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ABSTRACT

Graph neural networks are experiencing a surge of popularity within the machine
learning community due to their ability to adapt to non-Euclidean domains and
instil inductive biases. Despite this, their stability, i.e., their robustness to small
perturbations in the input, is not yet well understood. Although there exists some
results showing the stability of graph neural networks, most take the form of an
upper bound on the magnitude of change due to a perturbation in the graph topol-
ogy. However, the change in the graph topology captured in existing bounds tend
not to be expressed in terms of structural properties, limiting our understanding of
the model robustness properties. In this work, we develop an interpretable upper
bound elucidating that graph neural networks are stable to rewiring between high
degree nodes. This bound and further research in bounds of similar type provide
further understanding of the stability properties of graph neural networks.

1 INTRODUCTION

Recently, there has been an increasing amount of research on the use of machine learning models
which operate on graph-structured data (Bronstein et al., 2017; Wu et al., 2020). Graphs encode pair-
wise interactions and can help model non-Euclidean data such as social networks and molecules as
well as impart inductive biases (Battaglia et al., 2018). Graph signal processing (GSP), for example,
generalises traditional signal processing to network domains allowing us to transfer many of the ex-
isting tools such as filtering and sampling (Shuman et al., 2013; Dong et al., 2020). GSP also allows
us to generalise convolutions providing a framework to design graph convolutional neural networks
(GCNNs) where the convolutional layers are filter banks of spectral graph filters (Defferrard et al.,
2016; Levie et al., 2019; Bianchi et al., 2020). To date, much of the research has focused on the
predictive performance of these models with far fewer studies looking at their theoretical properties.

Like their Euclidean counterparts, GCNNs are susceptible to adversarial attacks (Zügner et al., 2018;
Dai et al., 2018; Jin et al., 2020). An adversarial attack is a small but targeted perturbation of the
input which causes large changes in the output (Szegedy et al., 2013). In the case of GCNNs, the
modification of a few edges in the input graph can change significantly the learned node representa-
tions so that the prediction in the downstream task, typically node or graph classification, switches
from a correct to incorrect prediction. One approach to understanding the vulnerability of these
models to adversarial attacks is to consider their robustness against perturbation. Robustness is an
important property for reliable deployment of machine learning models in the real world, especially
in domains where adversaries are common (e.g., on the web).

Existing literature has shown that large functional classes of spectral graph filters, a key component
of GCNNs, are bounded by the magnitude of the change in the input graph. For example Levie
et al. (2019) give an upper bound on the change in output for filters in the Cayley smoothness space
which depends on the the distance of the GSO under the operator norm. Later, Kenlay et al. (2020)
provided a similar bound for polynomial graph filters. Gama et al. (2020) provide a bound for graph
neural networks whose convolutions are made up of filter banks of spectral graph filters. The main
drawback of these approaches is that the bounds involved in quantifying stability to specific changes
in the topology do not have natural structural interpretations. For example, if we delete just a single
edge, it is unclear how loose the bound on the output change will be even if we know the statistical
properties about the edge and endpoint nodes.
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Our main goal is to extend bounds found in the existing literature so that they have an interpreta-
tion in terms of the structural properties of the existing and perturbed graphs. To do this, we focus
on polynomial graph filters, and build on the work of Kenlay et al. (2020), by providing a new
bound that is tighter and generalises to the family of normalised augmented adjacency matrices. We
then bound the change in normalised augmented adjacency matrix by considering the largest change
around each node where the change admits a structural interpretation. As a specific example, we
consider perturbations that do not modify the degree distribution of the graph (i.e., double edge
rewiring, illustrated in Fig. S1). We then discuss under which scenarios, deleting and adding edges
between nodes, guarantee the filter to be robust to perturbations. To demonstrate how these theoreti-
cal results can be combined, we bound the change in the representations learned by two well-known
GCNN architectures. Specifically, we consider simple graph convolutional networks (Wu et al.,
2019) and multilayered graph convolutional network (Kipf & Welling, 2017) for scenarios where
the graph topology is perturbed using edge rewiring.

2 PROBLEM FORMULATION

We consider unweighted and undirected graphs G = (V, E) where V is a finite set of nodes and E
is the edge set. The adjacency matrix A encodes connections between nodes with Auv = 1 if there
is an edge between nodes u and v and zero otherwise. The degree du of a node u is the number of
nodes that u is connected to. A graph signal is a function x : V → R that assigns a scalar value to
each node. By fixing a labelling of the nodes we can represent this as a vector x ∈ Rn where xi is
the function value of node i and n = |V| is the number of nodes in the graph. We will be concerned
with the normalised augmented adjacency matrix ∆γ = D

−1/2
γ AγD

−1/2
γ where Aγ = A+γI and

Dγ = D + γI with γ ≥ 0 and D = diag(d1, . . . dn). When γ = 0 this matrix is the normalised
adjacency matrix. For simplicity, we drop the γ subscript when the context is clear or the specific
value of γ is unimportant. We can write ∆ in terms of its entries as

∆uv =


γ

du+γ
if u = v

1√
(du+γ)(dv+γ)

if Auv = 1 and u 6= v

0 otherwise

. (1)

Normalised augmented adjacency matrices admit an eigendecomposition ∆ = UΛUᵀ where the
columns of U are the orthonormal eigenvectors, and Λ = diag(λ1, . . . λn) where λ1 ≤, . . . ,≤ λn is
the diagonal matrix of eigenvalues. The graph Fourier transform of a signal x is given by x̂ = Uᵀx,
with the inverse graph Fourier transform defined as x = Ux̂. A spectral graph filter is defined
as a function g : R → R which amplifies and attenuates specific frequencies in the graph Fourier
domain. We can filter a signal by applying the filter to the graph shift operator (in this case ∆)
directly: U diag(g(λ1), . . . g(λn))U

ᵀx = Ug(Λ)Uᵀx = g(∆)x.

In this work ‖·‖2 represents the Euclidean norm when applied to vectors and the operator norm
when applied to matrices. We will also consider the Frobenius norm ‖A‖2F =

∑
i,j A2

i,j , the matrix
one norm ‖A‖1 = maxi

∑
j |Aij | and the matrix infinity norm ‖A‖∞ = maxj

∑
i|Aij |. The

eigenvalues of the normalised augmented adjacency matrix lie in the interval [−1, 1].
The goals of this paper are twofold. First, we want to understand the stability of spectral graph filters
in terms of structural perturbation, by providing bounds that quantify the change in the output.
Second, we want to find sufficient conditions for this change to be small, by using interpretable
structural properties of the graphs and the perturbation. We address the first goal in Sec. 3 and the
second in Sec. 4. Furthermore, we demonstrate how these theoretical contributions can be combined
to give insight into the stability of GCNNs. In Sec. 5, we combine the results of Sec. 3 and Sec. 4 to
show how we can provide sufficient conditions for the stability of two popular GCNN architectures.

3 STABILITY OF POLYNOMIAL FILTERS

Our notion of stability is based on relative output distance which is bounded by the filter distance

‖g(∆)x− g(∆p)x‖2
‖x‖2

≤ max
x 6=0

‖g(∆)x− g(∆p)x‖2
‖x‖2

def
= ‖g(∆)− g(∆p)‖2.
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Kenlay et al. (2020) bounded the filter distance of polynomial filters by some constant times the
error ‖E‖2, where the constant depends on the filter and the error is the magnitude of the difference
between normalised Laplacian matrices. We say that by satisfying this condition the filters are stable.
Although the focus of this paper is not on tight bounds, we improve this bound by finding a smaller
constant for polynomial filters. We will write E = ∆p − ∆ to be the difference of normalised
augmented adjacency matrices between a graph G and a perturbed version of the graph Gp. The
smaller constant is given by the following proposition.

Proposition 1. Let ∆ and ∆p be the normalised augmented adjacency matrix for G and Gp. Con-
sider a polynomial graph filter gθ(λ) =

∑K
k=0 θkλ

k. Then

‖gθ(∆)− gθ(∆p)‖2 ≤
K∑
k=1

k|θk|‖E‖2.

Proofs for all results are given in the supplementary. We assume that the parameters of the model
are fixed before and after perturbation. In the adversarial learning literature, an attack that modifies
the input to cause large changes in the output whilst the model parameters are fixed is known as an
evasion attack (Jin et al., 2020). Robust models in the context of our work are those that are robust
to evasion attacks with respect to the graph structure.

4 ROBUSTNESS TO EDGE REWIRING PERTURBATIONS

In this section we bound the error term ‖E‖2 by interpretable properties relating to the structural
change. Consider a graph G which we perturb to arrive at Gp. Our approach to upper bounding
‖E‖2 relies on the inequality ‖E‖22 ≤ ‖E‖1‖E‖∞ (Higham, 2002, Section 6.3). As E is symmetric
‖E‖1 = ‖E‖∞ giving ‖E‖2 ≤ ‖E‖1. There may exist strategies which give tighter bounds, but
the benefit of this approach to bounding the error term is that ‖E‖1 leads to an interpretation in
the structural domain. For a matrix E we write Eu as the uth column of E so Eᵀ

u is the uth row.
The row Eᵀ

u corresponds to the node u in the graph. By definition ‖E‖1 = maxu∈V‖Eᵀ
u‖1 where

‖Eᵀ
u‖1 =

∑
v|Euv| is the Manhattan norm of the row. Perturbations which cause small changes to

‖Eᵀ
u‖1 over all nodes u guarantee small change in terms of ‖E‖2.

We aim to understand what type of perturbations spectral graph filters may be robust to. As a
specific example consider perturbations that preserve the degree of the nodes. For this scenario we
can consider how the entries change from ∆ to ∆p by considering Eq. (1) to write a closed-form
for ‖Eᵀ

u‖1. We will write Au to be the set of edges added around a node u and Du to be the set
of edges deleted around a node u. The diagonal entries of ∆ and ∆p remain unchanged, and each
edge deletion flips the entry from zero to the second case of Eq. (1), whilst edge addition flips the
entry the other way. This insight lets us write ‖Eᵀ

u‖1 in closed-form as

‖Eᵀ
u‖1 =

∑
v∈Du

1√
(du + γ)(dv + γ)

+
∑
v∈Au

1√
(du + γ)(dv + γ)

=
1√

du + γ

(∑
v∈Du

1√
dv + γ

+
∑
v∈Au

1√
dv + γ

)
(2)

One such perturbation is edge rewiring that preserves degree distribution. We define double edge
rewiring as a function of two edges (u, v) and (u′, v′) such that u is not connected to u′ or v′ and
similarly v is not connected to u′ and v′. The operation consists of deleting edges (u, v) and (u′, v′)
and adding edges (u, u′) and (v, v′). This operation is depicted graphically in Fig. S1. Although
the precise definition of rewiring in this work is slightly different, the idea of rewiring has been
proposed as a strategy to make modifications imperceptible in the context of topological adversarial
attacks (Ma et al., 2019). Approximately preserving the degree distribution has also been a criterion
used to define imperceptibility (Zügner et al., 2018).

We will writeRu to be the number of rewiring operations involving u and write δu to be the smallest
degree amongst either the nodes u disconnects with or is now connected to. Each rewiring causes a
single edge deletion and edge addition for each node involved so that the number of terms in each
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sum, the cardinality of sets Du and Au, is Ru. Using this we can bound Eq. (2) to get that

‖Eᵀ
u‖1 ≤

1√
du + γ

(∑
v∈Du

1√
δu + γ

+
∑
v∈Au

1√
δu + γ

)
=

2Ru√
(du + γ)(δu + γ)

. (3)

The largest possible value for the right hand side of the above equation over all nodes u provides an
upper bound for ‖E‖2. From this, we can draw some conclusions as to when the filter will be robust
to rewiring operations. The first is that one should not rewire around one node significantly as this
will increaseRu. To keep ‖E‖1 small, and thus ‖E‖2 small, we must keep ‖Eᵀ

u‖1 small for all nodes
u suggesting the perturbation should be distributed across the graph. Related to this observation, in
Kenlay et al. (2020) it was numerically demonstrated that the locality of perturbations can play a
role in the magnitude of the error. The second strategy to ensure robustness is to rewire between
high degree nodes. This will cause du to be large and therefore ‖Eᵀ

u‖1 will be small. Finally, using
a normalised augmented adjacency matrix with larger values of γ can cause smaller changes.

5 STABILITY OF GCNN MODELS

We make use of results in previous sections to analyse the stability of two popular GCNN models.
We consider the multilayered graph convolutional network (GCN) (Kipf & Welling, 2017) in this
section. An analogous result for the simple convolutional networks (SGCN) (Wu et al., 2019) is
given in the supplementary. We consider the logits of a model consisting of multiple GCN layers
with pointwise non-linearities giving the lth layer representation as

X(l) = σ(∆̃X(l−1)Θ(l)),

where ∆̃
def
= ∆1 is the normalised augmented adjacency matrix with γ = 1, σ is the ReLU activation

function and Θ(l) are the layer parameters. The input features are given by the matrix X(0) ∈ Rn×d
where d is the dimension of the features associated with each node. We can consider X(0) as d
stacked graph signals which we will call feature maps. We will assume that each column (feature
map) of X(0) has unit norm and that the number of feature maps are the same throughout the model.
We provide a bound on how much the logits can change under the Frobenius norm. To motivate
why we are interested in the Frobenius norm here, consider taking the Euclidean norm of each node
output to measure the amount of change in node representation. Taking the mean squared error of
these distances amounts to taking the Frobenius norm of the logits matrix.

Proposition 2. Consider the outputs X(L) and X
(L)
p of an GCN with L layers for a graph G and a

perturbed graph Gp where the perturbed graph is a result of double edge rewiring. Let ∆̃ and ∆̃p

be the corresponding normalised augmented adjacency matrices. Define du, δu andRu as in Sec. 4,
then the following holds∥∥∥X(L) −X(L)

p

∥∥∥
F
≤
√
dL

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
max
u∈V

2Ru√
(du + 1)(δu + 1)

.

We suspect this bound, and the bound in Proposition 3, will likely be loose in practice; nevertheless,
they provide conceptional insight into the factors that may be related to the robustness of the GCN
and SGCN models. In particular, we can reason when this bound will be small as in the final para-
graph of Sec. 4, which relates interpretable structural perturbation to the robustness of these models.

6 DISCUSSION

In this work, we bound the change in output of spectral graph filters under a specific form of topo-
logical perturbation, i.e., edge rewiring, where the bound involves terms which have a structural
interpretation. We then demonstrate a practical application of this bound by applying it to the SGCN
and GCN models. Future directions include proving that the change in output of other models scales
proportional to ‖E‖2 and providing further interpretable bounds to ‖E‖2 to provide an understand-
ing of stability for graph-based models. Furthermore, the SGCN and GCN models we consider
both apply low-pass filters, and exploring models with other filtering characteristics is an interesting
future direction. Finally, extensions of the framework presented in this work such as considering a
more general perturbation model will benefit its utility for practical applications.
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u
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u′

v′

(a) Before rewiring

u

v

u′

v′

(b) After rewiring

Figure S1: In the rewiring operation the red edges are deleted and the blue edges are added. The
degree of each node remains the same.

A STABILITY OF SGCN

The SGCN model is motivated by considering a multilayered GCN with the activation functions
removed. By removing the activation functions the model boils down to a fixed monomial filter of
order K followed by applying a fully connected layer and a softmax layer to the node features.

Let the input data be given by the matrix X ∈ Rn×d where d is the dimension of the features
associated with each node. We can consider X as d stacked graph signals which we will call feature
maps. We will assume that each column (feature map) of X has unit norm. The output is a matrix
Y ∈ Rn×c, representing class probabilities for each node. The SGCN model is defined as

Y = softmax(∆̃KXΘ)

where softmax(x)i = exp(xi)/
∑
i exp(xi) normalises the rows to be probability distributions. We

write ∆̃
def
= ∆1 as the normalised augmented adjacency matrix with γ = 1. We will analyse how

the logits, the node representations before the softmax is applied, change. The softmax function has
a Lipschitz constant of 1 so any bound on the logits can trivially be applied to the model outputs
(Gao & Pavel, 2017)[Proposition 4]. We provide a bound on how much the logits can change under
the Frobenius norm.
Proposition 3. The distance of the logits is bounded like so∥∥∥∆̃KXΘ− ∆̃K

p XΘ
∥∥∥
F
≤
√
dK‖Θ‖2 max

u∈V

2Ru√
(du + 1)(δu + 1)

.

B PROOFS

We state the following Lemma which we will use to prove Proposition 1.
Lemma 1 (Lemma 3, Levie et al. (2019)). Suppose B,D,E ∈ CN×N are Hermitian matrices
satisfying B = D + E, and ‖B‖2, ‖D‖2 ≤ C for some C > 0. Then for every l ≥ 0∥∥Bl −Dl

∥∥
2
≤ lCl−1‖E‖2.

Proposition 1. Let ∆ and ∆p be the normalised augmented adjacency matrix for G and Gp. Con-
sider a polynomial graph filter gθ(λ) =

∑K
k=0 θkλ

k. Then

‖gθ(∆)− gθ(∆p)‖2 ≤
K∑
k=1

k|θk|‖E‖2.

Proof. Using the triangle inequality followed by an application of 1 with constant C = 1 we get

‖gθ(∆)− gθ(∆p)‖2 =

∥∥∥∥∥
K∑
k=1

θk(∆
k −∆k

p)

∥∥∥∥∥
2

≤
K∑
k=1

|θk|
∥∥∆k −∆k

p

∥∥
2
≤

K∑
k=1

k|θk|‖E‖2.

The following lemma is used in the proofs for Proposition 2 and Proposition 3.
Lemma 2. Let B ∈ Rm×r and C ∈ Rr×n then

‖BC‖F ≤ ‖B‖F ‖C‖2.
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Proof. By decomposing BC in terms of the rows bᵀ
k of B we get

‖BC‖2F =

m∑
k=1

‖bᵀ
kC‖

2

2
≤

m∑
k=1

‖bᵀ
k‖

2

2
‖C‖22 = ‖B‖2F ‖C‖

2
2. (4)

The inequality follows from the observation that

‖bᵀC‖2 = ‖(bᵀC)ᵀ‖2 = ‖Cᵀb‖2 ≤ ‖Cᵀ‖2‖b‖2 = ‖b‖2‖C‖2.

Taking the square root of both sides of Eq. (4) gives the result.

We will also use the following bound on ‖E‖2 which is derived in Section 4

‖E‖2 ≤ ‖E‖1 = max
u∈V
‖Eu‖1 ≤ max

u∈V

2Ru√
(du + 1)(δu + 1)

(5)

Proposition 2. Consider the outputs X(L) and X
(L)
p of an GCN with L layers for a graph G and a

perturbed graph Gp where the perturbed graph is a result of double edge rewiring. Let ∆̃ and ∆̃p

be the corresponding normalised augmented adjacency matrices. Define du, δu andRu as in Sec. 4,
then the following holds∥∥∥X(L) −X(L)

p

∥∥∥
F
≤
√
dL

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
max
u∈V

2Ru√
(du + 1)(δu + 1)

.

Proof. We prove this by induction. The base case L = 1 follows immediately from Proposition 3.
Consider a more general L. Then∥∥∥X(L) −X(L)

p

∥∥∥
F
=
∥∥∥σ(∆̃X(l−1)Θ(l))− σ(∆̃pX

(l−1)
p Θ(l))

∥∥∥
F

≤
∥∥∥∆̃X(l−1)Θ(l) − ∆̃pX

(l−1)
p Θ(l)

∥∥∥
F

≤
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F

∥∥∥Θ(l)
∥∥∥
2
,

where the first inequality comes from ReLU having unit Lipschitz constant and the second being an
application of Lemma 2. By using triangle inequality we bound the following term∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F
=
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1) + ∆̃pX
(l−1) − ∆̃pX

(l−1)
p

∥∥∥
F

≤
∥∥∥∆̃X(l−1) − ∆̃pX

(l−1)
∥∥∥
F
+
∥∥∥∆̃pX

(l−1) − ∆̃pX
(l−1)
p

∥∥∥
F

≤ ‖E‖2
∥∥∥X(l−1)

∥∥∥
F
+
∥∥∥X(l−1) −X(l−1)

p

∥∥∥
F
.

Note that
‖X(l)‖F = ‖σ(∆̃X(l−1)Θ(l))‖F ≤ ‖X(l−1)‖F ‖Θ(l)‖2,

so by recursivity we get that

‖X(l)‖F ≤ ‖X(0)‖F ‖Θ(1)‖2 . . . ‖Θ(l)‖2.

Recall that ‖X(0)‖F =
√
d. Using this observation and the inductive assumption we get that(

‖E‖2
∥∥∥X(l−1)

∥∥∥
F
+
∥∥∥X(l−1) −X(l−1)

p

∥∥∥
F

)∥∥∥Θ(l)
∥∥∥
2

≤
√
d‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
+
√
d(L− 1)‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2

=
√
dL‖E‖2

L∏
l=1

∥∥∥Θ(l)
∥∥∥
2
.

The final result follows from an application of Equation 5.
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Proposition 3. The distance of the logits is bounded like so∥∥∥∆̃KXΘ− ∆̃K
p XΘ

∥∥∥
F
≤
√
dK‖Θ‖2 max

u∈V

2Ru√
(du + 1)(δu + 1)

.

Proof. We first note that ‖X‖F =
√
d. Using this, two applications of Lemma 2, and an application

of Proposition 1 we get∥∥∥∆̃KXΘ− ∆̃K
p XΘ

∥∥∥
F
≤
∥∥∥∆̃KX− ∆̃K

p X
∥∥∥
F
‖Θ‖2

≤
∥∥∥∆̃K − ∆̃K

p

∥∥∥
2
‖X‖F ‖Θ‖2.

≤
√
dK‖E‖2‖Θ‖2.

The final result follows from an application of Equation 5.
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