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ABSTRACT

Current neural-network-based classifiers are susceptible to adversarial examples.
The most empirically successful approach to defending against such adversarial
examples is adversarial training, which incorporates a strong self-attack during
training to enhance its robustness. This approach, however, is computationally
expensive and hence is hard to scale up. A recent work, called fast adversarial
training, has shown that it is possible to markedly reduce computation time without
sacrificing significant performance. This approach incorporates simple self-attacks,
yet it can only run for a limited number of training epochs, resulting in sub-optimal
performance. In this paper, we conduct experiments to understand the behavior of
fast adversarial training and show the key to its success is the ability to recover
from overfitting to weak attacks. We then extend our findings to improve fast
adversarial training, demonstrating superior robust accuracy to strong adversarial
training, with much-reduced training time.

1 INTRODUCTION

Adversarial examples are carefully crafted versions of the original data that successfully mislead a
classifier (Szegedy et al., 2013), while realizing minimal change in appearance when viewed by most
humans. Although deep neural networks have achieved impressive success on a variety of challenging
machine learning tasks, the existence of such adversarial examples has hindered the application of
deep neural networks and drawn great attention in the deep-learning community.

Empirically, the most successful defense thus far is based on Projected Gradient Descent (PGD)
adversarial training (Goodfellow et al., 2014; Madry et al., 2017), augmenting the data of interest with
strong adversarial examples, to help improve model robustness. Although effective, this approach is
not efficient and may take multiple days to train a moderately large model. On the other hand, one of
the early versions of adversarial training, based on a weaker Fast Gradient Signed Method (FGSM)
attack, is much more efficient but suffers from “catastrophic overfitting,” a phenomenon where the
robust accuracy with respect to strong attacks suddenly drops to almost zero during training (Tramèr
et al., 2017; Wong et al., 2019), and fails to provide robustness against strong attacks.

Fast adversarial training (Wong et al., 2019) is a simple modification to FGSM, that mitigates
this issue. By initializing FGSM attacks with large randomized perturbations, it can efficiently
obtain robust models against strong attacks. Although the modification is simple, the underlying
reason for its success remains unclear. Moreover, fast adversarial training is only compatible with
a cyclic learning rate schedule (Smith & Topin, 2019), with a limited number of training epochs,
resulting in sub-optimal robust accuracy compared to PGD adversarial training (Rice et al., 2020).
When fast adversarial training runs for a large number of epochs, it still suffers from catastrophic
overfitting, similar to vanilla FGSM adversarial training. Therefore, it remains an unfinished task to
obtain the effectiveness of PGD adversarial training and the efficiency of FGSM adversarial training
simultaneously.

In this paper, we conduct experiments to show that the key to the success of fast adversarial training
is not avoiding catastrophic overfitting, but being able to retain the robustness of the model when
catastrophic overfitting occurs. We then utilize this understanding to propose a simple fix to fast
adversarial training, making possible the training of it for a large number of epochs, without sacrificing
efficiency. We demonstrate that, as a result, we yield improved performance.
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We also revisit a previously developed technique, FGSM adversarial training as a warmup (Wang
et al., 2019), and combine it with our training strategy to further improve performance with small
additional computational overhead. The resulting method outperforms the state-of-the-art approach,
PGD adversarial training (Rice et al., 2020), while consuming much less training time.

Our contributions are summarized as follows:

• We conduct experiments to explain both the success and the failure of fast adversarial
training for various cases.

• We propose an alternative training strategy as a fix to fast adversarial training, which is
equivalently efficient but allows training for a large number of epochs, and hence achieves
better performance.

• We propose to utilize the improved fast adversarial training as a warmup for PGD adversarial
training, to outperform the state-of-the-art adversarial robustness, with reduced computation.

2 BACKGROUND AND RELATED WORK

The existence of adversarial examples in deep learning was initially reported in (Szegedy et al., 2013).
Since then, many approaches have been proposed to mitigate this issue and improve the adversarial
robustness of models. A straightforward method is data augmentation, where adversarial examples are
generated before the back-propagation at each iteration and used for model updates. This approach
is referred to as adversarial training. It was first used with a gradient-based single-step adversarial
attack, also known as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014). Later,
(Kurakin et al., 2016) found that models trained with FGSM tend to overfit and remain vulnerable to
stronger attacks. They proposed a multi-step version of FGSM, namely the Basic Iterative Method
(BIM), seeking to address its weaknesses. Randomized initialization for FGSM then was introduced
in (Tramèr et al., 2017), leading to R+FGSM to increase the diversity of attacks and mitigate the
overfitting issue. Finally, (Madry et al., 2017) combined randomized initialization with multi-step
attacks to propose projected gradient descent (PGD) attacks, and showed its corresponding adversarial
training is able to provide strong adversarial robustness (Athalye et al., 2018). As PGD adversarial
training is effective, many works have tried to improve upon it (Zhang et al., 2019b; Xie et al., 2019).
However, a recent study (Rice et al., 2020) conducted extensive experiments on adversarially trained
models and demonstrated that the performance gain from almost all recently proposed algorithmic
modifications to PGD adversarial training is no better than a simple piecewise learning rate schedule
and early stopping to prevent overfitting.

In addition to adversarial training, a great number of adversarial defenses have been proposed, yet
most remain vulnerable to stronger attacks (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016;
Papernot et al., 2016; Kurakin et al., 2016; Carlini & Wagner, 2017; Brendel et al., 2017; Athalye
et al., 2018). A major drawback of many defensive models is that they are heuristic and vulnerable to
adaptive attacks that are specifically designed for breaking them (Carlini et al., 2019; Tramer et al.,
2020). To address this concern, many works have focused on providing provable/certified robustness
of deep neural networks (Hein & Andriushchenko, 2017; Raghunathan et al., 2018; Kolter & Wong,
2017; Weng et al., 2018; Zhang et al., 2018; Dvijotham et al., 2018; Wong et al., 2018; Wang et al.,
2018; Lecuyer et al., 2018; Li et al., 2019; Cohen et al., 2019), yet their certifiable robustness cannot
match the empirical robustness obtained by adversarial training.

Among all adversarial defenses that claim empirical adversarial robustness, PGD adversarial training
has stood the test of time. The only major caveat to PGD adversarial training is its computational cost,
due to the iterative attacks at each training step. Many recent works try to reduce the computational
overhead of PGD adversarial training. (Shafahi et al., 2019) proposes to update adversarial perturba-
tions and model parameters simultaneously. By performing multiple updates on the same batch, it is
possible to imitate PGD adversarial training with accelerated training speed. Redundant calculations
are removed in (Zhang et al., 2019a) during back-propagation for constructing adversarial examples,
to reduce computational overhead. Recently, (Wong et al., 2019) shows surprising results that FGSM
adversarial training can obtain strongly robust models if a large randomized initialization is used for
FGSM attacks. However, they are forced to use a cyclic learning rate schedule (Micikevicius et al.,
2017) and a small number of epochs for the training. This issue limits its performance, especially
when compared to state-of-the-art PGD adversarial training with early stopping (Rice et al., 2020).
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3 FAST ADVERSARIAL TRAINING

3.1 PRELIMINARIES

We consider the task of classification over samples (x, y) ∈ (X ,Y). Consider a classifier fθ : X → Y
parameterized by θ, and a loss function L. For a natural example x ∈ X , an adversarial example x′
satisfies D(x, x′) < ε for a small ε > 0, and fθ(x) 6= fθ(x

′), where D(·, ·) is some distance metric,
i.e., x′ is close to x but yields a different classification result. The distance is often described in terms
of an `p metric, and we focus on the `∞ metric in this paper.

Adversarial training is an approach for training a robust model against adversarial attacks. It represents
the objective of obtaining adversarial robustness in terms of a robust optimization problem, defined as

min
θ
E(x,y)∼X max

‖x′−x‖∞<ε
(L(fθ(x

′), y)) (1)

It approximates the inner maximization by constructing adversarial examples based on natural
examples, and then the model parameters θ are updated via an optimization method with respect
to the adversarial examples, instead of the natural ones. One of the simplest choices of attack for
adversarial training is the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014):

x′ = x+ εsign(∇xL(fθ(x), y)) (2)

Before the introduction of fast adversarial training (Wong et al., 2019), which we will introduce later,
it was commonly believed that FGSM adversarial training fails to provide strong robustness (Kurakin
et al., 2016). During FGSM adversarial training, the robust accuracy of the model would suddenly
drop to almost 0% after a certain point, when evaluated against PGD attacks. This phenomenon was
referred to as “catastrophic overfitting” in (Wong et al., 2019). The cause of catastrophic overfitting
was studied extensively in (Tramèr et al., 2017): during training, since FGSM is a simple attack, the
model learns to fool the FGSM attacks by inducing gradient masking/obfuscated gradient (Athalye
et al., 2018); that is, the gradient is no longer a useful direction for constructing adversarial examples.
The existence of catastrophic overfitting has prohibited the use of FGSM adversarial training.

To mitigate this issue, (Madry et al., 2017) introduced a multi-step variant of FGSM, namely Projected
Gradient Descent (PGD), which takes multiple small steps with stepsize α to construct adversarial
examples instead of one large step as in FGSM:

x′t+1 = Π‖x′−x‖∞≤ε
(
x′t + αsign(∇x′

t
L(fθ(x

′
t), y))

)
(3)

Extensive experimental results (Madry et al., 2017; Athalye et al., 2018) have shown that, unless the
model is particularly designed for creating obfuscated gradients (Tramer et al., 2020), PGD attacks
are generally exempt from overfitting. Consequently, adversarial training with PGD leads to robust
models against strong attacks, although its computational cost is often an order of magnitude more
expensive than standard training and FGSM adversarial training.

Recently, in contrast to conventional believe, (Wong et al., 2019) proposed fast adversarial training
and suggested it is possible to construct strongly robust models via FGSM adversarial training. They
showed it is important to initialize a FGSM attack with large randomized perturbations, to protect
FGSM adversarial training from overfitting. Although randomly initialized FGSM (R+FGSM) has
been used in previous works (Tramèr et al., 2017), (Wong et al., 2019) points out that the scale
of the randomized initialization was restrictive and needs to be enlarged. As a result, this simple
modification enables R+FGSM adversarial training to obtain reasonable robustness against strong
attacks.

3.2 SUB-OPTIMAL PERFORMANCE OF FAST ADVERSARIAL TRAINING

In (Wong et al., 2019) it is claimed that fast adversarial training has comparable performance as
PGD adversarial training, yet they only compared to the original results from (Madry et al., 2017).
Recent work (Rice et al., 2020) has shown PGD adversarial training can be greatly improved with the
standard piecewise learning rate schedule and early stopping.

In Figure 1 we compare fast adversarial training (solid lines) and PGD adversarial training (dash
lines) on a PreAct ResNet-18 (He et al., 2016a) model for classifying CIFAR-10 (Krizhevsky et al.,
2009) under 10-step PGD attacks (ε = 8/255). For fast adversarial training, we use a cyclic learning
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Figure 1: The epoch number where
overfitting happens for FastAdv with
the piecewise learning rate schedule,
versus the best clean (orange) and ro-
bust (green) accuracy before overfit-
ting. The solid lines and dashed lines
are the clean and robust accuracy for
FastAdv with cyclic learning rates and
PGD adversarial training with piece-
wise learning rates.
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Figure 2: Comparison of a success mode (orange) and a
failure mode (green) of fast adversarial training for 30 epochs.
In plot (a), we show the test clean and robust accuracy for
each epoch. In plot (b), we report the same quantities for
every 10 batches for the last 5 epochs. Both models encounter
catastrophic overfitting, but only the model in the failure
mode never recovers.

rate schedule (Smith & Topin, 2019), which linearly increases and decreases the learning rate. In
particular, we linearly increase the learning rate from 0 to 0.2 in the first 12 epochs and decrease to 0
for the last 18 epochs as recommended in (Wong et al., 2019). For PGD adversarial training, we use
a piecewise learning rate schedule which starts at 0.1 and decay by a factor of 0.1 at the 50th and the
75th epoch for a total of 100 epochs.

A clear gap in the robust accuracy is illustrated in Figure 1. There are two main factors accounting
for this performance gap. First, although a model trained with the cyclic learning rate can converge
in only a few epochs, it often results in sub-optimal results in the adversarial training setting (Rice
et al., 2020) compared to the piecewise learning rate schedule. The issue is that fast adversarial
training is forced to use a cyclic learning rate schedule. If a piecewise learning rate schedule is used
for fast adversarial training for a large number of epochs, the model will still encounter catastrophic
overfitting. We ran fast adversarial training with 25 different random seeds for 100 epochs, with
the same piecewise learning rate schedule for PGD adversarial training, and terminated it when
catastrophic overfitting happened. We add in Figure 1 the epoch number where the overfitting
happens, versus the best clean and robust accuracy before overfitting.

The results show that none of the training progress exceeds even the 70th epochs without encountering
catastrophic overfitting. For training progress terminated before the 50th epoch, where the learning
rate drops, their performance is inferior due to insufficient training. On the other hand, although the
rest of training progress also terminate early, they consistently outperformed fast adversarial training
with the cyclic learning rate schedule. In other words, if fast adversarial training can run for more
epochs with the piecewise learning rate schedule, it has the potential to improve upon fast adversarial
training with the cyclic learning rate schedule.

Another reason for the inferior performance of fast adversarial training is the inherent weakness of
FGSM compared to PGD attacks. As PGD is in general a better approximation to the solution for the
inner maximization problem in (1), it is expected to produce more robust models. We seek to address
this issue in Section 5.

3.3 UNDERSTANDING FAST ADVERSARIAL TRAINING

Although (Wong et al., 2019) has shown that initialization with a large randomized perturbation
results in effective FGSM adversarial training, the underlying mechanism for its effectiveness remains
a puzzle. Moreover, even with the recommended setting, catastrophic overfitting still happens on
occasion. Plot (a) in Figure 2 shows both a success mode (orange) and a failure mode (green) when
we use fast adversarial training with cyclic learning rate for 30 epochs. It seems that the model
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in the success mode never encounters overfitting, while the model in the failure mode encounters
catastrophic overfitting at around the 26th epoch. However, surprisingly, if we look closer at the
training progress in plot (b), where we report the test clean and robust accuracy for every 10 batches
(with a batch size of 128) for the last 5 epochs, it is observed that the model in the success mode also
encounters a sudden drop in test robust accuracy, indicating catastrophic overfitting, but it recovers
immediately.

This finding explains why fast adversarial training could run more epochs than vanilla FGSM
adversarial training. It is not because it can completely avoid catastrophic overfitting, as previously
believed; rather, it is because it can recover from the catastrophic overfitting in a few batches. This
has not been observed before because normally a model is only evaluated per epoch, while such
“overfit-and-recover” behavior happens within a span of a few batches.

The observation in Figure 2 also suggests that, when catastrophic overfitting happens, although
the model quickly transforms into a non-robust one, it is fundamentally different from an ordinary
non-robust model. In fact, the non-robust model due to catastrophic overfitting can quickly retain
its robustness once the corresponding attack find the correct direction for constructing attacks again.
Thus, the root of the effectiveness of randomized initialization in fast adversarial training is its
ability to help escaping from catastrophic overfitting. On the other hand, it also explains why fast
adversarial training still overfits after long training progress. Randomized initialization works with a
high probability, but not always. As the training progress continues, the model is more capable of
overfitting, and fast adversarial training is less likely to find the correct direction for constructing
FGSM attacks.

To verify our analysis, we conduct experiments to exclude the use of randomized initialization, that is
to use vanilla FGSM adversarial training, but also run PGD adversarial training for a few batches
when catastrophic overfitting happens. In particular, we monitor the PGD robust accuracy on a
validation set during training. Once there is a sudden drop of the validation robust accuracy, which
indicates the occurrence of overfitting, we run PGD adversarial training for a few batches to help
the model recover from overfitting, as an alternative to R+FGSM. The same piecewise learning rate
schedule as in Figure 1 is used. We also run the vanilla fast adversarial training as a reference.
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Figure 3: Validation clean and robust accuracy evaluated for every 20 batches. (a) Fast adversarial
training. (b) FGSM with no randomized initialization but using PGD to mitigate overfitting. (c)
FGSM with randomized initialization and PGD to mitigate overfitting. All training uses the same
piecewise learning rate schedule.

The results are illustrated in Figure 3, where we report the robust accuracy under 10-step PGD attacks
with size ε = 8/255 for every 20 batches. Comparing plot (a) and (b), while the fast adversarial train-
ing overfits after around 15,000 batches, FGSM adversarial training without randomized initialization
obtains robust accuracy despite several “overfit-and-recover” behaviors. This confirms our hypothesis
that the essential nature of successful FGSM adversarial training is not the randomized initialization,
but the ability to recover from catastrophic overfitting.

4 A SIMPLE FIX TO FAST ADVERSARIAL TRAINING

The analysis and experimental results above suggest that (i) FGSM adversarial training is useful as
long as it can recover from catastrophic overfitting, and (ii) fast adversarial training can only run for
limited epochs because the randomized initialization is not reliable. Therefore, a more reliable way
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to mitigate catastrophic overfitting is needed. To this end, we propose a simple fix to fast adversarial
training, incorporating PGD adversarial training when catastrophic overfitting is observed.

Algorithm 1 Improved fast adversarial training for T epochs, given some radius ε, N PGD steps,
step size α, a threshold c, frequency of detection s, and a dataset of size M for a network fθ.

for t = 1 . . . T do
for i = 1 . . .M do

if Acclast > Accvalid + c then
δ = PGD Attack(fθ, xi, yi) // Overfitting happens, run PGD adversarial training

else
δ = R+FGSM Attack(fθ, xi, yi) // No Overfitting, use R+FGSM adversarial training

end if
θ = θ −∇θ`(fθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
if i%s == 0 then

Let Acclast = Accvalid. Update robust accuracy Accvalid under PGD attacks.
end if

end for

The proposed approach is described in Algorithm 1. The core idea is simple and has been described
briefly in the previous section: we hold out a validation set and monitor its robust accuracy for
detecting overfitting. When there is a drop on the validation robust accuracy beyond a threshold,
at which point catastrophic overfitting happens, we run 10-step PGD adversarial training for a few
batches to help the model regain its robustness.

Note that although the training progress in plot (a) of Figure 3 overfits at around the 15,000th batch,
the frequency of catastrophic overfitting is much lower compared to the training progress in plot (b),
where no randomized initialization is used. This also imply that although randomized initialization
cannot prevent catastrophic overfitting, it effectively reduces its occurrences. To verify this conjecture,
we perform the same experiment as in plot (b), but now with randomized initialization, and show the
training progress in plot (c) of Figure 3. The occurrences of catastrophic overfitting is much fewer
than in plot (b), confirming our conjecture. Therefore, we keep the large randomized initialization for
FGSM adversarial training in Algorithm 1, resulting in R+FGSM adversarial training. The infrequent
occurrences of catastrophic overfitting also ensures the additional PGD adversarial training adds little
computational overhead to the training progress.

Table 1: CIFAR-10 standard and robust accuracy on PreAct ResNet-18 for vanilla PGD adversarial
training with early stopping, fast adversarial training (FastAdv), improved fast adversarial training
(FastAdv+) and fast adversarial training as a warmup for PGD adversarial training (FastAdvW).

Method Clean Accuracy PGD(ε = 8/255) Time/Epoch(min) Total Time(min)
PGD 83.43± 0.25% 51.74± 0.17% 1.66 166.45

FastAdv 83.41± 0.13% 46.14± 0.08% 0.31 12.35
FastAdv+ 83.54± 0.22% 48.43± 0.14% 0.32 32.14
FastAdvW 83.18± 0.18% 53.09± 0.11% 0.41 40.73

Hyperparameters In Table 1 we report the final clean and robust accuracy of the improved fast
adversarial training (FastAdv+). We use the same piecewise learning rate schedule and early stopping
as used in PGD adversarial training. We detect overfitting every s = 20 batches with a randomly
sampled validation batch, and PGD adversarial training runs for s = 20 batches until the when
overfitting happens. The threshold for detecting catastrophic overfitting is c = 0.1. The robust
accuracy is evaluated against 50-step PGD attacks with 10 restarts for ε = 8/255. Note we use
half-precision computations (Micikevicius et al., 2017) as recommended in (Wong et al., 2019) for
all training methods, for acceleration. All experiments are repeated for 5 times, and both the mean
and the standard deviation are reported.

Efficiency Although FastAdv consumes less time, thus seems to be more efficient, it is worth
noting that the computational time per epoch is almost the same for FastAdv and FastAdv+. FastAdv
consumes less time merely because the training progress is forced to stop before its convergence. On
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the other hand, our proposed FastAdv+ allows the training process to converge and results in better
performance.

5 FAST ADVERSARIAL TRAINING AS A WARMUP

We are able to improve the performance of fast adversarial training by allowing longer training
progress. However, the associated robust accuracy is still noticeably worse than PGD adversarial
training. This is expected, as PGD is inherently a stronger attack than FGSM. In this section, we adapt
a previously studied technique (Wang et al., 2019), using FGSM adversarial training as a warmup
for PGD adversarial training, to close the gap between fast adversarial training and PGD adversarial
training.

It has been observed in (Wang et al., 2019) that using FGSM at the early stage of PGD adversarial
training does not degrade its performance, and even provides slight improvement. The intuition
behind this is that at the early stage of training, the model is vulnerable to adversarial attacks, and
therefore there is no difference between using a weak attack and a strong attack. As the training
proceeds, the model becomes more robust to weak attacks, and sometimes even overfits, where
stronger attacks are more effective at increasing the robustness of the model.

However, due to the risk of catastrophic overfitting, only a few epochs of FGSM adversarial training
were used in (Wang et al., 2019) as a warmup, and consequently it does not provide much improvement
on the robust accuracy, nor does it save much training time. As FastAdv+ can run for as many epochs
as needed, it is possible to use it for most of the training epochs and PGD adversarial training for
only a few epochs at the end.

Starting Point of PGD Adversarial Training Since early stopping always happens a few epochs
after the learning rate decay, we starts PGD adversarial training a few epochs before the learning
rate decay, to minimize the span of PGD adversarial training for the purpose of efficiency. In the
experiments, we run the improved fast adversarial training for the first 70 epochs and change to
PGD adversarial training. The early stopping happens at the 78th epoch, meaning we only run PGD
adversarial training for no more than 10 epochs.

0 20 40 60 80 100
Training Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Va
lid

 A
cc

ur
ac

y(
%

)

FastAdv+ PGD FastAdvW 8-8 FastAdvW 4-8

Figure 4: Robust accuracy on a validation set,
evaluated for FastAdv+, PGD adversarial train-
ing, FastAdvW with a constant perturbation size
ε = 8/255, and with ε = 4/255 and 8/255 in
two stages.

We report in Figure 4 the validated clean and robust
accuracy during the whole training progress for
FastAdv+ as a warmup, termed FastAdvW. While
using FastAdvW improves upon FastAdv+, it still
suffers from overfitting (however, not catastrophic
overfitting) in the later stage of training. We assume
this is due to the fact that the FGSM attack with
a large randomized initialization is already strong,
in contrast to vanilla FGSM adversarial training
used in (Wang et al., 2019). Following the intuition
that only a weak attack is needed in the early stage,
we reduce the size of perturbation ε from 8/255
to 4/255 for the stage of fast adversarial training.
As shown in Figure 4, this change of the attack
size (FastAdvW 4-8) allows the model to reach
higher robust accuracy. We also report the final test
clean and robust accuracy, which is based on early
stopping1, on the test set in Table 1. This shows FastAdvW outperforms PGD adversarial training in
robust accuracy and is comparable on clean accuracy, while consuming much less time.

6 ADDITIONAL EXPERIMENTS

In the above analyses, we only evaluated the proposed approach on CIFAR-10 using the PreAct
ResNet-18 architecture. In this section, we run more experiments on various data sets and model
architectures to show the generality of our results.

1For FastAdvW, we only consider stopping after PGD adversarial training starts.
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We first show in Table 2 results for both CIFAR-10 and CIFAR-100 on the Wide-ResNet 34-10
(Zagoruyko & Komodakis, 2016) as this model structure is widely used in the adversarial training
literature (Madry et al., 2017; Shafahi et al., 2019; Zhang et al., 2019b; Rice et al., 2020). The same
setting of hyperparameters in Section 4 is used, except the threshold for detecting “catastrophic
overfitting” is reduced to c = 0.05 for CIFAR-100 to accommodate for its range of robust accuracy.

In addition, we also include in Table 2 results for “free” adversarial training (Shafahi et al., 2019).
This approach reduces the computational cost of PGD adversarial training utilizing the “minibatch
replay” technique, which adds adversarial perturbations and updates the model simultaneously on the
same minibatch for several iterations, to imitate PGD adversarial training. As a result, this approach
only needs to run for several epochs to converge. In this experiments, we follow the recommendation
in (Shafahi et al., 2019) and replay each batch m = 8 times for a total of 25 epochs.

Finally, we conduct experiments on Tiny ImageNet, with results also summarized in Table 2. Although
previous works (Wong et al., 2019; Shafahi et al., 2019) conduct experiments on ImageNet, it still
requires several GPUs to run. As we only run experiments on a single RTX 2080ti, we considered
Tiny ImageNet, which consists of 200 ImageNet classes at 64 x 64 resolution. The architecture we
use is ResNet-50 (He et al., 2016b) and the hyperparameters, such as learning rate and size of attacks,
are kept the same as for CIFAR datasets.

Table 2: CIFAR-10 and CIFAR-100 standard and robust accuracy, and the corresponding training
time on Wide-ResNet 34-10 for PGD adversarial training, free adversarial training (Free), FastAdv,
FastAdv+ and FastAdvW. PGD attacks with 50 iterations and 10 restarts are used for evaluation.

Data Method Clean Accuracy PGD(ε = 8/255) Total Time(min)

CIFAR-10

PGD 85.27± 0.31% 54.10± 0.20% 998.27
Free (m=8) 85.87± 0.37% 46.13± 0.19% 358.53

FastAdv 85.21± 0.22% 46.36± 0.13% 82.32
FastAdv+ 86.52± 0.25% 51.01± 0.18% 143.17
FastAdvW 85.91± 0.36% 55.13± 0.22% 237.87

CIFAR-100

PGD 61.92± 0.20% 26.60± 0.14% 1014.47
Free (m=8) 62.11± 0.22% 25.37± 0.09% 362.83

FastAdv 55.71± 0.17% 27.50± 0.13% 103.83
FastAdv+ 60.57± 0.25% 28.61± 0.10% 184.50
FastAdvW 61.01± 0.27% 28.88± 0.17% 257.13

Tiny ImageNet

PGD 45.34± 0.30% 21.62± 0.11% 2099.83
Free (m=8) 34.75± 0.11% 14.30± 0.07% 743.94

FastAdv 48.31± 0.21% 19.96± 0.08% 194.51
FastAdv+ 48.02± 0.19% 20.05± 0.11% 330.65
FastAdvW 46.73± 0.31% 21.82± 0.19% 592.22

The results in Table 2 are consistent with what we have observed on the PreAct ResNet-18 architecture
for CIFAR-10. While FastAdv+ outperforms vanilla fast adversarial training as a result of longer
training progress, its robust accuracy is no better than PGD adversarial training. However, when
we use FastAdv+ as a warmup, its clean accuracy becomes comparable to PGD adversarial training,
while its robust accuracy constantly outperforms PGD adversarial training. In addition, FastAdvW
only consumes 25% of the training time of PGD adversarial training. It is also worth noting that
although free adversarial training uses a piecewise learning rate schedule as well, it only obtains its
best performance at the end of the training progress, thus does not benefit from early stopping in both
the performance and the efficiency.

6.1 SANITY CHECK

We now perform sanity check following the suggestions from (Athalye et al., 2018) to ensure our
proposed approaches are truly robust. For all the sanity checks, we evaluate our approaches on both
PreAct ResNet-18 and Wide-ResNet 34-10 for classifying CIFAR-10.

We first show the clean and robust accuracy under 10-step PGD attacks under varying sizes from
0 to 12/255 in Figure 5. It can be observed that the decreasing trend of robust accuracy of our
proposed approaches are consistent with models trained via PGD-AT and FastAdv, where FastAdvW
outperforms PGD-AT and FastAdv+ outperforms FastAdv consistently.
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Figure 5: Robust accuracy under 10-step PGD with step sizes from 0 to 12/255. The evaluations are
performed on (a) PreAct ResNet-18 and (b) Wide-ResNet 34-10 for classifying CIFAR-10. We also
include results for PGD-AT, FastAdv for comparison.

In addition, we show robust accuracy under other types attacks that do not rely on estimating gradients.
AutoAttack (Croce & Hein, 2020) ensembles four diverse attacks to reliably evaluate robustness:
two improved PGD attacks, a boundary based attack FAB (Croce & Hein, 2019), and a query-based
black-box attack Square Attack (Andriushchenko et al., 2019). We also use the recently proposed
state-of-the-art black-box attacks (Tashiro et al., 2020) to evaluate our models. This attack utilizes
output diversified sampling to construct transferable black-box attacks and is almost as powerful as
white-box PGD attack. The results are summarized on Table 3.

Table 3: CIFAR-10 standard and robust accuracy under various types of attacks on PreAct ResNet-18
and Wide-ResNet 34-10 for PGD adversarial training, FastAdv, FastAdv+ and FastAdvW.

Architecture Method Clean Accuracy PGD-10 AutoAttack Transfer

ResNet-18

PGD 83.21% 51.62% 46.75% 56.13%
FastAdv 83.55% 46.86% 41.63% 49.86%

FastAdv+ 83.59% 48.29% 43.40% 52.06%
FastAdvW 83.11% 54.09% 47.61% 57.13%

WideResNet

PGD 85.42% 54.70% 49.91% 59.94%
FastAdv 85.34% 48.55% 43.58% 51.98%

FastAdv+ 86.43% 50.11% 44.83% 55.39%
FastAdvW 86.44% 55.50% 50.57% 62.16%

We observe that no attack significantly reduces the robust accuracy of our proposed approaches, and
the relative performance across different approaches are consistent. AutoAttack reduces approxi-
mately 5% more robust accuracy than 10-step PGD, which is consistent with the observations in
(Croce & Hein, 2020).

7 CONCLUSION

We have conducted experiments to show that the key to the success of FGSM adversarial training is
the ability to recover from “catastrophic overfitting”. Fast adversarial training utilizes randomized
initialization to achieve this goal but still suffers from catastrophic overfitting for a large number
of training epochs. We design a new training strategy that mitigates this caveat and enables the
commonly used piecewise learning rate schedule for fast adversarial training and, as a result, improves
clean and robust accuracy. We also use the improved fast adversarial training as a warmup for PGD
adversarial training, and find it is sufficient to use this warmup for a majority of the training epochs to
save time and further improve model robustness. As a result, we obtain superior performance to the
expensive, state-of-the-art PGD adversarial training with much-reduced training time. Our proposed
approaches are easy to implemented, thus could be used as baselines for empirical adversarial defense.
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A APPENDIX

B STRONG ATTACKS AFTER OVERFITTING

When FastAdv+ is used for training a model, even though the model can recover from catastrophic
overfitting via PGD adversarial training, it is possible that the model overfits to PGD attacks and stays
vulnerable to other attacks. Therefore, we extract the model right after its recovery from catastrophic
overfitting and run several kinds of attacks, including 10-step PGD attacks, 50-step PGD attacks with
10 restarts, C&W attacks (Carlini & Wagner, 2017) and fast adaptive boundary (FAB) attacks (Croce
& Hein, 2019), on this model.

Table 4: CIFAR-10 standard and robust accuracy on PreAct ResNet-18 under various types of
attacks.

Attacks PGD-10 PGD-50 C&W FAB
Robust Accuracy 40.22% 39.41% 41.05% 38.68%

The result shows the model recovered from catastrophic overfitting is indeed robust. Note the robust
accuracy is relatively low as we are not using the final model.

C ABLATION ANALYSIS ON ADJUSTED ATTACK SIZE

In Section 5, we show it is possible to improve the performance of FastAdvW via using a smaller size
of attacks for FGSM adversarial training. It is possible that the adjusted size of attacks benefits not
only our approach, but also PGD adversarial training. Therefore, we use the same setting (4/255 for
the first 70 epochs and 8/255 for the rest) for full PGD adversarial training and compare it to vanilla
PGD adversarial training.

Table 5: CIFAR-10 standard and robust accuracy on PreAct ResNet-18 for vanilla PGD adversarial
training and PGD adversarial training with adjusted size of attacks (4/255 and 8/255).

Method Standard Accuracy PGD(ε = 8/255)
PGD 83.43± 0.25% 51.74± 0.17%

PGD(adjusted size) 83.11± 0.11% 52.14± 0.28%

The results show that PGD adversarial training enjoys limited benefits from the adjusted size of
attacks. This strategy is more compatible with our proposed FastAdvW.
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