ResNet strikes back: An improved training procedure
in timm

Ross Wightman® Hugo Touvron*' Hervé Jégou*

°Independent researcher ~ *Facebook AI fSorbonne University

Abstract

The influential Residual Networks designed by He et al. remain the gold-standard
architecture in numerous scientific publications. They typically serve as the default
architecture in studies, or as baselines when new architectures are proposed. Yet
there has been significant progress on best practices for training neural networks
since the inception of the ResNet architecture in 2015. Novel optimization &
data-augmentation have increased the effectiveness of the training recipes.

In this paper, we re-evaluate the performance of the vanilla ResNet-50 when trained
with a procedure that integrates such advances. We share competitive training
settings and pre-trained models in the timm open-source library, with the hope that
they will serve as better baselines for future work. For instance, with our more
demanding training setting, a vanilla ResNet-50 reaches 80.4% top-1 accuracy at
resolution 224 x224 on ImageNet-val without extra data or distillation. We also
report the performance achieved with popular models with our training procedure.

1 Introduction

In the last decade we have witnessed significant advances in image classification, as reflected by
improvement on benchmarks such as the ILSVRC’2012 challenge [37] or other image classification
benchmarks, which are visible on popular websitesﬂ Schematically, the increase of performance
reflects the maximization by the community of a problem of the form

accuracy (model) = f(A, T,N),

where A is the architecture design, 7 is the training setting along with its hyper-parameters, and
is the measurement noise, in which we also include overfitting that typically occurs when selecting
the maximum over a large set of hyper-parameters or choices of methods. Several good practices
exist to mitigate N, like measuring the standard deviation with different seeds, using a separate
evaluation dataset [33] or evaluating models on transfer tasks. Putting aside /, measuring progress
on A or 7 poses a challenge as both A and T progress over time. When optimizing jointly over
(A, T), there is no guarantee that the optimal choice 7 for a given architecture .4; remains the best
for another model design .A5. Therefore even when one compare models under the same training
procedure, one may implicitly favor one model over another. One good practice to disentangle the
improvement resulting from the training procedure from that of the architecture is to ensure that the
baseline incorporates new “ingredients” from the literature, and to put a reasonable amount of effort
in adjusting the hyper-parameters. Ideally, i.e., without resource and time constraints, one would
optimally adopt the best possible training procedure for each architecture

T*(A) = max f(A, T, A), 1)

'See for instance http: //paperswithcode.com/task/image-classification

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

http://paperswithcode.com/task/image-classification

but realistically this is not possible. When comparing architectures, most papers compare their results
to other reported in older publications, but for which architectures were trained with potentially
weaker recipes.

We are not aware of an effort specifically targeted at improving the ResNet-50 training procedure
with an extensive ingredient selection and hyper-parameter search. In the literature, the performance
reported on ImageNet-1k-val for this architecture ranges from 75.2% to 79.5%, depending on the
paper. It is unclear whether a sufficient effort has been invested in pushing the baseline further. We
want to fill this gap: in this paper, we focus on the vanilla ResNet-50 architectureE] as described by
He et al. [[14]], and we optimize the training so as to maximize the performance of this model for the
original test resolution of 224 x 224. We solely consider the training recipe. Therefore we exclude all
variations of the ResNet-50 such as SE-ResNet-50 [21] or ResNet-50-D [15]], which usually improve
the accuracy under the same training procedure. In summary, in this paper,

* We propose three training procedures intended to be strong baselines for a vanilla ResNet-50
used at inference resolution 224 x 224. The three variants correspond to different numbers
of epochs (100, 300 and 600) with adjustment of hyper-parameters and ingredients.

* Our procedure includes advances from the literature as well as new proposals. Noticeably,
we depart from the usual cross-entropy loss. Instead, our training solves a multi-label
classification problem when using Mixup and CutMix: we minimize the binary cross
entropy for each concept selected by these augmentations, assuming that all the mixed
concepts are present in the synthetized image.

* We measure the stability of the accuracy over a large number of runs with different seeds,
and discuss the overfitting issue by jointly comparing the performance on ImageNet-val
versus the one obtained in ImageNet-V2 [35]].

* We train popular architectures and re-evaluate their performance. We also discuss the
necessity to optimize jointly the architecture and the training procedure: we showcase that
training with the same procedure is not sufficient for comparing the merits of architectures.

Our supplemental material may interest the community. We provide ablations in Section |Bl Ap-
pendix |Aldetails augmentations variants that have been introduced by the timm libraryﬂ Appendix
covers alternative procedures for training a ResNet-50 that significantly differ in their ingredients
from our three focal training procedures. They achieve noteworthy performance and possibly better
results with different architectures and tasks.

2 Related work

Image Classification is a core problem in computer vision. It is often employed as a benchmark
task to measure progress in computer vision. Pre-trained models for image classification, particularly
trained on ImageNet [9], are used in a large variety of downstream tasks like detection or segmentation.
Progress in image classification generally translates to progress on these tasks.

The timm library [51] has recently gained significant momentum in the scientific community
as it provides implementations for numerous popular models for image classification, as well as
training methods. Pre-trained weights — either adapted from originals or trained in timm with newer
procedures — are included for many models. While model architectures are timm’s focus, it also
includes implementations of many data augmentations, regularization techniques, optimizers, and
learning rate schedulers that are leveraged in the training procedures described in this paper. In many
cases these implementations include functionality beyond the original implementations or papers that
they were based upon. We describe these additions in Appendix

ResNet [14] is one of the most popular image classification architectures. It was a noteworthy
improvement at the time it was introduced and continues to serve as the referent architecture for some
analysis [8l156,157], or as a baseline in papers introducing new architectures [33} 136,52} 58]].

2ResNet-50 V1.5 (the PyTorch [[]] ResNet50) a slight adjustment of He ef al. [14]] that was made in torch7,
stride was moved from 1x1 to 3x3 in bottleneck.

3available at http: //github. com/rwightman/pytorch-image-models/

http://torch.ch/blog/2016/02/04/resnets.html
http://github.com/rwightman/pytorch-image-models/

Training Number Training Training Peak memory Numbers Top-1 accuracy

Procedure | of epochs resolution time by GPU (MB) of GPU val real v2
Al 600 224 x 224 110h 22,095 4 80.4 85.7 68.7
A2 300 224 x 224 55h 22,095 4 79.8 854 679
A3 100 160 x 160 15h 11,390 4 78.1 845 66.1

Table 1: Training resources used for our three training procedures on V100 GPUs and corresponding accuracies
at resolution 224 x 224 on ImageNetlk-val, -V2 and -Real. Note, the top-1 val acc. of pytorch-zoo [1] is 76.1%.

Some works have modernized the ResNet training procedure and obtained some improvement over
the original model (e.g. Dollar et al. [10]]). This allows a more direct comparison when considering
new models or methods involving more elaborate training procedures than the one initially used.
Nevertheless, improving the ResNet-50 baseline [6, 10, [15} 48 149, |55]] was not the main objective
of these works. As a consequence and as we will see, the best performance reported so far with
a ResNet-50 is still far from the maximum performance (peak or average) that one can achieve
with this architecture. In this paper, our goal is to offer the best possible training procedure that
we could find for the ResNet-50 based on existing ingredients and practices. We hope that it will
serve as a strong baseline for subsequent works. Note, some papers have also focused on ResNet-50
training [2, 28} 150, but they have either modified the architecture or changed the resolution, which
does not allow for a direct comparison to the original ResNet-50 at resolution 224 x224. For instance,
Lee et al. [28] use ResNet-D [[15] with SE attention [21]. Bello ef al. [2] also optimize ResNet
without architectural changes, but they don’t report competitive results for ResNet-50 at 224 x224.

Training ingredients & recipes for image classification have significantly evolved since the in-
ception of AlexNet [27]. Several trends have changed over time. Common modifications include
replacing the waterfall schedule (classical division by 10 of learning rate every 30 epochs) by a
longer and more progressive schedule [5 [10, [11} 42| 46| 53]]. Increasing jointly the number of
epochs [10L[11} 15} 42 !46] and the batch size while using mixed precision better leverages powerful
GPUs. Modern procedures make use of stronger data-augmentation [[7, 8L 156157} |59, stronger regular-
ization [12, 22} 38]], weight averaging [23}132]] and correct the train-test resolution discrepancy [49] by
differentiating the train from the test resolution [S} [11]]. Different losses have also been experimented
with [4} 24] even if cross-entropy remains the standard. For the optimization, SGD with Nesterov
momentum [39] is a common default for CNNs. RMSProp is also used for specific CNN architecture
families like in Inception [40], NASNet [60], AmoebaNet [34], MobileNet [20], EfficientNet [42].
For image classifiers based on transformers [11}146] and MLP [44]45]], AdamW [29] and Lamb [54]]
optimizers are popular choices.

3 Training Procedures

We offer three different training procedures with different costs and performance so as to cover
different use-cases, see Table[I] for resource usage and corresponding accuracies. Our procedures
target the best performance of ResNet-50 when tested at resolution 224 x 224. We have explored
numerous variations with different optimizers, choice of regularization, and a reasonable amount of
grid search for the hyper-parameters. See Section [C|in the Appendix for the exact ingredient list and
parametrization. We refer the reader to Section [E]for control experiments on quantifying the amount
of overfitting. We focus on three different operating points:

Procedure A1l aims at providing the best performance for ResNet-50. It is therefore the longest in
terms of epochs (600) and training time (4.6 days on one node with 4 V100 32GB GPUs).

Procedure A2 is a 300 epochs schedule that is comparable to several modern procedures like DeiT,
except with a larger batch size of 2048 and other choices introduced for all our recipes.

Procedure A3 aims at outperforming the original ResNet-50 procedure with a short schedule of 100
epochs and a batch size 2048. It can be trained in 15h on 4 V100 16GB GPUs and could be
a good setting for exploratory research or studies.

Table|l| summarizes the main characteristics of our training procedure. We detail our ingredients in
Section[C] Section [F|gives alternative training procedures that may serve as interesting choices when
considering other models.

Table 2: Performance of models trained with Al training procedure. We measure peak memory and
throughput on one GPU V100 32GB with batch size 128, FP16 precision and test resolution from Table[3] The
throughput is indicative, since it depends on the GPU hardware, the software that runs the models, and other
factors like the adjustment of batch size (constant in this table).

#params FLOPs | Throughput Peak mem | Top-1 Real V2
Architecture %108 %107 (im/s) (MB) | Acc. Acc. Acc.
ResNet-18 [14] 11.7 1.8 7960.5 588 | 71.5 794 594
ResNet-34 [14] 21.8 3.7 4862.6 642 | 764 834 65.1
ResNet-50 [14] 25.6 4.1 2536.6 1,155 | 804 857 68.7
ResNet-101 [14] 44.5 7.9 1547.9 1,264 | 81.5 863 703
ResNet-152 [14] 60.2 11.6 1094.0 1,355 | 820 864 70.6
RegNetY-4GF [33] 20.6 4.0 1690.6 1,585 | 81.5 86.7 70.7
RegNetY-8GF [33] 39.2 8.1 1122.3 2,139 | 822 867 71.1
RegNetY-16GF [33] 83.6 16.0 694.1 3,052 | 82.0 864 712
RegNetY-32GF [33] 145.0 324 431.5 3,366 | 82.5 86.6 71.7
SE-ResNet-50 [21] 28.1 4.1 2174.8 1,193 | 80.0 858 68.8
SENet-154 [21] 115.1 20.9 511.5 2414 | 81.7 86.0 712
ResNet-50-D [15] 25.6 4.4 2418.8 1,205 | 80.7 859 68.9
ResNeXt-50-32x4d [52] 25.0 4.3 1727.5 1,247 | 80.5 855 684
EfficientNet-BO [42] 53 0.4 3701.5 932 | 770 83.8 650
EfficientNet-B1 [42] 7.8 0.7 2365.2 1,077 | 79.2 853 67.7
EfficientNet-B2 [42] 9.2 1.0 1786.8 1,318 | 804 86.0 69.3
EfficientNet-B3 [42] 12.0 1.8 1082.4 2,447 | 814 86.7 704
EfficientNet-B4 [42] 19.0 4.2 561.3 5,058 | 81.6 859 70.8
ViT-Ti [46] 5.7 1.3 3497.7 346 | 747 821 624
ViT-S [46] 22.0 4.6 1762.3 682 | 80.6 856 694
ViT-B [11] 86.6 17.6 771.0 1,544 | 804 84.8 694

timm [51] specific architectures

ECA-ResNet50-T | 25.6 44 | 2139.7 1,155 | 813 86.1 699
EfficientNetV2-rw-S [43] 23.9 8.8 823.1 2,339 | 80.6 84.8 69.2
EfficientNetV2-rw-M [43] 53.2 18.5 456.8 2916 | 823 87.1 717
ECA-Resnet269-D | 102.1 706 | 168.1 4,134 | 833 869 719

4 Experiments

In this section we first compare our training procedure to existing ones and evaluate them with
different architectures. Importantly, we discuss in Section [E] the significance of our results with
experiments that aim at (1) quantifying the sensitivity of the performance to random factors; (2)
evaluating the overfitting by measuring on a different test set.

Comparison of training procedures for ResNet-50 To the best of our knowledge, our procedure
A1 surpasses the current state of the art on ImageNet with a vanilla ResNet-50 architecture at
resolution 224 x224. Our other procedures A2 and A3 achieve lower but still high performance with
less resources.

Performance comparison with other architectures. In Table |3| we report the performance ob-
tained when training different architectures with our training procedures. This allows us to see how
well they generalize to other models. Or procedures improves the performance of several models over
results reported in the literature, in particular older ones and/or those most comparable to ResNet-50
in terms of architecture and size. In some cases like ViT-B, we observe that A2 is better than A1,
which suggests that the hyper-parameters are not adapted to longer schedules (typically requiring
more regularization). For instance, the A2 training recipe achieves 81.8% top-1 accuracy when
training a ResNet-152, but by increasing a bit the regularization we improved it to 82.4% at resolution
224 %224, which translates to 82.7% when evaluated at resolution 256 x256.

In Table 3] we compare the performance and resources associated with our 3 training recipes when
using them to train other architectures. We complement these results with Table [2| where we

Table 3: Comparison on ImageNet classification between other architectures trained with our ResNet-50
optimized training procedure without any hyper-parameters adaptation. In particular, our procedure must
be adapted for deeper/larger models, which benefit from more regularization. For the training cost we report
the training time (time) in hours, the number of GPU used (#GPU) and the peak memory by GPU (Pmem) in
GB. For Al and A2, we adopt the same training and test resolution as in the original publication introducing the
architecture. For A3 we use a smaller training resolution to reduce the compute-time. ': torchvision []] results.
*: DeiT [46] results.

| Al-A2-org. A3 | Cost | ImageNet-1k-val
| train test | train test | Al A2 | Al-A2 | A3 Al A2 A3 | org.

J Architecture res. res. | res. res. | time (hour) | #GPU Pmem | time #GPU Pmem Accuracy(%)

S}
[=))
W

|
| |
ResNet-18 [14] 224 224 | 160 224 | 186 93 2 12.5 28 S5 | 715 706 682 | 69.8
ResNet-34 [14]* 224 224 | 160 224 | 186 93 2 17.5 27 2 9.0 | 764 755 73.0 | 73.3
ResNet-50 [14] 224 224 | 160 224 | 110 55 4 22.0 15 4 114 804 79.8 78.1 | 76.1
ResNet-101 [14]* 224 224 | 160 224 | 74 37 8 16.3 8 8 85 |8l5 813 798|774
ResNet-152 [14]* 224 224 | 160 224 | 92 46 8 225 9 8 11.8 | 82.0 81.8 80.6 | 783
RegNetY-4GF [33 224 224 | 160 224 | 130 65 4 27.1 15 4 139 | 81.5 813 79.0 | 794
RegNetY-8GF [33 224 224 | 160 224 | 106 53 8 19.8 10 8 10.3 | 822 821 8l.1 | 799
RegNetY-16GF [33] 224 224 | 160 224 | 150 75 8 25.6 13 8 134 | 82.0 822 81.7 | 804
RegNetY-32GF [33] 224 224 | 160 224 | 120 60 16 17.6 12 16 94 | 825 824 826 | 81.0
SE-ResNet-50 [21] 224 224 | 160 224 | 102 51 4 27.6 16 4 142 | 80.0 80.1 77.0 | 76.7
SENet-154 [21] 224 224 | 160 224 | 110 55 16 233 12 16 122 | 81.7 81.8 819 | 813
ResNet-50-D [15 224 224 | 160 224 | 100 50 4 239 14 4 12.3 | 80.7 802 78.7 | 793
ResNeXt-50-32x4d [521° 224 224 | 160 224 | 80 40 8 14.3 15 4 14.6 | 80.5 804 792 | 77.6
EfficientNet-BO [42] 224 224 | 160 224 | 110 55 4 22.1 15 4 114 | 77.0 76.8 73.0 | 77.1
EfficientNet-B1 [42] 240 240 | 160 224 | 62 31 8 17.9 8 8 79 1792 794 749 | 79.1
EfficientNet-B2 [42] 260 260 | 192 256 | 76 38 8 22.8 9 8 11.9 | 80.4 80.1 77.5 | 80.1
EfficientNet-B3 [42] 300 300 | 224 288 | 62 31 16 19.5 6 16 10.1 | 814 814 792 | 81.6
EfficientNet-B4 [42] 380 380 | 320 380 | 64 32 32 204 8 32 143 | 81.6 824 812 | 829
ViT-Ti [46]* 224 224 | 160 224 | 98 49 4 16.3 14 4 7.0 | 747 741 66.7 | 72.2
ViT-S [46]* 224 224 | 160 224 | 68 34 8 16.1 8 8 7.0 | 80.6 79.6 73.8 | 79.8
ViT-B [L1]* 224 224 | 160 224 | 66 33 16 16.4 5 16 7.3] 804 798 76.0 | 81.8
timm [S1] specific architectures

ECA-ResNet-50-T | 224 224 | 160 224 | 112 56 | 4 293 | 15 4 150 | 81.3 809 79.6 | _

EfficientNetV2-rw-S [43] | 288 384 | 224 288 | 52 26 16 16.6 7 16 10.1 | 82.3 829 80.9 | 83.8
EfficientNetV2-rw-M [43] | 320 384 | 256 352 | 64 32 32 18.5 9 32 12.1 | 80.6 819 823 | 84.8
ECA-ResNet-269-D \ 320 416 \ 256 320 \ 108 54 \ 32 274 \ 11 32 17.8 \ 83.3 839 833 \ 85.0

additionally include the performance and efficiency on ImageNet-1k, ImageNet-V2 and ImageNet-
Real for different architectures trained with our best performing A1 training recipes.

5 Conclusion

In this paper we have proposed new training procedures for a vanilla ResNet-50. We have integrated
new ingredients and put a significant effort in exploring diverse procedures under different resource
constraints. As a result, we have established the new state of the art for training this gold-standard
model. We have two other procedures to train strong ResNet-50 with less compute power. Never-
theless, we do not claim that our procedures are universal, quite the opposite: the architecture and
training should be optimized jointly. Our procedure is not ideal for training other models: while,
on some models, our training recipes lead to excellent results outperforming those reported in the
literature, they exhibit suboptimal performance on others, typically for deeper architectures that
require more regularization.

Acknowledgments & feedback

Ross Wightman thanks NVIDIA for the donation of a V100 DGX Station and Google’s TPU Research
Cloud (TRC) for Cloud TPUs used in this research. All authors thank Mike Rabbat and Jakob Verbeek
for their feedback. We welcome feedback regarding these or other noteworthy procedures via the
timm GitHub Discussions] .

*https://github.com/rwightman/pytorch-image-models/discussions

https://github.com/rwightman/pytorch-image-models/discussions

References

2
(3]
(4]
(5]
(6]

(71
[8

—_—

[9

—

(10]
(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]
[29]

Pytorch. https://pytorch.org/vision/stable/index.html. Accessed: 2021-08-01.

Irwan Bello, W. Fedus, Xianzhi Du, E. D. Cubuk, A. Srinivas, Tsung-Yi Lin, Jonathon Shlens, and Barret
Zoph. Revisiting ResNets: Improved training and scaling strategies. arXiv preprint arXiv:2103.07579,
2021.

Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze. Multigrain: a
unified image embedding for classes and instances. arXiv preprint arXiv:1902.05509, 2019.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aaron van den Oord. Are we
done with ImageNet? arXiv preprint arXiv:2006.07159, 2020.

A. Brock, Soham De, S. L. Smith, and K. Simonyan. High-performance large-scale image recognition
without normalization. arXiv preprint arXiv:2102.06171, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294,
2021.

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. RandAugment: Practical automated data
augmentation with a reduced search space. arXiv preprint arXiv:1909.13719, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Conference on Computer Vision and Pattern Recognition, pages 248-255, 2009.
Piotr Dolldr, Mannat Singh, and Ross B. Girshick. Fast and accurate model scaling. In Conference on
Computer Vision and Pattern Recognition, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

Pierre Foret, Ariel Kleiner, H. Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2021.

Priya Goyal, Piotr Dolldr, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Conference on Computer Vision and Pattern Recognition, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for
image classification with convolutional neural networks. In Conference on Computer Vision and Pattern
Recognition, 2019.

Dan Hendrycks, Norman Mu, E. D. Cubuk, Barret Zoph, J. Gilmer, and Balaji Lakshminarayanan. Augmix:
A simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781,
2020.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Youngjung Uh, and
Jung-Woo Ha. Adamp: Slowing down the weight norm increase in momentum-based optimizers. arXiv
preprint arXiv:2006.08217, 2020.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment your
batch: Improving generalization through instance repetition. In Conference on Computer Vision and
Pattern Recognition, 2020.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Alexander Shepard, Hartwig Adam, Pietro Perona,
and Serge J. Belongie. The iNaturalist species classification and detection dataset. arXiv preprint
arXiv:1707.06642, 2017.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, M.
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 2017.
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In European Conference on Computer Vision, 2016.

Pavel Izmailov, Dmitrii Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights leads to
wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint arXiv:2004.11362, 2020.
Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE Workshop on 3D Representation and Recognition, 2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, CIFAR, 2009.
A. Krizhevsky, 1. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. In NeurIPS, 2012.

Jung kyu Lee, Taeryun Won, and Kiho Hong. Compounding the performance improvements of assembled
techniques in a convolutional neural network. arXiv preprint arXiv:2001.06268, 2020.

I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101,
2017.

https://pytorch.org/vision/stable/index.html

(30]
(31]
(32]
(33]
[34]
[35]
(36]
[37]

(38]
(39]
[40]
[41]

(42]
[43]

[44]

[45]

[46]
[47]
(48]
[49]
(501

[51]
(52]
(53]
[54]

[55]
(561

[57]
(58]

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, 2008.
David Picard. torch.manual_seed(3407) is all you need: On the influence of random seeds in deep
learning architectures for computer vision. arXiv preprint arXiv:2109.08203, sep 2021.

B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. Siam Journal on
Control and Optimization, 1992.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dolldr. Designing
network design spaces. Conference on Computer Vision and Pattern Recognition, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier
architecture search. arXiv preprint arXiv:1802.01548, 2018.

B. Recht, Rebecca Roelofs, L. Schmidt, and V. Shankar. Do ImageNet classifiers generalize to ImageNet?
In International Conference on Machine Learning, 2019.

T. Ridnik, Hussam Lawen, Asaf Noy, and Itamar Friedman. Tresnet: High performance gpu-dedicated
architecture. arXiv preprint arXiv:2003.13630, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large
scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. In Journal of Machine Learning Research, 2014.
Ilya Sutskever, James Martens, George E. Dahl, and Geoftrey E. Hinton. On the importance of initialization
and momentum in deep learning. In International Conference on Machine Learning, 2013.

Christian Szegedy, V. Vanhoucke, S. Ioffe, Jon Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. Conference on Computer Vision and Pattern Recognition, 2016.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern Recognition,
2015.

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, 2021.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. MLP-Mixer: An
all-MLP architecture for vision. arXiv preprint arXiv:2105.01601, 2021.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, M. Cord, Alaaeldin El-Nouby, Edouard Grave, Armand
Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou. ResMLP: feedforward networks for image
classification with data-efficient training. arXiv preprint arXiv:2105.03404,2021.

Hugo Touvron, M. Cord, M. Douze, F. Massa, Alexandre Sablayrolles, and H. Jégou. Training data-efficient
image transformers & distillation through attention. International Conference on Machine Learning, 2021.
Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper
with image transformers. International Conference on Computer Vision, 2021.

Hugo Touvron, Alexandre Sablayrolles, M. Douze, M. Cord, and H. Jégou. Grafit: Learning fine-grained
image representations with coarse labels. International Conference on Computer Vision, 2021.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-test resolution
discrepancy. Neurips, 2019.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman, and Jonathon
Shlens. Scaling local self-attention for parameter efficient visual backbones. arXiv preprint
arXiv:2103.12731, 2021.

Ross Wightman. Pytorch image models. https://github. com/rwightman/pytorch-image-models,
2019.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Conference on Computer Vision and Pattern Recognition, 2017.

Ismet Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Kumar Mahajan. Billion-scale
semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
BERT in 76 minutes. In International Conference on Learning Representations, 2020.

L. Yuan, Y. Chen, Tao Wang, Weihao Yu, Yujun Shi, F. Tay, Jiashi Feng, and S. Yan. Tokens-to-token vit:
Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.
Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
CutMix: Regularization strategy to train strong classifiers with localizable features. arXiv preprint
arXiv:1905.04899, 2019.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas
Muller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955, 2020.

https://github.com/rwightman/pytorch-image-models

[59] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
In AAAI 2020.

[60] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for
scalable image recognition. Conference on Computer Vision and Pattern Recognition, 2018.

Supplementary material

This supplemental material provides complementary results referred in the main document, noticeably
we include a presentation of the augmentation and regularization specificity in timm and some
alternative training procedures.

A Augmentations and Regularization in timm [51]

The timm library includes a variety of image augmentations, regularization techniques, optimizers,
and learning rate schedulers that can be used to produce leading results on ImageNet classification
and other 2D image tasks. Many timm training components have modifications and improvements
from original implementations or papers describing them. One should be aware of these changes if
using them.

Data Augmentation in timm includes implementations of RandAugment [8]], AutoAugment [7]],
AugMix [16], Random Erasing [59], and an integrated implementation of Mixup [57] and CutMix [56]].
The base for all augmentations is typically Random Resized Crop with horizontal flipping.

RandAugment is the most used of the AA (AutoAugment) variants in timm — it also contains the
most significant additions from the original paper and Tensorflow based implementations — so we will
focus on that implementation. The original RandAugment specification has two hyper-parameters, M
and N; where M is the distortion magnitude and N is the number of distortions uniformly sampled
and applied per-image. The goal of RandAugment was that both M and N be human interpretable.
However, that ended up not being the case for M. The scales of several augmentations were backwards
or not monotonically increasing over the range such that increasing M does not increase the strength
of all augmentations.

This is most visible for image enhancement blending operations (color, contrast, brightness, sharpness)
where the argument value defines the behavior as follows:

selects the degenerate image

1.0 interpolates between the degenerate and original image
returns original image

1.0 extrapolates the original image way from the degenerate

vV OO
[

Taking sharpness as an example, magnitudes of MO, M5, and M10 are mapped in the original imple-
mentation to produce strong blurring (0.1), no-change (1.0), or strong sharpening (1.9) respectively.

The implementation in timm attempts to improve this situation by adding an ‘increasing’ mode
(always enabled for recipes in this paper) where all augmentation strengths increase with magnitude;
solarize and posterize increase with M (instead of decrease), and interpolation vs extrapolation
for the blending operations is randomly chosen with a strength that increases with M. This makes
increasing M more intuitive and allows an additional hyper-parameter to work well: timm adds a
MSTD parameter which adds gaussian noise with the specified standard deviation to the M value
per distortion application. Additionally, if MSTD is set to ‘-inf’, M is uniformly sampled from 0-M
for each distortion. Without correcting the scales, one would often end up with completely empty or
heavily inverted images in ranges of M that are supposed to be low in strength.

Care was taken in timm’s RandAugment to reduce impact on image mean, the normalization
parameters can be passed as a parameter such that all augmentations that may introduce border
pixels can use the specified mean instead of defaulting to O or a hard-coded tuple as in other
implementations. And lastly, Cutout is excluded by default to favour separate use of timm’s Random
Erasing implementation which has less impact on mean and standard deviation of the augmented
images.

Random Erasing is another commonly used timm augmentation with modifications from the
original paper. The implementation in timm follows the original but allows ‘erasing’ image regions

loss LR WD RA| A2 loss LR WD RA| A2
BCE 2x 1073 002 « | 7824 CE 2x107% 002 v |7737
BCE 2x 1073 003 « | 7847 CE 3x107% 002 v |7822
BCE 3x1073 002 « |79.16 CE 5x107% 002 |79.18
BCE 3x1073 003 « | 79.28 CE 5x1073 003 « | 7923
BCE 5x1073 001 « | 79.66 CE 5x107% 005 + | 7931
BCE 5x1073 002 « | 79.85 CE 8x107% 003 v |79.12
-3
ggg Z x 184 ggg j ;g'gz CE 3x10-° 002 X |7771
. : : CE 5x1073 001 X | 7893
BCE 3x 1073 002 X | 7874 CE 5x107% 002 X |79.00
BCE 5x1073 002 X | 79.57 CE 5x107% 003 X |78.62
BCE 5x1073 003 X | 79.58 CE 8x107% 002 X | 7872

Table 4: Main ablation table with A2 procedure. We compare BCE vs CE, including repeated augmentation or
not, and vary the learning rate LR and weight decay WD in ranges that our exploration phase has identified as
being the most adapted. All results are reported with Seed 0 and therefore all the ResNet-50 are initialized with

the same weights when the training starts. The highlighted row corresponds to our A2 procedure.

with per-pixel gaussian noise (mean 0, std 1.0) instead of a uniform random or constant color (black
or image mean) per-region. When applied to images at the recommended location in the augmentation
pipeline — after images have been normalized (standardized) — this maintains image statistics and
allows better results with stronger application of the augmentation. A count parameter was also added
to timm’s Random Erasing such that multiple regions can be erased per-image.

Mixup and CutMix are cleanly integrated in timm in a manner not common in other implementa-
tions. Both can be enabled at the same time with a variety of different mixing strategies:

batchwise CutMix vs Mixup selection, lambda and CutMix region sampling performed per-batch;
pairwise mixing, lambda, and region sampling performed per mixing sample pair within batch;
elementwise mixing, lambda, and region sampling performed per sample within batch;

half the same as elementwise but one of each mixing pair is discarded so that each sample is seen
once per epoch.

The default is to use either CutMix or Mixup with probability of 0.5 per-batch if both are enabled —
this is the case for all mentioned training procedures in this paper.

Regularization in timm is standard. It allows use of similar regularization for many of the included
models. Weight decay is available via either native PyTorch or timm optimizers. The ability to
enable pre-classifier dropout is included in all model architectures. Stochastic-Depth has been added
as an option to many of the most popular model architectures (via a layer named DropPath). Label-
smoothing is included via a cross-entropy loss function and possible to use in combination with the
label manipulation of CutMix and Mixup.

B Ablations

In this section we provide a few ablations of hyper-parameters or selection of ingredients. Some
modifications are difficult to ablate individually since they require to re-adjust several other parameters
to work properly. This is the case in particular of the optimizer, which strongly interacts with other
choices and hyper-parameters. In Appendix [F]we provide alternative training procedures that we
have developed for other optimizers: RMSProp, SGD and AdamP.

Main ingredients and hyper-parameters. In Table[d we provide an ablation of major ingredients.
We focus on the intermediate A2 training procedure as it is a good compromise between compute-cost
and accuracy. We make the following observations:

* Learning rate and Weight Decay. The learning rate has an important effect on performance.
The higher value 5.10~2 presented in this table leads to the best performance. However

10

drop-factor | Al A2 A3

0 7994 79.79 78.06
0.05 80.38 79.85 77.57
0.1 80.12 79.62 77.32

Table 5: Ablation of stochastic Depth for our training procedures. In blue , we highlight the results correspond-
ing to the default selection for each procedure, see TableE}

increasing it further increases the risk of divergence. We have typically set the weight
decay in the range [0.02, 0.03] that we have identified in our preliminary exploration. This
parameter is a bit sensitive and can interact with other forms of regularization. In some
cases we observe significant differences between 0.02 and 0.03.

* Loss: Binary Cross Entropy versus Cross Entropy. In this ablation, moving back from how
we use BCE to the vanilla CE loss significantly reduces the performance. As discussed
in our main paper, we use the flexibility of BCE to regard Mixup/Cutmix as activating a
multi-class 1-vs-all classification problem as discussed in our paper, as opposed to the choice
of enforcing probabilities that sum to 1. If we enforce probabilities to sum to 1 as implicitly
done with cross-entropy, we obtain a slightly lower accuracy as reported in Table[6] By
itself, i.e., with the same target, we do not conclude that BCE is necessarily better than CE.
But it is with that loss that we reach the configuration with the highest accuracy overall.

* Repeated augmentation is providing a small boost in this ablation. This augmentation has
some complex interaction with other hyper-parameters, and is not well understood in our
opinion. In some cases we observed that it was neutral or detrimental, for instance with
shortest schedules (A3 procedure), or in Table[6] with higher values of the Mixup parameter.
Overall, it was best to include this ingredient in our most accurate procedures Al and A2.

Stochastic Depth. We have included stochastic depth in the A1 and A2 training procedures. In
Table [5] we observe that it provides an improvement for A2 compared to setting the drop-rate to 0
(i.e., no stochastic depth), not for A3.

Augmentation. Table[f|evidences the role of augmentations when we modify a few parameters (of
Mixup and RandAugment): each modification that we have done has some impact on the measured
score. While it would be unrealistic (and not ecological) to ensure that all our choices are statistically
significant, one can observe that all modifications in this table decrease the top-1 accuracy below the
average performance (79.72% — std 0.1) that we report over 100 seeds in Figure 2]

mixup Rep. aug. RandA label smooth. stoch. depth BCE target | top-1 acc.

0.1 4 7 X 0.05 4 79.85
0.2 X 79.62
0.2 6 79.61
0.05 79.57

X 79.57

Table 6: Ablation of some data-augmentation choices for our training procedure A2 on Imagenet-val, all
computed with "Seed 0". The first row contains our default choices, see Table [9] for the full set of hyper-
parameters. Each other row corresponds to an ablation for which we have changed only one or two hyper-
parameters or ingredient. Activating "BCE target" is our default. It refers to our choice to regard Mixup/Cutmix
as activating a multi-class classification 1-vs-all problem as discussed in our paper. Not using it means that we
also use BCE, but we enforce the probabilities of the concepts sum to 1 as with the regular cross-entropy loss.

Crop-ratio. We evaluate the influence of the crop-ratio used at inference time. The one most
commonly adopted in the literature is 0.875. Recently researchers have considered larger values for
this parameter, noticeably for vision transformers after significant gains were reported by the author
of the timm library with these models. Table[7] provides an analysis as a function of this parameter.

11

| Al A2 A3
crop-ratio \ mean (std) max—-min seed 0 \ mean (std) max—min seed 0 \ mean (std) max—-min seed 0
0.875 80.19 (0.11) 80.35-79.95 80.14 | 79.67 (0.08) 79.91-79.59 7991 | 77.69 (0.10) 77.85-77.48 77.69

0.9 80.25 (0.08) 80.39-80.13 80.25 | 79.73 (0.09) 79.89-79.56 79.75 | 77.86(0.09) 78.01-77.62 77.83
0.95 80.29 (0.17) 80.50-80.08 80.38 | 79.68 (0.09) 79.85-79.57 79.85 | 78.00 (0.09) 78.09-77.83 78.06
1.0 80.20 (0.13) 80.41-80.06 80.19 | 79.58 (0.13) 79.88-79.32 79.88 | 78.02(0.10) 78.16-77.83 77.93

Table 7: Ablation of the crop-ratio when training with A1. We compute the Imagenet-val top-1 accuracy as a
function of this parameter for 10 different seeds, for ResNet50 trained with our procedures. Our selection of
0.95 was based on Seed 0 in early experiments. It is comparable but not statistically better than the standard
0.875. Note that we have one Al seed that leads to a top 80.54% top-1 accuracy at crop-ratio 0.9. We regard it
as being overfit and therefore we do not recommend to report this number.

e81
80
879 —— Al
t78 —— A2
%77 A3
Y76 #
§75

160 192 224 256 288 320 352 384
Test resolution

Figure 1: We compare ImageNet Top-1 accuracy according to the test resolution for our three training procedures
Al, A2 and A3 with ResNet-50 architecture. Our training procedure and models also benefit from the FixRes
effect [49]: the performance increases when using a larger image at test time for the procedures Al and A2. This
observation is not true for A3, which is expected since this procedure was already relying on feeding smaller
images at train time, so as to maximize the accuracy at test resolution 224 x 224.

Evaluation at other resolutions. While we primarily focus on the performance when inferring at
resolution 224 x 224, we also evaluate our models when feeding images at larger resolutions. We
report these results in Figure [I] where we see that the models trained with A1 and A2 have a better
performance when used at higher resolutions.

Training with large batches. The motivation for increasing the batch size is usually to accelerate
the training with a higher level of parallelism. In terms of total compute there is no benefit. As
discussed in prior works [13}[54]], the hyper-parameters have to be adjusted for the training to be
effective. For instance the usual recommendation with SGD [13]] is to multiply the learning rate
by the size of the batch. In the case of the our training procedure, we approximately follow the
recommendation made in the Lamb paper [54]]: we adopt a square root scaling rule for the learning
rate and linearly increase the number of warmup epochs. In Table [§] we give the details of the
configurations that we tested with a higher parallelism, and we compare it to our baseline with batch
size of 2048.

C Detailed training recipes: A1-A3

Loss: multi-label classification objective. Mixup and CutMix augmentation synthesize an image
from several images having in most cases different labels. By using cross-entropy, the output
is implicitly treated as a probability of presence of each of the mixed concepts. In our training,
we assume instead that these concepts are all present, and treat the classification as a multi-label
classification problem (1-vs-all). For this purpose, we adopt the binary cross-entropy (BCE) loss
instead of the typical cross-entropy (CE). This loss is consistent with the Mixup and CutMix data
augmentation: The targets are defined for each class to 1 if the class is selected by Mixup or Cutmix,
independent of other classes. Over the best settings that we have explored, BCE slightly outperforms
cross-entropy in their best respective configurations. We point out that Beyer et al. [4] previously
adopted BCE with the motivation to produce multiple non-exclusive labels, and obtained excellent
results with it. But to the best of our knowledge they did not use it with CutMix or Mixup as we
propose to do.

12

Training Number of batch batch size Learning Warmup | Accuracy Duration
Procedure V100 GPUs size per GPU Rate #epochs (val %)

A2 4(1x4) 2048 512 0.005 5 79.85 55h

A2 16 (2x8) 2048 128 0.005 5 79.89 14h35
A2 64 (8x8) 2048 32 0.005 5 79.69 8h03
A2 16 (2x8) 8192 512 0.01 20 79.54 18h06
A2 64 (8x8) 8192 128 0.01 20 79.58 5h17
A3 4(1x4) 2048 512 0.008 5 78.06 15h

A3 16 (2x8) 2048 128 0.008 5 78.18 4h13
A3 64 (8x8) 2048 32 0.008 5 77.51 2h28
A3 16 2x8) 8192 512 0.02 20 77.42 4h50
A3 64 (8x8) 8192 128 0.02 20 77.29 1h17

Table 8: Training with batches of size 8192: we adapt the A2 and A3 procedures by adjusting the learning rate
and warmup duration. We train on several nodes (2 x8 GPUs means two nodes with 8 V100 each). We observe a
small loss of accuracy with larger batch sizes, that is more significant with A3. The benefit of large batch size
only appears with a large number of machines, when the batch size per GPU makes the computation inefficient.
Note, changing the number of nodes has a similar effect on accuracy as changing the seed for a given batch size.

In our experiments done with a BCE multi-label loss, setting all mixed concepts with a target to 1 (or
1 — ¢) is more effective than considering a distribution of concepts that sum to 1. Conceptually we
believe it is more aligned with what Mixup and CutMix are actually doing: it is likely that a human
could recognize each of two mixed concepts.

Data-Augmentation. We adopt the following combination of data augmentations: on top of
standard Random Resized Crop (RRC) and horizontal flip (commonly used since GoogleNet [41]),
we apply timm [S1] variants of RandAugment [8]], Mixup [57], and CutMix [56]. This combination
was used for instance in DeiT [46]. Many of the model weights in timm have also been trained with
RandAugment and Mixup, but with Random Erasing [59]] and increased regularization instead of
CutMix. We refer the reader to Appendix [A]for more details about the variants offered in timm.

Regularization. Across our three training procedures, regularization differs the most. In addition
to adapting the weight decay, Repeated-Augmentation [3} 18] (RA) and stochastic-Depth [22]. We
use more regularization for longer training schedules. We have adopted label smoothindﬁ only for Al.
For instance we use stronger Mixup only for Al. Both RA and stochastic depth tend to improve the
results at convergence, but they slow down the training in the early stages as reported by Berman
et al. [3] for RA. For short schedules they are therefore less effective or even detrimental, which is
why we adopt them only with A1 and A2. Note that for other architectures, or larger ResNets, it
is beneficial to add additional regularization, therefore one would have to adapt the corresponding
hyper-parameters for such architectures. For instance, for a ResNet-152 the performance increases
from 81.8% to 82.4% on Imagenet-val by putting more of RandAugment, mixup and stochastic depth
regularization on top of A2 recipe. At resolution 256 <256 this model obtains 82.7%, which is above
the accuracy (82.2%) reported by Bello et al. [2] for a ResNet-200 before architectural changes (Table
1 in their paper).

Optimization. Since AlexNet, the most used optimizer to train convnets is SGD. In contrast
transformers [11} 47] and MLP [44} 45] use AdamW [29] or LAMB optimizer. Dosovitskiy et
al. [[L1] report similar performance between AdamW [29] and SGD for ResNet-50. This concurs with
our observations for intermediate batch sizes (e.g., 512). We use larger batches, e.g., 2048. When
combined with repeated augmentation and the binary cross entropy loss, we found that LAMB [54]
makes it easier to consistently achieve good results. We found it difficult to achieve convergence
when using both SGD and BCE. We therefore focus on LAMB with cosine schedule as the default
optimizer for training our ResNet-50. Alternative training procedures using different optimizer, loss,
augmentation, and regularization combinations can be found in Appendix [F}

SWe have compared smoothing with no smoothing over 10 runs instead of relying on a single seed for
the ablation. The difference between both is not significant: we obtain 80.3140.77 without smoothing, and
80.29+40.72 when setting the smoothing parameter to € = 0.1 (with 1 — ¢ for positive targets and £ /nb_classes
for negative ones). We have kept the smoothing in Al.

13

Table 9: Ingredients and hyper-parameters used for ResNet-50 training in different papers. We compare existing
training procedures with ours.

\ Previous approaches \ Ours
Procedure — ResNet PyTorch FixRes DeiT FAMS (x4) Al A2 A3
Reference [14] [1] [49] [46] [10]
Train Res 224 224 224 224 224 224 224 160
Test Res 224 224 224 224 224 224 224 224
Epochs 90 90 120 300 400 600 300 100
of forward pass 450k 450k 300k 375k 500k 375k 188k 63k
Batch size 256 256 512 1024 1024 2048 2048 2048
Optimizer SGD-M SGD-M SGD-M AdamW SGD-M LAMB LAMB LAMB
LR 0.1 0.1 0.2 1x1073 2.0 5x107% 5x1073 8x 1073
LR decay step step step cosine step cosine cosine cosine
decay rate 0.1 0.1 0.1 _ 0.02t/400 _ _ _
decay epochs 30 30 30 _ 1 _ _ _
Weight decay 1074 10~4 1074 0.05 1074 0.01 0.02 0.02
Warmup epochs 5 5 5 5 5
Label smoothing 0.1 0.1
Dropout
Stoch. Depth 0.1 0.05 0.05
Repeated Aug v v 4 v
Gradient Clip.
H. flip v v v v v v v v
RRC v v 4 v v v v
Rand Augment 9/0.5 7/0.5 7/0.5 6/0.5
Auto Augment 4
Mixup alpha 0.8 0.2 0.2 0.1 0.1
Cutmix alpha 1.0 1.0 1.0 1.0
Erasing prob. 0.25
ColorlJitter v v
PCA lighting v
SWA v
EMA
Test crop ratio | 0.875 0.875 0.875 0.875 0.875 | 095 0.95 0.95
CE loss v v v v 4
BCE loss v v v
Mixed precision | v v \ v v v
Top-1 acc. | 75.3% 76.1% 77.0% 78.4% 795% | 80.4% 79.8% 78.1%

Details of our ingredients and comparison to existing training procedures. In Table [J] we
compare different recipes used to train vanilla ResNet-50 to ours. We consider only the results with
the unmodified ResNet-50 architecture. We have chosen a wide range of training procedures to
try to be as representative as possible but obviously it cannot be exhaustive. We do not consider
approaches using advanced training settings like distillation, or models pre-trained self-supervised or
with pseudo-labels.

D Transfer Learning

In Table [I0] we provide transfer learning performance on seven fine grained dataset with our different
pre-training procedures, and provide a comparison with the default PyTorch pre-training. For each
pre-training we use exactly the same fine-tuning procedure inspired by the fine-tuning procedure used
in DeiT [46]. For each dataset we adapt the fine-tuning hyper-parameters.

We observe that the fine-tuning tend to smooth the difference of performance on certain datasets, such
as CIFAR or Stanford Cars. Overall our Al procedure leads to the best performance on downstream
tasks, but the performance of the Pytorch default and A2 tend to be similar, while on Imagenet-val
and -v2 A2 was significantly better. A3 is significantly inferior on downstream tasks, which may be
related to the lower training resolution at 160 x 160.

14

Table 10: Performance comparison on transfer-learning tasks for different pre-training recipes.

Dataset Train size Testsize #classes | Pytorch [1] | Al A2 A3
ImageNet-val [37] 1,281,167 50,000 1000 76.1 804 798 78.1
iNaturalist 2019 [19] 265,240 3,003 1,010 732 739 75.0 738
Flowers-102 [30] 2,040 6,149 102 97.9 979 979 975
Stanford Cars [25]] 8,144 8,041 196 92.5 92.7 92,6 925
CIFAR-100 [26] 50,000 10,000 100 86.6 869 862 853
CIFAR-10 [26] 50,000 10,000 10 98.2 983 98.0 97.6
68.4 N * \ Top-1 accuracy (%)
xx . XX dataset | | mean std | max min | seed 0
T R xx ImageNet-val | 79.72 0.10 | 79.98 79.50 | 79.85
- *og X X ImageNet-real | 8537 0.08 | 85.55 85.21 | 85.45
s x % x x o ImageNet-V2 | 67.99 0.23 | 68.69 67.39 | 67.90
F68.0 Lt S R
I x x x, xxx’ix % Figure 2: Top 1: Statistics for ResNet-50 trained with A2
2678 X g * LX and 100 different seeds. The column "seed 0" corresponds
% X, to the weights that we take as reference. Its performance is
Ee76 . x 1 i +0.13% above the average top-1 accuracy on Imagenet-val.
< Left: Point cloud plotting the ImageNet-val top-1 accuracy
67.41 x vs ImageNet-V2 for all seeds. Note that the outlying seed
765 796 757 798 799 80.0 that achieves 68.5% top-1 accuracy on ImageNet-V2 has an
ImageNet Top-1(%) average performance on ImageNet-val.

E Significance of measurements

E.1 Seed experiments

For a fixed set of choices and hyper-parameters, there is some inherent variability on the performance
due to the presence of random factors in several stages. It is the case for the weight initialization, but
also for the optimization procedure itself. For instance the order in which the images are fed to the
network through batches depends on a random generator. This variability raises the question of the
significance of accuracy measurements. For this purpose, we measure the distribution of performance
when changing the random generator choices. This is conveniently done by changing the seed, as
previously done by Picard [31]], who concludes to the exist of outliers significantly outperforming or
underperforming the average outcome of a traing procedure. In Figure |2} we report several statistics
on the performance with the A2 training procedure when considering 100 distinct seeds (from 1
to 100, note that we have used seed=0 in all other experiments). In these experiments, we focus
on the performance reached at the end of the training: we do not select the maximum obtained by
intermediate checkpoints in the last epochs. This would have a similar effect as a seed selection, but
the measures would not be IID and less disentangled from the training duration itself.

The standard deviation is typically around 0.1 on ImageNet-val, see Figure 2] This concurs with
statistics reported in the literature for ResNet and other convnets [33]. The variance is higher on
ImageNet-V2 (std=0.23), which consists of a smaller set (10000 vs 50000 for -val) of images not
present in the validation set. The mean 79.72% shows that our main weights (seed 0) overestimates
the average performance by about +0.13%.

Peak performance and control of overfitting To prevent to over-estimate too much the accuracy
on validation, during our exploration process we have selected only the final checkpoint and we use
relatively coarse grid for hyper-parameters search to prevent introducing an additional seed effect.
However optimizing over a large number of choices typically leads to overfitting. In Figure[2] we
observe that the maximum (or peak performance) is close to 80.0% with the A2 training procedure.
Note, Figure 3| provides the distribution of accuracy as an histogram;

One question is whether this model is intrinsically better than the average ones, or if it was just
lucky on this particular measurement set. To attempt to answer this question, we measure how the
performance transfers to another measurement dataset: we compute for all the seeds the couples

15

(ImageNet-val top-1 acc., ImageNet-V2 top-1 acc.), and plot them as a point cloud in Figure 2] We
observe that the correlation between the performance on ImageNet-val and -V2 is limited. Noticeably
the best performance is not achieved by the same seed on the two datasets. This observation suggests
some significant measurement noise, which advocates to report systematically the performance on
different datasets, and more particularly one making a clear distinction between validation and test.

Variability along epochs and discussion on early stopping. Figure[d]shows how the performance
variability evolves along epochs, where we observe the variance of the score is very high until the last
100 epochs. In Figure 5] we additionally measure the performance early in the training and compare
it to the final performance. It is only towards the end of the training that one can determine the most
interesting seeds. We conclude that we can not apply an early stopping rule based on early results.

E.2 Comparing architectures and training procedures: a show-case of contradictory
conclusions

In this paragraph we case how difficult it is to compare two architectures, even under the same training
procedure, or conversely how it is difficult to compare different procedures with a single architecture.
We choose ResNet-50 and DeiT-S. The latter [40] is essentially a ViT parameterized so that it has
approximately the same number of parameters as a ResNet-50. For each architecture, we have put
a significant effort in optimizing the procedure to maximize the performance on Imagenet-val with
the same 300 epochs training schedule and same batch size. Under this constraint, the best training
procedure that we have designed for ResNet-50 is A2. We denote by T2 the corresponding training
procedure for DeiT-S. Note that this training procedure achieves a significantly better performance on
Imagenet-val than the one initially proposed for DeiT-S (80.4% versus 79.8% in the original paper).

test set — ImageNet-val ImageNet-v2

} architecture training — A2 T2 A2 T2
ResNet-50 799 792 679 679
DeiT-S 79.6 804 68.1 69.2

As one can see, by choosing the procedure optimized for any of the two architectures, one may
conclude that this architecture is better based on ImageNet-val accuracy: with A2 training, ResNet50
is better than DeiT-S, with T2 training, DeiT-S is better than ResNet50. The measurements on
ImageNet-v2 would lead to a different conclusion, as DeiT-S is better for both procedure. But even in
that case, by focusing on A2 one may conclude that the difference between ResNet-50 and DeiT-S
with A2 training is not statistically significant: 67.9% vs 68.1%. Conversely, if the goal is to compare
A2 to T2, we could draw different conclusions on ImageNet-val if considering a single architecture.

F Alternative Training Procedures

The main training recipes in this paper uses the LAMB optimizer. Several sets of hyper-parameter
variations with differing training costs were presented with leading results for the vanilla ResNet-50
architecture. Here, we introduce alternative training recipes that also produce results matching
or exceeding the best existing ResNet-50. The reader may find these are better suited for use or
adaptation for their specific model architecture, dataset, or task. The alternative recipes are:

Procedure B — RMSProp with EMA weight averaging and step LR decay;

Procedure C — SGD with Nesterov’s momentum, Adaptive Gradient Clipping, and a cosine learning
rate decay. We have two variants of it (C1 and C2) depending on whether we use repeated
augmentation or not;

Procedure D — AdamP with a cosine learning rate decay and binary cross-entropy.
The above procedures have been used to product excellent results for many pre-trained models in the

timm library, including many non-ResNet architectures. Table|l I{summarizes their best ResNet-50
oriented settings.

16

Figure 3: Distribution of the performance on ImageNet-val
with the A2 procedure. It is measured with 100 different
seeds. We also depict the Gaussian-fit of this distribution.

79.4 79.5 79.6 79.7 79.8 79.9 80.0 80.1
ImageNet Top-1(%)

@
o
o

N
©
[l

N
©
0

t

D

o
ImageNet Top-1(%)

3

o

50 100 150 200 250 300 260 270 280 290
Epochs Epochs

Figure 4: We show how the mean, standard deviation, minimum and maximum of the top-1 accuracy on
ImageNet-val evolves during training with the A2 procedure (ResNet-50 architecture). (Left) For all 300 training
epochs. (Right) Same but for the last epochs. We note that the variance in accuracy is high at the beginning, see
for instance at epoch 100, where the difference in performance can be as large as 10% in accuracy. Towards the
end of the training, most of the networks converge to similar values and the range significantly decreases in the
last 50 epochs. Credit: this figure and experiment was inspired by Picard [31]].

79.9
. i .
.. . . . *
79.8 e . . : .
79.7° PRI : PR T : . . Yect
. . .
S S P . el L A
M79.6 . o-"‘ - *e, * *e, * oo e *
® sassee’ St v e T LT e @ 0 TS, .
. vefie . LS LR Teoat e
79.5 . e 1. e A el e .
N R Y S . Ot I]
° . . .
79.4 o . — . oo
66 68 70 72 782 784 786 788 794 795 796 79.7 798
@150 @250 @290

Figure 5: Final accuracy @ Epoch 300 versus accuracy at epochs 150, 250 and 290, for 100 networks trained
with A2 training. It is only close to the end of the training that we start observing a correlation between temporary
and final performance. We can therefore not apply early stopping rules based on an early validation accuracy.

17

Procedure — B C.1 C.2 D

Train Res 224 224 224 224
Test Res 224 224 224 224
Epochs 600 800 800 600
of forward pass 375k 500k 500k 2,000k
Batch Size 2048 2048 2048 384
Optimizer RMSProp SGD SGD AdamP
Initial LR 0.18 0.88 0.88 0.0033
LR Scheduler step cosine cosine cosine
Decay Rate 0.988 per 1-epoch

LR Noise (% of training) 0.45t0 1.0

Weight Decay 7.0 x 1076 1.0 x 107 1.0 x 107® 0.01
Warmup Epochs 5 5 5 5
Label Smoothing 0.1 0.1 0.1 0.1
Dropout 0.2 0.25 0.25 0.1
Stochastic Depth 0.1 0.1 0.1 0.05
Repeated Augmentation v

Grad Clipping AGC .025 AGC .05
RandAugment (M/N/MSTD) 8/2/1.0 7/3/1.0 7/3/1.0 7/3/1.0
Mixup 0.2 0.2 0.2 0.2
CutMix 1.0 1.0 1.0
Random Erasing (Prob/Count) 0.35/3 0.4/1 0.4/1 .35/1
EMA weight averaging 0.9999

CE loss v v v

BCE loss v
Top-1 acc. | 79.4% 79.8% 80.0% 79.8%

Table 11: Alternative training procedures giving good performance with ResNet-50 architecture.

Training procedure B details (RMSProp) This procedure is inspired by the RandAugment [[8]]
recipes used to train EfficientNet architectures but leverages features in timm’s implementation of
RandAugment and Random Erasing. The step decay has been adjusted to decay every epoch (instead
of every 2.4 as with EfficientNet, weight decay has been slightly decreased from EfficientNet defaults,
and the learning rate is a bit higher. Additional augmentation was added in the form of per-pixel noise
Random Erasing and Mixup. It should be noted that the RMSProp optimizer used is the rmsprop_tf
implementation in timm which carefully matches behaviours of the Tensorflow (before version 2.0)
implementation. The native PyTorch RMSProp implementation will not produce the same results,
even if adjusting for the epsilon location.

With long decay constants for the EMA weight averaging, it can be beneficial to perturb the learning
rate (currently once per epoch) with noise in later stages of training (typically 40-50% of the way
through until the end). In exploration so far, learning rate noise appears to increase sensitivity of
training results to random seed but has often produced the best result in (so far, limited) sweeps with
the same hyper-parameters. Further analyzing the interplay between learning rate value, schedule,
and noise, EMA decay constant, and random seed is a future objective for refining this training recipe.

This training strategy varies somewhat in effectiveness with batch size. Running experiments for
this paper with larger batch sizes in the 1024-2048 range has often come slightly below (0.1 to 0.3
top-1) prior training runs with smaller sizes in the 256-768 range used for numerous timm pre-trained
weights. It is unclear if this can be addressed with further hyper-parameter adjustments and different
learning rate scaling (linear used by default) across batch sizes.

See Table [I2]for a summary of the procedure, including ranges of recommended of values to search
over for applying to different classification task and architecture combinations. For larger model
architectures it is advisable to focus on stronger augmentation and regularization values within the
suggested ranges. Looking at Table [3] the original results for the timm specific EfficientNetV2-
S [43] variant and ECA-ResNet-269-D were trained using this procedure, but with higher levels of
augmentation and regularization than for ResNet-50.

18

Training procedure C details (SGD with Nesterov’s momentum and AGC) This recipe is based
on the published procedure for training NFNets [5]]: using SGD with Nesterov’s momentum, Adaptive
Gradient Clipping [5] (AGC), and heavy augmentation and regularization. AGC allows for stable
large batch training at higher learning rates. Stronger default augmentation and regularization
make up for the loss of batch normalization’s regularizing effect when paired with NFNets, but
strengths can be relaxed when used with other architectures that use batch normalization. With some
adjustments, this procedure has been useful training architectures in timm such as ECA-NFNet,
ResNet, and EfficientNet variants to impressive performance levels. The original result for the timm
EfficientNetV2-M [43]] variant in Table [3| was trained with the C.1 recipe, but with significantly
higher augmentation and regularization than for ResNet-50.

The C.1 vs C.2 versions of this procedure seen in Table [IT]differ most significantly in the application
of Repeated Augmentation. It should be noted that a shorter training length of 600 epochs also works
quite well in both cases, with an expected drop of roughly 0.15-0.2 top-1 for the same seed. Table[[3]
includes ranges of the ingredients for exploring with different tasks and architectures.

Training Procedure D details (AdamP) Late in the process for this report a training trial using
AdamP [[17] showed promise. With limited runs so far a recipe based on AdamP has achieved a
79.8 top-1 on ImageNet-1k. Further experimentation is necessary, the trials so far were run at a
comparatively small batch size, but the promising results warrant exploration. Note that unlike
RMSProp or SGD (but similar to Adam and LAMB), it is recommended to use square root scaling
when adjusting the learning rate for this recipe across different batch sizes.

Table|14] contains the recommended ranges for the ingredients of this recipe. These ranges have not
been explored extensively across different model architectures as with procedures B and C.

Other Recipes Undoubtedly, other training recipes with different combinations of optimizer, learn-
ing rate schedule, augmentation, and regularization exist that can match or surpass the performance
of the procedures detailed in this report. Ingredients aside, putting in the time and effort to tune the
recipe with the target architecture is key. The authors already have an AdamW recipe in the works
that is looking promising. We welcome feedback regarding these or other noteworthy procedures via
the timm GitHub Discussions.

19

\ Recommended Range ResNet-50
Epochs | 400-700 600
Initial LR (per batch size 256) .01-.025 0.0225
LR Schedule Step Step
LR Decay Rate 0.97-0.99 per 1-3 epochs 0.988 per 1-epoch
LR Noise Active (% of training) | 40-50% to 100% 45% to 100%
Grad Clipping \ Off, global norm 1.0 off
Dropout 0-0.4 0.2
Stoch Depth 0-0.1 0.1
Repeated Augmentation Off Off
RandAugment M /N /MSTD) | 6-9/2-4/0.5-1.0 8/2/1.0
Random Erasing (Prob / Count) | 0.1-0.5/1-3 035/1
Mixup 0.2,0.5,0.8 0.2
CutMix Off, 0.8, 1.0 0
EMA Weight Averaging | On On
Loss | CE CE
Table 12: Procedure B summary
| Recommended Range ResNet-50
Epochs | 300-800 800
Initial LR (per batch size 256) 0.08-0.12 0.11
LR Schedule cosine cosine
Grad Clipping | AGC 0.01-0.05 AGC .05
Dropout 0-0.5 0.25
Stoch. Depth 0-0.2 0.1
Repeated Augmentation Off, On On
RandAugment (M /N /MSTD) | 6-10/2-4/0.5-1.0 7/3/1.0
Random Erasing (Prob / Count) | 0.1-0.5/1-3 04/1
Mixup 0.2,0.5,0.8 0.2
CutMix Off, 0.8, 1.0 1.0
Loss | CE CE
Table 13: Procedure C summary
\ Recommended Range ResNet-50
Epochs | 300-600 600
Initial LR (per batch size 256) 0.002 - 0.003 0.0027
LR Schedule cosine cosine
Grad Clipping | None None
Dropout 0-0.3 0.1
Stoch. Depth 0-0.1 0.05
Repeated Augmentation Off, On Off
RandAugment (M /N /MSTD) | 6-9/2-4/0.5-1.0 7/3/1.0
Random Erasing (Prob / Count) | 0.1-0.5/1-3 035/1
Mixup 0.2,0.5,0.8 0.2
CutMix Off, 0.8, 1.0 1.0
Loss | CE, BCE BCE

Table 14: Procedure D summary

20

	Introduction
	Related work
	Training Procedures
	Experiments
	Conclusion
	Augmentations and Regularization in timm pytorchmodels
	Ablations
	Detailed training recipes: A1–A3
	Transfer Learning
	Significance of measurements
	Seed experiments
	Comparing architectures and training procedures: a show-case of contradictory conclusions

	Alternative Training Procedures

