MB 1.82 0.08 24.84 17062 MB  1.45 0.06 25.60
Sliding Window [1] 10% 3900 MB 8.58 0.24 18.99 8531 MB 8.71 0.20 19.02
StreamingLLM [62] 10% 3900 MB 5.49 0.19 19.79 8531 MB 6.29 0.17 19.97
SnapKV [30] 10% 3900 MB 4.66 0.16 20.83 8531 MB 4.68 0.15 20.60
PyramidKV [3] 10% 3900 MB 4.52 0.16 20.92 8531 MB 4.69 0.14 20.79
ScaleKV 10% 3900 MB 2.53 0.11 22.64 8531 MB 2.12 0.09 23.25
Sliding Window [I] 4% 1590 MB 16.68 0.30 17.49 3478 MB 19.23 0.27 17.50
StreamingLLM [62] 4% 1590 MB 8.71 0.25 18.31 3478 MB 8.54 0.22 18.63
SnapKV [30] 4% 1590 MB 5.10 0.24 18.23 3478 MB 6.68 0.19 19.15
PyramidKV [3] 4% 1590 MB 5.51 0.23 18.65 3478 MB 6.55 0.19 19.26
ScaleKV 4% 1590 MB 3.51 0.16 20.82 3478 MB 3.37 0.12 2141

Table 2: Quantitative comparisons of perceptual quality on GenEval and DPG Benchmarks.

Methods # Params GenEval DPG
Two Obj. Position Color Attri. OverallT Global Relation Overall T

SDXL [43] 2.6B 0.74 0.15 0.23 0.55 83.27 86.76 74.65
LlamaGen [51] 0.8B 0.34 0.07 0.04 0.32 - - 65.16
Show-o [63] 1.3B 0.80 0.31 0.50 0.68 - - 67.48
PixArt-Sigma [5] 0.6B 0.62 0.14 0.27 0.55 86.89 86.59 80.54
HART [52] 0.7B 0.62 0.13 0.18 0.51 - - 80.89
DALL-E 3 [2] - - - - 0.67 90.97 90.58 83.50
Emu3 [58] 8.5B 0.81 0.49 0.45 0.66 - - 81.60
Infinity-2B [16] 2.0B 0.84 0.43 0.57 0.725 89.01 90.03 83.06
+ ScaleKV (10%) 2.0B 0.84 0.44 0.55 0.730 82.45 90.48 83.01
Infinity-8B [16] 8.0B 0.89 0.61 0.68 0.792 89.51 93.08 86.61
+ ScaleKV (10%) 8.0B 0.89 0.61 0.67 0.790 92.49 88.92 86.49

Compression Baselines. We assessed ScaleKV’s performance mainly against four representative
KV cache compression baselines: Sliding Window Attention [1]] (retains local window of most recent
tokens), StreamingLLM [62]] (keeps attention sinks (initial tokens) and recent tokens), SnapKV [30]
(clusters tokens based on attention scores) and PyramidKV [3] (employs a fixed pyramid-shaped
allocation strategy across transformer layers).

4.2 Main Results

Comparison with Compression Baselines. Table [T| presents our evaluation on the MS-COCO 2017
validation set [32]], focusing on pixel-level consistency with the original outputs. ScaleKV consistently
outperforms all baselines across different memory budgets, with significant improvements in FID,
LPIPS, and PSNR metrics.

At the most constrained budget (4%), ScaleKV achieves FID reductions of 31.2% and 48.5%
compared to the next best baseline for Infinity-2B and Infinity-8B. The performance gap widens at
higher budgets, with ScaleKV achieving FID scores of 1.82 and 1.45 at 20% budget, representing
substantial improvements over all competitors. The LPIPS results further validate these findings,
with ScaleKV achieving scores of 0.08 and 0.06 at 20% budget for the two models, compared to
PyramidKV’s 0.11 and 0.10, indicating better perceptual similarity to the original outputs.

Each baseline exhibits specific limitations in the VAR context: Sliding Window Attention and
StreamingLLM employ static policies that lose information carried by middle tokens, resulting in
poor performance at low budgets. SnapKV’s clustering strategy helps preserve some image coherence
but cannot effectively prioritize critical tokens across different scales. Notably, PyramidKV’s fixed
allocation pattern offers limited improvement over SnapKV and sometimes produces worse results
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Figure 6: (a) Kernel Density Estimation of normalized current attention scores at small scales
(rq,73,74) and large scales (r10,711,712). (b) Ablation experiments on using different drafter
identification metrics. (c) Ablation experiments on the impact of refiner budget decay rate.

(e.g., 4% budget on Infinity-2B with FID 5.51 vs. SnapKV’s 5.10), confirming that predetermined
allocation strategies do not generalize well to VAR’s scale-dependent attention behaviors.

Results on GenEval and DPG. To further validate the perceptual quality and semantic understanding
capabilities of our compressed models, we conducted evaluations on two established benchmarks:
GenEval [13]] and DPG [20]]. Table 2] presents these results, comparing our ScaleKV-compressed
models against state-of-the-art image generation models, including diffusion models [43} 15, 2] and
autoregressive models [51} 163 |58l 152]]. The results demonstrate that ScaleKV preserves semantic
understanding remarkably well despite substantial KV cache reduction. For Infinity-2B, our method
delivers exceptional performance that matches the full model (83.01 vs. 83.06 on DPG), with the
GenEval score even showing a slight improvement from 0.725 to 0.730, while using only 10% of
the original KV cache. Similarly, for Infinity-8B, ScaleKV maintains nearly identical performance
(0.790 vs. 0.792 on GenEval, and 86.49 vs. 86.61 on DPG). This minimal performance degradation
is particularly noteworthy given that Infinity models already outperform most existing approaches on
these benchmarks, including larger models like DALL-E 3 and Emu3-8.5B. ScaleKV-compressed
Infinity-8B maintains this superior performance while requiring only 8.5 GB of KV cache memory, a
dramatic reduction from the original 85 GB.

Qualitative Results. We provide an extensive qualitative comparison between the Infinity-8B model
with full KV cache and our proposed ScaleKV, with varying budgets of 4%, 10%, and 20%. As
illustrated in Figure 5] our approach achieves significant memory optimization, with only minimal
quality degradation that is nearly imperceptible to the human eye. Even at a compression rate of 25
times, the generated images maintain exceptionally high quality and accurate semantic information.

4.3 Analytical Experiments

Attention Distributions Across Scales. We quantify attention pattern variations throughout the multi-
scale generation using normalized current scale attention, defined as the average attention per token
within the current scale to the average attention across the entire sequence, to capture contribution
of the cached tokens to generation. Figure[6(a) demonstrates the kernel density estimation (KDE)
of normalized current attention, revealing distinct distributions across small scales (2, 3,74) and
large scales (719,711, r12). Small scales exhibit an approximately uniform distribution, indicating
broad context utilization without strong selectivity. In contrast, large scales concentrate around higher
attention values, suggesting focused information selection. This progression reflects an evolution
from global information aggregation in early scales to selective attention refinement in later scales.

Impact of Drafter Identification Metric. Figure [6[b) demonstrates the comparative effectiveness of
different metrics for drafter identification. Our proposed Attention Selectivity Index (ASI) (Equa-
tion [2) combines the attention score ratio in the current token map and the Top-K ratio in history
sequence. When evaluated on Infinity-2B with a 10% cache budget constraint, ASI achieves an
FID score of 2.53, representing a substantial 42.5% improvement over using only the Top-K ratio
(4.60). This significant performance gap validates that our comprehensive attention pattern analysis
effectively identifies layers requiring larger cache allocation, enabling optimal resource distribution.

Impact of Refiner Budget Decay Rate. Figure [6]c) shows the effectiveness of refiner budget decay
strategy (Equation [)) under a 10% budget constraint (650 tokens per head/layer). With an initial
refiner budget of 600 tokens, we observe a consistent improvement in FID from 3.49 to 2.53 as decay
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Table 3: Memory usage comparison across different batch sizes

Method | Memory Consumption,

| Running KV Cache Params Total
Infinity (bs=1) 1.1GB 10.5GB 19.5GB 31.4GB
+ScaleKV (10%) 0.8GB 1.1GB 19.5GB 21.4GB
Infinity (bs=8) - 85GB 19.5GB OOM (>100GB)
+ScaleKV (10%) 21.1GB 8.5GB 19.5GB 49.2GB
Infinity (bs=16) - 170GB 19.5GB OOM (>100GB)
+ScaleKV (10%) 42.4GB 17.1GB 19.5GB 78.8GB

rate increases from O to 70, confirming our observation that refiner attention becomes increasingly
focused at higher scales, requiring fewer resources. The monotonic improvement also validates our
drafter identification method, as reallocating cache capacity from refiners to drafters consistently
enhances generation quality, indicating accurate identification of layers with divergent cache demands.

Quality-Efficiency Trade-off. We evaluated the quality-efficiency trade-off of ScaleKV against
established compression methods across different cache budgets, as shown in Figure[7(a). For both
Infinity-2B and Infinity-8B models, ScaleKV consistently achieves the lowest FID at all budget
constraints, with performance gap widening at more restrictive memory allocations. These results
demonstrate that ScaleKV effectively preserves generation quality even under severe memory con-
straints, making it adaptable to diverse deployment scenarios with varying computational resources.

Memory Efficiency and Time Cost Analysis. In Table 3] we present a comprehensive analysis of
memory consumption during the Infinity-8B model inference process. The KV cache of the Infinity
model is the largest memory consumer, requiring approximately 10 times the memory needed for
the model’s decoding operation due to the significantly extended sequence length. Our proposed
ScaleKV drastically reduces the KV cache memory requirements, compressing it to 10% of the
original model. Moreover, as batch size increases, the memory savings with ScaleKV become even
more pronounced. We are able to generate images with a large batch size of 16 using less than 80GB
total memory, whereas the KV cache alone of the original model requires 170GB during inference.

While primarily developed to improve memory efficiency, ScaleKV also delivers notable inference
acceleration by reducing tensor access and transfer operations. Figure[7(b) illustrates how inference
latency increases substantially with image resolution due to exponential growth in the token sequence.
Our method achieves up to 1.25x speedup on a single NVIDIA H20 GPU, with performance gains
becoming more pronounced as resolution increases. These results demonstrate ScaleKV’s potential for
deployment in resource-constrained environments and scaling VAR models to ultra-high resolutions
such as 4K, which would otherwise be limited by memory bottlenecks and inference latency.

5 Conclusion

This work introduces ScaleKV, a novel KV cache compression framework for Visual Autoregressive
modeling that effectively addresses the memory bottlenecks in high-resolution image generation. By
implementing scale-aware layer budget allocation, ScaleKV enables adaptive cache management
tailored to the specific demands of each layer across scales. Through extensive experimentation, our
method demonstrates a superior efficiency-quality trade-off, enabling efficient deployment in resource-
constrained environments and facilitating the scaling of VAR models to ultra-high resolutions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in our abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our work in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our method along with extensive experi-
mental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We offer the full code along with relevant instructions.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the details about the experiment in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide the details about initialization and dataset split.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details about the computation resources we used in the experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited, and the license and term of use are explicitly mentioned and
properly adhered to.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are well documented, and the documenta-
tion is provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs as core methods in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

In this document, we provide supplementary material that we could not fit into the main manuscript
due to the page limit. It includes detailed explanations, visualization results, and quantitative
experiments.

A Robustness to Calibration Data

To evaluate the stability of our drafter/refiner identification method across varying calibration set
sizes, we conducted an ablation study using prompts sampled from the LAION-Art dataset. We
systematically evaluated ScaleKV’s performance using calibration sets ranging from a single prompt
to 128 prompts, measuring the resulting FID scores on the MS-COCO validation set. As demonstrated
in Figure[§] the FID score remains stable at 2.53 with zero standard deviation across the entire range of
calibration set sizes. This exceptional consistency indicates that the attention patterns distinguishing
drafters from refiners represent fundamental architectural properties of VAR models rather than
dataset-specific characteristics. The immediate convergence with even a single calibration sample
demonstrates that our Attention Selectivity Index effectively captures the intrinsic scale-dependent
attention behaviors—dispersed attention for drafters and concentrated attention for refiners—without
requiring extensive statistical sampling. These findings validate that ScaleKV’s layer categorization
is both theoretically sound and practically robust.

FID Score Consistency Across Sample Sizes

Mean FID: 2.53
Std Dev: 0.0

2.54 -

2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
[a]
- ° ° ° °
'S
2.52 =
2.50 -
2.48 - 1 1 1 1 1 1 1 1
1 16 32 48 64 80 96 112 128
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Figure 8: FID score consistency across calibration set sizes. ScaleKV maintains stable performance
(FID = 2.53, o = 0.0) from 1 to 128 calibration samples, demonstrating the robustness of our
drafter/refiner identification method.

B Attention Map Visualization

Figures 0] and [I0] present representative attention maps from transformer layers identified as drafters
and refiners at scale 7, providing empirical validation for our layer categorization framework. The
drafter layer (Block 23) exhibits distinctly dispersed attention patterns across multiple attention heads,
with weights distributed broadly across the spatial dimensions to capture global contextual information
from preceding scales. This dispersed mechanism enables comprehensive integration of hierarchical
features, justifying the larger cache allocation for such layers. In contrast, the refiner layer (Block 29)
demonstrates highly concentrated attention patterns, with attention heads focusing predominantly
on localized spatial regions within the current token map. These contrasting attention behaviors
provide strong empirical evidence for our differentiated cache management strategy: drafters require
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substantial cache capacity to maintain broad contextual access while refiners can operate effectively
with significantly reduced cache allocation due to their localized processing nature.

C Additional Qualitative Results

Figures [IT] and [T2] present comprehensive galleries of images generated by ScaleKV-compressed
Infinity-8B and Infinity-2B models, respectively, demonstrating the practical effectiveness of our
compression framework across diverse visual content. These compressed models operate with merely
10% of the original KV cache memory requirement, yet maintain exceptional generation quality across
various image categories including natural scenes, objects, portraits, and artistic compositions. These
results demonstrate that ScaleKV achieves substantial memory reduction without compromising the
generative capabilities of VAR models, making high-quality image synthesis feasible in memory-
constrained deployment scenarios.

D Limitations

In this analysis, we critically examine the constraints of our methodology.

First, while ScaleKV demonstrates robust compression performance across models of varying
capacities, evaluation on larger VAR models would provide additional insights into our method’s
scalability. Due to the limited availability of large-scale models, our evaluation was restricted to
Infinity-8B, currently the largest available VAR model. Testing on models with greater capacity,
such as those with 20B parameters, would enable more comprehensive assessment of ScaleKV’s
scalability. Second, ScaleKV functions as a post-training KV cache compression solution that relies
on pre-trained VAR models and mirrors the original model’s outputs. Therefore, if the baseline
quality of the original VAR models is unsatisfactory, achieving high-quality results with our method
could be challenging.

E Societal impacts

This work introduces a new KV cache compression framework for VAR models that addresses critical
memory bottlenecks in high-resolution image generation. By reducing memory requirements to 10%
of the original capacity while maintaining generation quality, our method enhances the accessibility
of advanced image synthesis technologies and carries several important societal implications. First, it
democratizes access to high-quality image generation by enabling deployment on consumer-grade
hardware and edge devices, thereby benefiting creative industries and educational institutions that
previously lacked the computational resources for such applications. Second, the reduced memory
footprint results in lower energy consumption during inference, contributing to more sustainable
Al deployment practices. Third, by enabling ultra-high resolution generation at scales up to 4K,
our framework creates new opportunities for professional content creation, medical imaging, and
scientific visualization applications.
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Figure 9: Visualization of Drafter Layer Attention Maps.
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Figure 10: Visualization of Refiner Layer Attention Maps.
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Figure 11: Generated Images from ScaleKV-Compressed Infinity-8B.
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Figure 12: Generated Images from ScaleKV-Compressed Infinity-2B.
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