

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING MULTI-MODAL LLMs REASONING VIA DIFFICULTY-AWARE GROUP NORMALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) and Group Relative Policy Optimization (GRPO) have significantly advanced the reasoning capabilities of large language models. Extending these methods to multimodal settings, however, faces a critical challenge: the instability of *std*-based normalization, which is easily distorted by extreme samples with nearly positive or negative rewards. Unlike pure-text LLMs, multimodal models are particularly sensitive to such distortions, as both perceptual and reasoning errors influence their responses. To address this, we characterize each sample by its **difficulty**, defined through perceptual complexity (measured via visual entropy) and reasoning uncertainty (captured by model confidence). Building on this characterization, we propose **difficulty-aware group normalization**, which re-groups samples by difficulty levels and shares the *std* within each group. Our approach preserves GRPO’s intra-group distinctions while eliminating sensitivity to extreme cases, yielding significant performance gains across multiple multimodal reasoning benchmarks.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has enabled significant advances in the reasoning capabilities of both large language models (LLMs) (DeepSeek-AI et al., 2025; Yang et al., 2025a; Lambert et al., 2024) and multi-modal large language models (MLLMs) (Zhang et al., 2025b; Huang et al., 2025a). Within this paradigm, Group Relative Policy Optimization (GRPO) (Shao et al., 2024b) demonstrates strong performance by applying standard deviation (*std*)-based normalization to rewards within each response group. This *std*-based normalization rescales intra-group distinctions between positive and negative responses, thereby stabilizing training.

Despite these advances, the *std*-based normalization suffers from a critical limitation: *sensitive to extreme samples* — those with response groups that are almost entirely positive or negative. Specifically, when rewards in a group collapse to near 0 or 1, the resulting low *std* overemphasizes the extreme samples during optimization. Meanwhile, samples with more balanced rewards are neglected, leading to imbalanced optimization. This issue is particularly pronounced in MLLMs, where the complexity of multimodal inputs increases the occurrence of such extreme samples. As illustrated in Figure 1, MLLM responses are jointly influenced by challenges from perceptual complexity and reasoning uncertainty, making them more susceptible to extreme reward distributions.

While removing the *std* term mitigates the risk of overfitting to extreme samples (Liu et al., 2025b), it simultaneously discards the valuable intra-group distinctions, which are essential for effective and stable optimization. Therefore, *the key issue lies not in the std-normalization itself, but rather in the way groups are constructed*: when group size is small, extreme cases become inevitable. Enlarging group sizes during rollouts could help, but it incurs prohibitive computational costs.

Motivated by this, we propose to account for the challenges of various samples, which we refer to as **difficulty-aware re-grouping**. We characterize each sample’s difficulty from two complementary perspectives: (i) a data-centric view, where high entropy in the image reflects *perceptual difficulty*; and (ii) a model-centric view, where low confidence in model responses reflects *reasoning difficulty*. By re-grouping samples according to these difficulty levels and sharing the *std* within each group, our method preserves intra-group distinctions while mitigating sensitivity to extreme cases. Specifically, our difficulty-based re-group strategy is achieved by:

054
 055 **Perceptual difficulty based regrouping.** We
 056 quantify perceptual difficulty through spectral
 057 analysis of image patch covariances, where
 058 higher entropy in the resulting eigenvalue distri-
 059 bution indicates greater visual complexity. Intui-
 060 tively, images with more diverse and complex
 061 visual patterns exhibit higher entropy, reflecting
 greater perceptual difficulty.

062 **Reasoning difficulty based regrouping.** Lever-
 063 aging the insight that token-level log proba-
 064 bilities reflect reasoning confidence (Yu et al.,
 065 2025c), we measure reasoning difficulty through
 066 the model’s token-level confidence, where lower
 067 average log probabilities indicate greater uncer-
 068 tainty in generating correct reasoning chains,
 069 reflecting higher reasoning difficulty.

070 By explicitly decomposing difficulty into
 071 data-centric (**perceptual**) and model-centric
 072 (**reasoning**) groups, our method allows each
 073 group of samples to share separate *stds* for per-
 074 ceptual and reasoning aspects. These normalized
 075 advantages are then combined via element-wise
 076 multiplication, effectively integrating intrinsic
 077 data complexity and model uncertainty, ensuring
 stable optimization that preserves meaningful intra-group
 distinctions. Our contributions are summarized
 into the following three aspects:

- 078 • We identify that the limitation of *std*-normalization in group-based RL methods (e.g. GRPO
 079 and DAPO) originates from group construction, particularly in multimodal reasoning tasks, and
 080 propose a difficulty-based re-grouping strategy to build more robust groups.
- 081 • We explicitly decompose difficulty into perceptual and reasoning aspects, and integrate them via
 082 element-wise combination, effectively capturing both data complexity and model uncertainty
 083 while preserving intra-group distinctions.
- 084 • Our proposed strategy achieves significant performance gains. Concretely, building upon GRPO
 085 and DAPO, our strategy attains more than 2% average performance improvements.

087 2 PRELIMINARY

090 In this section, we briefly introduce the key concepts and training setup for multimodal reasoning
 091 under RLVR (DeepSeek-AI et al., 2025). We first formulate the task, and then revisit the standard
 092 GRPO framework (Shao et al., 2024b) along with its improved variant, Decoupled Clip and Dynamic
 093 Sampling Policy Optimization (DAPO) (Yu et al., 2025b).

094 2.1 TASK FORMULATION

097 We consider the problem of multimodal reasoning under the RLVR paradigm. Let $\{\mathcal{I}, \mathcal{Q}\} \in \mathcal{D}$
 098 denote a multimodal input, where the dataset \mathcal{D} includes image \mathcal{I} and text question \mathcal{Q} . The model
 099 generates a reasoning response o given $\{\mathcal{I}, \mathcal{Q}\}$ and receives a verifiable reward r based on the correct
 100 answer y (Wu et al., 2025; Wang et al., 2025a). The response o typically contains both the reasoning
 101 steps and the final answer, with the reasoning steps enclosed in `<think>...</think>` and the
 102 final answer enclosed in `\boxed{ }{}`. We employ a binary reward function, where $r(o, y) = 1$ if the
 103 final answer is equal to the correct answer y , and $r(o, y) = 0$ otherwise. The reasoning process is
 104 modeled as a policy $\pi_\theta(o|\mathcal{I}, \mathcal{Q})$ parameterized by θ to maximize the expected reward:

$$\mathcal{J}_{\text{RLVR}}(\theta) = \max_{\theta} \mathbb{E}_{\{\mathcal{I}, \mathcal{Q}\} \sim \mathcal{D}} \mathbb{E}_{o \sim \pi_\theta(\cdot|\mathcal{I}, \mathcal{Q})} [r(o, y)]. \quad (1)$$

105 Our goal is to enhance the reasoning capabilities of an instruction-tuned MLLM, thereby significantly
 106 improving its performance on downstream multimodal reasoning tasks.

108 2.2 CORE ALGORITHMS OF REINFORCEMENT LEARNING WITH VERIFIABLE REWARD
109110 **Group Relative Policy Optimization (GRPO)** is derived from Proximal Policy Optimization
111 (PPO) (Schulman et al., 2017), with the key distinction that GRPO replaces the advantage estimates
112 obtained via Generalized Advantage Estimation (GAE) with group-relative advantages computed
113 from a group of outputs.114 Specifically, for each input \mathcal{I}, \mathcal{Q} , GRPO samples a group of outputs $\{o_1, o_2, \dots, o_G\}$ from the old
115 policy model $\pi_{\theta_{\text{old}}}$, with rollout size G . The advantage of the i -th response is computed by normalizing
116 the rewards among the group:

117
$$\hat{A}_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}. \quad (2)$$

118

120 GRPO adopts a clipped objective, together with a directly imposed KL penalty term:
121

122
$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(\mathcal{I}, \mathcal{Q}) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(o | \mathcal{I}, \mathcal{Q})} \left\{ \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \right. \\ 123 \left. \min \left[\frac{\pi_{\theta}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})} \hat{A}_{i,t}, \text{clip} \left(\frac{\pi_{\theta}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right] - \beta \mathbb{D}_{KL}(\pi_{\theta} \| \pi_{\text{ref}}) \right\}. \quad (3)$$

124

125 ϵ is the hyperparameter to control the clipping range of the importance sampling ratio, and β is the
126 penalty strength of how far the current policy π_{θ} deviates from the reference policy π_{ref} .
127130 **Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO)** is a variant of GRPO
131 adopting an asymmetric clipping range with a larger upper bound, dynamic sampling, token-level
132 policy gradient loss, and overlong reward shaping. The objective function of DAPO is defined as:

133
$$\mathcal{J}_{\text{DAPO}}(\theta) = \mathbb{E}_{(\mathcal{I}, \mathcal{Q}) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(o | \mathcal{I}, \mathcal{Q})} \left\{ \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \right. \\ 134 \left. \min \left[\frac{\pi_{\theta}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})} \hat{A}_{i,t}, \text{clip} \left(\frac{\pi_{\theta}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | \mathcal{I}, \mathcal{Q}, o_{i,<t})}, 1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}} \right) \hat{A}_{i,t} \right] \right\}. \quad (4)$$

135

139 3 METHOD
140141 In this section, we introduce our difficulty-based regroup strategy in detail. We first represent our
142 perceptual difficulty-based regrouping in Section 3.1, then we describe our reasoning difficulty-based
143 regrouping in Section 3.2. Finally, we show our combination strategies.
144145 3.1 PERCEPTUAL DIFFICULTY-BASED RE-GROUPING
146147 **Perceptual difficulty estimation.** To estimate the perceptual difficulty of a batch $\mathcal{B} = \{(\mathcal{I}_s, \mathcal{Q}_s)\}_{s=1}^B$,
148 we first extract patch-level visual features from the Qwen2.5-VL-7B visual encoder Ω_v :

149
$$\mathbf{F}_s = \Omega_v(\mathcal{I}_s) \in \mathbb{R}^{P \times d} = [\mathbf{f}_s^1, \mathbf{f}_s^2, \dots, \mathbf{f}_s^P]^\top, \quad (5)$$

150

151 where P denotes the number of spatial patches and d is the feature dimension, with $\mathbf{f}_s^j \in \mathbb{R}^{d \times 1}, j = 1, \dots, P$ representing the feature of the j -th patch.
152153 Compared to CLIP-based representations (Radford et al., 2021), these patch-level features not only
154 capture finer spatial granularity that preserves local details, but also align better with the downstream
155 textual decoder Ω_t , ensuring both stability and semantic consistency.
156157 We then compute the empirical covariance matrix to capture intra- and inter-patch variances:
158

159
$$\mathbf{C}_s = \frac{1}{P-1} (\mathbf{F}_s - \mathbf{1}_P \boldsymbol{\mu}_s^\top) (\mathbf{F}_s - \mathbf{1}_P \boldsymbol{\mu}_s^\top)^\top, \quad \boldsymbol{\mu}_s = \frac{1}{P} \sum_{j=1}^P \mathbf{f}_s^j. \quad (6)$$

160

161 where $\mathbf{1}_P$ is a $P \times 1$ column vector of ones and $\boldsymbol{\mu}_s$ is the mean of the patches feature of the \mathcal{I}_s . The
162 diagonal entries measure the variance of each feature dimension across patches, while the off-diagonal

162 terms capture correlations between different feature dimensions. This covariance structure reveals
 163 whether visual features are dominated by a few strong dimensions or by multiple interacting factors,
 164 providing a principled basis for assessing perceptual difficulty.

165 Since \mathbf{C}_s is a symmetric positive semidefinite matrix, we then perform eigenvalue decomposition for
 166 spectral analysis:

$$168 \quad \mathbf{C}_s = \mathbf{V}_s \mathbf{\Lambda}_s \mathbf{V}_s^\top, \quad \mathbf{\Lambda}_s = \text{diag}(\lambda_s^1, \dots, \lambda_s^P), \quad \lambda_s^k \geq 0. \quad (7)$$

169 λ_s^k denotes the k -th eigenvalue, quantifying the variance along one orthogonal principal direction.
 170 Concentrated eigenvalues indicate that most variance is captured by a few dimensions, whereas more
 171 balanced eigenvalues imply richer visual structure and higher visual complexity.

172 The final perceptual difficulty score is defined as the entropy (Shannon, 1948) of the normalized
 173 distribution of eigenvalues:

$$175 \quad H(\mathcal{I}_s) = - \sum_{k=1}^P p_s^k \log p_s^k, \quad (8)$$

178 where p_s is the normalized probability distribution of the eigenvalues, and each element in p_s is
 179 calculated as:

$$180 \quad p_s^k = \frac{\lambda_s^k}{\sum_{j=1}^P \lambda_s^j}, \quad \text{with } \sum_{k=1}^P p_s^k = 1. \quad (9)$$

183 Here, low entropy corresponds to the visually easy sample, with variance concentrated on a few
 184 dominant components, whereas high entropy indicates the visually difficult sample, with variance
 185 distributed across many patches.

186 **Perceptual difficulty-based regrouping.** Given the perceptual difficulty scores within a batch, we
 187 partition samples into three groups using the 25th and 75th percentiles $\tau_{0.25}$ and $\tau_{0.75}$:

$$188 \quad \mathcal{S}_1 = \{s \mid H(\mathcal{I}_s) \leq \tau_{0.25}\}, \quad \mathcal{S}_2 = \{s \mid \tau_{0.25} < H(\mathcal{I}_s) < \tau_{0.75}\}, \quad \mathcal{S}_3 = \{s \mid H(\mathcal{I}_s) \geq \tau_{0.75}\}. \quad (10)$$

190 For each group a , the reward set can be defined as:

$$191 \quad \mathcal{R}_a = \{r_{s,i} \mid i = 1, \dots, G, s \in \mathcal{S}_a\}, \quad a \in \{1, 2, 3\} \quad (11)$$

193 where $r_{s,i}$ refers to the i -th reward of the s -th sample which belongs to the group \mathcal{S}_a .

194 We then compute the shared standard deviation $std(\mathcal{R}_a)$ of group rewards, and normalize the reward
 195 of each sample in batch with the new $std(\mathcal{R}_a)$ to calculate advantage accordingly:

$$197 \quad A_{s,i}^{\text{Perceptual}} = \frac{r_{s,i} - \text{mean}(r_{s,1}, r_{s,2}, \dots, r_{s,G})}{std(\mathcal{R}_a)}, \quad (12)$$

$$200 \quad std(\mathcal{R}_a) = \sqrt{\frac{1}{|\mathcal{R}_a| - 1} \sum_{r_{s,i} \in \mathcal{R}_a} (r_{s,i} - \frac{1}{|\mathcal{R}_a|} \sum_{r_{s,i} \in \mathcal{R}_a} r_{s,i})^2}, \quad (13)$$

203 where $|\mathcal{R}_a|$ denotes to the cardinality of \mathcal{R}_a .

205 By grouping samples into low-, medium-, and high-entropy categories, the normalization scale is
 206 shared only among samples with comparable perceptual difficulty. This mitigates the influence of
 207 extreme samples, balances treatment across different levels of visual complexity, and ultimately
 208 stabilizes optimization.

209 3.2 REASONING DIFFICULTY-BASED REGROUPING

211 **Reasoning difficulty estimation.** While perceptual difficulty captures the intrinsic complexity of the
 212 image, reasoning difficulty is shaped by the model’s intrinsic confidence in generating the final answer.
 213 Even for inputs with similar visual complexity, the model may exhibit varying confidence levels: high
 214 confidence (assigning a high probability to reasoning chains) implies a clear and reliable reasoning
 215 path, whereas low confidence indicates uncertainty and potential reasoning failures. Following this
 intuition, we quantify reasoning difficulty using the model’s probabilities to its reasoning chains.

216 For the given batch $\mathcal{B} = \{(\mathcal{I}_s, \mathcal{Q}_s)\}_{s=1}^B$, and the generated G responses for each sample, we denote
 217 the i -th response as $o_{s,i} = (o_{s,i}^1, \dots, o_{s,i}^T)$, where $o_{s,i}^n$ is the n -th token and T is the sequence length.
 218

219 Based on the token-level log probability $\pi_\theta(o_{s,i}^n | \mathcal{I}_s, \mathcal{Q}_s, o_{s,i}^{<n})$, we aggregate across tokens to obtain
 220 the sequence-level log probability for response $o_{s,i}$:

$$221 \quad L_{s,i} = \sum_{n=1}^T \pi_\theta(o_{s,i}^n | \mathcal{I}_s, \mathcal{Q}_s, o_{s,i}^{<n}). \quad (14)$$

224 Then we define the model confidence for sample $(\mathcal{I}_s, \mathcal{Q}_s)$ as the average sequence-level log probability
 225 across its G rollouts:

$$227 \quad L(\mathcal{Q}_s) = \frac{1}{G} \sum_{i=1}^G L_{s,i}. \quad (15)$$

230 This formulation reflects the model’s internal confidence: High and consistent $L(\mathcal{Q}_s)$ indicates a
 231 reliable reasoning chain, whereas low or fluctuating $L(\mathcal{Q}_s)$ reflects epistemic uncertainty, implying
 232 that more challenging reasoning sample.

233 **Reasoning difficulty-based regrouping.** Given the model confidence scores $L(\mathcal{Q}_s)$ for the batch
 234 $\mathcal{B} = \{(\mathcal{I}_s, \mathcal{Q}_s)\}_{s=1}^B$, we divide samples into b groups according to the quantiles of their confidence
 235 distribution. Let $\{\tau_0, \tau_1, \dots, \tau_b\}$ denote the quantile boundaries, with $\tau_0 = 0$ and $\tau_b = 1$. Each
 236 question \mathcal{Q}_s is then assigned to a group by:

$$237 \quad \mathcal{M}_u = \{s \mid \tau_{u-1} \leq L(\mathcal{Q}_s) < \tau_u\}, \quad u \in \{1, \dots, b\}. \quad (16)$$

238 Within each group \mathcal{M}_u , we define the reward set as:

$$240 \quad \mathcal{R}_u = \{r_{s,i} \mid i = 1, \dots, G, s \in \mathcal{M}_u\}, \quad u \in \{1, \dots, b\} \quad (17)$$

241 where $r_{u,i}$ is the reward of the i -th response for the sample, which belongs to the u group. We
 242 can then calculate the shared standard deviation $std(\mathcal{R}_W)$ of reasoning difficulty-based group, and
 243 compute the advantage accordingly:

$$244 \quad A_{s,i}^{\text{Reasoning}} = \frac{r_{s,i} - \text{mean}(r_{s,1}, r_{s,2}, \dots, r_{s,G})}{std(\mathcal{R}_u)}, \quad (18)$$

246 where the std can be calculated as:

$$249 \quad std(\mathcal{R}_u) = \sqrt{\frac{1}{|\mathcal{R}_u| - 1} \sum_{r_{s,i} \in \mathcal{R}_u} \left(r_{s,i} - \frac{1}{|\mathcal{R}_u|} \sum_{r_{s,i} \in \mathcal{R}_u} r_{s,i} \right)^2}, \quad (19)$$

253 This regrouping ensures that responses with similar confidence levels are normalized on comparable
 254 scales, mitigating instability introduced by overconfident or underconfident samples.

255 3.3 COMBINATION FOR ROBUST OPTIMIZATION

257 To leverage the complementary aspects of perceptual and reasoning difficulty, we propose an element-
 258 wise combination strategy. Specifically, given the perceptual-based group normalized advantage
 259 $A^{\text{Perceptual}}$, the reasoning-based group normalized advantage $A^{\text{Reasoning}}$, and the original GRPO advan-
 260 tage A^{GRPO} , the combined advantage is defined as:

$$262 \quad A^{\text{Combined}} = \alpha_{\text{Ori}} \cdot A^{\text{GRPO}} + \alpha_{\text{Percep}} \cdot A^{\text{Perceptual}} + \alpha_{\text{Reason}} \cdot A^{\text{Reasoning}}, \quad (20)$$

264 where $\alpha_{\text{Ori}}, \alpha_{\text{Percep}}, \alpha_{\text{Reason}}$ are weighting coefficients that balance the contributions of the three
 265 components. Perceptual difficulty, quantified by the entropy in the image, captures the *visual*
 266 *complexity* of multimodal inputs; reasoning difficulty, derived from token- and sequence-level log
 267 probabilities, reflects the *model uncertainty* during reasoning. Integrating these difficulty-based
 268 advantages with the original GRPO advantage allows the model to preserve meaningful intra-sample
 269 distinctions and incorporate both intrinsic and extrinsic difficulty context, providing a more stable
 and informative advantage for policy optimization.

270 Table 1: The Acc performance of two re-grouping strategies in our method. We take DAPO as our
 271 backbone. The best results are indicated in **boldface**, and the second-best results are underlined.
 272

273 Model	274 MathVerse	275 MathVision	276 MathVista	277 WeMath	278 HallusionBench	279 Avg
274 DAPO	275 50.4	276 27.6	277 70.7	278 69.4	279 68.6	280 57.3
275 DAPO + Perceptual regrouping	276 52.3	277 28.0	278 71.4	279 70.9	280 <u>70.9</u>	281 <u>58.7</u>
276 DAPO + Reasoning regrouping	277 52.3	278 <u>28.3</u>	279 <u>71.6</u>	280 70.8	281 68.9	282 58.4
277 DAPO + Both	278 <u>51.9</u>	279 29.0	280 72.2	281 71.8	282 71.4	283 59.3

280 4 EXPERIMENT

281 In this section, we demonstrate the effectiveness of our re-grouping strategy. Specifically, we first
 282 show the experimental settings, including the dataset, benchmark, baselines, and implementation
 283 details. Then, we illustrate the ablation studies to analyze the two regroup strategies. Finally, we
 284 compare with the state-of-the-art methods over various benchmarks.

285 4.1 EXPERIMENTAL SETTINGS

286 **Dataset.** For training, we rely on the Geometry3K (Lu et al., 2021) dataset, which provides 2.1K
 287 training samples and 0.3K validation samples. **Besides, we also provide the experimental results**
 288 **training on a larger dataset ViRL39k.**

289 **Benchmark.** We evaluate our method on five benchmarks: four visual reasoning datasets, namely
 290 MathVerse (Zhang et al., 2024), MathVision (Wang et al., 2024), MathVista (Lu et al., 2024), and
 291 WeMath (Qiao et al., 2025), as well as one visual perception benchmark, HallusionBench (Guan
 292 et al., 2024). In addition, we assess the in-domain performance by comparing our method with the
 293 vanilla GRPO and DAPO.

294 **Baseline.** To evaluate the performance of our method, we consider three categories of baselines:
 295 (1) Closed-source models, such as GPT-4o (Hurst et al., 2024), and Cloud-3.5-sonnet (Anthropic,
 296 2024). (2) Open source models: including InternVL-2.5-8B-Instruct (Chen et al., 2024), LLaVA-
 297 OneVision-7B (Li et al., 2024), Kimi-VL-16B (Du et al., 2025a), URSA-8B (Luo et al., 2025),
 298 and Mulberry-7B (Yao et al., 2024). (3) RLVR-based Models: MLLMs trained with reinforcement
 299 learning using verifiable rewards, representing the current mainstream approaches in this line of
 300 research. This category includes R1-VL-7B (Zhang et al., 2025a), Vision-R1-7B (Huang et al.,
 301 2025b), R1-OneVision-7B (Yang et al., 2025b), OpenVLThinker-7B (Deng et al., 2025), MM-
 302 Eureka-Qwen-7B (Meng et al., 2025), ADORA-7B (Gui & Ren, 2025), ThinkLite-7B-VL (Wang
 303 et al., 2025d), and VLAA-Thinker-7B (Chen et al., 2025a).

304 **Implementation details.** Following prior work (Liu et al., 2025a), we use Qwen2.5-VL-7B-
 305 Instruct (Bai et al., 2025) as our base model and adopt EasyR1 (Zheng et al., 2025) as our reinforce-
 306 ment learning framework. All experiments are conducted on 8 NVIDIA H20 96G GPUs. We adopt
 307 the default settings from EasyR1, using a learning rate of $1e^{-6}$, a global batch size of 128, a rollout
 308 batch size of 512, and a rollout size of 8. **The analysis of rollout size and different coefficients is**
 309 **provided in Appendix G and Appendix F.**

310 4.2 ABLATION STUDIES

311 To better understand the contribution of each component in our method, we conduct ablation studies
 312 on five benchmarks by comparing four settings: vanilla DAPO, DAPO with perceptual regrouping,
 313 DAPO with reasoning regrouping, and our final method. Results are summarized in Table 1.

314 **The effects of Perceptual difficulty-based regrouping.** Using perceptual difficulty-based regrouping
 315 alone yields consistent performance gains across benchmarks. For instance, on HallusionBench,
 316 which is explicitly designed to evaluate perceptual ability, we observe an improvement of 3.4%
 317 over vanilla DAPO. This demonstrates that regrouping samples via spectral analysis of image patch
 318 covariances enhances the model’s perceptual grounding by mitigating the dominance of extremely
 319 easy or hard cases.

320 **The effects of Reasoning difficulty-based regrouping.** When regrouping with model confidence,
 321 the average accuracy increases to 58.4, and it’s notable to observe a 3.8% gain on MathVerse, even

324
 325
 326
 327
 328
 329 Table 2: Performance comparison of Multi-modal LLMs with over 5 benchmarks. Accuracy scores
 330 (%) are reported for all benchmarks for clarity. Data sizes used for SFT and RL are annotated in
 331 **blue** and **red**, respectively. The best value in each column is shown in **bold**, and the second-best is
 332 underlined.
 333
 334
 335
 336

Model	Data Size	MathVerse	MathVision	MathVista	WeMath	HallusionBench	Average
<i>Close-source models</i>							
<i>Open-source models</i>							
InternVL-2.5-8B-Instruct (Chen et al., 2024)	-	50.8	30.4	63.8	69.0	71.4	-
LLaVA-OneVision-7B (Li et al., 2024)	-	26.5	38.0	67.7	-	71.6	-
Kimi-VL-16B (Du et al., 2025a)	-	44.9	21.4	68.7	-	66.2	-
URSA-8B (Luo et al., 2025)	-	45.7	26.2	59.8	-	-	-
Mulberry-7B (Yao et al., 2024)	-	-	-	63.1	-	-	-
<i>reinforcement learning with verifiable reward based</i>							
R1-VL-7B (Zhang et al., 2025a)	260K+10K	52.2	28.2	74.3	69.0	57.2	56.2
Vision-R1-7B (Huang et al., 2025b)	200K+10K	52.4	27.2	73.5	62.9	69.2	57.0
R1-OneVision-7B (Yang et al., 2025b)	155K+10K	46.1	22.5	63.9	62.1	65.6	52.0
OpenVLThinker-7B (Deng et al., 2025)	35K+15K	48.0	25.0	71.5	67.8	70.8	56.6
MM-Eureka-Qwen-7B (Meng et al., 2025)	15K	50.5	28.3	71.5	65.5	68.3	56.8
ADORA-7B (Gui & Ren, 2025)	2.1K	50.1	27.6	71.1	67.1	53.1	53.8
ThinkLite-7B-VL (Wang et al., 2025d)	11K	50.2	27.6	72.7	69.2	71.0	58.1
VLAAThinker-7B (Chen et al., 2025a)	25K	49.9	26.9	68.8	67.9	68.6	56.4
NoisyRollout (Liu et al., 2025a)	2.1K	53.2	28.5	72.6	69.6	72.1	59.2
Qwen2.5-VL-7B-Instruct (Bai et al., 2025)	-	46.2	25.0	67.5	63.1	64.6	53.3
+ Vanilla GRPO	2.1K (Geometry3K)	49.6	26.8	70.2	68.2	69.8	56.9
+ Vanilla GRPO + Ours	2.1K (Geometry3K)	52.8	28.8	72.3	69.2	72.9	59.2
+ Vanilla DAPO	2.1K (Geometry3K)	50.4	27.6	70.7	69.4	68.6	57.3
+ Vanilla DAPO + Ours	2.1K (Geometry3K)	51.9	29.0	72.2	71.8	71.4	59.3
+ Vanilla DAPO + Ours	39K (ViRL39K)	52.4	29.9	73.8	72.0	72.5	60.1

347
 348
 349 surpassing the performance of our method. This indicates that the model’s internal confidence
 350 estimation also serves as a reliable signal for stabilizing optimization.

351 The combination of both strategies achieves the best overall performance with an average accuracy of
 352 59.3. This confirms that these two strategies provide complementary perspectives on samples, and
 353 their integration leads to more robust policy optimization.

355 4.3 COMPARISON WITH STATE-OF-THE-ART APPROACHES

356
 357 In this subsection, we comprehensively compare
 358 our method with various state-of-the-art meth-
 359 ods, including closed-source, open-source, and
 360 RLVR-related approaches. The experimental
 361 results are listed in Table 2. We can draw the
 362 following observations: (1) compared with those
 363 either distilled from large-scale chain-of-thought
 364 data or employing complex data augmentation
 365 strategies, our method, utilizing only 2.1k train-
 366 ing samples, achieves comparable or even su-
 367 perior performance, significantly demonstrating
 368 our effectiveness. (2) Building upon both GRPO
 369 and DAPO, our strategy demonstrates promis-
 370 ing performance gains. Specifically, we achieve
 371 more than 3.5% performance improvements, es-
 372 pecially on the HallusionBench; our strategy
 373 achieves more than 5% improvements, further
 374 showing our effectiveness.

375 4.4 HYPER-PARAMETER SENSITIVITY ANALYSIS

376
 377 In this section, we analyze the effects of hyperparameters, including both the number of perceptual
 378 and reasoning difficulty-based groups.

379
 380 Figure 2: The distribution of pre-calculated en-
 381 tropy on the Geometry3K dataset, where x axis
 382 represents entropy, y axis denotes the probability
 383 density, Q25 and Q75 denotes 25th and 75th per-
 384 centiles, respectively .

Figure 3: The Accuracy performance of different numbers of groups b on 3 representative benchmarks, where the x axis is the number of groups, and y axis is the results.

4.4.1 GROUPS UNDER PERCEPTUAL DIFFICULTY-BASED STRATEGY

As shown in Figure 2, to regroup samples by entropy, we adopt the 25th and 75th percentiles as thresholds. This quantile-based choice is inherently distribution-aware, as it adapts to the empirical spread of entropy values rather than relying on arbitrary fixed cutoffs. Importantly, it produces a natural 1:2:1 partition of the data—approximately 25% easy, 50% medium, and 25% hard—which avoids the issue of overly sparse or overly dense categories. Such a balance is desirable for stable optimization: each group contains sufficient samples to provide reliable intra-group statistical estimates, while extremely low- and high-entropy cases are isolated rather than allowed to dominate normalization. Moreover, this three-level categorization is semantically interpretable, with low entropy corresponding to simple scenes, high entropy to complex ones, and the middle range capturing moderately difficult cases. Detailed cases representing the entropy of these three categories are illustrated in Appendix H.1.

4.4.2 GROUPS UNDER REASONING DIFFICULTY-BASED STRATEGY

We report the effect of varying the number of groups for our reasoning-based strategy in Figure 3. We observe that the performance is relatively stable across a wide range of groups, suggesting that our method is robust to this hyperparameter. For instance, on MathVista and HallusionBench, the accuracy is steadily improved as the number of groups increases to around 12–16, after which the results plateau with only minor fluctuations. A similar trend is observed on WeMath, where the performance peaks at 12 groups but remains competitive even when more groups are introduced.

5 RELATED WORKS

In this section, we overview of the related studies. Specifically, we first discuss representative strategy to construct multimodal reasoning models, including chain-of-thought distillation, reinforcement learning, and visual tool integration. Then we introduce the RLVR and its optimization variants, and finally, we highlight the key differences between ours and existing approaches.

5.1 MULTIMODAL REASONING MODELS

Chain-of-thought distillation. Supervised fine-tuning (SFT) on long chain-of-thought (CoT) data enables models to learn detailed reasoning traces, thereby improving reasoning accuracy. Specifically, building upon (Zhang et al., 2023), this strategy has proven effective through both transferring CoT-enhanced LLMs to multimodal settings (Du et al., 2025b) and training directly with multimodal reasoning data (Liu et al., 2023). Future works futher explore different forms of intermediate reasoning supervision (Dai et al., 2023; Yang et al., 2025c; Zhu et al., 2023).

Reinforcement learning. Another line of research leverages reinforcement learning (RL) to optimize reasoning trajectories beyond imitation. Most studies adopt PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024b), with representative approaches such as (Zhang et al., 2025b; Shen et al., 2025; Wang et al., 2025b;c) that apply RL across diverse domains. We will elaborate on RLVR and GRPO in the following subsection(Section 5.2).

432 **Visual tool integration.** This paradigm moves beyond merely “thinking about images” toward
 433 actively querying, modifying, and generating visual information as intermediate steps in reasoning,
 434 forming a “visual chain of thought”. The development of think-with-image can be roughly divided
 435 into three stages (Su et al., 2025) : from external tool exploration (Ma et al., 2024; Shao et al.,
 436 2024a; Ma et al., 2025), through programmatic manipulation (Surís et al., 2023; Fu et al., 2025),
 437 to intrinsic imagination (Zhao et al., 2025; Chen et al., 2025b). These three stages reflect intercon-
 438 nected capabilities—active exploration, structured reasoning, and generative planning—that together
 439 transform visual representations from static inputs into a dynamic workspace for thought.

440 **5.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD (RLVR)**

441 RLVR (Lambert et al., 2024) is an optimization paradigm that replaces subjective reward scores with
 442 verifiable signals. Its core algorithm, GRPO (Shao et al., 2024b), stabilizes training by comparing
 443 candidate responses within a group. Building on GRPO, subsequent studies can be broadly catego-
 444 rized into two directions: data-centric approaches, which expand the candidate and reward space
 445 through data manipulation or augmentation, and algorithm-centric approaches, which refine GRPO
 446 to strengthen semantic grounding and coherent reasoning.

447 **Data-centric GRPO.** This line of work enlarges the candidate set (Chen et al., 2025d) or restructures
 448 the training data (Chen et al., 2025c; Zhu et al., 2025) so that group comparisons capture richer
 449 behaviors. By manipulating data distributions (Zhu et al., 2025) or augmenting inputs (Li et al., 2025;
 450 Liu et al., 2025a), these methods expose models to a wider variety of responses, thereby increasing
 451 the likelihood of discovering high-quality verifiable signals.

452 **Algorithm-centric GRPO.** In contrast, algorithm-centric methods refine how verifiable signals
 453 guide reasoning. Rather than expanding candidate sets, they adapt GRPO to enhance semantic
 454 grounding (Yu et al., 2025a; Liu et al., 2025c) and logical coherence (Huang et al., 2025a; Wei et al.,
 455 2025). These approaches emphasize the role of visual grounding and promote reasoning chains where
 456 intermediate steps remain verifiable while supporting the final answer.

457 **Difference.** Compared with existing methods, we regroup the data in advantage calculation based on
 458 (1) the model’s response uncertainty and (2) the entropy of image inputs when computing the *std*,
 459 and sharing the *std* within each group. This design prevents the model from overfitting to extreme
 460 samples and enhances its ability to capture the data distinction within each group.

461 **6 CONCLUSION**

462 In this work, we identify a critical challenge in GRPO-based reinforcement learning methods for
 463 multimodal reasoning tasks: **the *std*-based group normalization is sensitive to extreme samples**,
 464 such as response groups that are almost entirely positive or negative. While this issue exists in GRPO
 465 in general, it is significantly amplified in multimodal settings due to the joint influence of perceptual
 466 complexity and reasoning uncertainty.

467 To address this, we propose a simple yet effective **difficulty-aware re-grouping** strategy. By
 468 decomposing the sample difficulty into perceptual and reasoning aspects, we construct groups
 469 of samples with similar difficulty levels, allowing each group to share *std* during normalization.
 470 The normalized advantages with shared *std* from both aspects are combined via element-wise
 471 multiplication, effectively integrating data complexity and model uncertainty while preserving intra-
 472 group distinctions. By applying over GRPO and DAPO, our strategy achieves more than 2% average
 473 performance gains across multiple multimodal reasoning benchmarks.

474 **Limitations and Future Work.** While difficulty-aware regrouping significantly stabilizes GRPO-
 475 based multimodal reasoning, several directions remain open: (1) more precise difficulty estimation
 476 — potentially learned from model behaviors to richer visual-semantic features — could capture
 477 subtler perceptual and reasoning characteristics; (2) adaptive grouping strategies that dynamically
 478 adjust group sizes or composition as training progresses may better balance intra-group distinctions
 479 and mitigate extreme samples. Beyond technical refinements, the underlying principle of aligning
 480 optimization with sample difficulty also offers a general paradigm for stabilizing reinforcement
 481 learning optimization with multimodal inputs.

486 7 ETHICS STATEMENT
487488 Our work focuses on algorithmic improvements for reinforcement learning-based multimodal rea-
489 soning tasks using publicly available datasets (e.g., MathVista, MathVerse, MathVision). We do not
490 collect data from human subjects, and all datasets used are publicly released. We do not foresee any
491 direct, immediate, or negative societal impacts stemming from the outcomes of our research.
492493 8 REPRODUCIBILITY STATEMENT
494495 To ensure reproducibility, we provide detailed descriptions of datasets, training configurations, and
496 hyperparameters in both the main text and supplementary materials. We will provide our code to
497 facilitate reproducibility.
498499 REFERENCES
500501 Anthropic. Claude 3.5 sonnet, 2024. URL <https://www.anthropic.com/news/claud-e-3-5-sonnet>.
502503 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
504 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
505 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
506 Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
507 *CoRR*, abs/2502.13923, 2025.508 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
509 Xie. SFT or rl? an early investigation into training r1-like reasoning large vision-language models.
510 *CoRR*, abs/2504.11468, 2025a.512 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
513 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
514 models-architecture, training and dataset. *CoRR*, abs/2505.09568, 2025b.515 Mingrui Chen, Haogeng Liu, Hao Liang, Huaibo Huang, Wentao Zhang, and Ran He. Unlocking the
516 potential of difficulty prior in rl-based multimodal reasoning. *CoRR*, abs/2505.13261, 2025c.518 Xi Chen, Mingkang Zhu, Shaoteng Liu, Xiaoyang Wu, Xiaogang Xu, Yu Liu, Xiang Bai, and
519 Hengshuang Zhao. Mico: Multi-image contrast for reinforcement visual reasoning. *CoRR*,
520 abs/2506.22434, 2025d.521 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
522 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
523 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han
524 Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye
525 Ge, Kai Chen, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and
526 Wenhui Wang. Expanding performance boundaries of open-source multimodal models with model,
527 data, and test-time scaling. *CoRR*, abs/2412.05271, 2024.528 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
529 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
530 with instruction tuning. In *NeurIPS*, 2023.532 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
533 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning
534 capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025.535 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
536 An early exploration to complex vision-language reasoning via iterative self-improvement. *CoRR*,
537 abs/2503.17352, 2025.538 Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang,
539 Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *CoRR*, abs/2504.07491, 2025a.

540 Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng
 541 Liu, Zhongyuan Wang, and Ji-Rong Wen. Virgo: A preliminary exploration on reproducing o1-like
 542 MLLM. *CoRR*, abs/2501.01904, 2025b.

543

544 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
 545 language models using semantic entropy. *Nat.*, 630(8017):625–630, 2024.

546

547 Xingyu Fu, Minqian Liu, Zhengyuan Yang, John Corring, Yijuan Lu, Jianwei Yang, Dan Roth, Dinei
 548 Florencio, and Cha Zhang. Refocus: Visual editing as a chain of thought for structured image
 549 understanding. *CoRR*, abs/2501.05452, 2025.

550

551 Norberto M. Grzywacz. Perceptual complexity as normalized shannon entropy. *Entropy*, 27(2):166,
 552 2025.

553

554 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 555 Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An
 556 advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
 557 language models. In *CVPR*, 2024.

558

559 Lujun Gui and Qingnan Ren. Training reasoning model with dynamic advantage estimation on
 560 reinforcement learning. <https://www.notion.so/Training-Reasoning-Model-with-Dynamic-Advantage-Estimation-on-Reinforcement-Learning-1a830cc0904681fa9df3e076b6557a3e>, 2025. Notion Blog.

561

562 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 563 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 564 *CoRR*, abs/2503.06749, 2025a.

565

566 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 567 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 568 *CoRR*, abs/2503.06749, 2025b.

569

570 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 571 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 arXiv:2410.21276*, 2024.

572

573 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 574 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, and Scott Johnston. Language
 575 models (mostly) know what they know. *CoRR*, abs/2207.05221, 2022.

576

577 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
 578 Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
 579 open language model post-training. *CoRR*, abs/2411.15124, 2024.

580

581 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 582 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *CoRR*, abs/2408.03326,
 583 2024.

584

585 Yuting Li, Lai Wei, Kaipeng Zheng, Jingyuan Huang, Linghe Kong, Lichao Sun, and Weiran
 586 Huang. Vision matters: Simple visual perturbations can boost multimodal math reasoning. *CoRR*,
 587 abs/2506.09736, 2025.

588

589 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*, 36:
 590 34892–34916, 2023.

591

592 Xiangyan Liu, Jinjie Ni, Zijian Wu, Chao Du, Longxu Dou, Haonan Wang, Tianyu Pang, and
 593 Michael Qizhe Shieh. Noisyrollout: Reinforcing visual reasoning with data augmentation. *CoRR*,
 594 abs/2504.13055, 2025a.

595

596 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 597 Lin. Understanding r1-zero-like training: A critical perspective. *CoRR*, abs/2503.20783, 2025b.

594 Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xiaoyi Dong, Yuhang Cao, Haodong Duan,
 595 Dahua Lin, and Jiaqi Wang. Visual agentic reinforcement fine-tuning. *CoRR*, abs/2505.14246,
 596 2025c.

597 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 598 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 599 In *ACL*, 2021.

600 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 601 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 602 of foundation models in visual contexts. In *ICLR*, 2024.

603 Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu, Xinzhe Ni, Zicheng Lin, Jin Zeng, and Yujiu
 604 Yang. URSA: understanding and verifying chain-of-thought reasoning in multimodal mathematics.
 605 *CoRR*, abs/2501.04686, 2025.

606 Yan Ma, Linge Du, Xuyang Shen, Shaoxiang Chen, Pengfei Li, Qibing Ren, Lizhuang Ma, Yuchao
 607 Dai, Pengfei Liu, and Junjie Yan. One rl to see them all: Visual triple unified reinforcement
 608 learning. *CoRR*, abs/2505.18129, 2025.

609 Zixian Ma, Jianguo Zhang, Zhiwei Liu, Jieyu Zhang, Juntao Tan, Manli Shu, Juan Carlos
 610 Niebles, Shelby Heinecke, Huan Wang, Caiming Xiong, Ranjay Krishna, and Silvio Savarese.
 611 TACO: learning multi-modal action models with synthetic chains-of-thought-and-action. *CoRR*,
 612 abs/2412.05479, 2024.

613 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
 614 Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang, and Wenqi Shao.
 615 Mm-eureka: Exploring visual aha moment with rule-based large-scale reinforcement learning.
 616 *CoRR*, abs/2503.07365, 2025.

617 Dang Nguyen, Ali Payani, and Baharan Mirzasoleiman. Beyond semantic entropy: Boosting LLM
 618 uncertainty quantification with pairwise semantic similarity. In *ACL (Findings)*, 2025.

619 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Jiapeng Wang,
 620 Zhuoma Gongque, Shanglin Lei, Yifan Zhang, Zhe Wei, MiaoXuan Zhang, Runfeng Qiao, Xiao
 621 Zong, Yida Xu, Peiqing Yang, Zhimin Bao, Muxi Diao, Chen Li, and Honggang Zhang. We-math:
 622 Does your large multimodal model achieve human-like mathematical reasoning? In *ACL*, 2025.

623 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 624 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 625 Learning transferable visual models from natural language supervision. In *ICML*, 2021.

626 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 627 optimization algorithms. *CoRR*, abs/1707.06347, 2017.

628 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27
 629 (3):379–423, 1948.

630 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
 631 Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset
 632 and benchmark for chain-of-thought reasoning. In *NeurIPS*, 2024a.

633 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 634 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 635 language models. *CoRR*, abs/2402.03300, 2024b.

636 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 637 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
 638 and generalizable r1-style large vision-language model. *CoRR*, abs/2504.07615, 2025.

639 Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
 640 Kaide Zeng, Zhengyuan Yang, et al. Thinking with images for multimodal reasoning: Foundations,
 641 methods, and future frontiers. *CoRR*, abs/2506.23918, 2025.

648 Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
 649 reasoning. In *ICCV*, 2023.

650

651 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vl-rethinker:
 652 Incentivizing self-reflection of vision-language models with reinforcement learning. *CoRR*,
 653 abs/2504.08837, 2025a.

654

655 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 656 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In
 657 *NeurIPS*, 2024.

658

659 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 660 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 661 models in versatility, reasoning, and efficiency. *CoRR*, abs/2508.18265, 2025b.

662

663 Xiyao Wang, Chunyuan Li, Jianwei Yang, Kai Zhang, Bo Liu, Tianyi Xiong, and Furong Huang.
 664 Llava-critic-r1: Your critic model is secretly a strong policy model. *CoRR*, abs/2509.00676, 2025c.

665

666 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 667 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 668 visual reasoning self-improvement. *CoRR*, abs/2504.07934, 2025d.

669

670 Lai Wei, Yuting Li, Kaipeng Zheng, Chen Wang, Yue Wang, Linghe Kong, Lichao Sun, and Weiran
 671 Huang. Advancing multimodal reasoning via reinforcement learning with cold start. *CoRR*,
 672 abs/2505.22334, 2025.

673

674 Zijian Wu, Jinjie Ni, Xiangyan Liu, Zichen Liu, Hang Yan, and Michael Qizhe Shieh. Synthrl:
 675 Scaling visual reasoning with verifiable data synthesis. *CoRR*, abs/2506.02096, 2025.

676

677 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 678 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *CoRR*, abs/2505.09388, 2025a.

679

680 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 681 Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing generalized
 682 multimodal reasoning through cross-modal formalization. *CoRR*, abs/2503.10615, 2025b.

683

684 Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca Weihs, Andrew Head, Mark Yatskar,
 685 Chris Callison-Burch, Ranjay Krishna, Aniruddha Kembhavi, and Christopher Clark. Scaling
 686 text-rich image understanding via code-guided synthetic multimodal data generation. *CoRR*,
 687 abs/2502.14846, 2025c.

688

689 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
 690 Yuxin Song, Haocheng Feng, Li Shen, and Dacheng Tao. Mulberry: Empowering MLLM with
 691 o1-like reasoning and reflection via collective monte carlo tree search. *CoRR*, abs/2412.18319,
 692 2024.

693

694 En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian
 695 Sun, Chunrui Han, Zheng Ge, Xiangyu Zhang, Dixin Jiang, Jingyu Wang, and Wenbing Tao.
 696 Perception-r1: Pioneering perception policy with reinforcement learning. *CoRR*, abs/2504.07954,
 697 2025a.

698

699 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 700 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 701 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 702 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 703 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-source
 704 LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025b.

705

706 Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao,
 707 Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. RLPR: extrapolating RLVR to general domains
 708 without verifiers. *CoRR*, abs/2506.18254, 2025c.

702 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
 703 R1-VL: learning to reason with multimodal large language models via step-wise group relative
 704 policy optimization. *CoRR*, abs/2503.12937, 2025a.

705 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 706 Pan Lu, Kai-Wei Chang, Yu Qiao, Peng Gao, and Hongsheng Li. MATHVERSE: does your
 708 multi-modal LLM truly see the diagrams in visual math problems? In *ECCV*, 2024.

709 Yifan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu Jiang,
 710 Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang, Tingting Gao,
 711 and Liang Wang. R1-reward: Training multimodal reward model through stable reinforcement
 712 learning. *CoRR*, abs/2505.02835, 2025b.

713 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 714 chain-of-thought reasoning in language models. *CoRR*, abs/2302.00923, 2023.

715 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
 716 Li, Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gordon
 717 Wetzstein, and Tsung-Yi Lin. Cot-vla: Visual chain-of-thought reasoning for vision-language-
 718 action models. *CoRR*, abs/2503.22020, 2025.

719 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
 720 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

721 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
 722 vision-language understanding with advanced large language models. *CoRR*, abs/2304.10592,
 723 2023.

724 Linghao Zhu, Yiran Guan, Dingkang Liang, Jianzhong Ju, Zhenbo Luo, Bin Qin, Jian Luan, Yuliang
 725 Liu, and Xiang Bai. Shuffle-r1: Efficient RL framework for multimodal large language models via
 726 data-centric dynamic shuffle. *CoRR*, abs/2508.05612, 2025.

733 A THE USE OF LARGE LANGUAGE MODELS(LLMs)

734 We conducted a study on improving GRPO to further enhance the reasoning capability of MLLMs,
 735 achieving substantial performance gains on datasets such as MathVerse (Zhang et al., 2024), MathVi-
 736 sion (Wang et al., 2024), and MathVista (Lu et al., 2024). During the preparation of this manuscript,
 737 we used LLMs to assist with tasks such as grammar correction, language refinement, and logical
 738 checking. However, we confirm that no outputs from the LLMs were directly used; instead, all
 739 content underwent careful verification and reconstruction by the authors.

741 B PROMPT DESIGN

742 We use a “Thinking prompt” to formalize the output of the model. It requires the model to put its
 743 reasoning process within <think>...</think> and the final answer in \boxed{ }. We keep the system
 744 prompt of Qwen2.5-VL (Bai et al., 2025) and prepend the “Thinking prompt” to the user message.
 745 The same format is used for both training and evaluation. The full instruction prompt is as follows:

746 747 748 749 750 751 752 753 754 755

Prompt Example

SYSTEM:

You are a helpful assistant.

USER:

You FIRST think about the reasoning process as an internal monologue and then provide the
 final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The
 final answer MUST BE put in \boxed{ }.<QUESTION>

756 C EXPERIMENT SETTINGS
757758 **Reward Calculation.** We adopt a combination of format reward and accuracy reward as the final
759 reinforcement learning signal. The two components are defined as follows:
760

761
$$r_{\text{format}} = \begin{cases} 1, & \text{if the output format is correct,} \\ 0, & \text{otherwise,} \end{cases} \quad (21)$$

762

763
$$r_{\text{acc}} = \begin{cases} 1, & \text{if the answer matches the ground truth,} \\ 0, & \text{otherwise.} \end{cases} \quad (22)$$

764

767 The overall reward is computed as the weighted sum of the two:
768

769
$$r_{\text{overall}} = 0.1 \times r_{\text{format}} + 0.9 \times r_{\text{acc}}. \quad (23)$$

770 A smaller weight is assigned to the format reward, since response formatting is relatively easy to
771 learn compared with accuracy.
772773 D ANALYSIS OF THE OCCURRENCE OF EXTREME SAMPLES, WHICH *std*-BASED
774 GROUP NORMALIZATION IS HIGHLY SENSITIVE TO.
775776 To further support the motivation of our paper and analyze the changes of extreme samples during
777 training, we perform a detailed step-by-step analysis of reward statistics across 60 training steps with
778 512 samples and their 8 rollout rewards. The empirical evidence clearly shows that the existence of
779 extreme samples is not an occasional event but a persistent and systemic phenomenon.
780781 Table 3: The statistics of rewards about extreme samples within the batch across 60 training steps.
782

Training steps	1	10	20	30	40	50	60
Effective samples (participating in training)	323	327	324	322	297	314	306
Extreme success (7 correct & 1 wrong)	41	39	48	66	78	60	82
Extreme failure (7 wrong & 1 correct)	78	89	74	51	54	54	51
Total Extreme Ratio	36.8%	39.1%	37.7%	36.3%	44.4%	36.31%	43.5%

783 First, groups with 8 identical rewards (i.e., variance = 0) constitute 35%–46% of all samples at every
784 training step. We first exclude these groups for not participating in gradient updates.
785786 Second, during the training process, there are **31%–44% samples exhibit the 7:1 extreme reward**
787 **patterns** (i.e., 7/8 correct or wrong) among the remaining effective samples, which produce extremely
788 small variance. Besides, the occurrence of this situation will increase as training deepens.
789790 These findings demonstrate that **the instability of *std*-based normalization is structural rather**
791 **than incidental**: multimodal reasoning tasks naturally contain a large proportion of very easy and
792 very hard samples, leading to unstable and unreliable advantage scaling. This directly motivates
793 our difficulty-aware regrouping strategy, which stabilizes normalization by ensuring that variance is
794 computed only within samples of comparable difficulty.
795801 E VERIFY THE FEASIBILITY OF UTILIZING IMAGE ENTROPY AS A PROXY FOR
802 PERCEPTUAL DIFFICULTY AND MODEL CONFIDENCE AS A PROXY FOR
803 REASONING DIFFICULTY.
804805 E.1 IMAGE ENTROPY AS A PROXY FOR PERCEPTUAL DIFFICULTY.
806807 **Perceptual difficulty** in our framework is defined based on **the complexity of visual embeddings**,
808 which we quantify using spectral analysis of image patch covariances. Specifically, the entropy
809 of the eigenvalue distribution from the covariance matrix reflects the amount of variance across
810 spatial features in the image. Researchers in prior works(Grzywacz, 2025) support that: high entropy

810 indicates a more diverse distribution of visual features, implying a richer and more complex visual
 811 structure. This complexity makes it more challenging for the visual model to recognize, and thus, we
 812 associate higher entropy with greater perceptual difficulty.

814 E.2 MODEL CONFIDENCE AS A PROXY FOR REASONING DIFFICULTY.

816 Researchers in (Farquhar et al., 2024; Nguyen et al., 2025) propose that “one measure of uncertainty
 817 is the predictive entropy of the output distribution, which measures the information one has about the
 818 output given the input[3]. The predictive entropy for an input sentence \mathbf{x} is the conditional entropy
 819 (H) of the output random variable (Y) with realization y given \mathbf{x} .”

$$821 \quad PE(\mathbf{x}) = H(Y|\mathbf{x}) = - \sum_y P(y|\mathbf{x}) \ln P(y|\mathbf{x}). \quad (24)$$

824 Researchers(Kadavath et al., 2022) also hypothesize that when a model knows the answer to a
 825 particular question, it is confident in its response, and this would result in an answer distribution
 826 with small entropy. Conversely, when a model is unsure about its response, it will lead to an answer
 827 distribution with high entropy, thus implying a more challenging reasoning process.

828 This aligns directly with our formulation: the **sequence-level log probabilities** we compute are
 829 theoretically linked to the notion of *semantic entropy* and represent the joint likelihood of the entire
 830 reasoning chain. A low log-probability corresponds to a flat or high-entropy output distribution,
 831 reflecting uncertainty in the reasoning trajectory, while a high log-probability corresponds to a
 832 confident, low-entropy distribution.

834 E.3 EMPIRICAL VALIDATION.

835 During the evaluation stage, we conduct an analysis focusing on the **questions that the model**
 836 **answered incorrectly** on two benchmarks. We want to examine whether these error samples
 837 are concentrated in the more difficult groups as defined by our difficulty metrics. The intuition
 838 behind this approach is that samples belonging to higher-difficulty groups—whether in terms of
 839 perceptual complexity or reasoning uncertainty—should naturally be harder for the model to tackle.
 840 Consequently, we expect these samples to exhibit higher error rates.

841 To achieve this, we use Gemini2.5 Pro to classify the sources of errors, distinguishing between
 842 **perceptual errors** and **reasoning errors**.

- 844 • For **perceptual errors**, we first group the images based on their visual entropy, then
 845 compute the proportion of incorrect answers within each group relative to the total number
 846 of perceptual errors.
- 847 • Similarly, for **reasoning errors**, we group the samples based on model confidence, and
 848 calculate the proportion of incorrect answers in each group relative to the total number of
 849 reasoning errors.

851 Table 4: The error rate of perceptual difficulty groups in perceptual errors on two benchmarks.

	low-entropy	medium-entropy	high-entropy
Wemath	23.6%	31.3%	45.1%
HallusionBench	21.2%	29.6%	49.2%

857 Table 5: The error rate of reasoning difficulty groups in reasoning errors on two benchmarks.

	group 1 (low confidence)	group 2	group 3	group 4	group 5	group 6	group 7	group 8	group 9	group 10 (high confidence)
Wemath	13.4%	12.6%	13.2%	12.7%	11.6%	9.1%	9.7%	7.2%	6.7%	4.2%
HallusionBench	12.7%	11.9%	11.2%	11.7%	10.0%	9.8%	9.0%	8.2%	8.3%	7.1%

862 As shown in Table 4 and Table 5, the results align with our expectations: images with **low visual**
 863 **entropy** (indicating simplicity) correspond to **lower perceptual error rates**, and samples with **lower**

864 **model confidence** (indicating greater uncertainty in the reasoning process) correspond to **higher**
 865 **reasoning error rates**. Our empirical findings are consistent with this intuition, further supporting
 866 the validity of our difficulty metrics.

867 The instructions for Gemini2.5 pro to conduct classification are as follows:
 868

869 Prompt Example
 870

871 **SYSTEM:**

872 You are an expert evaluator for multimodal reasoning errors. Your task is to determine why a
 873 model answered a visual reasoning question incorrectly.

874 You must classify the error into one and only one of the following categories:

875 1. Perception Error
 876

877 The model misunderstood or misread the visual content.

878 Examples include:

879 Misidentifying objects, numbers, angles, or relations in the image

880 Failing to notice geometric constraints

881 Incorrectly interpreting positions, shapes, or labels

882 Making a wrong assumption about what is visually shown

883 2. Reasoning Error The model correctly interpreted the visual content, but its logical
 884 reasoning or mathematical deduction is incorrect.

885 Examples include:

886 Using the wrong theorem or property

887 Incorrect algebraic or geometric steps

888 Incorrect reasoning chain

889 Logical inconsistency

890 You must output your judgment in JSON format:

891 {
 892 “error_type”:“Perception” or “Reasoning”,
 893 “explanation”: “A short explanation of why this classification fits.”
 894 }

895 **USER:**

896 You are given a visual reasoning question, the model’s prediction (including its reasoning
 897 process), and the correct answer.

898 Please carefully read the model’s reasoning and determine whether the model failed due to
 899 Perception Error or Reasoning Error.

900 Here is the data sample:

901 <insert the JSON sample here>

902 Now analyze the model’s reasoning step-by-step and output the final JSON in the required
 903 format.

904 F ANALYSIS OF DIFFERENT WEIGHTING COEFFICIENTS.

905 In this section, we will analyze the effects of the weighting coefficients for further assessing hyperpa-
 906 rameter sensitivity. We experiment with different combinations of three coefficients α_{Ori} , α_{Percep} ,
 907 and α_{Reason} , and the results are presented in Table 6.

908 We can observe that while the performance on different benchmarks varies slightly with different
 909 settings, the method is relatively stable across a wide range of settings, with no significant degradation
 910 in results, indicating that our model is not overly sensitive to the specific choice of hyperparameters.
 911 This suggests that our method does not require extremely fine-tuned hyperparameters to perform
 912 effectively. Besides, we find that, usually, a little α_{Ori} and relatively larger α_{Percep} and α_{Reason} are
 913 more likely to achieve a better effect, which can be used as guidance in the application of our method.

918 Table 6: The effects of different weighting coefficients (built upon DAPO) on 5 benchmarks
919

α_{Ori}	α_{Percep}	α_{Reason}	MathVerse	MathVision	MathVista	WeMath	HallusionBench
0.1	0.2	0.7	50.7	28.6	71.6	71.8	71.2
0.15	0.25	0.6	50.8	29.0	71.6	70.6	70.8
0.2	0.1	0.7	51.2	28.4	71.5	70.4	71.0
0.3	0.1	0.6	51.7	27.8	70.7	70.6	70.8
0.4	0.3	0.3	51.9	27.9	71.4	70.5	71.1
0.6	0.2	0.2	50.4	28.8	72.2	71.0	71.4
0.7	0.1	0.2	51.1	28.3	70.3	71.1	69.8

928
929 **G ANALYSIS OF THE EFFECT OF ROLLOUT SIZE ON PERFORMANCE AND
930 STABILITY.**
931932 Table 7: The effects of rollout size (built upon DAPO) on 5 benchmarks.
933

rollout	MathVerse	MathVision	MathVista	WeMath	HallusionBench
2	48.7	27.1	70.1	69.7	67.3
4	50.1	28.4	71.5	70.2	68.9
8	51.9	29.0	72.2	71.8	71.4
16	52.1	29.2	72.1	71.2	71.2
24	51.7	29.0	71.9	71.9	71.5
32	51.9	28.9	72.2	71.0	71.3

942 We observed from Table 7 that when the rollout size is smaller than 8, the performance improves as
943 the rollout size increases. Notably, when the number of rollouts is reduced to 2, the model reverts to
944 PPO. As the rollout size continues to increase beyond 8, the improvement in performance becomes
945 less pronounced, eventually stabilizing at a stable value.
946947 These results indicate that while increasing the number of rollouts can lead to better performance,
948 after a certain point, beyond which further increases in group size do not significantly contribute
949 to performance improvement. This shows the importance of selecting an appropriate group size to
950 balance computational cost and model performance.
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **H CASE STUDY**
973974 **H.1 PERCEPTUAL DIFFICULTY-BASED RE-GROUPING CASES**
975

977 Low Entropy	978 Medium Entropy	979 High Entropy
<p>980 Question 981 Find x. 982 Answer 983 $2\sqrt{221}$</p>	<p>980 Question 981 Find x. Round the side measure to the nearest tenth. 982 Answer 983 34.8</p>	<p>980 Question 981 In $\odot B$, the diameter is 20 units long, and $m\angle ACE=45^\circ$. Find x. 982 Answer 983 $\sqrt{2}$</p>
<p>987 Question 988 Find y in the given parallelogram 989 Answer 990 15</p>	<p>987 Question 988 Find z 989 Answer 990 $2\sqrt{6}$</p>	<p>987 Question 988 Find $m\angle T$. 989 Answer 990 135</p>
<p>995 Question 996 Find x. 997 Answer 998 50</p>	<p>995 Question 996 Find $m\angle B$. 997 Answer 998 30</p>	<p>995 Question 996 Find the area of the figure. 997 Answer 998 150</p>
<p>1002 Question 1003 What is the measure of an interior angle of a regular pentagon? 1004 Answer 1005 108</p>	<p>1002 Question 1003 Find the area of the figure. Round to the nearest tenth if necessary. 1004 Answer 1005 261</p>	<p>1002 Question 1003 In the figure, $m\angle 1 = 58$, $m\angle 2 = 47$, and $m\angle 3 = 26$. Find the $m\angle 7$. 1004 Answer 1005 58</p>

1009 Figure 4: Illustrative examples of different levels of entropy
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 H.2 DEMONSTRATION OF IMPROVED PERCEPTION AND REASONING CAPABILITIES
1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Question:

According to the chart, does China have the second largest population in the world? Your final answer can only be \boxed{yes} or \boxed{no}.

Source: HallusionBench

Problem version: chart

figure id: 3_2

question_id: 3

Ours:

<think>

The chart represents population data for various countries, with China and the UK having the highest populations at 1,425.7 and 1,428.6 million respectively.

Since the chart indicates China's population is slightly lower than the UK's, it suggests that China does indeed have the second largest population in the world according to this data.

</think>

\boxed{yes}

Vanilla GRPO:

<think>

The chart shows the population of various countries. The population of China is listed as 1,425.7 million, and the population of the UK is listed as 1,428.6 million. Since the UK has a slightly higher population, China does not have the second largest population in the world. The second largest population in the world is the UK.

</think>

\boxed{no}

Figure 5: Case Study1 showing improved reasoning capability over vanilla GRPO

1080
1081
1082
1083
1084
10851086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109**Question:**

Each of the cubes in the figure has the length of an edge equal to 1. What is the length of the segment AB?

(A) $\sqrt{17}$ (B) 7 (C) $\sqrt{13}$ (D) $\sqrt{7}$ (E) $\sqrt{14}$

Source: Mathvision

question_id: 209

Ours:

<think>

To find the length of the segment AB, we can use the three-dimensional distance formula, which is an extension of the Pythagorean theorem. The distance d between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) in three-dimensional space is given by: $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Here, point A is at $(0, 0, 0)$ and point B is at $(3, 2, 2)$. Plugging these coordinates into the formula, we get:

$$AB = \sqrt{(3 - 0)^2 + (2 - 0)^2 + (2 - 0)^2} = \sqrt{3^2 + 2^2 + 2^2} = \sqrt{17}$$

Therefore, the length of the segment AB is $\sqrt{17}$.

</think>

\boxed{A}

Vanilla GRPO:

<think>

To find the length of the segment AB, we need to consider the three-dimensional space formed by the cubes. The segment AB can be visualized as a diagonal that spans across three unit cubes in the x, y, and z directions.

1. The segment AB moves 3 units in the x-direction, 2 units in the y-direction, and 1 unit in the z-direction.

2. The length of AB can be found using the three-dimensional distance formula, which is similar to the Pythagorean theorem but extended to three dimensions: $d = \sqrt{x^2 + y^2 + z^2}$

3. Substituting the values $x = 3$, $y = 2$, and $z = 1$: $AB = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$

Therefore, the length of the segment AB is $\sqrt{14}$

</think>

\boxed{\sqrt{14}}

Figure 6: Case Study2 showing improved reasoning capability over vanilla GRPO

1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
11391140
1141
1142
1143
1144
1145
1146
1147
11481149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
11671168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
11811182
1183
1184
1185
1186
1187**Question:**

As shown in the figure, AB is the diameter of $\odot O$, CD is the chord of $\odot O$, $\angle ADC = 26.0$, then the degree of $\angle CAB$ is ():
 (A) 26° (B) 74° (C) 64° (D) 54°

Source: Mathvista
question_id: 59

Ours:

<think>

Since AB is the diameter of circle O, angle ACB is a right angle (90°) because any angle inscribed in a semicircle is a right angle. We are given that angle ADC is 26° . Because angles subtended by the same arc are equal, angle ACB (which is 90°) and angle ADB (which is also 26°) are related to the arc AB. However, to find angle CAB, we can use the fact that the sum of angles in triangle ACB is 180° . Since angle ACB is 90° and angle ABC (opposite to side AC) is the same as angle ADC (26°) due to the inscribed angle theorem, we can calculate angle CAB as follows:

$$\text{angle CAB} = 180^\circ - \text{angle ACB} - \text{angle ABC}$$

$$\text{angle CAB} = 180^\circ - 90^\circ - 26^\circ$$

$$\text{angle CAB} = 64^\circ$$

Therefore, the degree of angle CAB is 64° .

</think>

\boxed{C}

Vanilla GRPO:

<think>

Since AB is the diameter of circle O, angle ACB is a right angle (90 degrees) because the angle subtended by a diameter in a semicircle is always 90 degrees. Given that angle ADC is 26 degrees, and angles ADC and CAB are subtended by the same arc AC, they are equal. Therefore, angle CAB is also 26 degrees.

So, the degree of angle CAB is 26 degrees.

</think>

\boxed{A}

Figure 7: Case Study3 showing improved reasoning capability over vanilla GRPO

1188
1189
1190
1191
1192
1193
1194
1195

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Question:

As shown in the diagram, in a building, it is known that A lives to the left of B. Who lives below D?

A. A; B. E; C. F; D. G; E. No correct answer

Source: Wemath

question_id: 2steps_17@2steps_1

Ours:

<think>

The diagram shows a grid with letters A through I. The question states that A lives to the left of B. This means that if A is in a certain position, B must be to the right of A in the same row. However, the question asks who lives below D. Since D is in the second row, the person below D would be in the third row, which is G.

So, the person who lives below D is G.

</think>

\boxed{D}

Vanilla GRPO:

<think>

The diagram shows a grid with letters A through I. The question states that A lives to the left of B. This means that if we look at the horizontal row where A is located, B must be to the right of A. Now, we need to determine who lives below D.

In the grid:

- D is in the second row, first column.

- The letter below D is E.

Therefore, the person who lives below D is E.

</think>

\boxed{B}

Figure 8: Case Study4 showing improved reasoning capability over vanilla GRPO