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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) and Group Relative Pol-
icy Optimization (GRPO) have significantly advanced the reasoning capabilities of
large language models. Extending these methods to multimodal settings, however,
faces a critical challenge: the instability of std-based normalization, which is easily
distorted by extreme samples with nearly positive or negative rewards. Unlike
pure-text LLMs, multimodal models are particularly sensitive to such distortions,
as both perceptual and reasoning errors influence their responses. To address this,
we characterize each sample by its difficulty, defined through perceptual complex-
ity (measured via visual entropy) and reasoning uncertainty (captured by model
confidence). Building on this characterization, we propose difficulty-aware group
normalization, which re-groups samples by difficulty levels and shares the std
within each group. Our approach preserves GRPO’s intra-group distinctions while
eliminating sensitivity to extreme cases, yielding significant performance gains
across multiple multimodal reasoning benchmarks.

1 INTRODUCTION

Reinforcement Learning with Verifiable Rewards (RLVR) has enabled significant advances in the
reasoning capabilities of both large language models (LLMs) (DeepSeek-Al et al., 2025; Yang et al.,
2025a; Lambert et al., 2024) and multi-modal large language models (MLLMs) (Zhang et al., 2025b;
Huang et al., 2025a). Within this paradigm, Group Relative Policy Optimization (GRPO) (Shao et al.,
2024b) demonstrates strong performance by applying standard deviation (std)-based normalization to
rewards within each response group. This std-based normalization rescales intra-group distinctions
between positive and negative responses, thereby stabilizing training.

Despite these advances, the std-based normalization suffers from a critical limitation: sensitive
to extreme samples — those with response groups that are almost entirely positive or negative.
Specifically, when rewards in a group collapse to near 0 or 1, the resulting low std overemphasizes the
extreme samples during optimization. Meanwhile, samples with more balanced rewards are neglected,
leading to imbalanced optimization. This issue is particularly pronounced in MLLMs, where the
complexity of multimodal inputs increases the occurrence of such extreme samples. As illustrated
in Figure 1, MLLM responses are jointly influenced by challenges from perceptual complexity and
reasoning uncertainty, making them more susceptible to extreme reward distributions.

While removing the std term mitigates the risk of overfitting to extreme samples (Liu et al., 2025b), it
simultaneously discards the valuable intra-group distinctions, which are essential for effective and
stable optimization. Therefore, the key issue lies not in the std-normalization itself, but rather in the
way groups are constructed: when group size is small, extreme cases become inevitable. Enlarging
group sizes during rollouts could help, but it incurs prohibitive computational costs.

Motivated by this, we propose to account for the challenges of various samples, which we refer to as
difficulty-aware re-grouping. We characterize each sample’s difficulty from two complementary
perspectives: (i) a data-centric view, where high entropy in the image reflects perceptual difficulty;
and (ii) a model-centric view, where low confidence in model responses reflects reasoning difficulty.
By re-grouping samples according to these difficulty levels and sharing the std within each group, our
method preserves intra-group distinctions while mitigating sensitivity to extreme cases. Specifically,
our difficulty-based re-group strategy is achieved by:
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By explicitly decomposing difficulty into
data-centric (perceptual) and model-centric
(reasoning) groups, our method allows each
group of samples to share separate stds for per-
ceptual and reasoning aspects. These normalized advantages are then combined via element-wise
multiplication, effectively integrating intrinsic data complexity and model uncertainty, ensuring stable
optimization that preserves meaningful intra-group distinctions. Our contributions are summarized
into the following three aspects:

* We identify that the limitation of std-normalization in group-based RL methods (e.g. GRPO
and DAPO) originates from group construction, particularly in multimodal reasoning tasks, and
propose a difficulty-based re-grouping strategy to build more robust groups.

* We explicitly decompose difficulty into perceptual and reasoning aspects, and integrate them via
element-wise combination, effectively capturing both data complexity and model uncertainty
while preserving intra-group distinctions.

* Our proposed strategy achieves significant performance gains. Concretely, building upon GRPO
and DAPO, our strategy attains more than 2% average performance improvements.

2 PRELIMINARY

In this section, we briefly introduce the key concepts and training setup for multimodal reasoning
under RLVR (DeepSeek-Al et al., 2025). We first formulate the task, and then revisit the standard
GRPO framework (Shao et al., 2024b) along with its improved variant, Decoupled Clip and Dynamic
Sampling Policy Optimization (DAPO) (Yu et al., 2025b).

2.1 TASK FORMULATION

We consider the problem of multimodal reasoning under the RLVR paradigm. Let {Z,Q} € D
denote a multimodal input, where the dataset D includes image Z and text question Q. The model
generates a reasoning response o given {Z, Q} and receives a verifiable reward r based on the correct
answer y (Wu et al., 2025; Wang et al., 20252a). The response o typically contains both the reasoning
steps and the final answer, with the reasoning steps enclosed in <think>...</think> and the
final answer enclosed in \boxed { }. We employ a binary reward function, where 7(0,y) = 1 if the
final answer is equal to the correct answer y, and (0, y) = 0 otherwise. The reasoning process is
modeled as a policy 7y (0|Z, Q) parameterized by 6 to maximize the expected reward:

Jrivr(f) = max E{z,0}~pEorr,(17,0)[r(0,¥)]- (D

Our goal is to enhance the reasoning capabilities of an instruction-tuned MLLM, thereby significantly
improving its performance on downstream multimodal reasoning tasks.
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2.2 CORE ALGORITHMS OF REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Group Relative Policy Optimization (GRPO) is derived from Proximal Policy Optimization
(PPO) (Schulman et al., 2017), with the key distinction that GRPO replaces the advantage estimates
obtained via Generalized Advantage Estimation (GAE) with group-relative advantages computed
from a group of outputs.

Specifically, for each input Z, Q, GRPO samples a group of outputs {01, 02, . ..,0¢} from the old
policy model 7y, with rollout size G'. The advantage of the i-th response is computed by normalizing
the rewards among the group:

. ri —mean({ri,r2,...,7¢})
A= : 2
std({r1,r2,...,ra}) ®

GRPO adopts a clipped objective, together with a directly imposed KL penalty term:
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€ is the hyperparameter to control the clipping range of the importance sampling ratio, and 3 is the
penalty strength of how far the current policy 7y deviates from the reference policy 7y cf.

Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) is a variant of GRPO
adopting an asymmetric clipping range with a larger upper bound, dynamic sampling, token-level
policy gradient loss, and overlong reward shaping. The objective function of DAPO is defined as:
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3 METHOD

In this section, we introduce our difficulty-based regroup strategy in detail. We first represent our
perceptual difficulty-based regrouping in Section 3.1, then we describe our reasoning difficulty-based
regrouping in Section 3.2. Finally, we show our combination strategies.

3.1 PERCEPTUAL DIFFICULTY-BASED RE-GRPOUPING

Perceptual difficulty estimation. To estimate the perceptual difficulty of a batch B = {(Z;, Q5)} 2 ,,
we first extract patch-level visual features from the Qwen2.5-VL-7B visual encoder €2,,:

F,=Q,(Z,) e RV = [fL £2 ... 0T, 5

s 87

where P denotes the number of spatial patches and d is the feature dimension, with 7 € RI*! j =
1, .., P representing the feature of the j-th patch.

Compared to CLIP-based representations (Radford et al., 2021), these patch-level features not only
capture finer spatial granularity that preserves local details, but also align better with the downstream
textual decoder €2, ensuring both stability and semantic consistency.

We then compute the empirical covariance matrix to capture intra- and inter-patch variances:
T
C. = 54 (Fs —1pp )(Fs —1ppl) ", ps = %Z (6)

where 1p is a P X 1 column vector of ones and g is the mean of the patches feature of the 7. The
diagonal entries measure the variance of each feature dimension across patches, while the off-diagonal
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terms capture correlations between different feature dimensions. This covariance structure reveals
whether visual features are dominated by a few strong dimensions or by multiple interacting factors,
providing a principled basis for assessing perceptual difficulty.

Since C; is a symmetric positive semidefinite matrix, we then perform eigenvalue decomposition for
spectral analysis:

C.=V.A V], A, =diag(\l,....,2D), \F>o. @)

A denotes the k-th eigenvalue, quantifying the variance along one orthogonal principal direction.
Concentrated eigenvalues indicate that most variance is captured by a few dimensions, whereas more
balanced eigenvalues imply richer visual structure and higher visual complexity.

The final perceptual difficulty score is defined as the entropy (Shannon, 1948) of the normalized
distribution of eigenvalues:

P
H(Z,) = - ptlogpl, ®)
k=1

where p; is the normalized probability distribution of the eigenvalues, and each element in p; is
calculated as:

77
j=1As

P
. k .
pE = =p=, withy pb=1 ©)
k=1

Here, low entropy corresponds to the visually easy sample, with variance concentrated on a few
dominant components, whereas high entropy indicates the visually difficult sample, with variance
distributed across many patches.

Perceptual difficulty-based regrouping. Given the perceptual difficulty scores within a batch, we
partition samples into three groups using the 25th and 75th percentiles 7y o5 and 79.75:

St ={s | H(Z:) <7025}, Se={s|7025s <H(Ls) <7075}, Ss={s|H(ZLs)>r0rs} (10

For each group a, the reward set can be defined as:
Ro={rsili=1,---,G,s€8,}, a€{l,23} an
where 1, ; refers to the i-th reward of the s-th sample which belongs to the group S,.

We then compute the shared standard deviation std(R,) of group rewards, and normalize the reward
of each sample in batch with the new std(R,,) to calculate advantage accordingly:
Perceptual __ T's,i — mean("'s,la Ts,2y«-- TS,G)

s,1 - Std(Ra) ’ (12)

rs,i€Ra “rg i€RaG

1 1
Std(Ra) = \j m Z (Tsﬂ; — m Z Ts,i)Q s (13)

where |R,| denotes to the cardinality of R,.

By grouping samples into low-, medium-, and high-entropy categories, the normalization scale is
shared only among samples with comparable perceptual difficulty. This mitigates the influence of
extreme samples, balances treatment across different levels of visual complexity, and ultimately
stabilizes optimization.

3.2 REASONING DIFFICULTY-BASED REGROUPING

Reasoning difficulty estimation. While perceptual difficulty captures the intrinsic complexity of the
image, reasoning difficulty is shaped by the model’s intrinsic confidence in generating the final answer.
Even for inputs with similar visual complexity, the model may exhibit varying confidence levels: high
confidence (assigning a high probability to reasoning chains) implies a clear and reliable reasoning
path, whereas low confidence indicates uncertainty and potential reasoning failures. Following this
intuition, we quantify reasoning difficulty using the model’s probabilities to its reasoning chains.
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For the given batch B = {(Z;, Q;)} 2. o8 and the generated G responses for each sample, we denote
the i-th response as o5 ; = (o} 0 ;), where of , is the n-th token and 7' is the sequence length.

$,47 "1 Ysq

Based on the token-level log probability g (0?,1' | Ts, Qs, oi?), we aggregate across tokens to obtain
the sequence-level log probability for response o ;: '

T
Lei=Y (0| Ts, Qs 057). (14)
n=1

Then we define the model confidence for sample (Z;, Q) as the average sequence-level log probabil-
ity across its G rollouts:

1 G
L(Q) = 5D Lsi (15)
i=1

This formulation reflects the model’s internal confidence: High and consistent L(Q;) indicates a
reliable reasoning chain, whereas low or fluctuating L(Qj) reflects epistemic uncertainty, implying
that more challenging reasoning sample.

Reasoning difficulty-based regrouping. Given the model confidence scores L(Q;) for the batch

B = {(Z,, Q,)}2_,, we divide samples into b groups according to the quantiles of their confidence

distribution. Let {79, 71, ..., 7} denote the quantile boundaries, with 7o = 0 and 7, = 1. Each
question Q; is then assigned to a group by:
My ={s|Tu—1 <L(Qs) <Tu}, we{l,...,b}. (16)
Within each group M,,, we define the reward set as:
Ruy=A{rs;|i=1,...,G,s e My}, ue{l,...,b} (17)

where 7, ; is the reward of the ¢-th response for the sample, which belongs to the u group. We

can then calculate the shared standard deviation std(Ryy ) of reasoning difficulty-based group, and
compute the advantage accordingly:

AReasoning _ Tsi— mean(rs,l, Ts, 2y« rs,G’)
s, -

std(Ry) ’

(18)

where the std can be calculated as:

1 1 2

std(Ru) = | 75— Z (rei— = Z Tsi) s 19
‘Ru‘ -1 Ts,i€Ru |Ru‘ rs,i€Ru

This regrouping ensures that responses with similar confidence levels are normalized on comparable

scales, mitigating instability introduced by overconfident or underconfident samples.

3.3 COMBINATION FOR ROBUST OPTIMIZATION

To leverage the complementary aspects of perceptual and reasoning difficulty, we propose an element-
wise combination strategy. Specifically, given the perceptual-based group normalized advantage
APereepwal the reagsoning-based group normalized advantage AR®*°"n2 and the original GRPO advan-
tage ASRPO the combined advantage is defined as:

AC()mbined . AGRPO . APerceptu al

Reasoning
= Qo + QPercep +  QReason <A é7 (20)

where ori, Qperceps OReason are weighting coefficients that balance the contributions of the three
components. Perceptual difficulty, quantified by the entropy in the image, captures the visual
complexity of multimodal inputs; reasoning difficulty, derived from token- and sequence-level log
probabilities, reflects the model uncertainty during reasoning. Integrating these difficulty-based
advantages with the original GRPO advantage allows the model to preserve meaningful intra-sample
distinctions and incorporate both intrinsic and extrinsic difficulty context, providing a more stable
and informative advantage for policy optimization.
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Table 1: The Acc performance of two re-grouping strategies in our method. We take DAPO as our
backbone. The best results are indicated in boldface, and the second-best results are underlined.

Model | MathVerse MathVision MathVista WeMath HallusionBench  Avg
DAPO 50.4 27.6 70.7 69.4 68.6 57.3
DAPO + Perceptual regrouping 52.3 28.0 71.4 70.9 70.9 58.7
DAPO + Reasoning regrouping 52.3 28.3 71.6 70.8 68.9 58.4
DAPO + Both \ 51.9 29.0 72.2 71.8 71.4 59.3

4 EXPERIMENT

In this section, we demonstrate the effectiveness of our re-grouping strategy. Specifically, we first
show the experimental settings, including the dataset, benchmark, baselines, and implementation
details. Then, we illustrate the ablation studies to analyze the two regroup strategies. Finally, we
compare with the state-of-the-art methods over various benchmarks.

4.1 EXPERIMENTAL SETTINGS

Dataset. For training, we rely on the Geometry3K (Lu et al., 2021) dataset, which provides 2.1K
training samples and 0.3K validation samples. Besides, we also provide the experimental results
training on a larger dataset ViRL39k.

Benchmark. We evaluate our method on five benchmarks: four visual reasoning datasets, namely
MathVerse (Zhang et al., 2024), MathVision (Wang et al., 2024), MathVista (Lu et al., 2024), and
WeMath (Qiao et al., 2025), as well as one visual perception benchmark, HallusionBench (Guan
et al., 2024). In addition, we assess the in-domain performance by comparing our method with the
vanilla GRPO and DAPO.

Baseline. To evaluate the performance of our method, we consider three categories of baselines:
(1) Closed-source models, such as GPT-4o0 (Hurst et al., 2024), and Cloud-3.5-sonnet (Anthropic,
2024). (2) Open source models: including InternVL-2.5-8B-Instruct (Chen et al., 2024), LLaVA-
OneVision-7B (Li et al., 2024), Kimi-VL-16B (Du et al., 2025a), URSA-8B (Luo et al., 2025),
and Mulberry-7B (Yao et al., 2024). (3) RLVR-based Models: MLLMs trained with reinforcement
learning using verifiable rewards, representing the current mainstream approaches in this line of
research. This category includes R1-VL-7B (Zhang et al., 2025a) , Vision-R1-7B (Huang et al.,
2025b) , R1-OneVision-7B (Yang et al., 2025b) , OpenVLThinker-7B (Deng et al., 2025) , MM-
Eureka-Qwen-7B (Meng et al., 2025) , ADORA-7B (Gui & Ren, 2025) , ThinkLite-7B-VL (Wang
et al., 2025d) , and VLAA-Thinker-7B (Chen et al., 2025a) .

Implementation details. Following prior work (Liu et al., 2025a), we use Qwen2.5-VL-7B-
Instruct (Bai et al., 2025) as our base model and adpot EasyR1 (Zheng et al., 2025) as our reinforce-
ment learning framework. All experiments are conducted on 8 NVIDIA H20 96G GPUs. We adopt
the default settings from EasyR1, using a learning rate of 1e~°, a global batch size of 128, a rollout
batch size of 512, and a rollout size of 8. The analysis of rollout size and different coefficients is
provided in Appendix G and Appendix F.

4.2 ABLATION STUDIES

To better understand the contribution of each component in our method, we conduct ablation studies
on five benchmarks by comparing four settings: vanilla DAPO, DAPO with perceptual regrouping,
DAPO with reasoning regrouping, and our final method. Results are summarized in Table 1.

The effects of Perceptual difficulty-based regrouping. Using perceptual difficulty-based regrouping
alone yields consistent performance gains across benchmarks. For instance, on HallusionBench,
which is explicitly designed to evaluate perceptual ability, we observe an improvement of 3.4%
over vanilla DAPO. This demonstrates that regrouping samples via spectral analysis of image patch
covariances enhances the model’s perceptual grounding by mitigating the dominance of extremely
easy or hard cases.

The effects of Reasoning difficulty-based regrouping. When regrouping with model confidence,
the average accuracy increases to 58.4, and it’s notable to observe a 3.8% gain on MathVerse, even
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Table 2: Performance comparison of Multi-modal LLMs with over 5 benchmarks. Accuracy scores

(%) are reported for all benchmarks for clarity.

Data sizes used for SFT and RL are annotated in

blue and red, respectively. The best value in each column is shown in bold, and the second-best is

underlined.
Model Data Size MathVerse MathVision MathVista WeMath HallusionBench Average
Close-source models
GPT-40 - 50.8 30.4 63.8 69.0 71.4 -
Claude-3.5-Sonnet - 26.5 38.0 67.7 - 71.6
Open-source models
InternVL-2.5-8B-Instruct (Chen et al., 2024) - 39.5 19.7 64.4 - 67.3 -
LLaVA-OneVision-7B (Li et al., 2024) - 26.2 - 63.2 - 48.4 -
Kimi-VL-16B (Du et al., 2025a) - 449 214 68.7 - 66.2 -
URSA-8B (Luo et al., 2025) - 457 26.2 59.8 - - -
Mulberry-7B (Yao et al., 2024) - - - 63.1 - - -
reinforcement learning with verifiable reward based
R1-VL-7B (Zhang et al., 2025a) 260K+10K 522 28.2 74.3 69.0 57.2 56.2
Vision-R1-7B (Huang et al., 2025b) 200K+10K 524 272 73.5 62.9 69.2 57.0
R1-OneVision-7B (Yang et al., 2025b) 155K+10K 46.1 22.5 63.9 62.1 65.6 52.0
OpenVLThinker-7B (Deng et al., 2025) 35K+15K 48.0 25.0 71.5 67.8 70.8 56.6
MM-Eureka-Qwen-7B (Meng et al., 2025) 15K 50.5 28.3 71.5 65.5 68.3 56.8
ADORA-7B (Gui & Ren, 2025) 2.1K 50.1 27.6 71.1 67.1 53.1 53.8
ThinkLite-7B-VL (Wang et al., 2025d) 11K 50.2 27.6 72.7 69.2 71.0 58.1
VLAA-Thinker-7B (Chen et al., 2025a) 25K 49.9 26.9 68.8 67.9 68.6 56.4
NoisyRollout (Liu et al., 2025a) 2.1K 53.2 28.5 72.6 69.6 72.1 59.2
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) - 46.2 25.0 67.5 63.1 64.6 53.3
+ Vanilla GRPO 2.1K (Geometry3K) 49.6 26.8 70.2 68.2 69.8 56.9
+ Vanilla GRPO + Ours 2.1K (Geometry3K) 52.8 28.8 72.3 69.2 72.9 59.2
+ Vanilla DAPO 2.1K (Geometry3K) 50.4 27.6 70.7 69.4 68.6 57.3
+ Vanilla DAPO + Ours 2.1K (Geometry3K) 51.9 29.0 72.2 71.8 71.4 59.3
+ Vanilla DAPO + Ours 39K (ViRL39K) 524 29.9 73.8 72.0 72.5 60.1

surpassing the performance of our method. This indicates that the model’s internal confidence
estimation also serves as a reliable signal for stabilizing optimization.

The combination of both strategies achieves the best overall performance with an average accuracy of
59.3. This confirms that these two strategies provide complementary perspectives on samples, and
their integration leads to more robust policy optimization.

4.3 COMPARISON WITH STATE-OF-THE-ART APPROACHES

In this subsection, we comprehensively compare
our method with various state-of-the-art meth-
ods, including closed-source, open-source, and
RLVR-related approaches. The experimental
results are listed in Table 2. We can draw the fol-
lowing observations: (1) compared with those
either distilled from large-scale chain-of-thought
data or employing complex data augmentation
strategies, our method, utilizing only 2.1k train-
ing samples, achieves comparable or even su-
perior performance, significantly demonstrating
our effectiveness. (2) Building upon both GRPO
and DAPO, our strategy demonstrates promis-
ing performance gains. Specifically, we achieve
more than 3.5% performance improvements, es-
pecially on the HallusionBench; our strategy
achieves more than 5% improvements, further
showing our effectiveness.

Entropy Distribution

161 |Std: 0.243 — Mean: 2.598
Min: 1.764 e Q25:2.414
Max: 3.164 i weeee Q75:2.786

24 26 28 30 32
Entropy

Figure 2: The distribution of pre-calculated en-
tropy on the Geometry3K dataset, where x axis
represents entropy, y axis denotes the probability
density, Q25 and Q75 denotes 25th and 75th per-
centiles, respectively .

4.4 HYPER-PARAMETER SENSITIVITY ANALYSIS

In this section, we analyze the effects of hyperparameters, including both the number of perceptual

and reasoning difficulty-based groups.
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Figure 3: The Accuracy performance of different numbers of groups b on 3 representative benchmarks,
where the z axis is the number of groups, and y axis is the results.

4.4.1 GROUPS UNDER PERCEPTUAL DIFFICULTY-BASED STRATEGY

As shown in Figure 2 , to regroup samples by entropy, we adopt the 25th and 75th percentiles as
thresholds. This quantile-based choice is inherently distribution-aware, as it adapts to the empirical
spread of entropy values rather than relying on arbitrary fixed cutoffs. Importantly, it produces a
natural 1:2:1 partition of the data—approximately 25% easy, 50% medium, and 25% hard—which
avoids the issue of overly sparse or overly dense categories. Such a balance is desirable for stable
optimization: each group contains sufficient samples to provide reliable intra-group statistical
estimates, while extremely low- and high-entropy cases are isolated rather than allowed to dominate
normalization. Moreover, this three-level categorization is semantically interpretable, with low
entropy corresponding to simple scenes, high entropy to complex ones, and the middle range
capturing moderately difficult cases. Detailed cases representing the entropy of these three categories
are illustrated in Appendix H.1.

4.4.2 GROUPS UNDER REASONING DIFFICULTY-BASED STRATEGY

We report the effect of varying the number of groups for our reasoning-based strategy in Figure 3.
We observe that the performance is relatively stable across a wide range of groups, suggesting that
our method is robust to this hyperparameter. For instance, on MathVista and HallusionBench, the
accuracy is steadily improved as the number of groups increases to around 1216, after which the
results plateau with only minor fluctuations. A similar trend is observed on WeMath, where the
performance peaks at 12 groups but remains competitive even when more groups are introduced.

5 RELATED WORKS

In this section, we overview of the related studies. Specifically, we first discuss representative strategy
to construct multimodal reasoning models, including chain-of-thought distillation, reinforcement
learning, and visual tool integration. Then we introduce the RLVR and its optimization variants, and
finally, we highlight the key differences between ours and existing approaches.

5.1 MULTIMODAL REASONING MODELS

Chain-of-thought distillation. Supervised fine-tuning (SFT) on long chain-of-thought (CoT) data
enables models to learn detailed reasoning traces, thereby improving reasoning accuracy. Specifically,
building upon (Zhang et al., 2023), this strategy has proven effective through both transferring
CoT-enhanced LLMs to multimodal settings (Du et al., 2025b) and training directly with multimodal
reasoning data (Liu et al., 2023). Future works futher explore different forms of intermediate
reasoning supervision (Dai et al., 2023; Yang et al., 2025¢; Zhu et al., 2023).

Reinforcement learning. Another line of research leverages reinforcement learning (RL) to opti-
mize reasoning trajectories beyond imitation. Most studies adopt PPO (Schulman et al., 2017) or
GRPO (Shao et al., 2024b), with representative approaches such as (Zhang et al., 2025b; Shen et al.,
2025; Wang et al., 2025b;c) that apply RL across diverse domains. We will elaborate on RLVR and
GRPO in the following subsection(Section 5.2).
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Visual tool integration. This paradigm moves beyond merely “thinking about images” toward
actively querying, modifying, and generating visual information as intermediate steps in reasoning,
forming a “visual chain of thought”. The development of think-with-image can be roughly divided
into three stages (Su et al., 2025) : from external tool exploration (Ma et al., 2024; Shao et al.,
2024a; Ma et al., 2025), through programmatic manipulation (Suris et al., 2023; Fu et al., 2025),
to intrinsic imagination (Zhao et al., 2025; Chen et al., 2025b). These three stages reflect intercon-
nected capabilities—active exploration, structured reasoning, and generative planning—that together
transform visual representations from static inputs into a dynamic workspace for thought.

5.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD (RLVR)

RLVR (Lambert et al., 2024) is an optimization paradigm that replaces subjective reward scores with
verifiable signals. Its core algorithm, GRPO (Shao et al., 2024b), stabilizes training by comparing
candidate responses within a group. Building on GRPO, subsequent studies can be broadly catego-
rized into two directions: data-centric approaches, which expand the candidate and reward space
through data manipulation or augmentation, and algorithm-centric approaches, which refine GRPO
to strengthen semantic grounding and coherent reasoning.

Data-centric GRPO. This line of work enlarges the candidate set (Chen et al., 2025d) or restructures
the training data (Chen et al., 2025¢; Zhu et al., 2025) so that group comparisons capture richer
behaviors. By manipulating data distributions (Zhu et al., 2025) or augmenting inputs (Li et al., 2025;
Liu et al., 2025a), these methods expose models to a wider variety of responses, thereby increasing
the likelihood of discovering high-quality verifiable signals.

Algorithm-centric GRPO. In contrast, algorithm-centric methods refine how verifiable signals
guide reasoning. Rather than expanding candidate sets, they adapt GRPO to enhance semantic
grounding (Yu et al., 2025a; Liu et al., 2025¢) and logical coherence (Huang et al., 2025a; Wei et al.,
2025). These approaches emphasize the role of visual grounding and promote reasoning chains where
intermediate steps remain verifiable while supporting the final answer.

Difference. Compared with existing methods, we regroup the data in advantage calculation based on
(1) the model’s response uncertainty and (2) the entropy of image inputs when computing the std,
and sharing the std within each group. This design prevents the model from overfitting to extreme
samples and enhances its ability to capture the data distinction within each group.

6 CONCLUSION

In this work, we identify a critical challenge in GRPO-based reinforcement learning methods for
multimodal reasoning tasks: the std-based group normalization is sensitive to extreme samples,
such as response groups that are almost entirely positive or negative. While this issue exists in GRPO
in general, it is significantly amplified in multimodal settings due to the joint influence of perceptual
complexity and reasoning uncertainty.

To address this, we propose a simple yet effective difficulty-aware re-grouping strategy. By
decomposing the sample difficulty into perceptual and reasoning aspects, we construct groups
of samples with similar difficulty levels, allowing each group to share std during normalization.
The normalized advantages with shared stzd from both aspects are combined via element-wise
multiplication, effectively integrating data complexity and model uncertainty while preserving intra-
group distinctions. By applying over GRPO and DAPO, our strategy achieves more than 2% average
performance gains across multiple multimodal reasoning benchmarks.

Limitations and Future Work. While difficulty-aware regrouping significantly stabilizes GRPO-
based multimodal reasoning, several directions remain open: (1) more precise difficulty estimation
—— potentially learned from model behaviors to richer visual-semantic features — could capture
subtler perceptual and reasoning characteristics; (2) adaptive grouping strategies that dynamically
adjust group sizes or composition as training progresses may better balance intra-group distinctions
and mitigate extreme samples. Beyond technical refinements, the underlying principle of aligning
optimization with sample difficulty also offers a general paradigm for stabilizing reinforcement
learning optimization with multimodal inputs.
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7 ETHICS STATEMENT

Our work focuses on algorithmic improvements for reinforcement learning-based multimodal rea-
soning tasks using publicly available datasets (e.g., MathVista, MathVerse, MathVision). We do not
collect data from human subjects, and all datasets used are publicly released. We do not foresee any
direct, immediate, or negative societal impacts stemming from the outcomes of our research.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of datasets, training configurations, and
hyperparameters in both the main text and supplementary materials. We will provide our code to
facilitate reproducibility.
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A THE USE OF LARGE LANGUAGE MODELS(LLMS)

We conducted a study on improving GRPO to further enhance the reasoning capability of MLLMs,
achieving substantial performance gains on datasets such as MathVerse (Zhang et al., 2024), MathVi-
sion (Wang et al., 2024), and MathVista (Lu et al., 2024). During the preparation of this manuscript,
we used LLMs to assist with tasks such as grammar correction, language refinement, and logical
checking. However, we confirm that no outputs from the LLMs were directly used; instead, all
content underwent careful verification and reconstruction by the authors.

B PROMPT DESIGN

We use a “Thinking prompt” to formalize the output of the model. It requires the model to put its
reasoning process within <think>...</think> and the final answer in \boxed{ }. We keep the system
prompt of Qwen2.5-VL (Bai et al., 2025) and prepend the “Thinking prompt” to the user message.
The same format is used for both training and evaluation. The full instruction prompt is as follows:

Prompt Example

SYSTEM:

You are a helpful assistant.

USER:

You FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The
final answer MUST BE put in \boxed { } .<QUESTION>

14


https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1

Under review as a conference paper at ICLR 2026

C EXPERIMENT SETTINGS

Reward Calculation. We adopt a combination of format reward and accuracy reward as the final
reinforcement learning signal. The two components are defined as follows:

1, if the output format is correct,
Tformat = . 21
0, otherwise,
1, if the answer matches the ground truth,
Tacc = . (22)
0, otherwise.
The overall reward is computed as the weighted sum of the two:
Toverall = 0.1 X Tormar + 0.9 X Tpec. (23)

A smaller weight is assigned to the format reward, since response formatting is relatively easy to
learn compared with accuracy.

D ANALYSIS OF THE OCCURRENCE OF EXTREME SAMPLES, WHICH std-BASED
GROUP NORMALIZATION IS HIGHLY SENSITIVE TO.

To further support the motivation of our paper and analyze the changes of extreme samples during
training, we perform a detailed step-by-step analysis of reward statistics across 60 training steps with
512 samples and their 8 rollout rewards. The empirical evidence clearly shows that the existence of
extreme samples is not an occasional event but a persistent and systemic phenomenon.

Table 3: The statistics of rewards about extreme samples within the batch across 60 training steps.

Training steps 1 10 20 30 40 50 60
Effective samples (participating in training) 323 327 324 322 297 314 306
Extreme success (7 correct & 1 wrong) 41 39 48 66 78 60 82
Extreme failure (7 wrong & 1 correct) 78 89 74 51 54 54 51
Total Extreme Ratio 36.8% 39.1% 37.7% 36.3% 44.4% 36.31% 43.5%

First, groups with 8 identical rewards (i.e., variance = 0) constitute 35%—-46% of all samples at every
training step. We first exclude these groups for not participating in gradient updates.

Second, during the training process, there are 31%-44% samples exhibit the 7:1 extreme reward
patterns (i.e., 7/8 correct or wrong) among the remaining effective samples, which produce extremely
small variance. Besides, the occurrence of this situation will increase as training deepens.

These findings demonstrate that the instability of std-based normalization is structural rather
than incidental: multimodal reasoning tasks naturally contain a large proportion of very easy and
very hard samples, leading to unstable and unreliable advantage scaling. This directly motivates
our difficulty-aware regrouping strategy, which stabilizes normalization by ensuring that variance is
computed only within samples of comparable difficulty.

E VERIFY THE FEASIBILITY OF UTILIZING IMAGE ENTROPY AS A PROXY FOR
PERCEPTUAL DIFFICULTY AND MODEL CONFIDENCE AS A PROXY FOR
REASONING DIFFICULTY.

E.1 IMAGE ENTROPY AS A PROXY FOR PERCEPTUAL DIFFICULTY.

Perceptual difficulty in our framework is defined based on the complexity of visual embeddings,
which we quantify using spectral analysis of image patch covariances. Specifically, the entropy
of the eigenvalue distribution from the covariance matrix reflects the amount of variance across
spatial features in the image. Researchers in prior works(Grzywacz, 2025) support that: high entropy
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indicates a more diverse distribution of visual features, implying a richer and more complex visual
structure. This complexity makes it more challenging for the visual model to recognize, and thus, we
associate higher entropy with greater perceptual difficulty.

E.2 MODEL CONFIDENCE AS A PROXY FOR REASONING DIFFICULTY.

Researchers in (Farquhar et al., 2024; Nguyen et al., 2025) propose that “one measure of uncertainty
is the predictive entropy of the output distribution, which measures the information one has about the
output given the input[3]. The predictive entropy for an input sentence x is the conditional entropy
(H) of the output random variable (Y') with realization y given x.”

PE(x) = H(Y]x) = — 3 P(yx)nP(y[x). 24)

Y

Researchers(Kadavath et al., 2022) also hypothesize that when a model knows the answer to a
particular question, it is confident in its response, and this would result in an answer distribution
with small entropy. Conversely, when a model is unsure about its response, it will lead to an answer
distribution with high entropy, thus implying a more challenging reasoning process.

This aligns directly with our formulation: the sequence-level log probabilities we compute are
theoretically linked to the notion of semantic entropy and represent the joint likelihood of the entire
reasoning chain. A low log-probability corresponds to a flat or high-entropy output distribution,
reflecting uncertainty in the reasoning trajectory, while a high log-probability corresponds to a
confident, low-entropy distribution.

E.3 EMPIRICAL VALIDATION.

During the evaluation stage, we conduct an analysis focusing on the questions that the model
answered incorrectly on two benchmarks. We want to examine whether these error samples
are concentrated in the more difficult groups as defined by our difficulty metrics. The intuition
behind this approach is that samples belonging to higher-difficulty groups—whether in terms of
perceptual complexity or reasoning uncertainty—should naturally be harder for the model to tackle.
Consequently, we expect these samples to exhibit higher error rates.

To achieve this, we use Gemini2.5 Pro to classify the sources of errors, distinguishing between
perceptual errors and reasoning errors.

* For perceptual errors, we first group the images based on their visual entropy, then
compute the proportion of incorrect answers within each group relative to the total number
of perceptual errors.

 Similarly, for reasoning errors, we group the samples based on model confidence, and
calculate the proportion of incorrect answers in each group relative to the total number of
reasoning errors.

Table 4: The error rate of perceptual difficulty groups in perceptual errors on two benchmarks.

low-entropy medium-entropy high-entropy

Wemath 23.6% 31.3% 45.1%
HallusionBench 21.2% 29.6% 49.2%

Table 5: The error rate of reasoning difficulty groups in reasoning errors on two benchmarks.

group 1 (low confidence) group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 group 10 (high confidence)

Wemath 13.4% 126% 132% 12.7% 11.6% 9.1% 97% 12% 6.7% 4.2%
HallusionBench 12.7% 11.9% 112% 11.7% 10.0% 9.8% 9.0% 82% 83% 7.1%

As shown in Table 4 and Table 5, the results align with our expectations: images with low visual
entropy (indicating simplicity) correspond to lower perceptual error rates, and samples with lower
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model confidence (indicating greater uncertainty in the reasoning process) correspond to higher
reasoning error rates. Our empirical findings are consistent with this intuition, further supporting
the validity of our difficulty metrics.

The instructions for Gemini2.5 pro to conduct classification are as follows:

Prompt Example

SYSTEM:

You are an expert evaluator for multimodal reasoning errors. Your task is to determine why a
model answered a visual reasoning question incorrectly.

You must classify the error into one and only one of the following categories:

1. Perception Error
The model misunderstood or misread the visual content.

Examples include:

Misidentifying objects, numbers, angles, or relations in the image
Failing to notice geometric constraints

Incorrectly interpreting positions, shapes, or labels

Making a wrong assumption about what is visually shown

2. Reasoning Error The model correctly interpreted the visual content, but its logical
reasoning or mathematical deduction is incorrect.

Examples include:

Using the wrong theorem or property
Incorrect algebraic or geometric steps
Incorrect reasoning chain

Logical inconsistency

You must output your judgment in JSON format:

{

“error_type”:“Perception” or "Reasoning”,

“explanation”: “A short explanation of why this classification fits.”

}

USER:

You are given a visual reasoning question, the model’s prediction (including its reasoning
process), and the correct answer.

Please carefully read the model’s reasoning and determine whether the model failed due to
Perception Error or Reasoning Error.

Here is the data sample:

<insert the JSON sample here>

Now analyze the model’s reasoning step-by-step and output the final JSON in the required
format.

F ANALYSIS OF DIFFERENT WEIGHTING COEFFICIENTS.

In this section, we will analyze the effects of the weighting coefficients for further assessing hyperpa-
rameter sensitivity. We experiment with different combinations of three coefficients co,i, perceps
and & peqson, and the results are presented in Table 6.

We can observe that while the performance on different benchmarks varies slightly with different
settings, the method is relatively stable across a wide range of settings, with no significant degradation
in results, indicating that our model is not overly sensitive to the specific choice of hyperparameters.
This suggests that our method does not require extremely fine-tuned hyperparameters to perform
effectively. Besides, we find that, usually, a little cco,; and relatively larger o peycep and areqson are
more likely to achieve a better effect, which can be used as guidance in the application of our method.
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Table 6: The effects of different weighting coefficients (built upon DAPO) on 5 benchmarks

QOri  OPercep OlReason  MathVerse MathVision MathVista WeMath HallusionBench

0.1 02 0.7 50.7 28.6 71.6 71.8 71.2
0.15 0.25 0.6 50.8 29.0 71.6 70.6 70.8
02 0.1 0.7 51.2 28.4 71.5 70.4 71.0
03 0.1 0.6 51.7 27.8 70.7 70.6 70.8
04 03 0.3 51.9 27.9 71.4 70.5 71.1
06 02 0.2 504 28.8 72.2 71.0 71.4
0.7 0.1 0.2 51.1 28.3 70.3 71.1 69.8

G ANALYSIS OF THE EFFECT OF ROLLOUT SIZE ON PERFORMANCE AND
STABILITY.

Table 7: The effects of rollout size (built upon DAPO) on 5 benchmarks.

rollout MathVerse MathVision MathVista WeMath HallusionBench

2 48.7 27.1 70.1 69.7 67.3
4 50.1 28.4 71.5 70.2 68.9
8 51.9 29.0 72.2 71.8 714
16 52.1 29.2 72.1 71.2 71.2
24 51.7 29.0 71.9 71.9 71.5
32 51.9 28.9 722 71.0 71.3

We observed from Table 7 that when the rollout size is smaller than 8, the performance improves as
the rollout size increases. Notably, when the number of rollouts is reduced to 2, the model reverts to
PPO. As the rollout size continues to increase beyond 8, the improvement in performance becomes
less pronounced, eventually stabilizing at a stable value.

These results indicate that while increasing the number of rollouts can lead to better performance,
after a certain point, beyond which further increases in group size do not significantly contribute
to performance improvement. This shows the importance of selecting an appropriate group size to
balance computational cost and model performance.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H CASE STUDY

H.1

PERCEPTUAL DIFFICULTY-BASED RE-GROUPING CASES

ﬁ%

Find x. Find x. Round the side measure In OB, the diameter is 20 units
to the nearest tenth. long, and m £ACE=45°. Find x.
= n =
2v221 ® 348 5 h‘;
° x 2 c
question quesion
. . . . . a
Find y in the given parallelogram Find z Find mzT. K .
nswer ) BH swe w
15 . s 26
Find x. Find m£B. Find the area of the figure.

| e,

What is the measure of an interior
angle of aregular pentagon?

e P
108

Find the area of the figure. Round
to the nearest tenth if necessary.

L)
\/

261

In the figure, m£1=58, m£2 =47,
and m43 = 26. Find the m47.

Avil
58 E C

Figure 4: Illustrative examples of different levels of entropy
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H.2 DEMONSTRATION OF IMPROVED PERCEPTION AND REASONING CAPABILITIES

/ Question: \

v e According to the chart, does China
- have the second largest population in
- = the world? You final answer can only
g = be \boxed{yes} or \boxed{no}.
e = Source: HallusionBench
: Problem version: chart
pon figureid: 3 2
question_id: 3
Ours:
<think>

The chart represents population data for various countries, with
China and the UK having the highest populations at 1,425.7 and
1,428.6 million respectively.

Since the chart indicates China's population is slightly lower than the
UK's, it suggests that China does indeed have the second largest
population in the world according to this data.

</think>

\boxed{yes}

Vanilla GRPO:

<think>

The chart shows the population of various countries. The population
of China is listed as 1,425.7 million, and the population of the UK is
listed as 1,428.6 million. Since the UK has a slightly higher
population, China does not have the second largest population in the
world. The second largest population in the world is the UK.
</think>

\boxed{no}

A J

Figure 5: Case Studyl showing improved reasoning capability over vanilla GRPO
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/Question:
Each of the cubes in the figure has the length of g

an edge equal to 1. What is the length of the
segment AB?

AV (B)7 (VY  (DO)V (E)V

Source: Mathvision A
question_id: 209

Ours:

<think>

To find the length of the segment AB, we can use the three-dimensional
distance formula, which is an extension of the Pythagorean theorem. The
distance d between two points (x;, Y1, ;) and (X, Y5, z,) in three-dimensional
spaceisgivenby:d=,/( — ) +( — ) +( — )

Here, point A is at (0, 0, 0) and point B is at (3, 2, 2). Plugging these coordinates
into the formula, we get:

AB=( =) +( - ) +( - )=v_+ + =/
Therefore, the length of the segment ABisv .

</think>

\boxed{A}

Vanilla GRPO:

<think>

To find the length of the segment AB, we need to consider the three-
dimensional space formed by the cubes. The segment AB can be visualized as
a diagonal that spans across three unit cubes in the x, y, and z directions.

1. The segment AB moves 3 units in the x-direction, 2 units in the y-direction,
and 1 unit in the z-direction.

2. The length of AB can be found using the three-dimensional distance
formula, which is similar to the Pythagorean theorem but extended to three
dimensions: d =+ + +

3. Substituting the valuesx=3,y=2,andz=1: AB=+v + aF =
s

Therefore, the length of the segment AB is v
</think>
\\boxed{\/ }

Figure 6: Case Study2 showing improved reasoning capability over vanilla GRPO

21



Under review as a conference paper at ICLR 2026

ﬁuestion: & \
As shown in the figure, AB is the diameter of /‘

© O, CDis the chord of © O, ZADC = 26.0, then ‘\ 5

the degree of ZCABis (): )

(A)26° (B)74° (C)64° (D)54°

Source: Mathvista L

question_id: 59

Ours:

<think>

Since AB is the diameter of circle O, angle ACB is a right angle (90°) because any
angle inscribed in a semicircle is a right angle. We are given that angle ADC is
26°. Because angles subtended by the same arc are equal, angle ACB (which is
90°) and angle ADB (which is also 26°) are related to the arc AB. However, to
find angle CAB, we can use the fact that the sum of angles in triangle ACB is
180°. Since angle ACB is 90° and angle ABC (opposite to side AC) is the same as
angle ADC (26°) due to the inscribed angle theorem, we can calculate angle
CAB as follows:

angle CAB = 180° - angle ACB - angle ABC

angle CAB = 180° - 90° - 26°

angle CAB = 64°

Therefore, the degree of angle CAB is 64°.

</think>

\boxed{C}

Vanilla GRPO:

<think>

Since AB is the diameter of circle O, angle ACB is a right angle (90 degrees)
because the angle subtended by a diameter in a semicircle is always 90
degrees. Given that angle ADC is 26 degrees, and angles ADC and CAB are
subtended by the same arc AC, they are equal. Therefore, angle CAB is also 26
degrees.

So, the degree of angle CAB is 26 degrees.

</think>

&boxed{A} /

Figure 7: Case Study3 showing improved reasoning capability over vanilla GRPO
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Gestion: \

As shown in the diagram, in a building, it is
known that A lives to the left of B. Who lives
below D?

A.A; B.E; C.F;, D.G; E.Nocorrectanswer

Source: Wemath
question_id: 2steps_17@2steps 1

(=1 [=][2]
(=] [-] [=]
BN

Ours:

<think>

The diagram shows a grid with letters A through I. The question states
that A lives to the left of B. This means that if A is in a certain position,
B must be to the right of A in the same row. However, the question
asks who lives below D. Since D is in the second row, the person below
D would be in the third row, which is G.

So, the person who lives below D is G.

</think>

\boxed{D}

Vanilla GRPO:

<think>

The diagram shows a grid with letters A through I. The question states
that A lives to the left of B. This means that if we look at the horizontal
row where A is located, B must be to the right of A. Now, we need to
determine who lives below D.

In the grid:

- Dis in the second row, first column.

- The letter below D is E.

Therefore, the person who lives below D is E.

</think>

\\boxed{B} /

Figure 8: Case Study4 showing improved reasoning capability over vanilla GRPO
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