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ABSTRACT

Despite the empirical success of Diffusion Models (DMs) and Variational Au-
toencoders (VAEs), their generalization performance remains theoretically under-
explored, especially lacking a full consideration of the shared encoder-generator
structure. Leveraging recent information-theoretic tools, we propose a unified
theoretical framework that provides guarantees for the generalization of both the
encoder and generator by treating them as randomized mappings. This framework
further enables (1) a refined analysis for VAEs, accounting for the generator’s gen-
eralization, which was previously overlooked; (2) illustrating an explicit trade-off
in generalization terms for DMs that depends on the diffusion time T ; and (3) pro-
viding computable bounds for DMs based solely on the training data, allowing the
selection of the optimal T and the integration of such bounds into the optimization
process to improve model performance. Empirical results on both synthetic and
real datasets illustrate the validity of the proposed theory.

1 INTRODUCTION

Modeling complex data distributions with generative models has become a key focus in machine
learning, driving transformative applications in various domains such as computer vision (Rombach
et al., 2022), natural language processing (Brown et al., 2020), and scientific discovery (Hoogeboom
et al., 2022). Over the past decade, this field has seen rapid advancement with the emerging of
frameworks such as Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013; Makhzani et al.,
2015; Tolstikhin et al., 2017), Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Nowozin et al., 2016; Arjovsky et al., 2017), Diffusion Models (DMs) (Song & Ermon, 2019; Song
et al., 2020b; 2021), as well as energy-based and auto-regressive models (Larochelle & Murray, 2011;
Van den Oord et al., 2016). Notably, deep latent diffusion models that combine VAEs and DMs have
recently demonstrated exceptional success in generating high-resolution images (Rombach et al.,
2022) and videos (Peebles & Xie, 2023).

The empirical success and appeal of these models lie in their ability to generate new data rather than
merely memorizing and reproducing training samples. However, recent studies have demonstrated
memorization problems in GANs (Feng et al., 2021; Meehan et al., 2020), VAEs (Van den Burg &
Williams, 2021), DMs (Carlini et al., 2023), and auto-regressive Large Language Models (LLMs)
(Carlini et al., 2022), raising significant privacy and copyright concerns. Consequently, understanding
the generalization ability of generative models in producing diverse, novel samples becomes critical
and urgent. While various generalization theories have been developed for GANs (Arora et al.,
2017; Biau et al., 2021; Mbacke et al., 2023; Yang & Weinan, 2022; Ji et al., 2021) by adapting
different theoretical tools originated in supervised learning (e.g., VC-dimension (Vapnik et al.,
1994), Rademacher (Bartlett & Mendelson, 2002), PAC-Bayes(Shawe-Taylor & Williamson, 1997;
McAllester, 1998)), their counterparts for VAEs and DMs remain comparatively underexplored.

In this paper, we aim to provide a novel generalization theory for VAEs and DMs. In comparison to
previous works, our main contributions are as follows:
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1. Unified information-theoretic framework. VAEs employ a probabilistic encoder-generator pair,
while DMs can be viewed as an infinite-length composition of such encoder-generator sequences
(Tzen & Raginsky, 2019; Huang et al., 2021). We thereby model the encoder and generator as
randomized mappings and develop a novel and unified theory with information-theoretic learning
tools, avoiding traditional methods designed for deterministic mappings, which are unsuitable for
our analysis. The general theoretical results are presented in Sec. 4, where the proposed bounds are
algorithm- and data-dependent under the sub-Gaussian assumption.

2. Improved analysis and tighter bounds for VAEs. To the best of our knowledge, we are the
first to consider the generalization properties of both the encoder and generator in VAEs, whereas
Chérief-Abdellatif et al. (2022) only consider guarantees for reconstruction loss and Mbacke et al.
(2024) prove bounds for a fixed generator, ignoring its generalization. Moreover, compared to Mbacke
et al. (2024), we provide a tighter generalization bound for the encoder by directly bounding the
generation error (defined in Sec.3.2), removing the unnecessary Wasserstein-2 distance.

3. Computable bounds for diffusion models. We provide non-vacuous upper bounds for DMs
to measure the divergence between the generated data and the original data, which can be tractably
estimated, as detailed in Theorems 6.2 and 6.3. Through these bounds, we show that:

(a) There is an explicit trade-off between the generalization terms of both the encoder and generator
that depends on the diffusion time T . As presented in Theorem 6.2, when T approaches infinity, the
encoder’s generalization term vanishes, while the generator’s term remains non-zero. Conversely, for
small T , the encoder’s generalization term dominates. Empirical validation on both synthetic and
real datasets verifies this phenomenon. Notably, this result implies that longer diffusion time does
not necessarily lead to better generalization. To the best of our knowledge, this is the first explicit
theoretical formulation of this trade-off in the context of generalization theory.

(b) The proposed bound provides practical guidance for hyperparameter selection, where previous
methods fall short due to the difficulty of accurately estimating the divergences between generated
and test data, as shown in Fig. 3. Additionally, the bound can be estimated using only training data,
providing a practical and sample-efficient way to select the optimal diffusion time T or integrate the
bounds into optimization for better model performance.

2 RELATED WORK

In this section, we only discuss the most relevant related works, while other related works on diffusion
models and convergence theory are presented in Appendix I.

Theories for VAEs. Some previous works (Bozkurt et al., 2019; Huang et al., 2020; Bae et al.,
2022) analyze VAEs with rate-distortion theory. Another approach involves deriving exact formulae
under specific data distributions and high-dimensional limits. Assuming sample size m = ∞,
Refinetti & Goldt (2022) examines the test error for nonlinear two-layer autoencoders as d → ∞.
Focusing on linear β-VAEs, Ichikawa & Hukushima (2024) analyzes generalization error with SGD
dynamics, where fixed-point analysis reveals posterior collapse when β exceeds some threshold,
suggesting appropriate KL annealing to accelerate convergence. Ichikawa & Hukushima (2023)
uses the Replica method to derive asymptotic generalization error for α = m

d = Θ(1), showing
a peak in error at small β. This disappears after β exceeds some threshold, leading to posterior
collapse regardless of the sample size. Husain et al. (2019) build a connection between GAN and
WAE, where the generalization is analyzed based on the concentration result of Weed & Bach (2019).
Chérief-Abdellatif et al. (2022) applied PAC-Bayes theory to derive the generalization bound for the
reconstruction loss. Recently, Mbacke et al. (2024) proved statistical guarantees with PAC-Bayes
theory. However, their bounds only consider the generalization properties of the encoder. Instead, we
provide tighter bounds for the encoder and use information-theoretic tools to derive generalization
bounds for both the encoder and the generator, which are valid for non-linear deep-learning models.

Generalization theory for diffusion models. De Bortoli (2022) prove statistical guarantees by
simply bounding the Wasserstein-1 distance between the population and empirical data distribution
without considering the algorithm or training dynamics. Pidstrigach (2022) discuss the errors in
the initial condition and drift terms for SDEs used in the DMs, illustrating the drift explosion under
the manifold assumption. They also propose that to avoid purely memorizing data, the exponential
integral of the drift approximation error introduced by the score function must be kept infinite when
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minimizing the score-matching loss. However, their results are not quantitative. The most recent work
(Li et al., 2024) studies the generalization properties of DMs with the random feature model, extending
results in Song et al. (2021) by providing separate generalization analysis for the score-matching
loss. Its bound cannot capture the trade-off on diffusion time, which was introduced via an ELBO
decomposition of the training loss of diffusion models by Franzese et al. (2023). However, our work
is the first to show that it exists in generalization, as well as why. Our theoretical results differ from
all the mentioned approaches above. We leverage information-theoretic tools to obtain algorithm- and
data-dependent bounds under sub-Gaussian assumption, in contrast with the data-dependent bound in
Li et al. (2024) that assumes the target data distribution is a 2-mode Gaussian mixture. The proposed
bound can provide non-vacuous estimation for the divergence between the original and the generated
data distribution, demonstrating an explicit trade-off on the diffusion time.

3 PROBLEM SETUP

Notations. Detailed notations are summarized in Table 1. We use upper case letters to denote
random variables (e.g., X,Z) and corresponding calligraphic letters X ,Z to denote their support sets.
We write P(X ) as the set of all the probability measures over X . Then, we denote PX ∈ P(X )
as the marginal probability distribution of X . Following Husain et al. (2019), we further use
F(X ,Z)

def
= {f : X → Z} to denote the set of all the measurable functions from X to Z . For any

f ∈ F(X ,Z), the pushforward distribution of PX through f is denoted as P f
Z

def
= f#PX ∈ P(Z).

Given a Markov chain X → Z, we use PZ|X to represent the distribution over a space Z conditioned
on elements from X , which is also known as the Markov transition kernel from X to Z . We adopt
similar notations for the Markov chain in a reverse direction Z → X but using QZ , QX|Z to make a
distinction. Let D(·∥·) denote the divergence between two distributions. To be used in our paper, we
recall the definitions of Wasserstein distance, the Kullback-Leibler (KL), Jensen-Shannon (JS), and
Fisher divergences in Appendix A.2. For any positive integer m, we denote [m]

def
= {1, . . . ,m}.

3.1 GENERALIZED FORMULATION

Deep generative models typically transform a simple, easy-to-sample prior distribution over a
latent space Z into a target data distribution defined on the input space X though a generator
G : Z → P(X ). In most cases, the input and latent spaces are subsets of Euclidean spaces, i.e.,
X ⊆ Rd1 and Z ⊆ Rd2 . Ideally, when applied to an easy-to-sample prior distribution QZ (e.g., a
Gaussian), the optimal generator will induce an identical distribution as the target data distribution
PX . However, analogous to the no free lunch theorem in supervised learning (Shalev-Shwartz & Ben-
David, 2014), the set of all possible generators F(Z,P(X )) is too complex to be learnable without
any prior knowledge, so we further suppose the learning is conducted within a generator hypothesis
set G ⊂ F(Z,P(X )). The primary goal is to learn a G that matches QG

X
def
= G#QZ to PX , by

minimizing their divergence D(PX∥G#QZ). For example, GAN considers the aforementioned goal
by directly solving inf

G∈G
DJS(PX∥G#QZ).

However, directly learning G may be hard and instable for some data distributions. In this paper, we
focus on VAEs and diffusion models, which indirectly learn G as the inverse process of an additional
probabilistic encoder E, sharing a similar encoder-generator paradigm.

Encoder-Generator Structure. Let us define the encoder hypothesis set E ⊂ F(X ,P(Z)). Then,
the encoder is a function E : X → P(Z), E ∈ E that maps an input data point X ∼ PX to a
conditional distribution over the latent space Z , i.e., E(X) can be alternately denoted as PE

Z|X at

the population level. We further denote the probability densities of E(X) and PE
Z

def
= E#PX as

pE(z|x) and pE(z), respectively. Similarly, the respective probabilistic densities of G(Z) = QG
X|Z

and G#QZ are denoted as qG(x|z) and qG(x). The above definitions cover the original auto-
encoder, where E is a deterministic encoder by restricting E as the set of delta distributions. Since
DKL(PX∥G#QZ) ≤ infE∈E [DKL(PX ×E(X)∥QZ ×G(Z))] with data processing inequality, the
objective can be relaxed to solve the upper bound:

inf
G∈G,E∈E

DKL(PX × E(X)∥QZ ×G(Z)) . (1)
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Furthermore, we show in Appendix B that VAEs and score-based DMs, respectively, optimize this
objective’s two forms of decomposition.

3.1.1 VARIATIONAL AUTO-ENCODER (VAE)

Based on the general objective, VAE uses a decomposition that is equivalent to the common variational
inference approach (Kingma et al., 2019), where the optimization objective is proportional to:

inf
G∈G,E∈E

[
EX∼PX

(
EZ∼E(X) [− log qG(X|Z)] + DKL(E(X)∥QZ)

)]
. (2)

Constraining E and G to specific distribution families leads to the traditional VAE objective. In
VAEs, the latent space typically has a much lower dimensionality than the input space, with d2 ≪ d1.

3.1.2 DIFFUSION MODEL (DM)

As discussed in (Huang et al., 2021; Tzen & Raginsky, 2019; Kingma et al., 2021), one can treat
DMs as infinitely deep hierarchical VAEs by sequentially composing N probabilistic encoders
E1:N

def
= {Ek}Nk=1 and generators G1:N

def
= {Gk}Nk=1 where N → ∞. In another view, we can

consider the encoders and generators as time-dependent randomized mappings that directly applied
to the original data distribution and the latent prior distribution, respectively. The difference is shown
in Fig. 1. We further provide a detailed comparison of these two viewpoints in Appendix B.2 for
hierarchical VAEs and in Appendix B.3 for the other.

... ...

Hierachical VAE

Time-dependent Mapping

Figure 1: Illustration of DMs as hierarchical VAEs and time-dependent randomized mapping

Discrete-time stochastic process. Without loss of generality, we consider the latent space the same
as the input space with d1 = d2 = d for typical DMs, where Ek : X → P(X ), Gk : X → P(X ).
For a forward discrete-time stochastic process, we denote the marginal distribution at step k as PXk

.
Then, we have ∀k ∈ [N ], Xk ∼ Ek(X0), X0 ∼ PX , and PXk

= Ek#PX0
, where PX0

= PX is
the initial data distribution. The forward process is often set to achieve some easy-to-sample noise
distribution π (e.g., π = N (0, Id)), where PXN

≈ π, and PXN

N→∞−−−−→ π almost surely. Conversely,
the backward process starts from QX̂N

= π and aims to achieve QX̂0
≈ PX . Then, we denote the

marginal distribution at step k for the backward process introduced by the the generator sequence
G1:N as QX̂N−k

= Gk#QX̂N
.

Continuous-time diffusion process. As in Song et al. (2020b), in the continuous-time limit, the
above forward process can form a diffusion process {Xt}Tt=0 solving the following SDE over diffusion
time T:

dXt = f(Xt, t)dt+ λ(t)dWt, X0 ∼ PX , (3)

where we have PXt
= Et#PX0

, f(·, t) : X → X is the drift coefficient, λ(t) ∈ R is the diffusion
coefficient, and {Wt}t∈[0,T ] is a Wiener process. With the appropriate selections of f and λ, the
above SDE can converge to the predefined prior distribution π.

According to Anderson (1982); Haussmann & Pardoux (1986), there exists a reverse-time diffusion
process {

↼

Xt}t∈[0,T ] satisfying {Xt}Tt=0 = {
↼

Xt}Tt=0 under mild conditions, which is the solution
from t = T to t = 0 of the following SDE:

d
↼

Xt = [f(
↼

Xt, t)− λ(t)2∇ log pt(
↼

Xt)]dt+ λ(t)d
↼

Wt,
↼

XT ∼ PXT
. (4)
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The above ideal backward process can be used to generate reference sample sequences to learn the
generative dynamics, and we denote the ideal generator as E−1

t ,∀t ∈ [0, T ]. Then, by approximating
∇ log pt(

↼

Xt) with ∇ log qt(X̂t), the generator Gt,∀t ∈ [0, T ] is characterized by the following SDE:

dX̂t = [f(X̂t, t)− λ(t)2∇ log qt(X̂t)]dt+ λ(t)dŴt, X̂T ∼ π . (5)

Define QX̂T−t

def
= Gt#π as the generated distribution at time t. Song et al. (2020b; 2021) further

proved that, under some regularity conditions, the KL-divergence between the real data distribution
PX and the final-time generated distribution GT#π is bounded by:

DKL(PX∥GT#π) ≤
1

2

∫ T

t=0

λ2(t)DFisher(PXt∥QX̂t
)dt+ DKL(PXT

∥π) ,

where the Fisher divergence is defined in Def. A.2. As we show in Appendix B, this is an upper
bound of another possible decomposition of the general objective in Eq. (1).

3.2 SETUP FOR GENERALIZATION ANALYSIS

So far, we have discussed the learning objectives of VAEs and DMs at the population level. However,
due to the unknown nature of PX , these learning objectives can only be estimated with a training
dataset S = {Xi}mi=1 of m examples, where each Xi ∼ PX and S ∼ Pm

X . The empirical distribution

of these m observations is then denoted as P̂X
def
= 1

m

∑m
i=1 δXi

. By optimizing the encoder E
and generator G w.r.t empirical learning objectives, they are learned from the data and mutually
dependent. Intuitively, One can as consider them as respectively approximating the posteriors PZ|X,S

and QX̂|Z,S .

The encoder-generator process may overfit the empirical distribution P̂X , particularly when the
number of training examples m is limited. To measure the performance gap between the population
and empirical objectives for generative models, we further define the loss for the encoder-generator
pair as ∆G : X × Z × X → R+

0 . In particular, we use ∆G(X̂, Z,X) = ∥X̂ −X∥ in Corollary. 4.2
and ∆G(X̂, Z,X) = − log qG(X|Z) in Corollary. 4.3.

Let us first consider the empirical reconstruction error 1, by which we can measure the input-output
distortion in expectation to the empirical measure P̂X of the train dataset S:

LP̂X
(E,G)

def
=

1

m

m∑
i=1

EZ∼E(Xi)EX̂∼G(Z)∆G(X̂, Z,Xi) .

Now, we define the generation error as the expected difference between any input X sampled from
the data distribution PX and any output generated by G(Z) with Z being sampled from the prior π:

Lπ
PX

(E,G)
def
= EX∼PX

EZ∼πEX̂∼G(Z)[∆G(X̂, Z,X)] .

The dependence on encoder E is implicit and specific to the encoder-generator paradigm, where the
learning of G relies on E. Based on the definitions above, we introduce the generalization gap that
measures the difference between the generation error and the empirical reconstruction error:

gen∆G

PX
(E,G, π)

def
= ES∼Pm

X

[
Lπ
PX

(E,G)− LP̂X
(E,G)

]
.

Intuitively, when the encoder and generator are learned from an empirical reconstruction process with
very small reconstruction error (i.e., LP̂X

(E,G) is small), the generalization gap reflects the average
difference between the generated and original data.

4 GENERAL THEORETICAL RESULTS

In this section, we present general theoretical results for generative models that share the same
encoder-generator paradigm, which can be directly extended to analyze models like VAEs and DMs.

1Similar notion as distortion can be found in Blau & Michaeli (2019).
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Theorem 4.1. For any encoder E ∈ E and generator G ∈ G learned from the training data
S = {Xi}mi=1, assume that the loss ∆G(

˜̂
X, Z̃,X) is R-sub-Gaussian (See definition in Def. A.4)

under P ˜̂
X,Z̃,X

= QX̂|Z × QZ × PX , where Z ∼ QZ = π, X̂ ∼ G(Z), ˜̂
X, Z̃ are respective

independent copy of X̂ and Z such that ˜̂
X, Z̃ ⊥⊥ X . Then, ∀Xi ∈ S,Zi ∼ E(Xi), X̂i ∼ G(Zi), the

generalization gap admits the following bound:

|gen∆G

PX
(E,G, π)| ≤

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi) .

Discussion. Since
√
a+ b ≤

√
a +

√
b,∀a, b > 0, the above bound can be further decomposed

as
√
2R
m

∑m
i=1

√
EXi

[DKL(E(Xi)∥π)] +
√
2R
m

∑m
i=1

√
I(X̂i;Xi|Zi). The first term measures, on

expectation of randomly drawing m data points, the average divergence from their encoded latent
distributions to the predefined prior π, which reflects the generalization of the encoder. The condition
mutual information in the second term I(X̂i;Xi|Zi) measures the generalization of the generator G.

This bound provides insight into how the generalization of the encoder and generator interact.
Assuming the reconstruction error is small: If the first term approaches zero, i.e., E(Xi) = π,
which means Zi contains no information of the training data, the generalization gap is entirely
attributed to the generator. In contrast, if the encoder overfits to the training data and Zi fully captures
the information from Xi, then I(X̂i;Xi|Zi) = 0, making the second term zero. In this case, the
generalization gap is entirely due to the encoder. In intermediate scenarios, both the encoder and
generator contribute to the overall generalization. The detailed proof can be found in Appendix C.1.

By specifying ∆G, we have the following two corollaries that measure the divergence between the
true data distribution PX and the generated distribution G#π, as formulated in Sec. 3.1.
Corollary 4.2. Under Theorem 4.1, let ∆G(X̂, Z,X) = ∥X̂ −X∥. Then, the Wasserstein distance
between the data distribution PX and the generated distribution G#π is upper bounded by:

DW1(PX∥G#π) ≤ ESLP̂X
(E,G) +

√
2R

m

m∑
i=1

√
EXi [DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi) .

Corollary 4.3. Under Theorem 4.1, let the density function of probabilistic decoder G given a latent
code z be qG(·|z) : X → R+

0 and ∆G(X̂, Z,X) = − log qG(X|Z). The KL-divergence between the
data distribution PX and the generated distribution G#π is then upper bounded by:

DKL(PX∥G#π) ≤ ESLP̂X
(E,G)+

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)−h(PX) ,

where h(PX) = EX [− log p(X)] denotes the entropy.

The proofs of these two corollaries are presented in Appendix C.2. In following sections, we will
apply Corollary 4.2 and Corollary 4.3 to establish Theorem 5.1 and Theorem 6.2, respectively.

5 ANALYSIS OF VAES

VAEs specify tractable distributions to both encoder and generator. Normally, they are set as
Gaussians, as presented in the original VAE (Kingma & Welling, 2013). Using some neural networks
parametrized by ϕ, one can map the original data to the latent space and model both the mean
and variance of the Gaussian as µϕ : X → Z and σϕ : X → Z . The encoder is then Eϕ(x) =
N (µϕ(x), diag(σ2

ϕ(x))Id2). Analogously, the generator network is parameterized by θ, which often
only models the mean, where Gθ(z) = N (µθ(z), Id1

) with µθ : Z → X . Directly applying
Corollary 4.2, we can obtain the following bound for VAE:
Theorem 5.1. Under the assumptions made in Theorem 4.1 and Corollary 4.2, we have ∀Xi ∈ S,
Zi ∼ Eϕ(Xi), X̂i ∼ Gθ(Zi) over the draw of m samples with S ∼ Pm

X that the following bound
holds for any probabilistic encoder Eϕ and generator Gθ defined above:

DW1
(PX∥Gθ#π) ≤ ESLP̂X

(Eϕ, Gθ) +

√
2R

m

m∑
i=1

√
EXi

[DKL(Eϕ(Xi)∥π)] + I(X̂i;Xi|Zi) .
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Comparison with previous VAE bounds. The above bound could be compared to the recent PAC-
Bayes bound for VAE either by converting to a high-probability bound using the results of Theorem
3 in Xu & Raginsky (2017) or by converting PAC Bayes bound to its expectation version. In sharp
contrast to the bound in Theorem 5.2 of Mbacke et al. (2024), which applies only to a fixed θ, the above
result guarantees generalization for any generator Gθ with 1

m

∑m
i=1 I(X̂i;Xi|Zi). Additionally, our

approach avoids introducing an extra Wasserstein-2 distance, as we directly bound the generation error
using the empirical reconstruction loss. In contrast, Mbacke et al. (2024) utilize the triangle inequality
for the Wasserstein distance, separately bounding DW1(PX∥Gθ#P̂

Eϕ

Z ) and DW1(Gθ#P̂
Eϕ

Z ∥Gθ#π).
Furthermore, we relax the strict assumption of bounded support, replacing it with the more flexible
sub-Gaussianity condition. Detailed mathematical and experimental comparisons are respectively
provided in Sec. D.1 and Sec G.1 in the Appendix, showing the improvements.

Insights and practical guidance for VAEs. If we instead apply Corollary 4.3, the reconstruction
error becomes LP̂X

(Eϕ, Gθ) =
1
m

∑m
i=1 EZi∼Eϕ(Xi)[− log qGθ

(Xi|Zi)]. Interestingly, jointly opti-
mizing it with 1

m

∑m
i=1DKL(E(Xi)∥π) yields the empirical estimate of the VAE objective in Eq. (2).

This implies that the VAE training process inherently accounts for the encoder’s generalization. How-
ever, the generalization of the generator G is often overlooked. Therefore, a potential improvement
could involve explicitly incorporating the generator’s generalization into the optimization objective
as a regularization term. In Appendix D.2, we derive an example regularizer using upper bound of
the conditional mutual information term by introducing an additional randomly initialized generator.

6 ANALYSIS OF DIFFUSION MODELS

In existing literature, most works focus on the convergence of DMs, while the limited analysis of their
generalization properties typically involves separately bounding D(PX∥P̂X) and D(P̂X∥GT#π)
using concentration results, then combining them via the triangle inequality. However, widely
used divergences in diffusion models, such as KL-divergence, do not satisfy the triangle inequality.
Moreover, these bounds are often loose due to strong assumptions about the data distribution, score
function estimation, and insufficient consideration of the learning algorithm. To address these, we
directly bound D(PX∥GT#π) and apply information-theoretic tools to derive computable algorithm-
and data-dependent bounds in this section.

6.1 GENERATION ERROR BOUND FOR SCORE-BASED DMS

For DMs, the encoders and generators Et, Gt,∀t ∈ [0, T ] are restricted to the family of SDEs or the
discretized Langevin Dynamics. Before bounding the generation error, we first prove the following
lemma (proof in Appendix E.1.) on the empirical reconstruction error at the diffusion end time T :
Lemma 6.1. Let {Xt}Tt=0 be the empirical version of the forward diffusion process defined in
Eq. (3), where X0 ∼ P̂X . We assume the existence of the backward process under the regularity
conditions outlined in Song et al. (2021) and denote it as {

↼

Xt}Tt=0 = {Xt}Tt=0 , which results from
the reverse-time SDE defined in Eq. (4). Then, the generative backward process {X̂t}Tt=0 is defined
in Eq. (5). Let Et, E

−1
t , Gt,∀t ∈ [0, T ] be their corresponding time-dependent Markov kernels. The

density function of any generator G, given a latent code z, is denoted as qG(·|z) : X → R+
0 , and let

∆G(X̂, Z,X) = − log qG(X|Z). Then, we have

|LP̂X
(ET , GT )− LP̂X

(ET , E
−1
T )| ≤ 1

2

∫ T

t=0

λ2(t)DFisher(P̂Xt∥QX̂t
)dt .

Connection to score matching. By setting the derivative of the log density of QX̂t
with some

parameterized function, i.e., ∇x log qt(x) = sθ(x, t), the upper bound in the above theorem gives the
following empirical loss of Explicit Score Matching (ESM):

L̂ESM (θ, λ(·)) = 1

2

∫ T

t=0

EXt∼P̂Xt
[λ2(t)∥∇Xt log p̂t(Xt)− sθ(Xt, t)∥22]dt .

Since p̂t(Xt) =
1
m

∑m
i=1 pEt

(Xt|Xi), it gives the following Denoising Score Matching (DSM) loss:

L̂DSM (θ, λ(·)) = 1

2

∫ T

t=0

EX0∼P̂X ,Xt∼Et(X0)
[λ2(t)∥∇Xt log pEt(Xt|X0)− sθ(Xt, t)∥22]dt ,

7
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which is equivalent to ESM up to some constant as discussed in (Vincent, 2011). Combining Corollary
4.3 and Lemma 6.1, we have the following generation error bound for score-based diffusion models:
Theorem 6.2. Under Lemma 6.1, for any SDE encoder Et and generator Gθ

t trained via score match-
ing on S = {Xi}mi=1, the corresponding outputs at the diffusion time T are X̂T ∼ ET (Xi), X̂0 ∼
Gθ

T (X̂T ) for each Xi ∈ S. The KL-divergence between the original data distribution PX and the
generated data distribution Gθ

T#π at diffusion time T is then upper bounded by:

DKL(PX∥Gθ
T#π) ≤ ES

(
− 1

m

m∑
i=1

DKL(ET (Xi)∥ET#P̂X)︸ ︷︷ ︸
T1

+L̂ESM (θ, λ(·))
)

+

√
2R

m

m∑
i=1

√
EXi

[DKL(ET (Xi)∥π)]︸ ︷︷ ︸
T2

+

√
2R

m

m∑
i=1

√
I(X̂0;Xi|X̂T )︸ ︷︷ ︸
T3

.

The proof is presented in Appendix E.2. Compared to recent work on the generalization of DMs (Li
et al., 2024), we demonstrate the existence of a trade-off w.r.t the diffusion time T . In contrast to
Franzese et al. (2023) that also mentioned the diffusion time trade-off, we prove an explicit form of
the tradeoff related to generalization terms, whereas Franzese et al. (2023) only justified it via a new
ELBO decomposition of the training loss at the population level, without being able to show how it
affects generalization.

Explicit trade-off on diffusion time T . The KL-divergence terms in the above bound reflect the
generalization of encoder ET . Since T1 < 0 and T2 > 0, there exists an inherent trade-off on the
diffusion time T when minimizing the two terms. Note that when T → ∞, the forward SDE maps
the empirical data distribution to the noise, which means ET#P̂X will converge to π. This makes
the two KL terms T1 and T2 in the above theorem equivalent, and both will converge to zero, as
discussed in Sec 6.2. However, T3, which characterizes the generalization of generator GT , will
remain non-zero for a small sample size m. We bound T3 in Sec. 6.3 to a easy-to-compute form,
showing a linear growth w.r.t T . This means another trade-off between the generalization of the
encoder and that of the decoder exists on diffusion time.

6.2 GENERALIZATION FOR SDE ENCODERS

The typical encoder of diffusion models is set to a special class of affine SDEs that has a closed-form
solution (Särkkä & Solin, 2019), where dXt = α(t)Xtdt+λ(t)dWt. Then, the encoder posterior for
a given example equals to ET (Xi) = N (r(T )Xi, r

2(T )v2(T )Id), where r(t) = e
∫ t
0
α(t′)dt′ , v(t) =√∫ t

0
λ2(t′)/r2(t′)dt′.

Variance-exploding SDEs with parameter α(t) = 0, λ(t) =
√
dσ2(t)/dt, σ2(t) = (σ2

max/σ
2
min)

t

have ET (Xi) = N (Xi, (σ
2(T ) − σ2(0))Id), which do not converge to a steady-state distribution

because the variance grows. Setting the prior as π = N (0, (σ2(T )− σ2(0))Id), we have

DKL(ET (Xi)∥π) = 1
2

(
XT

i Xi/(σ
2(T )− σ2(0))

) T→∞−−−−→ 0.

Variance-preserving SDEs converge to multivariate Gaussians with α(t) = − 1
2λ

2(t), λ(t) =√
β0 + (β1 − β0)t. By denoting βT = β0T + 1

2 (β1 − β0)T
2, the encoder posterior equals to

ET (Xi) = N (e−
1
2βTXi, (1− e−βT )Id). Setting the prior as π = N (0, Id), we have

DKL(ET (Xi)∥π) = 1
2

(
e−βTXT

i Xi − de−βT − d log(1− e−βT )
) T→∞−−−−→ 0.

6.3 GENERALIZATION FOR DISCRETIZED SDE GENERATORS

We focus on the generalization terms and drop the analysis of the convergence w.r.t the score-matching
training process, which has been done in Li et al. (2024). The generalization gap term related to the
generator Gθ

T is determined by I(X̂0, Xi|X̂T ), where θ is learned from data and can be represented
as some function of the train dataset.
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Theorem 6.3. Let the step size be τ = T
N , where we split T to N discrete times. For any k ∈ [N ],

we use the following discrete update for the backward SDE by setting ϵtk ∼ N (0, Id), tk = T − τk:
X̂tk = (1− τ

2λ
2(T − tk−1))X̂tk−1

+ τλ2(T − tk−1)sθ(Xtk−1
, T − tk−1)+

√
τλ(T − tk−1)ϵtk−1

.
Furthermore, we assume a bounded score ∥∇x log p̂t(x)∥ ≤ L,∀x, t. Then, we have

1

m

m∑
i=1

I(X̂0;Xi|X̂T ) ≤
1

m
I(X̂0;X1:m|X̂T ) ≤

TL2
∑N

k=1 λ
2( (k−1)T

N )

2mN
.

The proof is deferred to Appendix F. This theorem can be used to estimate T3, which has a lin-
ear growth w.r.t T for variance preserving SDE. Combining Theorem 6.2, we obtain the sample
complexity O(1/

√
m), compared to O(m−2/5) in Li et al. (2024) using the random feature model.

Practical guidance for DMs. Since the upper bound in Theorem 6.2 can be estimated with only
training data, we can train the model for various diffusion times, estimate the bound, and select the
optimal T via grid search. Additionally, the generalization terms in the theorem can be incorporated
as regularization when optimizing the score-matching model parameter θ. This can be achieved by
selecting appropriate values for β0, β1 in λ(t), or by adding a gradient penalty to control the Lipschitz
constant of the score model sθ.

7 EXPERIMENTS

In this section, we focus on validating Theorem 6.2 for score-based DMs using both synthetic and
real datasets. The numerical results illustrate the existence of the trade-off between the generalization
terms of encoder and generator on diffusion time, which significantly impacts generation performance.
Experiments for Theorem 5.1 of VAEs are deferred to Sec G.1 in the Appendix, where we show the
proposed bound can better capture the generalization of VAEs compared to previous bounds with the
additional mutual information term for generator, and its relation to the memorization score proposed
in Van den Burg & Williams (2021).

7.1 SYNTHETIC DATA

We begin by validating the theorem on a simple synthetic 2D dataset derived from the Swiss Roll
dataset. We train the score matching model sθ(x, t) and estimate the upper bound in Theorem 6.2
on a training set of size m. W.r.t the expectation over dataset S, we conduct 5-times Monte-Carlo
estimation by randomly generating train datasets with different random seeds. For the left-hand-side
KL-divergence, we conduct Monte Carlo estimation of with 1000 test data points. To get more details
on the estimation, please see Appendix G.2.1.
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Figure 2: Evolution of bound and test-data KL-divergence estimation w.r.t (a) train dataset size m
when diffusion time is T = 1, (b) diffusion time T when the training dataset size is m = 200.

Sample complexity. We can observe in Fig. 2(a) that both the estimated test-data KL divergence
and the upper bound decrease with the increase in train dataset size m, corresponding to the diminish
of T3 with order O(1/

√
m) as m → ∞. However, they will not converge to zero, which is due to

the diffusion time T = 1 ̸= ∞ with non-zero T1, T2 and the optimization error of score matching
loss. The quality of generated data for models trained on different sample size m aligns with human
perception, as presented in Fig. 5 in Appendix.
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Trade-off on diffusion time. In Fig. 2 (b), we can observe the trade-off on diffusion time T on both
the bound and the estimated KL divergence. This indicates the proposed bounds are non-vacuous and
can capture the algorithm and data distribution well. In addition, the optimal diffusion time lies in the
range of 0.4 to 0.6. We visualize the generated data for each diffusion time in Fig. 6 in the Appendix,
and we can observe the generated data points that fit the test data best in human perception also take
values at T = 0.4 or T = 0.6.

7.2 REAL DATA

We further estimate the bound and the test data KL divergence (or log densities) by training DMs on
MNIST and CIFAR10 datasets with few-shot data (m = 16) and full train dataset. For the full data
setting, in Fig. 3 (c), we can observe the trade-off on both the estimated bound using training data and
log-likelihood (in bit per dimension (BPD)) estimated on 10000 test data points. For the few-shot
scenario, we observe a trade-off between noise and duplicate (or entirely black/white) images in the
generated data with respect to the diffusion time T across both datasets, as shown in Fig. 3 (a). In
Fig.3 (b), the estimated bound can verify the diffusion time trade-off, where the optimal T is around
0.8 for both datasets, more detailed results are presented in Appendix (Fig. 9 and Fig. 10). However,
the test data KL divergence and log-likelihood do not reflect the trade-off. This is consistent with
the conclusion in Theis et al. (2015) that it’s challenging to obtain accurate estimation of the KL
divergence and the BPD for high-dimensional data distribution with limited data.
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Figure 3: (a) For DM trained on few-shot MNIST and CIFAR10 data (m = 16): The trade-off on
diffusion time reflects on the generated images with the growing of T ; (b) The bounds estimated on
train data, KL divergences, and log densities (bpd–bits per dimension) estimated on 100 test samples.
(c) The bound estimated on train data and log densities estimated on 10000 test samples for DM
trained on full MNIST (m = 60000) and CIFAR10 dataset (m = 50000).

8 CONCLUSION

In this work, we provided a unified information-theoretic analysis for encoder-generator-type genera-
tive models, offering a better understanding of their generalization properties. Our results improved
the analysis of VAEs, provided meaningful generalization bounds for DMs, and explicitly unveiled the
trade-off on the choice of the diffusion time T . Empirical validation on both synthetic and real data
verifies our theoretical results. For a discussion of limitations and broader impacts, see Appendix H.
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A PRELIMINARIES

A.1 NOTATION TABLE

Table 1: Summary of major notations

Symbol Meaning
[m] {1, . . . ,m}
Upper case letter (e.g. Y) Random variable
Calligraphic letters (e.g. Y) Support sets of random variables
P(Y) The set of all the probability measures over Y
PY Marginal distribution of Y
X Input space
Z Latent space
F(X ,Z) {f : X → Z}, the set of all the measurable functions from X to Z
P f
Z f#PX ∈ P(Z), the pushforward distribution of PX through measurable f
PE
Z E#PX , the encoded data distribution
PZ|X The conditional distribution Z given X , for forward Markov chain X → Z
QX|Z The conditional distribution X given Z for reverse Markov chain Z → X
QZ or π Simple and easy-to-sample distribution, typically a Gaussian
QG

X G#QZ or G#π, the generated data distribution
QX̂T−t

Gt#π, the generated distribution at diffusion time t
pE(z|x), pE(z) Probability densities for E(X) and PE

Z , respectively
qG(x|z), qG(x) Probability densities for G(Z) and QG

X , respectively
E : X → P(Z) Encoder to map a data point X ∼ PX to a conditional distribution over Z
E ⊂ F(X ,P(Z)) Encoder hypothesis set
G : Z → P(X ) Generator to be learned that when applied to QZ , matches data distribution PX

G ⊂ F(Z,P(X )) Generator hypothesis set
P̂X

1
m

∑m
i=1 δXi , the empirical measure with m observations, where Xi ∼ PX .

∆G : X × Z × X → R+
0 Sample difference loss for the encoder-generator path.

Lπ
PX

(E,G) EX∼PX
EZ∼πEX̂∼G(Z)[∆G(X̂, Z,X)], generation error

LP̂X
(E,G) 1

m

∑m
i=1 EZ∼E(Xi)EX̂∼G(Z)∆G(X̂, Z,Xi), empirical reconstruction error

gen∆G

PX
(E,G, π) ES∼Pm

X
[Lπ

PX
(E,G)− LP̂X

(E,G)], generalization gap for generation error
T Diffusion time length
{Xt}t∈[0,T ] Forward diffusion process satisfying dXt = f(Xt, t)dt+ λ(t)dWt, X0 ∼ PX

{
↼

Xt}t∈[0,T ] Ideal backward diffusion process satisfying {Xt}Tt=0 = {
↼

Xt}Tt=0

{X̂t}t∈[0,T ] Approximated backward diffusion process with generator Gt, t ∈ [0, T ]
f(·, t) : X → X Drift coefficient
λ(t) ∈ R Diffusion coefficient
{Wt}t∈[0,T ] Wiener process/Brownian motion
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A.2 DEFINITIONS

Definition A.1 (f -divergence). Let P and Q be two probability measures defined on X with P ≪ Q.
Given a convex function f : R+ → R ∪ {∞} with a continuous extension at 0 and f(1) = 0, we
define the f−divergence to be:

Df (P∥Q)
def
= EQ

[
f

(
P

Q

)]
.

As particular instantiations, choosing f(x) = x log x yields the Kullback-Leibler (KL) divergence
DKL(P∥Q) and f(x) = 1

2 (x log x− (x+ 1) log (x+1
2 )) yields the Jensen-Shannon (JS) divergence

DJS(P∥Q).
Definition A.2 (Fisher Divergence). Let P and Q be two probability measures defined on X , then,
we have the fisher divergence:

DFisher(P∥Q)
def
= EX∼P

[
∥∇X log p(X)−∇X log q(X)∥22

]
,

where p(x) and q(x) are the probability density functions.
Definition A.3 (Lipschitz function). Let (W, ∥ ·∥) be a normed space. We say a function f : W → R
is L-Lipschitz if for all w1, w2 ∈ W , |f(w1)− f(w2)| ≤ L∥w1 − w2∥.
Definition A.4 (Sub-Gaussian). Define the cumulant generating function(CGF) of random variable

X as ψX(λ)
def
= logE[eλ(X−E[X])]. X is said to be R-sub-Gaussian if

ψX(λ) ≤ λ2R2

2
,∀λ ∈ R .

Intuitively, a sub-Gaussian random variable demonstrates exponential tail decay at a rate comparable
to a Gaussian random variable. Positive number R is its analog for variance, often called the variance
proxy. Entailing many common distributions, sub-Gaussianity is a standard assumption on the
residuals in the analysis of ordinary least squares (OLS) and more recently, been widely used to
provide non-vacuous bounds for deep learning algorithms Negrea et al. (2019).
Definition A.5 (Mutual Information). Let X and Y be arbitrary random variables, and DKL denote
the KL divergence. The mutual information between X and Y is defined as:

I(X;Y ) = DKL(PX,Y ∥PXPY )

Definition A.6 (Conditional Mutual Information). Let X , Y and Z be arbitrary random variables,
The disintegrated mutual information between X and Y given Z is defined as:

IZ(X;Y )
def
= DKL(PX,Y |Z ||PX|ZPY |Z) .

The corresponding conditional mutual information is defined as:

I(X;Y |Z) def
= EZ [I

Z(X;Y )] .

Definition A.7 (Coupling). Let (X , µ) and (Y, ν) be two probability spaces. Coupling µ, ν means
constructing two random variablesX and Y on some probability space (Z, π), such that Z = X ×Y ,
(projX )#π = µ and (projY)#π = ν, which means that π is the joint measure on X × Y with
marginals µ, ν on X and Y respectively. The couple (X,Y ) is called a coupling of (µ, ν).
Definition A.8 (Wasserstein-p Distance). Let the two distributions be defined on the same Polish
metric space (X , ρ), where ρ(·, ·) is a metric and p ∈ [1,+∞), Π(µ, ν) is the set of all the couplings
(see Definition A.7) of µ, ν. The Wasserstein distance with order p between µ and ν is defined as:

DWp(µ∥ν)
def
=

[
inf

π∈Π(µ,ν)

∫
X×X

ρ(x, x′)pdπ(x, x′)

]1/p
.

A.3 USEFUL LEMMAS

Lemma A.9 (Donsker-Varadhan Representation [Corollary 4.15 (Boucheron et al., 2013)). Let P
and Q be two probability measures defined on a set X . Let g : X → R be a measurable function,
and let Ex∼Q[exp g(x)] ≤ ∞. Then

DKL(P∥Q) = sup
g
{Ex∼P [g(x)]− logEx∼Q[exp g(x)]}.
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Lemma A.10 (Decoupling Estimate Xu & Raginsky (2017)). Consider a pair of random variables
X and Y with joint distribution PX,Y , let X̃ be an independent copy of X , and Ỹ an independent
copy of Y , such that PX̃,Ỹ = PXPY . For arbitrary real-valued function f : X ×Y → R, if f(X̃, Ỹ )
is R-sub-Gaussian under PX̃,Ỹ , then:

|E[f(X,Y )]− E[f(X̃, Ỹ )]| ≤
√

2R2I(X;Y ) .

The above lemma has a generalized extension in Bu et al. (2020), which directly assumes conditions
on CGF and can cover other assumptions like sub-gamma.

Lemma A.11 (Girsonov Theorem, c.f. Theorem 8.6.6. of Oksendal (2013)). If B̂s is an Itô process
solves dB̂s = a(ω, s)ds + dB′

s for ω ∈ Ω, 0 ≤ s ≤ T , and B̂0 = 0, where a(ω, s) satisfies

E
[
exp

(
1
2

∫ T

0
a(w, s)2ds

)]
< ∞ for each ω, then B̂s is a Brownian motion with respect to Q,

where
dQ

dP
(ω)

def
= exp

(∫ T

0

a(ω, s)dB′
s −

1

2

∫ T

0

∥a(ω, s)∥22ds

)
.

B GENERAL OPTIMIZATION OBJECTIVE AND TWO VIEWPOINTS OF DMS

The following is a regular derivation using basic probability knowledge. Similar results can be found
in Kingma et al. (2019) with specific parametric notations in VAE. We now give a general version:

DKL(PX∥G#QZ) ≤ DKL(PX∥G#QZ) + EX inf
E∈E

[
DKL(E(X)∥G(Z)QZ

G#QZ
)

]
≤ inf

E∈E

[
DKL(PX∥G#QZ) + EXDKL(E(X)∥G(Z)QZ

G#QZ
)

]
= inf

E∈E

[∫
p(x) log

p(x)

qG(x)
dx

+

∫
p(x)pE(z|x) log

pE(z|x)
q(z)qG(x|z)/qG(x)

dzdx

]
= inf

E∈E

[∫
p(x)pE(z|x) log

p(x)pE(z|x)
q(z)qG(x|z)

dzdx

]
= inf

E∈E
[DKL(PXE(X)∥G(Z)QZ)] .

B.1 DECOMPOSITION FOR VAES

The above general objective can be decomposed as:

inf
E∈E

[DKL(PXE(X)∥G(Z)QZ)] = inf
E∈E

[
EX∼PX

EZ∼E(X) [− log qG(X|Z)]

+EX∼PX
DKL(E(X)∥QZ)− h(PX)]

∝ inf
E∈E

[
EX∼PX

(
EZ∼E(X) [− log qG(X|Z)] + DKL(E(X)∥QZ)

)]
.

which is the common VAE objective, with the first term being the reconstruction loss and the second
term being the distance of the approximated posterior to the predefined prior. Similar results exist in
rate-distortion theory, where the first term is interpreted as distortion, and the second is the rate.

B.2 DMS AS HIERARCHICAL VAES

Some previous work consider DMs as Hierarchical VAEs, such as Huang et al. (2021); Tzen &
Raginsky (2019); Kingma et al. (2021). In this setting, we assume that each encoder is a conditional
distribution on previous encoder’s output and the initial input X = X0 ∼ PX with Et(Xt−1) =
PXt|Xt−1,X . Similarly, the generator’s output is a conditional distribution on previous generator’s
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output with GT−t+1(Xt) = QXt−1|Xt
, XT = Z ∼ QZ . Using similar decomposing approach as

VAEs gives the variational objective of diffusion models:

DKL(PXE1:T (X)∥G1:T (Z)QZ)

=

∫
p(x)pE1(x1|x)...pET

(z|xT−1, x) log
p(x)pE1(x1|x)pE2(x2|x1, x)...pET

(z|xT−1, x)

q(z)qG1
(xT−1|z)qG2

(xT−2|xT−1)...qGT
(x|x1)

dx...dz

= Ex∼PX
(DKL(pET

(z|x)∥q(z)) + EpE1
(x1|x)[− log qGT

(x|x1)])

+ Ex∼PX

(
T∑

t=2

EpEt (xt|x)DKL(pE−1
t

(xt−1|xt, x)∥qGT−t+1
(xt−1|xt))

)
− h(PX)

∝ EX∼PX

(
DKL(ET#...#E1(X)∥QZ) + EX1∼E1(X)[− log qGT

(X|X1)]
)

+ EX∼PX

(
T∑

t=2

EXt∼Et#...#E1(X)DKL(P
E−1

t

Xt−1|Xt,X
∥GT−t+1(Xt))

)
,

where pEt
(xt|xt−1, x) =

p
E

−1
t

(xt−1|xt,x)pEt (xt|x)

pEt−1
(xt−1|x) and the Markov assumption are used. The above

objective is the same as Eq. (11) in Kingma et al. (2021). The first term is the prior loss, the second
term is the reconstruction loss, and the last term is the diffusion loss. This formulation is much more
complex for conducting a generalization analysis than the one introduced in the following. Hence,
the theoretical results of diffusion models will focus on the other.

B.3 DMS AS TIME-DEPENDENT MAPPINGS

The KL divergence between joint distributions can have the following decomposition:

inf
E∈E

[DKL(PXE(X)∥G(Z)QZ)] = inf
E∈E

DKL(P
E
Z ∥QZ) + EZ∼PE

Z
DKL(P

E−1

X|Z ∥G(Z)) ,

where PE−1

X|Z is the reverse of E satisfying PE
Z|XPX = PE

Z P
E−1

X|Z . Considering DMs as time-
dependent mappings, we have:

DKL(P
ET

Z ∥QZ) + E
Z∼P

ET
Z

DKL(P
E−1

T

X|Z ∥GT (Z))

= DKL(ET#PX∥QZ) + EZ∼ET#PX
DKL(P

E−1
T

X|Z ∥GT (Z))

≤ DKL(ET#PX∥QZ) + EZ∼ET#PX
DKL(P

E−1
1:T

X1:T |Z∥Q
G1:T

X1:T |Z) ,

where the last step holds by relaxing the last state measure to the path measure under data processing
inequality. Then, Song et al. (2020b) upper bound the second term with the weighted score matching
objective using Girsanov theorem. Hence, we have shown that VAEs and DMs are inherently
optimizing the same objective.

C PROOF OF MAIN THEOREM

C.1 GENERALIZATION BOUND FOR GENERATION (PROOF OF THEOREM 4.1)

Theorem C.1. For any encoder E ∈ E and generator G ∈ G learned from the training data
S = {Xi}mi=1, assume that the loss ∆G(

˜̂
X, Z̃,X) is R-sub-Gaussian (See definition in Def. A.4)

under P ˜̂
X,Z̃,X

= QX̂|Z × QZ × PX , where Z ∼ QZ = π, X̂ ∼ G(Z), ˜̂
X, Z̃ are respective

independent copy of X̂ and Z such that ˜̂
X, Z̃ ⊥⊥ X . Then, ∀Xi ∈ S,Zi ∼ E(Xi), X̂i ∼ G(Zi), the

generalization gap admits:

|gen∆G

PX
(E,G, π)| ≤

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi) .
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Proof. In this case, ˜̂
X, Z̃ ∼ QX̂|Z ×QZ , which satisfies ˜̂

X, Z̃ ⊥⊥ X .

For any η ∈ R, let the cumulant generating function (CGF) be

ψ ˜̂
X,Z̃,X

(η)
def
= logE ˜̂

X,Z̃,X

[
eη(∆G(

˜̂
X,Z̃,X)−E[∆G(

˜̂
X,Z̃,X)])

]
= logE ˜̂

X,Z̃,X

[
eη∆G(

˜̂
X,Z̃,X)

]
− ηE ˜̂

X,Z̃,X
[∆G(

˜̂
X, Z̃,X)] .

Let PX̂,Z,X be the joint distribution of X ∼ PX , Z ∼ E(X), X̂ ∼ G(Z). Using the Donsker-
Varadhan Representation in Lemma A.9, we have ∀η ∈ R:
DKL(PX̂,Z,X∥P ˜̂

X,Z̃,X
) = DKL(PX̂,Z,X∥QX̂|ZQZPX)

= sup
g

[
EX̂,Z,Xg(X̂, Z,X)− logE ˜̂

X,Z̃,X
[eg(

˜̂
X,Z̃,X)]

]
≥ ηEX̂,Z,X [∆G(X̂, Z,X)]− ηE ˜̂

X,Z̃,X
[∆G(

˜̂
X, Z̃,X)]− ψ ˜̂

X,Z̃,X
(η) .

(6)

In addition, the generation error admits

Lπ
PX

(E,G) = EX∼PX
EZ∼πEX̂∼G(Z)[∆G(X̂, Z,X)] ,

thus, we have:
ESLπ

PX
(E,G) = EX∼PX

EZ∼πESEX̂∼G(Z)[∆G(X̂, Z,X)]

= EX∼PX
EZ∼πE ˜̂

X∼QX̂|Z
[∆G(

˜̂
X,Z,X)]

= E ˜̂
X,Z̃,X

[∆G(
˜̂
X, Z̃,X)] ,

where the first equality holds because ˜̂
X is an independant copy of X̂ .

For the empirical reconstruction error

LP̂X
(E,G) = EX∼P̂X

EZ∼E(X)EX̂∼G(Z)[∆G(X̂, Z,X)]

=
1

m

m∑
i=1

EZi∼E(Xi)EX̂i∼G(Zi)
∆G(X̂i, Zi, Xi) ,

we have

ESLP̂X
(E,G) =

1

m

m∑
i=1

EXi∼PX
EZi∼E(Xi)EX̂i∼G(Zi)

∆G(X̂i, Zi, Xi) .

Hence, the generalization gap for generation error is

gen∆G

PX
(E,G, π) = ES

[
Lπ
PX

(E,G)− LP̂X
(E,G)

]
=

1

m

m∑
i=1

(
E ˜̂
Xi,Z̃i,Xi

[∆G(
˜̂
X, Z̃,Xi)]− EX̂,Z,Xi

∆G(X̂i, Zi, Xi)
)
.

Combining this with Eq. (6) gives

−ηgen∆G

PX
(E,G, π) ≤ 1

m

m∑
i=1

(
DKL(PX̂i,Zi,Xi

∥QX̂|ZQZPXi) + ψ ˜̂
X,Z̃,Xi

(η)
)

≤ 1

m

m∑
i=1

(
EXi

DKL(PX̂i,Zi|Xi
∥QX̂|Z × π) + ψ ˜̂

X,Z̃,Xi
(η)
)

≤ 1

m

m∑
i=1

EXi
DKL(PX̂i,Zi|Xi

∥QX̂|Z × π) +
η2R2

2
, ∀η ∈ R

=
1

m

m∑
i=1

(
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)
)
+
η2R2

2
, ∀η ∈ R .
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The last inequality is by the R-sub-Gaussian assumption and the last equality holds because the
reconstruction process and the generation process use the same generator G. Dividing both sides by
η, for η > 0, it gives:

−gen∆G

PX
(E,G, π) ≤ 1

m

m∑
i=1

(
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)

η
+
ηR2

2

)
,∀η > 0 ,

since a
η + bη ≥

√
2ab,∀a, b ≥ 0, λ > 0, so we have

−gen∆G

PX
(E,G, π) ≤ 1

m

m∑
i=1

√
2R

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi).

Analogously, for η < 0, we have

gen∆G

PX
(E,G, π) ≤ 1

m

m∑
i=1

(
EXi [DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)

−η
+

−ηR2

2

)
,∀η < 0 ,

where we have PX̂i,Zi,Xi
= PX̂,Z,X because Z ∼ E(Xi), X̂ ∼ G(Z), Xi ∼ PX . Hence, it gives

gen∆G

PX
(E,G, π) ≤ 1

m

m∑
i=1

√
2R

√
EXi [DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi).

Finally, we get

|gen∆G

PX
(E,G, π)| ≤

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)

Concludes the proof.

C.2 GENERATION ERROR BOUND (PROOF OF COROLLARY 4.2 AND 4.3)

Corollary C.2. Under Theorem 4.1, let ∆G(X̂, Z,X) = ∥X̂ −X∥. Then, the Wasserstein distance
between the data distribution PX and the generated distribution G#π is upper bounded by:

DW1
(PX∥G#π) ≤ ESLP̂X

(E,G) +

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi) .

Proof. By definition of Wasserstein distance, we have:

DW1(PX∥G#π) = inf
γ∈Π(PX ,G#π)

∫
X×X

∥x− x′∥dγ(x, x′)

≤ EX∼PX
EX̂∼G#π∥X̂ −X∥

= EX∼PX
EZ∼πEX̂∼G(Z)∥X̂ −X∥

= Lπ
PX

(E,G)

≤ ESLP̂X
(E,G) +

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi) .

The last inequality follows from Theorem 4.1.
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Corollary C.3. Under Theorem 4.1, let the density function of probabilistic decoder G given a latent
code z be qG(·|z) : X → R+

0 and ∆G(X̂, Z,X) = − log qG(X|Z). The KL-divergence between the
data distribution PX and the generated distribution G#π is then upper bounded by:

DKL(PX∥G#π) ≤ ESLP̂X
(E,G)+

√
2R

m

m∑
i=1

√
EXi

[DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)−h(PX) ,

where h(PX) = EX [− log p(X)] denotes the entropy.

Proof. We have

DKL(PX∥G#π) =
∫
p(x) log

p(x)∫
q(z)qG(x|z)dz

dx

= −h(PX)−
∫
p(x) log

(∫
q(z)qG(x|z)dz

)
dx

≤ −h(PX)−
∫
p(x)q(z) log qG(x|z)dzdx

= −h(PX) +

∫
p(x)q(z)

∫
qG(x̂|z)∆G(x̂, z, x)dx̂dzdx

= −h(PX) + EX∼PX
EZ∼πEX̂∼G(Z)∆G(X̂, Z,X)

= −h(PX) + Lπ
PX

(E,G)

≤ ESLP̂X
(E,G) +

√
2R

m

m∑
i=1

√
EXi [DKL(E(Xi)∥π)] + I(X̂i;Xi|Zi)− h(PX) .

The first inequality is from Jensen’s inequality and the last inequality by Theorem 4.1.

D DISCUSSION OF THE VAE BOUND

D.1 DETAILED COMPARISON TO PREVIOUS VAE BOUND

As discussed in Sec.6.5.2 Alquier et al. (2024), the mutual information bound is tighter than the
PAC-Bayes bound in expectation. For more concise form of mutual information bound, we transform
the "Catoni-style" PAC Bayes bound (Theorem 5.2) in Mbacke et al. (2023) to the expectation bound
by integrating over the high-probability guarantee: Then, for any λ > 0, the following bound holds
for any Eϕ(x) = N (µϕ(x), diag(σ

2
ϕ(x)Id2

)) and a fixed Gθ(z) = N (µθ(x), Id1
)):

DW1
(PX∥Qπ

Gθ
) ≤ ES [

1

m

m∑
i=1

EZ∼Eϕ(Xi)EX̂∼Gθ(Z)∥X̂ −Xi∥]

+
1

λ
ES [

m∑
i=1

DKL(Eϕ(Xi)∥π)] +
λ∆2

8m
+
Kθ

m
ES

m∑
i=1

DW2
(Eϕ(Xi)∥π) ,

where ∆ := supx,x′∥x− x′∥ is the diameter of the bounded input space, Kθ is the Lipchitz constant
of µθ. Since a

2λ + bλ
2 ≥

√
ab,∀a, b ≥ 0, λ > 0, we have

DW1
(PX∥Qπ

Gθ
) ≤ ESLP̂X

(Eϕ, Gθ) +

√√√√∆2

2m

m∑
i=1

EXi
DKL(Eϕ(Xi)∥π)

+
Kθ

m

m∑
i=1

EXi
DW2

(Eϕ(Xi)∥π) .

Both the Wasserstein-2 distance and the KL-divergence control the generalization of the encoder.
Specifically, since π = N (0, I) is Gaussian, we have DW2

(E(Xi)∥π) ≤
√

2DKL(Eϕ(Xi)∥π)
according to the Transportation Cost Inequality. The above bound can be further formulated as:

DW1(PX∥Qπ
Gθ

) ≤ ESLP̂X
(Eϕ, Gθ) + (

∆√
2
+

√
2Kθ)

√√√√ 1

m

m∑
i=1

EXi
DKL(Eϕ(Xi)∥π) .
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To be noted, the above bound only holds for specific Gθ, not all Gθ. In contrast, our bound holds for
all Gθ, i.e., it considers the generalization of the generator.

DW1
(PX∥Qπ

Gθ
) ≤ ESLP̂X

(Eϕ, Gθ) +

√
2R

m

m∑
i=1

√
EXi

[DKL(Eϕ(Xi)∥π)] + I(X̂i;Xi|Zi)

≤ ESLP̂X
(Eϕ, Gθ) +

√
2R

m

m∑
i=1

√
EXi [DKL(Eϕ(Xi)∥π)]

+

√
2R

m

m∑
i=1

√
I(X̂i;Xi|Zi) .

The bounded support assumption w.r.t ∥ · ∥ implies sub-Gaussian with R = ∆
2 (Duchi, 2016). Hence,

we have:

DW1
(PX∥Qπ

Gθ
) ≤ ESLP̂X

(Eϕ, Gθ) +
∆√
2

√√√√ 1

m

m∑
i=1

EXi
[DKL(Eϕ(Xi)∥π)]

+
∆√
2

√√√√ 1

m

m∑
i=1

I(X̂i;Xi|Zi) .

Ignoring the additional generalization term of generator, our bound is tighter than previous work
without the unnecessary Wasserstein-2 distance or could be considered has a smaller factor without√
2Kθ. However, not all sub-Gaussian random variables are bounded, so our assumption is more

flexible and valid for unbounded support. As we discussed in Sec.5, minimizing the first two terms in
the bound is equivalent to the empirical β-VAE objective:

LV AE(ϕ, θ) = LP̂X
(Eϕ, Gθ) + β

1

m

m∑
i=1

DKL(Eϕ(Xi)∥π) ,

where β is the regularization constant.

D.2 ESTIMATION OF THE CONDITIONAL MUTUAL INFORMATION TERM

To estimate the bound for VAE, the difficulty lies in estimating
√

1
m

∑m
i=1 I(X̂i;Xi|Zi), where the

other two terms are easy to compute because Eϕ and Gθ are tractable distributions in VAEs.

To address this, we can bound the conditional mutual information term as

1

m

m∑
i=1

I(X̂i;Xi|Zi) ≤
1

m
ES

(
m∑
i=1

1

m
EZi∼Eϕ(Xi)DKL(Gθ(Zi)∥ESGθ(Zi))

)

≤ 1

m
ES

(
m∑
i=1

1

m
EZi∼Eϕ(Xi)DKL(Gθ(Zi)∥Gθ̃(Zi))

)
,

which can be estimated by sampling several timesm data points from the dataset, and then calculating
the bound by replacing ESGθ(Zi) as some data-free prior.

In the following, we show how to prove the above bound step by step. We first prove that

I(X̂i;Xi|Zi) ≤
1

m
I(X̂i;S|Zi),∀i ∈ [m] .

According to the chain rule in mutual infomation, we have

I(X̂i;S|Zi) = I(X̂i;X1:m|Zi) = I(X̂i;X1|Zi) +

m∑
j=2

I(X̂i;Xj |Zi, X1:j−1) .
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Moreover, we have

I(X̂i, X1:j−1;Xj |Zi) = I(X̂i;Xj |Zi, X1:j−1) + I(Xj ;X1:j−1|Zi)

= I(X̂i;Xj |Zi) + I(X1:j−1;Xj |Zi, X̂i) .

Since both encoder and generator are learned from dataset S, we have the following Markov chains

Xj → Zi, X1:j−1 → Zi;Zi → X̂i, Xj → X̂i, X1:j−1 → X̂i,∀i, j ∈ [m] ,

which gives I(Xj ;X1:j−1|Zi) ≤ I(X1:j−1;Xj |Zi, X̂i).

This can be derived with the mutual information chain rule:

I(Xj ;X1:j−1|Zi) = I(Xj ;X1:j−1|X̂i, Zi)− I(Xj ;X1:j−1; X̂i|Zi) ,

where I(Xj ;X1:j−1; X̂i|Zi) ≥ 0. Therefore, we have I(X̂i;Xj |Zi, X1:j−1) ≥ I(X̂i;Xj |Zi), and
can further obtain

I(X̂i;S|Zi) = I(X̂i;X1:m|Zi)

≥
m∑
j=1

I(X̂i;Xj |Zi) = mI(X̂i;Xi|Zi),∀i ∈ [m] .

The last equality holds because learningGθ with objective of VAE equally depends on each datapoints,
known as the symmetry in stability and generalization (Bousquet & Elisseeff, 2002; Bu et al., 2020).

The mutual information itself is hard to estimate since it’s distribution dependent. We could use
the variational form by introducing an additional conditional distribution Gθ̃(Zi), where θ̃ is some
random initialization of the generator network. Then, we have the following:

I(X̂i;S|Zi) =

∫
p(z)

∫
p(x̂, s|z) log p(x̂|s, z)

q(x̂|z)
dx̂dsdz

=

∫
p(s)p(z|s)DKL(Gθ(z)∥ESGθ(z))dzds

= ESEZi∼Eϕ(Xi)DKL(Gθ(Zi)∥ESGθ(Zi))

≤ ESEZi∼Eϕ(Xi)DKL(Gθ(Zi)∥ESGθ(Zi)) + EZi∼ESEϕ(Xi)DKL(ESGθ(Zi)∥Gθ̃(Zi))

= ESEZi∼E(Xi)DKL(Gθ(Zi)∥Gθ̃(Zi)) .

By selecting a duplicated decoder network with random initialization as reference, we can estimate
the generalization of the generator Gθ with only the train data.

D.3 EXAMPLE ANALYSIS OF LINEAR VAE

We analyze simple linear VAE models following Ichikawa & Hukushima (2023; 2024). Let Eϕ(x) =

N(µϕ(x), σ
2Id′)) with µϕ(x) = 1√

d
ϕTx, ϕ = Rd×d′

and Gθ(z) = N(µθ(z), Id) with µθ =
1√
d
θT z, θ ∈ Rd′×d, π = N(0, Id′), x ∈ Rd, z ∈ Rd′

. Combining the estimation for the conditional
mutual information term, where a duplicate randomly initialized generator Gθ̃(z) = N(µθ̃(z), Id) is
needed. Then, we have the following bound:

√
2R

√√√√1

2
(σ2 − 1)d′ − d′ log(σ2) +

1

d
ES

(
1

m

m∑
i=1

x⊤i ϕϕ
⊤xi

)
+

σ2

2dm
∥θ − θ̃∥2.

Consider the proportional limit setting with α = m
d = Θ(1), we have the following two major

terms:
√

α
mES

(
1
m

∑m
i=1 x

⊤
i ϕϕ

⊤xi
)

for encoder and
√

σ2α
2m2 ∥θ − θ̃∥2 for generator. We left the

convergence analysis as future work.
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E PROOF FOR DIFFUSION MODELS

E.1 PROOF OF LEMMA 6.1

Lemma E.1. Let {Xt}Tt=0 be the empirical version of the forward diffusion process defined in
Eq. (3), where X0 ∼ P̂X . We assume the existence of the backward process under the regularity
conditions outlined in Song et al. (2021) and denote it as {

↼

Xt}Tt=0 = {Xt}Tt=0 , which results from
the reverse-time SDE defined in Eq. (4). Then, the generative backward process {X̂}Tt=0 is defined in
Eq. (5). Let Et, E

−1
t , Gt,∀t ∈ [0, T ] be their corresponding time-dependent Markov kernels. The

density function of any generator G, given a latent code z, is denoted as qG(·|z) : X → R+
0 , and let

∆G(X̂, Z,X) = − log qG(X|Z). Then, we have

|LP̂X
(ET , GT )− LP̂X

(ET , E
−1
T )| ≤ 1

2

∫ T

t=0

λ2(t)DFisher(P̂Xt
∥QX̂t

)dt .

Proof. From the definition of the empirical reconstruction loss, we have

LP̂X
(ET , E

−1
T ) = EX0∼P̂X

EXT∼ET (X0)E↼
X0∼E−1

T (XT )
∆E−1

T
(

↼

X0, XT , X0)

= EX0∼P̂X
EXT∼ET (X0)E↼

X0∼E−1
T (XT )

(
− log qE−1

T
(X0|XT )

)
= EX0∼P̂X

EXT∼ET (X0)

(
− log qE−1

T
(X0|XT )

)
.

Analogously, we also have

LP̂X
(ET , GT ) = EX0∼P̂X

EXT∼ET (X0)EX̂0∼G(XT )∆GT
(X̂0, XT , X0)

= EX0∼P̂X
EXT∼ET (X0)EX̂0∼GT (XT ) (− log qGT

(X0|XT ))

= EX0∼P̂X
EXT∼ET (X0) (− log qGT

(X0|XT )) .

These two empirical reconstruction losses aim to compare the corresponding SDEs, both of which
start from a random draw from the aggregate posterior induced by the encoder.

The first is the backward process given the empirical data distribution, characterized by E−1
t , t ∈

[0, T ]:

d
↼

Xt = [f(
↼

Xt, t)− λ(t)2∇ log p̂t(
↼

Xt)]dt+ λ(t)dWt,
↼

XT ∼ P̂XT
.

The second is the generating process, characterized by Gt, t ∈ [0, T ]:

dX̂t = [f(X̂t, t)− λ(t)2∇ log qt(X̂t)]dt+ λ(t)dŴt, X̂T ∼ P̂XT
.

Therefore,

|LP̂X
(ET , GT )− LP̂X

(ET , E
−1
T )| =

∣∣∣∣∣EX0∼P̂X
EXT∼ET (X0) log

(
qE−1

T
(X0|XT )

qGT
(X0|XT )

)∣∣∣∣∣
=

∣∣∣∣∣EXT∼P̂XT

∫
qE−1

T
(x0|XT ) log

(
qE−1

T
(x0|XT )

qGT
(x0|XT )

)
dx0

∣∣∣∣∣
= EXT∼P̂XT

DKL(Q
E−1

T
↼
X0|XT

∥QGT

X̂0|XT
) ,
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which gives

|LP̂X
(ET , GT )− LP̂X

(ET , E
−1
T )|

≤ EXT∼P̂XT
DKL(Q

E−1
T

(·|XT )∥Q
GT

(·|XT ))

= EXT∼P̂XT
EQ

E
−1
T

(·|XT )

[∫ T

0

λ(t)(∇ log p̂t(Xt)−∇ log qt(Xt))dWt

+
1

2

∫ T

t=0

λ2(t)∥∇ log p̂t(Xt)−∇ log qt(Xt)∥22dt

]

= EXT∼P̂XT
EQ

E
−1
T

(·|XT )

[
1

2

∫ T

t=0

λ2(t)∥∇ log p̂t(Xt)−∇ log qt(Xt)∥22dt

]

=
1

2

∫ T

t=0

EXt∼P̂Xt
[λ2(t)∥∇ log p̂t(Xt)−∇ log qt(Xt)∥22]dt

=
1

2

∫ T

t=0

λ2(t)DFisher(P̂Xt
∥QX̂t

)dt .

The first inequality is obtained by applying data processing inequality to the Markov chain, where the
KL divergence between the last iterate conditionals is smaller than that of the whole path, similar
to the proof of Theorem 1 in Song et al. (2020b). The subsequent equalities are from the Girsanov
Theorem (Theorem 8.6.6 in Oksendal (2013)) and the definition of the Fisher divergence.
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E.2 PROOF OF THEOREM 6.2

Theorem E.2. Under Lemma 6.1, for any SDE encoderEt and generatorGθ
t trained via score match-

ing on S = {Xi}mi=1, the corresponding outputs at the diffusion time T are X̂T ∼ ET (Xi), X̂0 ∼
Gθ

T (X̂T ) for each Xi ∈ S. The KL-divergence between the original data distribution PX and the
generated data distribution Gθ

T#π at diffusion time T is then upper bounded by:

DKL(PX∥Gθ
T#π) ≤ ES

(
− 1

m

m∑
i=1

DKL(ET (Xi)∥ET#P̂X)︸ ︷︷ ︸
T1

+L̂ESM (θ, λ(·))
)

+

√
2R

m

m∑
i=1

√
EXi

[DKL(ET (Xi)∥π)]︸ ︷︷ ︸
T2

+

√
2R

m

m∑
i=1

√
I(X̂0;Xi|X̂T )︸ ︷︷ ︸
T3

.

Proof. At first, we combine the results of Corollary 4.3 and Lemma 6.1 and obtain:

DKL(PX∥Gθ
T#π) ≤ ES

(
LP̂X

(ET , E
−1
T ) + L̂ESM (θ, λ(·))

)
+

√
2R

m

m∑
i=1

√
EXi

[DKL(ET (Xi)∥π)] + I(X̂0;Xi|X̂T )− h(PX)

≤ ES

(
LP̂X

(ET , E
−1
T ) + L̂ESM (θ, λ(·))

)
− h(PX)

+

√
2R

m

m∑
i=1

√
EXi

[DKL(ET (Xi)∥π)] +
√
2R

m

m∑
i=1

√
I(X̂0;Xi|X̂T ) .

Then, the reconstruction error LP̂X
(ET , E

−1
T ) of the reverse SDE can be decomposed as:

LP̂X
(ET , E

−1
T ) = EX0∼P̂X

EXT∼ET (X0)[− log pE−1
T

(X0|XT )]

= EX0∼P̂X
EXT∼ET (X0)[log

p̂T (XT )

pET
(XT |X0)p̂0(X0)

]

= h(P̂X)− 1

m

m∑
i=1

DKL(ET (Xi)∥ET#P̂X),

which will converge to h(P̂X) when T → ∞, because ofET#P̂X → π w.r.t any data distribution and
E−1

T #P̂XT
= P̂X . So if T → ∞ andm→ ∞ both hold, we have ESLP̂X

(ET , E
−1
T )−h(PX) → 0.

Considering the normal case, we have

ES [h(P̂X)]− h(PX) ≤ 0 ,

because the entropy function h(p) = −p log p is concave, and we can take the expectation inside by
Jensen’s inequality (See Verdú (2019)).

Therefore, we have:

ESLP̂X
(ET , E

−1
T ) ≤ ES

(
− 1

m

m∑
i=1

DKL(ET (Xi)∥ET#P̂X)

)
+ h(PX)

Combine all these, we conclude the proof.
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F PROOF OF THEOREM 6.3

Theorem F.1. Let the step size be τ = T
N , where we split T to N discrete times. For any k ∈ [N ],

we use the following discrete update for the backward SDE by setting ϵtk ∼ N (0, Id), tk = T − τk:

X̂tk = (1− τ

2
λ2(T − tk−1))X̂tk−1

+ τλ2(T − tk−1)sθ(Xtk−1
, T − tk−1)+

√
τλ(T − tk−1)ϵtk−1

.

Furthermore, we assume a bounded score ∇x log p̂t(x) ≤ L,∀x, t. Then, we have the

1

m

m∑
i=1

I(X̂0;Xi|X̂T ) ≤
1

m
I(X̂0;X1:m|X̂T ) ≤

TL2
∑N

k=1 λ
2( (k−1)T

N )

2mN
.

Proof. At first, let us denote the sequence of generated data as X̂ [N ] def
= [X̂t1 , ..., X̂tN ], then, we have

the following Markov chain:
X1:m →X̂ [N ] → X̂0

↑
X̂T

According to the mutual information chain rule, we have:

I(X̂0;X1:m|X̂T ) = I(X̂0;X1|X̂T ) +

m∑
i=2

I(X̂0;Xi|X̂T , X1:i−1) ≥
m∑
i=1

I(X̂0;Xi|X̂T ) .

Since I(X̂0;Xi|X̂T , X1:i−1)+I(Xi;X1:i−1|X̂T ) = I(X̂0, X1:i−1;Xi|X̂T ) that can also be decom-
posed as I(X̂0;Xi|X̂T ) + I(X1:1−i;Xi|X̂T , X̂0) and I(Xi;X1:i−1|X̂T ) = 0, the last inequality
holds with I(X1:1−i;Xi|X̂T , X̂0) ≥ 0.

For any k ∈ [N ], we use the following discrete update for the backward SDE, where ϵtk ∼
N (0, Id), tk = T − τk, τ = T

N .

X̂tk = (1− τ

2
λ2(T − tk−1))X̂tk−1

+ τλ2(T − tk−1)sθ(Xtk−1
, T − tk−1)+

√
τλ(T − tk−1)ϵtk−1

.

Since the approximation sθ(Xtk−1
, T − tk−1) ≈ ∇Xtk−1

log p̂T−tk−1
(Xtk−1

) is determined by
S = X1:m under some functional form, simply denote it as gS(Xtk−1

) we can consider the above
update as a Langevin dynamics

X̂tk = (1− τ

2
λ2(T − tk−1))X̂tk−1

+ ηk−1gS(Xtk−1
) + σk−1ϵtk−1

,

where ηk−1 = τλ2(T − tk−1) = σ2
k−1. Then, we can apply the technique in Pensia et al. (2018),

and obtain:

I(X̂0;X1:m|X̂T ) ≤ I(X̂ [N ];X1:m|X̂T ) ≤
N∑

k=1

I(X̂tk ;X1:m|X̂T , X̂
[k−1])

=

N∑
k=1

(
h(X̂tk |X̂T , X̂

[k−1])− h(X̂tk |X1:m, X̂T , X̂
[k−1])

)
According to the Langevin dynamic update and the bounded gradient assumption, we have

h(X̂tk |X̂T , X̂
[k−1]) = h(ηk−1gS(Xtk−1

) + σk−1ϵtk−1
) ≤ d

2
log

(
2πe

η2k−1L
2 + dσ2

k−1

d

)
,

where we use the fact that the Gaussian distribution has the largest entropy with h(Y ) ≤ d
2 log

(
2πeC

d

)
for all random variables Y satisfying E∥Y ∥22 ≤ C. Moreover, we have

E∥ηk−1gS(Xtk−1
) + σk−1ϵtk−1

∥22 = E∥ηk−1gS(Xtk−1
)∥22 + E∥σk−1ϵtk−1

∥22 ≤ η2k−1L
2 + dσ2

k−1,
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which is due to the independence between the score estimation and the injected noise. Then, we also
have h(X̂tk |X1:m, X̂T , X̂

[k−1]) = h(σk−1ϵtk−1
) ≤ d

2 log
(
2πeσ2

k−1

)
.

Combine all these, we can get:

I(X̂0;X1:m|X̂T ) ≤
N∑
i=1

d

2
log

(
1 +

η2k−1L
2

dσ2
k−1

)
≤

N∑
i=1

η2k−1L
2

2σ2
k−1

,

where the last inequality use log(1 + x) ≤ x, ∀x ≥ 0. Putting ηk−1 = τλ2(T − tk−1) = σ2
k−1 into

the above equation, we conclude the proof.
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G EXPERIMENT DETAILS

In this section, we provide the detailed experimental setting and some additional experimental results.
Our experimental code is available at https://github.com/livreQ/InfoGenAnalysis.
The implementation is based on the code in Van den Burg & Williams (2021) for VAEs and based on
the code in Huang et al. (2021) for diffusion models.

Computational Resource The experiments for Swill Roll data were running on a machine with 1
2080Ti GPU of 11GB memory. The experiments for MNIST and CIFAR10 were running on several
server nodes with 6 CPUs and 1 GPU of 32GB memory.

G.1 VAE

To verify our theoretical results in Theorem 5.1 and compare to previous PAC Bayes bound for VAEs,
we present experiments on MNIST in this section.

G.1.1 RESULTS
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Figure 4: (a)The test VAE loss, previous PAC Bayes bound (converted to expectation bound) and our
mutual information bound on MNIST dataset change over training epochs. (b) The memorization
score with 0.95 quantile and mutual information estimation change over training epochs.

We conducted experiments on the MNIST dataset, using a Bernoulli distribution as the generator Gθ

for the VAE. The mutual information term was estimated using the method proposed in Sec. D.2,
leveraging a randomly initialized duplicate generator, which remained fixed as a reference throughout
the process.

The estimated bounds and test loss are plotted in Fig.4 (a). The previous PAC Bayes bound estimated
with train data goes below the test loss. This is due to the bound does not hold for any Gθ. In contrast,
our bound estimated on train data well aligns with the test loss because we have considered the
generalization term for Gθ.
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To further illustrate the effectiveness of using the conditional mutual information term to capture
the generalization of Gθ. We compare its estimation to the memorization score proposed in Van
den Burg & Williams (2021), which measures how much more likely an observation is when it is
included in the training set than when it is not. The result is presented in Fig.4(b), where we plot
the 95% quantile of the memorization score and the conditional mutual information term along the
training epochs. The two terms are highly correlated with similar evolving trends, suggesting our
bond may capture the memorization to some extent. To be noted, evaluating the memorization score
requires an additional validation set, while our bound can be evaluated with only the training set.

G.1.2 EXPERIMENT SETTINGS

This section strictly follows the setting in Van den Burg & Williams (2021).

Data and network structure During training on MNIST, we dynamically binarize the images by
treating each grayscale pixel value as the parameter of an independent Bernoulli random variable,
following standard practice. The encoder block is the stack of FC(1024, 512), RELU, FC(512, 256),
RELU and FC(256, 16). The generator block is the stack of FC(16, 256), RELU, FC(256, 512),
RELU, FC(512, 1024), and Sigmoid.

Training Details We optimized the model parameters using the Adam optimizer with a learning
rate of η = 10−3. The training was conducted with a batch size of 64, while the remaining Adam
hyperparameters were kept at their default values in PyTorch. The model was trained for 100 epochs.

G.2 DIFFUSION MODEL

G.2.1 BOUND ESTIMATION

Our main objective is to verify Theorem 6.2 for diffusion models, which involves illustrating: 1. the
inequality holds, as illustrated in Fig. 2. 2. the evolving trend of the two sides follows the change of
sample size m, seen in Fig. 2 (a). 3. the trade-off on diffusion time T , showed in Fig. 2 (b). To make
such a comparison, we need a quantitative estimation of the two sides.

Recall that DKL(PX∥Qπ
Gθ

T
) measures the proximity of the original data distribution to the generated

data distribution. A similar metric used to evaluate the performance of generative models is the
Fréchet inception distance (FID), which is the Wasserstein-2 distance between the generated and
the original data distribution. Since the data distribution is unknown, we conduct a Monte Carlo
estimation

∑mt

i=1 log(p(X̃i)/qGθ
(X̃i)) using a test dataset of size mt = 1000, which is independent

of the training set with Ste = {X̃}mt
i=1, X̃i ∼ PX . Then, we use a Kernel Density Estimation (KDE)

to calculate both p(X̃i) and qGθ
(X̃i). Such estimation of qGθ

is disentangled from the diffusion
process itself and can better reflect the generalization of the learned diffusion model by only using
the generated data (one can sample any number of data as wanted to fit the KDE).

On the Right-Hand Side (RHS), T2 has an analytic form. T3 is upper bounded by Theorem 6.3, where
we use a step-wise estimation for the maximum score norm L similar to the gradient norm estimation
in the literature of information-theoretic learning (Pensia et al., 2018; Li et al., 2019; Negrea et al.,
2019). T1 is the KL divergence between the final time posterior and the aggregated posterior, where
the former is a multivariate Gaussian, and the latter is a mixture of Gaussian in the normal setting of
diffusion models. Thus, we can simply use a KDE with a Gaussian kernel and bandwidth fixed to
time-specific variances of the forward process to approximate the aggregated posterior. Combining
the empirical score matching loss, we have the estimation of RHS. W.r.t the expectation over S, we
conduct 5-times Monte-Carlo estimation by randomly generating train datasets with different random
seeds.
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G.2.2 SWISS ROLL

Experimental Setting

• Score matching model structure We use a 4-layer Multilayer Perceptrons (MLPs) with
hidden size 128 to approximate the score function, where the input dimension is the 2D data
dimension plus the 1D time dimension.

• Train-test details During experiments, we record the generated data and estimate their
KL divergence from the test data during the training dynamics. We use 1000 Monte Carlo
sampling for the test-data KL divergence estimation and the same sampling size for every
kernel density estimation. The score matching model sθ(x, t) is trained for 10000 iterations,
and the backward generation takes 1000 steps, i.e., N = 1000.

Additional Results In Fig. 5 and Fig. 6, we plot the generated data with the score model obtained
at the last iteration for each specific setting, e.g., different train sample size m and diffusion time T .

m = 10 m = 100 m = 200

m = 600 m = 800 m = 2000
Figure 5: Sampling results w.r.t. different train data size m: 1000 data points generated by a score-
based model trained with 10000 gradient iterations and diffusion time T = 1. The sampling is
conducted after 1000 steps when solving the discretized backward SDE.
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T = 0.020 T = 0.040 T = 0.060

T = 0.080 T = 0.100 T = 0.120

T = 0.140 T = 0.160 T = 0.180

T = 0.200 T = 0.400 T = 0.600

T = 0.800 T = 1.000 T = 1.200

T = 1.400 T = 1.600 T = 1.800

Figure 6: Sampling results w.r.t. different diffusion time T : 1000 data points generated by a score-
based model trained on m = 200 data points with 10000 gradient iterations.
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G.2.3 MNIST AND CIFAR10

Experimental Setting

• Score matching model structure Following Ho et al. (2020) and Huang et al. (2021), we use
modified UNets based on a Wide ResNet for 1x28x28 images in MNIST data and 3x32x32
images in CIFAR10 data, respectively. The weight normalization is replaced with group
normalization. Each model consists of two convolutional residual blocks per resolution
level, along with self-attention blocks at the 16x16 resolution between the convolutional
layers. The diffusion time t is incorporated into each residual block via the Transformer
sinusoidal positional embedding.

• Train-test details During experiments, we record the generated data and estimate their
KL divergence from the test data during the training dynamics. We use 100 Monte Carlo
sampling for test-data KL estimation and the same sampling size for every kernel density
estimation. The score matching model sθ(x, t) is trained was trained on m = 16 images for
10000 iterations, and the backward generation takes 1000 steps, i.e., N = 1000. BPD was
estimated using the method proposed in Huang et al. (2021), and test data KL was estimated
using KDE as for the Swiss Roll data.

Additional Results Large step sizes will cause instability or large discretization errors. However,
the step size is not the smaller, the better. After some threshold, reducing the step size further
yields negligible improvements because of the model’s approximation error and will cause a heavy
computation burden. In addition, according to the relation N = T

τ , a small step size corresponds to a
large number of steps, which can lead to overfitting, especially when the model is trained with few
data.

Replace N with T/τ in the bound, we have T3 =
R
√

(β1−β0)L2T 2+((1+τ)β0−τβ1)L2T )√
m

. In the
experimental setting of the original submission Fig.7 (a), we set N = 1000, T ∈ [0.2, 2], so we
have 0.0001 ≤ τ ≤ 0.002. Since we used β0 = 0.1, β1 = 20 in all the experiments, which gives
0.06 ≤ (1 + τ)β0 − τβ1 ≤ 0.09998. Therefore, we have T3 ∈ O(T ) that has a linear growth w.r.t
T for all τ used in our experiments. Hence, we suppose the impact of τ in this range is minor. To
further verify this, we set τ = 0.001 as suggested by the reviewer and change N for different T
accordingly. In Fig.7 (b), we compare the results with the previous setting. It shows the whole upper
bound (including score matching loss), and the log density remains consistent with the results in the
previous setting. However, we keep using τ = 0.001 for the rest of the experiments to avoid potential
concerns because we are varying T in a larger range.
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Figure 7: The evolution of the estimated bounds, test data KL divergences, and test data log densities
(measured by BPD) w.r.t different diffusion time T for DM trained on few-shot MNIST data (m = 16):
(a) with fixed number of steps N = 1000 (KL and BDP were calculated with 100 test samples,) and
(b) with fixed step size τ = 0.001, BDP was calculated with 10000 test samples, note N = T

τ .
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(a) train data (b) T = 0.2 (c) T = 0.4 (d) T = 0.6 (e) T = 0.8 (f) T = 1.0

(g) train data (h) T = 1.2 (i) T = 1.4 (j) T = 1.6 (k) T = 1.8 (l) T = 2.0

Figure 8: The generated images for different diffusion times T on the MNIST dataset (we randomly
sample 16 images for each T ). The score-matching model was trained on m = 16 images (we use
this few-shot setting to make sure we can present visual difference within limited random draws)
randomly sampled from the dataset for each T . The training process takes 10000 iterations. The
generation quality is consistent with the estimated bound in Fig. 2 (a), where the optimal diffusion
time should be around T = 0.8. The sampling process has a fiexed step size τ = 0.001.

(a) train data (b) T = 0.2 (c) T = 0.4 (d) T = 0.6 (e) T = 0.8 (f) T = 1.0

(g) train data (h) T = 1.2 (i) T = 1.4 (j) T = 1.6 (k) T = 1.8 (l) T = 2.0

Figure 9: The generated images for different diffusion times T on the MNIST dataset (we randomly
sample 16 images for each T ). The score-matching model was trained on m = 16 images (we use
this few-shot setting to make sure we can present visual difference within limited random draws)
randomly sampled from the dataset for each T . The training process takes 10000 iterations. The
generation quality is consistent with the estimated bound in Fig. 2 (a), where the optimal diffusion
time should be around T = 0.8. The sampling process has a fixed number of steps N = 1000.
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(a) train data (b) T = 0.2 (c) T = 0.4 (d) T = 0.6 (e) T = 0.8 (f) T = 1.0

(g) train data (h) T = 1.2 (i) T = 1.4 (j) T = 1.6 (k) T = 1.8 (l) T = 2.0

Figure 10: The generated images for different diffusion times T on the CIFAR10 dataset (we randomly
sample 16 images for each). The score-matching model was trained on m = 16 images (we use
this few-shot setting to make sure we can present visual difference within limited random draws)
randomly sampled from the dataset for each T . The training process takes 10000 iterations. The
generation quality is consistent with the estimated bound in Fig. 2 (b), where the optimal diffusion
time should be around T = 0.8. The sampling process has a fixed number of steps N = 1000.

H BROADER IMPACTS AND LIMITATIONS

Broader Impacts

• Potential positive impacts We study the theoretical aspects of generative models. By
improving the generalization, we can decrease replicated generation to help address the
privacy and copyright issues in generative models.

• Potential negative impacts The improvement for generating diverse data may be used to
generate harmful information or fake news.

• How to address the potential negative impacts? We can design harmful information
detection mechanisms and embed a filter strategy for generative models.

Limitations The theoretical analysis for DM in the last theorem is for a first-order Euler-Maruyama
solver for SDE. One can extend and prove guarantees for other backward SDEs. While some diffusion
models use deterministic encoders or generators that also work well in practice (e.g., Song et al.
(2020a) and Bansal et al. (2024)), we consider the encoder and generator as randomized mappings as
is most typical in diffusion models. However, our current definition of encoder and generator with
randomized mapping covers the deterministic mapping setting by restricting E(X) and G(Z) to the
set of delta distributions. The problem is due to the mutual information terms could be infinite for
deterministic settings. However, this could be addressed by exploiting other refined information-
theoretic tools. As this paper focuses on providing a unified theoretical viewpoint for typical VAEs
and DMs, we cannot cover all the methods. The improvements mentioned above will be left as future
work. Moreover, potential fairness issues raised in learning generative models could be considered by
exploiting previous related works like Xu et al. (2024); Shui et al. (2022).

I ADDITIONAL RELATED WORKS

Algorithms for VAEs The VAE (Kingma & Welling, 2013) has been widely applied and improved
algorithmically through numerous extensions that include changing the posterior distribution to
exponential families (Shi et al., 2020; Shekhovtsov et al., 2021) and location-scale families (Park
et al., 2019), balancing the rate-distortion trade-off (Higgins et al., 2017; Rybkin et al., 2021),
replacing the regularization term with adversarial objectives (Makhzani et al., 2015), or using other
divergences like the Wasserstein distance (Tolstikhin et al., 2017) (WAE).
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Score-based diffusion models Song et al. (2020b) unifies the previous two main diffusion ap-
proaches: Score matching with Langevin dynamics (SMLD) (Song & Ermon, 2019) and Diffusion
probabilistic modeling (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) as score-based diffusion
models, where their forward processes are considered as different families of Stochastic Differential
Equations (SDEs). Later on, the variational perspective of these models was studied in (Huang et al.,
2021; Kingma et al., 2021; Franzese et al., 2023). Huang et al. (2021); Song et al. (2020b) study how
to use diffusion models to estimate the data likelihood based on some theoretical results in stochastic
calculus (Karatzas & Shreve, 2014; Oksendal, 2013). Recently, latent diffusion models (Vahdat
et al., 2021; Rombach et al., 2022) have gained great success in generating high-resolution images,
extended to further applications like text-to-image editing (Han et al., 2024; Huberman-Spiegelglas
et al., 2024).

Convergence theory for diffusion models De Bortoli et al. (2021) are the first to give quantitative
convergence results for DMs, where they upper bound the original and generated data distribution
in Total Variation (TV) distance and assume a L∞-accurate score estimation. This leads to vacuous
results under the manifold assumption, where the TV can be very large, even if the distributions are
similar. Lee et al. (2023); Chen et al. (2022) that also bound in TV but assume L2-accurate score
estimation have the same problem. Chen et al. (2023a) provide an improved analysis with minimal
smoothness assumptions, which is valid for any data distribution with second-order moment with a
L2-accurate score estimation. The above works focus on analysis for convergence w.r.t population
data distribution without explicit consideration of generalization.

Information-theoretic learning theory Recent information-theoretic analyses (Xu & Raginsky,
2017; Russo & Zou, 2019; Steinke & Zakynthinou, 2020; Haghifam et al., 2021; 2022; Hellström
& Durisi, 2022; Wang & Mao, 2023) have provided a rigorous framework for understanding the
generalization capabilities of deep learning models, and have further been extended to complex
learning scenarios, such as meta-learning (Chen et al., 2021; 2023b) and domain adaptation (Wu
et al., 2022; Chen & Marchand, 2023). Unlike conventional VC-dimension and uniform stability
bounds, this approach offers a key advantage in capturing dependencies on the data distribution,
hypothesis space, and learning algorithm.

38


	Introduction
	Related Work
	Problem Setup
	Generalized Formulation
	Variational Auto-Encoder (VAE)
	Diffusion Model (DM)

	Setup for Generalization Analysis

	General Theoretical Results
	Analysis of VAEs
	Analysis of Diffusion Models
	Generation Error Bound for Score-based DMs
	Generalization for SDE Encoders
	Generalization for Discretized SDE Generators

	Experiments
	Synthetic Data
	Real Data

	Conclusion
	Preliminaries
	Notation Table
	Definitions
	Useful Lemmas

	General optimization objective and two viewpoints of DMs
	Decomposition for VAEs
	DMs as Hierarchical VAEs
	DMs as Time-dependent Mappings

	Proof of Main Theorem
	Generalization Bound for Generation (Proof of Theorem 4.1)
	Generation Error Bound (Proof of Corollary 4.2 and 4.3)

	Discussion of the VAE Bound
	Detailed Comparison to Previous VAE Bound
	Estimation of The Conditional Mutual Information Term
	Example analysis of Linear VAE

	Proof for Diffusion Models
	Proof of Lemma 6.1
	Proof of Theorem 6.2

	Proof of Theorem 6.3
	Experiment Details
	VAE
	Results
	experiment settings

	Diffusion Model
	Bound Estimation
	Swiss Roll
	MNIST and CIFAR10


	Broader Impacts and Limitations
	Additional Related Works

