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Abstract

This paper presents the results of the 2025 Automatic Music Transcription (AMT)
Challenge, an online competition to benchmark progress in multi-instrument tran-
scription. Eight teams submitted valid solutions; two outperformed the baseline
MT3 model. The results highlight both advances in transcription accuracy and the
remaining difficulties in handling polyphony and timbre variation. We conclude
with directions for future challenges: broader genre coverage and stronger emphasis
on instrument detection.

1 Introduction

Automatic Music Transcription (AMT) converts audio signals into symbolic representations of music,
such as sheet music or MIDI (Musical Instrument Digital Interface) format. Compared to other fields
of artificial intelligence (such as natural language processing and computer vision), the progress of
AMT has been slower [4]. Several factors contribute to this gap: (1) lack of large openly available
datasets for training and evaluation, (2) absence of commonly adopted benchmarks for comparing
different methods, (3) limited incentives to attract researchers compared to other fields in AI, (4)
lack of a common platform where multiple AMT solutions can be evaluated., and (5) the inherent
complexity of music signals. A single instrument can produce wide variations in pitch, articulation,
dynamics, and playing techniques. Note onsets/offsets themselves can be ambiguous; e.g., piano
notes may be defined acoustically (sounding strings) or by key press and release with or without
pedals. In this work, we adopt the mir_eval convention [16], where onsets are defined by the
reference MIDI start time and offsets by the later of 50 ms or 20% of note duration. This paper
presents the results of the 2025 Automatic Music Transcription Challenge, designed to advance AMT
technology by fostering benchmarking, comparison, and community engagement.

(a) (b)

Figure 1: Excerpts of the sample music available to the participants.

This challenge is different from previous competitions in several ways: (1) This challenge offers a
cloud-based grading system that updates the leaderboard on a daily basis. Such timely information
encourages participants to improve their methods progressively. (2) The evaluation metrics include
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testing for multiple factors, as well as taking into account tolerances in pitch. (3) To avoid overfitting
to existing datasets, the challenge introduced a newly composed test set comprising 76 short pieces
(≈20 seconds each) across eight instruments; up to three instruments may be present in each piece.
Figure 1 shows two excerpts of the released music. Each piece includes three files: (1) a PDF file of
the sheet music, (2) an MP3 of synthesized audio, and (3) a MIDI file.

2 Previous Transcription Competitions

Figure 2: Scoring Method.
Top: Reference. Bottom:
Estimated transcription.

Music transcription has been evaluated through a variety of competitions,
each designed to address specific aspects of the task and to drive progress.
Since its inception in 2005, the Music Information Retrieval Evaluation
eXchange (MIREX) [3] has served as a pivotal benchmark, initially
focusing on foundational tasks such as onset detection, tempo and beat
tracking, melody extraction, key detection, and chord estimation, with
submissions typically targeting one component of the broader transcrip-
tion pipeline. Over time, challenges evolved toward instrument-specific,
polyphonic settings, notably the Drum Transcription challenge [1] and
the Polyphonic Piano Transcription challenge [2]. The former empha-
sized detecting bass drum, snare drum, and hi-hat in polyphonic mixes;
the latter (introduced in 2024) required systems to convert solo piano au-
dio into MIDI by capturing onsets, offsets, pitch, and velocity, leveraging
the MAESTRO v3.0.0 dataset for training and evaluation.

3 Evaluation Methodology

3.1 Scoring System

Two MIDI files are compared to calculate the transcription program’s
score. The evaluation metrics include precision, recall, F1 score, and
overlap ratio. The precision and recall of the reference and estimated
MIDI are computed using the mir_eval library [16]. Overlap is calculated
through onset and offset, i.e., the timing of a music note’s beginning and
ending, by computing the intersection over union between transcription
and ground truth.

Consider Figure 2. The top is the reference (correct). The bottom is the estimated (transcription).
The excerpts are divided into four groups. Each group is one quarter note long, and each group has
a slight variation from the reference. Group (1) has the reference and estimated tracks as identical
and receives an F1 score of 1.0. Group (2) has the top note in the piano part as incorrect. It correctly
finds two notes, but misses a correct one, which is counted as a false negative. The wrong note is
counted as a false positive. Using the formulas, precision and recall are both 0.667, leading to group
(2) and receiving an F1 score of 0.667. Group (3) has the top note of the piano part as completely
missing. Therefore, it has two true positives for the correct note, one false negative for the missing
note, and no false positives. Precision is 1.00, and recall is 0.667. Group (3) receives an F1 score of
0.800. Group (4) has all three notes from both instruments incorrect. It has three false negatives for
the missing true positive notes and three false positives for the wrong notes, with no true positives,
causing precision and recall to be 0. Group (4) receives an F1 score of 0.000. The overall F1 score of
the entire excerpt is 0.609.

3.2 Test Data

To fairly benchmark transcription models, the challenge used a new evaluation set of 76 pieces written
by five professional composers, including for the first time newly composed modern atonal works and
rare coverage of instruments such as bassoon and viola. These instruments sparsely in existing datasets
like MusicNet and URMP. The audio was rendered directly from the MIDI scores using FluidSynth
with the FluidR3 GM soundfont. Each composition followed a set of predefined rules announced to all
participants: (1) Tempi restricted to 60–90 BPM; (2) Meters limited to 3/4, 4/4, or 6/8; (3) Maximum
rhythmic subdivision of sixteenth notes; (4) Richer notational elements such as swing, double-dotted
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notes, grace notes, and trills were excluded to reduce ambiguity in alignment; (5) Pitch range limited
to C2–C7 (five octaves); (6) Dynamic markings restricted between pianissimo and fortissimo; (7)
Eight instruments were allowed (Piano, Violin, Viola, Cello, Flute, Bassoon, Trombone, Oboe), with
at most three instruments per piece; (8) At most one string instrument could appear in a piece. These
constraints were chosen to balance musical realism (e.g., polyphony, dynamics, instrument variety)
with evaluation clarity, avoiding edge cases where subjective interpretation or notational ambiguity
might dominate scoring. The constraints were also applied to simplify the task for the competitors,
and to ensure the model’s scoring remained sufficiently high.

4 Competition Results

A total of 21 teams registered for the 2025 Automatic Music Transcription Challenge, of which 14
teams submitted at least one solution. Eight teams submitted valid solutions whose MIDI outputs
could be successfully graded without errors. Table 1 reports the results across all evaluated models,
including open-source baseline (MT3). To protect privacy, teams can choose their own names. In
the discussion, we focus on the top three systems, as lower-ranked submissions showed limited
improvements over the baseline.

Table 1: Results from all evaluated systems. Multiple variants and public baselines are included;
MT3 serves as the reference baseline. Runtime is measured by ms.

Rank Model Name F1 Score Precision Recall Overlap Runtime

1 MIROS 0.5998 0.6558 0.5724 0.7391 22.05
2 YourMT3-YPTF-MoE-M 0.5938 0.6010 0.5888 0.7305 12.60
3 YourMT3-YPTF-S 0.5581 0.5565 0.5615 0.7326 15.40
4 YourMT3-P 0.3947 0.3966 0.3985 0.7263 14.99
5 MT3 [11] (baseline) 0.3932 0.3811 0.4115 0.7180 20.19
6 YourMT3-YPTF-SP-V 0.3305 0.3280 0.3358 0.7147 14.50
7 press_to_win 1 0.3199 0.3105 0.3346 0.7331 19.30
8 press_to_win 2 0.3190 0.3094 0.3331 0.7310 18.08
9 YourMT3-YPTF-MoE-MP 0.2173 0.2150 0.2206 0.6116 16.03

10 press_to_win 3 0.2168 0.2144 0.2203 0.6159 16.15
11 Bytedance Piano [13] 0.1721 0.2041 0.1689 0.5423 9.67
12 press_to_win 4 0.1470 0.1305 0.1799 0.6998 21.74
13 ReconVAT [8] 0.1415 0.1215 0.1803 0.7898 5.45
14 Basic Pitch [5] 0.0634 0.0550 0.0782 0.5977 3.91

Music Information Retrieval Osnabrück (Winning System). Music Information Retrieval Os-
nabrück (MIROS) extends the YourMT3+ encoder–decoder framework for automatic music tran-
scription by adopting MusicFM as the encoder backbone and pairing it with modernized decoders.
MusicFM is a conformer-based, self-supervised foundation model for music pretrained via BEST-RQ
masked token modeling [17]. An advantage of self-supervised foundation models is that they can
exploit abundant unlabeled audio, compared with scarce labeled AMT data. To integrate MusicFM
into the YourMT3+ multi-decoder formulation, MIROS introduced a recurrent adapter that condi-
tions the temporally downsampled encoder outputs on learned instrument group embeddings. Each
instrument group is then decoded in parallel using T5-style decoders with cross attention, updated
with rotary position embeddings and hardware-optimized attention (FlashAttention) [10]. Unlike
prior YourMT3+ state-of-the-art systems, MIROS did not employ cross-stem augmentation, though
they did train on all available MIDI datasets [6]. This isolates the contribution of domain-pretrained
audio representations within a comparable seq2seq framework.

Outside the competition, the MusicFM + multi-decoder system (≈370M parameters) achieved a
Slakh2100 [15] multi-instrument F-measure of 0.83, with efficient long-context decoding (5-second
windows, up to 1024 tokens per group) and high training throughput (≈2.4 iterations/s). Although it
underperformed YourMT3+ on Slakh2100, it attained slightly better accuracy on the competition data,
suggesting possible Slakh overfitting by YourMT3+. Domain-pretrained encoders like MusicFM
thus extends YourMT3+ to longer, richer contexts while maintaining competitive accuracy, while
optimized attention backends improve the practicality of multi-instrument AMT at scale.
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General Trends Across Models. Several themes emerged from the technical directions of top models.
Most submissions adopted a sequence-to-sequence (Seq2Seq) paradigm, extending the MT3 [11]
architecture with enhancements such as self-supervised random projection quantizer [17, 9], Mixture-
of-Experts [7, 12] routing, hierarchical time–frequency attention [14], cross-dataset augmentation [7],
and auxiliary onset/offset losses. A second theme was efficiency: some teams targeted real-time
transcription by pruning parameters, quantizing model weights, and lowering spectrogram resolution
to reduce GPU memory and inference latency. Despite these advances, common failure cases were
observed. Models often produced instrument leakage, hallucinating nonexistent instruments, or
struggled to disentangle salient melodies from dense polyphonic textures, especially when multiple
instruments shared similar pitch ranges or timbres.

Since instrument leakage and polyphonic confusion emerged as common failure modes, we conducted
a focused statistical analysis on transcription accuracy in single-instrument versus multi-instrument
settings. A two-way ANOVA on f_measure with factors model and instrument category confirmed
that the number of input instruments had a strong main effect (F (1, 148) = 27.5, p < 0.001), while
the model main effect (p = 0.15) and the interaction (p = 0.43) were not significant. This indicates
that all systems consistently perform worse on multi-instrument tracks, regardless of architecture.

To expand this further, we conducted pairwise Welch’s two-sample t-tests comparing single- versus
multi-instrument excerpts within each model. For the top system (A), the difference was large
in magnitude (t = 2.84, p = 0.0057, Cohen’s d = 1.21). For YourMT3-YPTF-MoE-M, the
difference was even more pronounced (t = 4.84, p < 0.00001, Cohen’s d = 2.06). Because multiple
comparisons were performed across models, we also applied a Bonferroni correction. After correction,
the difference for MIROS became borderline significant (p ≈ 0.055), while the YourMT3-YPTF-
MoE-M result remained robustly significant (p = 0.024). We report both raw and corrected p-values
to distinguish statistical from practical significance. In both cases, the effect sizes exceeded d = 1.2,
which corresponds to very large practical differences.

Table 2 provides descriptive statistics for the top two systems, broken down by single- and multi-
instrument excerpts. Both systems show a consistent drop of more than 0.25 F-measure points on
multi-instrument settings, with MIROS exhibiting especially sharp precision loss.

Table 2: Performance comparison between single- and multi-instrument for the top two teams. Values
are reported as mean ± standard deviation. Welch’s t-test results are shown above in the text.

Model Instrument Type F-measure Precision Recall

MIROS Multiple (n=70) 0.4585 ± 0.2158 0.4923 ± 0.2153 0.4424 ± 0.2251
MIROS Single (n=6) 0.7193 ± 0.2103 0.9067 ± 0.2286 0.6233 ± 0.2295
YourMT3-YPTF-MoE-M Multiple (n=70) 0.4055 ± 0.1668 0.4128 ± 0.1696 0.3998 ± 0.1653
YourMT3-YPTF-MoE-M Single (n=6) 0.7594 ± 0.2304 0.7858 ± 0.2411 0.7367 ± 0.2254

Overall, nearly all top-performing models and the MT3 baseline relied on an almost identical set of
ten datasets [11, 7]. Notably, both YourMT3-P and MT3 applied cross-dataset augmentation on the
same architecture and training corpus, yet achieved only marginal improvements. This suggests that
performance is fundamentally constrained by data scarcity. In particular, currently available public
datasets for AMT insufficiently cover less common instruments such as viola, bassoon, and trombone,
and are largely limited to a small number of ensemble pieces, thereby restricting generalization.

5 Conclusion and Future Directions

The 2025 Automatic Music Transcription Challenge advanced transcription of multi-instrument music
by introducing a new test set and a cloud-based evaluation system. Several submissions surpassed the
MT3 baseline, showing tangible gains but also exposing persistent weaknesses: dense polyphony,
timbrally similar instruments, and limited data diversity. These limitations suggest that progress
in AMT will depend as much on richer training resources as on architectural innovation. Future
iterations will expand to genres such as jazz and popular music and emphasize robust instrument
detection. Additional improvements will target evaluation protocols that better capture pitch, timing,
and timbre quality. By broadening coverage and refining benchmarks, future challenges aim to
support the development of systems that generalize more reliably to diverse music.
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