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ABSTRACT

Machine unlearning (MU) aims to remove the influence of specific data from trained
models, addressing privacy concerns and ensuring compliance with regulations
such as the “right to be forgotten.” Evaluating strong unlearning, where the
unlearned model is indistinguishable from one retrained without the forgetting
data, remains a significant challenge in deep neural networks (DNNs). Common
black-box metrics, such as variants of membership inference attacks and accuracy
comparisons, primarily assess model outputs but often fail to capture residual
information in intermediate layers. To bridge this gap, we introduce the Information
Difference Index (IDI), a novel white-box metric inspired by information theory.
IDI quantifies retained information in intermediate features by measuring mutual
information between those features and the labels to be forgotten, offering a more
comprehensive assessment of unlearning efficacy. Our experiments demonstrate
that IDI effectively measures the degree of unlearning across various datasets and
architectures, providing a reliable tool for evaluating strong unlearning in DNNs.

1 INTRODUCTION

Machine unlearning (MU) seeks to remove the impact of specific data samples from a trained model,
addressing privacy issues such as “right to be forgotten” (Cao and Yang, 2015; Voigt and Von dem
Bussche, 2017). In addition to privacy, MU is also emerging as a tool to eliminate the influence of
corrupted or outdated data used during training (Nguyen et al., 2022; Kurmanji et al., 2023). The
most straightforward approach to MU is exact unlearning, where the model is retrained from scratch,
excluding the data that need to be forgotten. Although this method ensures complete data removal,
it is computationally expensive and not scalable (Aldaghri et al., 2021; Bourtoule et al., 2021; Yan
et al., 2022). Consequently, research has shifted towards approximate unlearning, which aims to
replicate the effects of retraining in a more efficient manner.

The goal of MU is to create an unlearned model that is indistinguishable from a model retrained
from scratch, referred to as strong unlearning. This objective has become particularly crucial with
the rise of open-source models like Stable Diffusion (Rombach et al., 2022) and LLaMA (Touvron
et al., 2023), which are widely used and fine-tuned by various users. For unlearning algorithms to
be practically useful, they must be capable of fully eliminating traces of private data and preventing
potential exploitation. While (ϵ, δ)-certified unlearning methods (Zhang et al., 2024b; Mu and
Klabjan, 2024) provide theoretical guarantees, they are often impractical for large-scale models. As a
result, most approximate unlearning methods rely on heuristic approaches, lacking formal guarantees.
Thus, these methods must undergo empirical evaluation to demonstrate their effectiveness.

However, current evaluations, primarily based on black-box approaches such as membership infer-
ence attacks (MIA) (Shokri et al., 2017; Carlini et al., 2022) and accuracy comparisons, focus on
output similarity rather than internal model changes. Although these metrics may capture weak
unlearning (Fan et al., 2024; Jia et al., 2023; Chundawat et al., 2023b; Foster et al., 2024; Chen et al.,
2023), they may not be sufficient for assessing strong unlearning. In this work, we investigate whether
relying solely on outputs can truly reflect complete influence removal, considering that outputs can
be superficially adjusted without impacting internal representations (Kirichenko et al., 2023).

Surprisingly, our experiments reveal that even minimal changes to the model, such as modifying
only the final layer while preserving all information in the intermediate layers, can still satisfy the
black-box evaluation metrics, exposing their limitations in assessing strong unlearning. This finding
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also raises critical concerns about whether current MU methods genuinely achieve information
removal comparable to retraining from scratch, despite yielding similar model outputs.

Consequently, motivated by the Information Bottleneck principle (Tishby et al., 2000; Tishby and
Zaslavsky, 2015), we introduce the information difference index (IDI), a novel white-box metric
designed to quantify residual information in intermediate layers after unlearning. IDI measures
the mutual information (Shannon, 1948) between intermediate features and the forgetting labels,
providing an interpretable value to assess the effectiveness of unlearning algorithms. We observe that
IDI remains robust despite the inherent stochasticity of the unlearning process, and is model-agnostic,
ensuring adaptability to various architectures. Additionally, estimating IDI with a data subset yields
reliable results, enhancing its practicality. To our knowledge, IDI is the first robust white-box metric
designed to evaluate unlearning quality, addressing a crucial yet underexplored aspect of the field.

Through the application of IDI, we find that many recent MU methods, despite their strong per-
formance on black-box metrics, still retain significant information about the forgetting data within
intermediate layers. Building on the insights gained from IDI, we introduce COLapse-and-Align
(COLA), a simple method that first collapses feature representations to be forgotten and then re-aligns
retain features to address residual information in unlearning processes. Despite its simplicity, COLA
serves as a useful benchmark, demonstrating notable improvements in IDI scores compared to other
methods on datasets such as CIFAR-10, CIFAR-100, and ImageNet-1K, as well as architectures like
ResNet-18, ResNet-50, and ViT. Notably, COLA achieves this without access to the full training
dataset, unlike several existing methods. The ability of IDI to capture COLA’s impact on intermediate
features further underscores its value as a robust efficacy metric.

We summarize our contributions as follows: First, we identify the limitations of existing black-
box metrics, which overlook residual information in intermediate layers. Second, we introduce
the information difference index (IDI), an interpretable white-box metric that quantifies mutual
information between intermediate features and labels. Third, we validate the robustness of IDI
through extensive experiments on diverse datasets and model architectures. Finally, using the
COLapse-and-Align (COLA) method as a baseline, we show that IDI effectively captures residual
information in intermediate features, proving its value as a reliable metric for unlearning quality.

2 PROBLEM STATEMENT AND PRELIMINARIES

2.1 PROBLEM STATEMENT

Let D = {(xi, yi)}
N
i=1 denote a training dataset comprising N image-label pairs (xi, yi). In a

supervised learning setup, D is partitioned into two subsets: the forget set Df , containing the data
points to be removed, and the retain set Dr =D∖Df , containing the data points to be preserved. The
initial model θo, referred to as the Original model, is trained on the full dataset D using empirical
risk minimization. The Retrain model θr is trained from scratch on only the retain set Dr. The
unlearned model θu is obtained by applying a machine unlearning (MU) algorithm to the Original
model θo, aiming to remove the influence of Df . The goal of MU is for θu to closely approximate θr,
ensuring the unlearned model behaves as though Df had never been used in training, while preserving
the training methodology across θo, θr, and θu.

MU is often studied in the context of image classification (Shaik et al., 2023; Nguyen et al., 2022),
where it is typically classified into two scenarios based on the nature of the forget set: class-wise
forgetting, where all samples from a specific class are targeted, and random data forgetting, where
samples are selected indiscriminately across all classes.

Throughout the paper, within a given model θ, we define the head as the last few layers responsible
for classification; typically one to three linear layers. The encoder, on the contrary, encompasses the
remainder of the network, which usually consists of convolutional layers or transformer encoders.

2.2 PRELIMINARIES

Machine Unlearning (MU). Exact unlearning, which involves creating Retrain, guarantees the
information removal from the forget set but is computationally expensive (Bourtoule et al., 2021;
Yan et al., 2022; Aldaghri et al., 2021; Brophy and Lowd, 2021). To address this, approximate
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unlearning methods have been developed, focusing on efficiency rather than strict theoretical guaran-
tees. Specifically, strong unlearning, where the unlearned model is indistinguishable from Retrain,
has been explored through the application of differential privacy (DP) (Dwork and Roth, 2014)
inspired techniques, which aim to achieve parameter-level indistinguishability (Dwork and Roth,
2014; Ginart et al., 2019; Neel et al., 2021; Sekhari et al., 2021; Ullah et al., 2021; Guo et al., 2020).
However, applying such techniques to deep neural networks (DNNs) remains challenging due to their
vast number of parameters and non-convex loss landscapes (Qiao et al., 2024). As a result, recent
studies typically assess the similarity of model outputs (i.e., predictions), using weak unlearning as a
practical proxy for strong unlearning (Xu et al., 2023). While empirically ensuring strong unlearning
is challenging, it is critical for deploying unlearning algorithms to meet legal requirements like
GDPR (Voigt and Von dem Bussche, 2017), the “right to be forgotten”, and prevent retention of
sensitive data, particularly with the growing use of open-source models like CLIP (Radford et al.,
2021), Stable-Diffusion (Rombach et al., 2022), and LLaMA (Touvron et al., 2023), where data could
unintentionally persist and be exploited. Our work focuses on developing a robust empirical metric to
evaluate unlearning algorithms, distinct from verification (Zhang et al., 2024a; Sommer et al., 2022),
which focuses on real-world attack scenarios to validate the effectiveness of unlearning.

Evaluation Criteria in MU. As the goal of MU is to remove the influence of specific data while
preserving the others, the unlearning algorithms are typically evaluated on three criteria: Efficacy,
Accuracy, and Efficiency (Hayes et al., 2024). Efficacy measures how closely the unlearned model
approximates Retrain, which is key to unlearning quality. Accuracy ensures task performance remains
intact after unlearning, while efficiency ensures the unlearning process is faster than retraining.
Accuracy and efficiency can be easily evaluated using existing metrics. Accuracy consists of three
categories: unlearning accuracy (UA), remaining accuracy (RA), and testing accuracy (TA). UA
measures performance on Df as UA(θu) = 1 − AccDf

(θu), RA on Dr as RA(θu) = AccDr(θu),
and TA measures generalization to unseen data as TA(θu) = AccDtest(θu). Performance levels
comparable to Retrain across these metrics indicate better unlearning. To simplify comparisons,
Cotogni et al. (2023) proposed AUS, which combines UA and TA into a single accuracy measure.
In terms of efficiency, runtime efficiency (RTE) measures the time an algorithm takes to complete
unlearning, with lower RTE indicating more efficient unlearning (Fan et al., 2024; Jia et al., 2023).
However, assessing unlearning efficacy, or determining whether the unlearned model has fully
removed the influence of specific data to the same extent as Retrain, remains a significant challenge in
complex DNNs. The efficacy metrics are divided into two categories: black-box metrics, which focus
solely on model outputs (i.e., predictions), and white-box metrics, which examine internal dynamics
such as parameters, gradients, and features. While black-box metrics are typically used due to their
convenience, no universally accepted standard exists, leaving room for more reliable assessment.

Black-box Efficacy Metrics. Variants of membership inference attacks (MIA) (Shokri et al., 2017;
Carlini et al., 2022) are the most widely used black-box metrics (Shen et al., 2024; Kim et al., 2024;
Fan et al., 2024; Jia et al., 2023; Foster et al., 2024). MIA determines whether specific data were
part of the training set by training an auxiliary classifier, with attack success rates on the forget set
that are close to those of Retrain being preferred. It is worth noting that recent works often use a
combination of UA, RA, TA, MIA and RTE as metrics for evaluating unlearning performance across
the three criteria (Chen et al., 2023; Kim et al., 2024; Jia et al., 2023; Fan et al., 2024), collectively
referred to as the ‘full-stack’ evaluation scheme (Jia et al., 2023; Fan et al., 2024). Other metrics,
such as Jensen-Shannon divergence (JSD), and ZRF (Chundawat et al., 2023b; Poppi et al., 2024)
compare the output logits between the unlearned model and Retrain (or a random model for ZRF).
Additionally, time-based metrics like Anamnesis Index (AIN) (Chundawat et al., 2023a; Tarun et al.,
2023a) and relearn time (RT) (Tarun et al., 2023b; Golatkar et al., 2020a;b; 2021) measure the time (or
epochs) required for the unlearned model to regain performance on the forget set. Black-box metrics,
though convenient, overlook internal behaviors and cannot verify strong unlearning by ensuring
forgetting data’s influence is fully removed. Section 3 highlights their limitations.

White-box Efficacy Metrics. In contrast, white-box metrics offer a more detailed evaluation by
analyzing internal model dynamics to track residual influence. Previous studies have measured
parameter-wise distances (e.g., ℓ2-distance, KL-divergence) between the unlearned model and
Retrain (Golatkar et al., 2020a; Wu et al., 2020). However, this approach is computationally expensive
and unreliable due to the inherent randomness in DNN training (Hayes et al., 2024; Goel et al., 2022).
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Becker and Liebig (2022) proposed a Fisher information based metric, but their experimental results
were inconsistent with theoretical intuition. Graves et al. (2021) applied model inversion attacks to
reconstruct images from the forget set, but this method relies on qualitative comparisons, making
it difficult to compare across different algorithms. Although robust white-box metrics are currently
lacking and challenging to develop, they are crucial for validating approximate methods, which
often lack guarantees of complete information removal. Without such metrics, these methods cannot
be trusted in privacy-sensitive applications that demand a high level of confidence in information
removal. To address this critical need, our work proposes a reliable and practical white-box metric.

3 RETHINKING THE EVALUATION OF UNLEARNING EFFICACY

3.1 HEAD DISTILLATION: SIMPLE TECHNIQUE CHALLENGES BLACK-BOX METRICS

Original Model Unlearn Model

freeze update

KLD 
Loss

Masked

Forget

head

Encoder Encoder

head

Figure 1: Overview of head
distillation (HD): Original dis-
tills knowledge into the un-
learn model’s head by mask-
ing the forgetting class logit,
with the encoder kept frozen.

In this section, we reveal the limitations of commonly used black-
box efficacy metrics by applying our simple unlearning technique
to a single-class forgetting task. We reveal how these metrics can
misrepresent unlearning efficacy by overlooking residual information
in intermediate features, even when the model’s output appears
similar to that of Retrain.

Drawing inspiration from the teacher-student framework (Chun-
dawat et al., 2023b; Kurmanji et al., 2023), our strategy, termed
head distillation (HD), employs logit distillation from Original θo.
Specifically, the unlearned model θu is initialized from θo with the
encoder frozen and only the head remaining trainable. During the
unlearning process, the head is finetuned on training dataset D using
KL-divergence loss (Hinton et al., 2014) to follow the masked output
from θo, where the logit for the forgetting class is set to negative
infinity while preserving the logits for the remaining classes, as
shown in Figure 1. This approach enables θu to mimic a pseudo-
retrained model, as the masked logits closely resemble those of
Retrain. By aligning the output behavior with that of Retrain, HD
aims to simulate the desired unlearning effect.

We conducted experiments using the CIFAR-10 (Krizhevsky, 2009) dataset and the ResNet-18
architecture (He et al., 2016), where the head consists only of a single linear layer. To evaluate
efficacy, we used a widely adopted black-box metric, membership inference attack (MIA) and Jensen-
Shannon divergence (JSD). Additionally, we measured unlearning accuracy (UA), testing accuracy
(TA) and run-time efficiency (RTE) for accuracy and effiency. For more details on these metrics,
please refer to Appendix C.1. We compared HD to recent approximate MU methods, including FT,
RL (Golatkar et al., 2020a), GA (Thudi et al., 2022), ℓ1-sparse (Jia et al., 2023), and SALUN (Fan
et al., 2024). Details on the baselines can be found in Appendix C.2.

Figure 2 presents the experimental results. Despite its simplicity, HD demonstrates remarkable
performance across black-box efficacy metrics, outperforming all other methods in MIA and ranking
second in JSD. HD achieves this performance in just 6.2 seconds, approximately 30 to 60 times faster
than competing methods. Additionally, HD maintains comparable testing accuracy (TA), effectively
preserving task performance. All methods achieved perfect unlearning accuracy (100% UA), which
is omitted from Figure 2. Notably, HD’s strong performance extends to other unlearning scenarios,
including multi-class and random data forgetting, as detailed in Appendix D.

The experimental results indicate that HD performs exceptionally well across all black-box evaluation
metrics. However, its validity as an effective MU algorithm warrants closer examination. The primary
issue is that HD closely resembles Original θo, with changes limited to the single-layer head, while
the encoder remains identical to θo. Consequently, all intermediate features related to the forget set
are retained. This raises a critical question:

Do black-box metrics truly capture the unlearning quality,
or are they misled by superficial changes while deeper information persists?
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Figure 2: Performance of six methods (HD, FT, RL, GA, ℓ1-sparse, SALUN) on (CIFAR-10, ResNet-
18), evaluated in efficiency (RTE), accuracy (TA), and efficacy (MIA, JSD). For TA, MIA, and JSD,
lower differences from Retrain are preferred, indicating closer similarity to Retrain.

(a) Original / HD (b) Retrain (c) GA (d) RL (e) SALUN

Figure 3: t-SNE visualizations of encoder outputs for Original, Retrain, and unlearned models from
three MU methods (GA, RL, SALUN) on single-class forgetting with (CIFAR-10, ResNet-18). In
each t-SNE plot, features of the forgetting class are represented in purple. Original and HD have
identical feature distribution as they share the same encoder.

3.2 RESIDUAL INFORMATION OF FORGETTING DATA: LIMITATIONS OF BLACK-BOX
ASSESSMENTS FOR UNLEARNING EFFICACY

To address the above question, we conducted two analyses on recent unlearning methods to determine
whether they internally remove information from the forget set, despite their strong performance on
black-box efficacy metrics. We note that both analyses are performed on the unlearned models using
the same experimental setting discussed in Section 3.1.

We start with a qualitative analysis using t-SNE (van der Maaten and Hinton, 2008) visualizations
of intermediate features from model encoders to investigate how Retrain differs from Original and
to analyze the internal behavior of different unlearning algorithms, as shown in Figure 3. Figure 3b
reveals the scattered distribution of the features corresponding to the forgetting class (represented
in purple) in Retrain. These features are dispersed across multiple clusters, indicating the model’s
difficulty in extracting coherent information from the forgetting class. This scattering reflects an ideal
outcome of strong unlearning, suggesting that the unlearned model has successfully ‘forgotten’ how
to represent meaningful semantic information from the forget set.
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/ HD
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Figure 4: Forget test accuracy and IDI (our
metric in Section 4.3) for Original, Retrain,
and MU methods (including COLA, our
method in Section 5.1) after head retrain-
ing with fixed unlearned encoders using 2%
of D in (CIFAR-10, ResNet-18). IDI aligns
with the recovered accuracy across models.

Notably, while the features from GA (Thudi et al.,
2022) appear scattered in a manner similar to Re-
train, the features from RL (Golatkar et al., 2020a)
and SALUN (Fan et al., 2024) closely resemble those
of Original. As expected, HD, which shares the same
encoder as Original, produces t-SNE results identical
to it. These findings indicate that several unlearned
models still retain a significant capacity to recognize
the forgetting class, distinguishing them from Retrain.

To further examine the residual influence in unlearned
models, we conducted a follow-up experiment inspired
by time-based metrics (e.g., (Chundawat et al., 2023a)).
This experiment explores whether unlearned encoders
can recover forgotten information with minimal data.
Specifically, we replaced the heads of all unlearned
models, including Retrain and Original, with randomly initialized ones. The encoders were then
frozen, and new heads were trained using D′, a small subset (only 2% of the total) of D, comprising
randomly selected samples.
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After training, we evaluated the accuracy of the new models on the forget test data. Surprisingly,
as shown in Figure 4, while the retrained head of Retrain achieves no more than 41% accuracy, the
heads from certain methods, like Bad-T, SALUN, and RL exhibit over 82% accuracy. Notably, the
high accuracy observed in SALUN and RL corresponds to the clustered t-SNE plots in Figure 3.

The results from the above analyses demonstrate that unlearned models across various MU algorithms
retain substantial residual influence from the forget set internally, unlike Retrain. This highlights
incomplete unlearning in those approximate methods. However, a critical concern is that commonly
used black-box assessments fail to detect these underlying residuals. If unlearning efficacy metrics
cannot ensure strong unlearning, as clearly shown in our results, the reliability of approximate
unlearning algorithms, which often lack theoretical guarantees, becomes questionable in real-world
applications. Therefore, developing practical white-box approaches that consider internal model
behaviors is essential to achieving the fundamental goal of unlearning.

4 AN INFORMATION THEORETIC METRIC FOR UNLEARNING EFFICACY
USING INTERMEDIATE FEATURES

Current MU efficacy evaluations, which rely primarily on black-box metrics, overlook residual
information in intermediate layers, as shown in Section 3. To address this, we measure residual
information in the intermediate features of unlearned models using mutual information. Building on
this, we propose a novel white-box metric, IDI, that goes beyond output-based evaluations.

4.1 QUANTIFYING RESIDUAL INFORMATION WITH MUTUAL INFORMATION

To quantify the relationship between high dimensional intermediate features and data labels, we utilize
Shannon’s mutual information (MI), a robust measure that effectively captures variable dependencies
across various dimensional complexities. For an input X, let Z(u)ℓ and Z

(r)
ℓ denote the features from

the ℓ-th layer of the total L-layer encoder in the unlearned model and Retrain, respectively. Let
Y be a binary label, where Y = 1 indicates that the input X belongs to the forget set, and Y = 0
otherwise. We measure the MI, denoted as I(Zℓ;Y ), across each layer from 1 to L, to determine
whether intermediate features retain information about the forget set. To estimate MI, we use the
InfoNCE loss (Oord et al., 2018). InfoNCE is widely used in MI estimation of DNNs and shown to
be robust and effective (Radford et al., 2021; Jia et al., 2021).

Given a batch B = {(U (k), V (k)) ∶ 1 ≤ k ≤K}, sampled from a joint distribution PU,V , where U ∈ U
and V ∈ V be random variables. The InfoNCE loss (Poole et al., 2019) is defined as:

LNCE(B, ν, η) =
1

K

K

∑
k=1

log
exp(fν(U

(k))⊺gη(V (k)))
1
K ∑

K
k′=1 exp(fν(U (k))⊺gη(V (k

′)))
,

where fν ∶ U → Rd and gη ∶ V → Rd are critic functions, with an output embedding dimension d,
parameterized by neural networks with parameters ν and η. This neural network parameterization,
inspired by Radford et al. (2021), effectively captures complex relationships in contrastive learning
through flexible and expressive modeling of the joint distributions of U and V .

The InfoNCE loss serves as a lower bound on the MI between U and V . In fact, the maximum value
of the InfoNCE loss, when using the joint critic functions, equals the mutual information:

I(U ;V ) =max
ν,η
LNCE(B, ν, η).

Thus, to estimate the mutual information, we maximize the InfoNCE loss over the parameters ν and η.
By leveraging the flexibility of neural networks, we can effectively capture the underlying structure
of the data and accurately quantify the amount of shared information between the variables U and V .

To estimate mutual information (MI) for each layer in the network, we design separate critic functions
for every layer, denoted as fνℓ

and gηℓ
, where ℓ denotes the layer index from 1 to L, the total number

of layers in the encoder. The critic gηℓ
handles the binary variable Y , which is parameterized as two

trainable d-dimensional vectors, gηℓ
(0) and gηℓ

(1), and selects the appropriate vector based on the
value of Y . In contrast, fνℓ

maps the intermediate features Zℓ, from the ℓ-th layer of the encoder, to
a d-dimensional embedding space. The parameters νℓ define the weights and biases of this neural
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Figure 5: (a) Conceptual illustration of IDI. Curves show estimated mutual information I(Zℓ;Y ) for
Original (●), unlearned (▲), and Retrain (★). IDI is the ratio ID(θu)

ID(θo) , corresponding to the red area
divided by the blue area. (b) MI curves and IDI values for Original, Retrain, and unlearned models
from six methods (FT, RL, GA, ℓ1-sparse, SCRUB, SALUN) on CIFAR-10 across ResNet-18 (left)
and ResNet-50 (right) blocks, averaged over five trials. See Appendix D.2 for standard deviations.

network. The complexity of fνℓ
varies depending on the layer: in earlier layers, fνℓ

processes raw,
less interpretable features, requiring a more intricate design to effectively capture the relationship
between Zℓ and Y . In later layers, with more refined features, fνℓ

can perform the mapping more
directly. This design enables the accurate estimation of I(Zℓ;Y ), capturing the dependency between
features and labels at different depths. For details on fνℓ

and gηℓ
, refer to Appendix B.

Original Model Architecture

initializefreeze

InfoNCE

Figure 6: Illustration of estimat-
ing MI using InfoNCE. The critic
function fνℓ

represents a train-
able network to capture features
from Zℓ, while the critic function
gηℓ

handles the binary input Y .

For fνℓ
, we propose a model-agnostic approach that reuses the

network layers from ℓ + 1 to L, allowing us to approximate the
mutual information between the output and intermediate features
at layer ℓ without requiring network redesign for each layer, thus
maintaining flexibility and scalability. To ensure dimensional
compatibility between f and g, we introduce an additional linear
projection layer so that fνℓ

(Zℓ) outputs a d-dimensional feature.

During the optimization of the InfoNCE loss, we freeze the param-
eters of the model up to the ℓ-th layer and reuse the architecture of
the remaining layers, starting from ℓ+ 1, as fνℓ

. These remaining
layers, along with the projection layer, are randomly initialized
and trained from scratch to specifically optimize the InfoNCE
loss. We utilize both the retain set and the forget set to have
representations for Y = 0 and Y = 1, ensuring that the model
captures information relevant to both outcomes.

This approach allows fνℓ
to effectively leverage intermediate features Zℓ to classify Y , providing

deeper insights into the model’s internal information processing at each layer. It also reveals the
model’s capacity to extract and utilize relevant information for distinguishing between output labels,
offering a clearer understanding of the information dynamics across the network.

4.2 RESIDUAL INFORMATION IN UNLEARNED MODELS

We begin by plotting the estimated MI between the intermediate layers and the binary label indicating
whether the data belong to the forget set, as shown in Figure 5b. As expected, MI decreases across
layers, aligning with the Information Bottleneck principle (Tishby et al., 2000). This figure reveals
the internal behaviors of unlearned models that black-box assessments fail to capture.

In particular, SCRUB and ℓ1-sparse, which approximate the MI levels of Retrain, are more likely
to achieve the MU objective at the feature level across both ResNet architectures. Their lower MI
suggests that their encoders, like Retrain, struggle to differentiate between the forget set and the retain
set. Conversely, SALUN and RL show MI curves that are close to that of Original, indicating the
opposite. Note that HD produces the identical curve as Original, as its encoder remains unchanged.
We observe similar patterns in CIFAR-100 and ImageNet-1K, as well as in ViT. Additionally,
extending our experiment to multi-class forgetting tasks (e.g., 20 classes on CIFAR-100) reveals more
pronounced MI differences between Retrain and Original. See Appendix E.1 for further results.
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4.3 INFORMATION DIFFERENCE INDEX (IDI)

Motivated from the above experiment, we define the information difference (ID) of θu as the MI
difference across intermediate layers between the unlearned model and Retrain, calculated as:

ID(θu) =
L

∑
ℓ=1
(I(Z

(u)
ℓ ;Y ) − I(Z

(r)
ℓ ;Y )). (1)

ID of θu shows the extent of information retention through ensuing layers of the unlearned encoder.
To provide a normalized measure, we introduce the information difference index (IDI):

IDI(θu) =
ID(θu)

ID(θ0)
=
∑

L
ℓ=1(I(Z

(u)
ℓ ;Y ) − I(Z

(r)
ℓ ;Y ))

∑
L
ℓ=1(I(Z

(o)
ℓ ;Y ) − I(Z

(r)
ℓ ;Y ))

, (2)

where Z
(o)
ℓ is the output of the ℓ-th layer of Original encoder. Figure 5a illustrates IDI, which is

conceptually the ratio of the areas between MI curves. However, computing MI for all L layers can be
computationally expensive. In practice, we compute MI from the last n selected layers (i.e., the last
layers of later blocks), where n≪ L, as MI in earlier layers of Retrain and Original show negligible
differences, as shown in Figure 5b. Further details are provided in Appendix E.2.

IDI quantifies the information gap between the unlearned model and Retrain. An IDI of 0 denotes
that the unlearned model has completely removed all information related to the forget set, achieving
indistinguishability from Retrain. In contrast, an IDI of 1 indicates that the encoder retains all the
information found in Original. Interestingly, a negative IDI value, termed over-unlearning, occurs
when the model removes more information than Retrain. While we have demonstrated IDI in the
context of class-wise forgetting, its application to random data forgetting is provided in Appendix A.1.
We note that as the denominator of IDI (ID(θo)) approaches zero, IDI may yield unexpected values.
However, this case indicates that Original and Retrain are nearly identical, suggesting minimal
unlearning utility. Thus, ID(θo) can serve as an indicator for the necessity of unlearning in practice.

5 EXPERIMENTS

5.1 PROPOSED BASELINE: COLLAPSE AND ALIGN (COLA)

As discussed in both Section 3 and 4.2, we observed residual information in the intermediate layers
of several unlearned models, despite their outputs being similar to those of Retrain. To address this,
we propose a robust two-step unlearning framework, COLlapse and Align (COLA), consisting of a
collapse phase and an alignment phase to directly remove residual information at the feature level.

During the collapse phase, COLA eliminates feature-level information by applying supervised
contrastive loss (Khosla et al., 2020) to encoder outputs. Rather than dispersing features from the
forget set, which could harm model performance, COLA applies the loss to the retain set, promoting
tight intra-class clustering. As these clusters shrink, features from the forget set are forced to collapse
into the clusters of the retain set, achieving catastrophic forgetting. After feature collapsing, the
alignment phase optimizes the entire model using cross-entropy loss on the retain set to align the
encoder and head. For an illustration of COLA, as well as COLA+, a method tailored for random
data forgetting, and detailed loss formulations, refer to Appendix C.6.

5.2 COMPREHENSIVE EVALUATION OF UNLEARNING METHODS WITH COLA AND IDI

We demonstrate the utility of IDI as a valuable efficacy metric and highlight the strong performance of
COLA and its variant COLA+ through extensive experiments. Our experiments cover three datasets:
CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and ImageNet-1K (Deng et al., 2009), and three model
architectures: ResNet-18, ResNet-50 (He et al., 2016), and ViT (Dosovitskiy et al., 2021). For
simplicity, we approximate IDI using the features from blocks rather than every layer in ResNet and
ViT (see Appendix C.7). Please refer to Appendix C for further experimental details.

Table 1 shows the experimental results on CIFAR-10 and ImageNet-1K in class-forgetting tasks. At
first glance, excluding the IDI column, several methods show similar accuracy (UA, RA, TA) but
greater deviations in efficacy (MIA) and efficiency (RTE). This suggests that previous unlearning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance summary of MU methods (including COLA and 14 other baselines) for class-
wise forgetting task on (CIFAR-10, ResNet-18) and (ImageNet-1K, ResNet-50). The results are
shown as a± b, with a being the mean and b the standard deviation of five independent trials. A better
performance of an MU method corresponds to a smaller performance gap with Retrain (except RTE),
with the top method in bold and the second best underlined.

CIFAR-10 (single class) ImageNet-1K (five classes)
Methods UA RA TA MIA IDI RTE (min) UA RA TA MIA IDI RTE (min)

Retrain 100.0 100.0 95.64 10.64 0.0 154.56 100.0 88.80 75.88 9.41 0.0 2661.90

HD 100.0±0.0 100.0±0.0 95.22±0.07 2.05±0.11 1.000±0.0 0.10±0.01 100.0±0.0 87.94±0.16 75.60±0.07 7.12±0.12 1.000±0.0 4.75±0.03
FT 100.0±0.0 100.0±0.0 95.12±0.09 0.17±0.05 0.671±0.008 6.44±0.07 100.0±0.0 88.52±0.0 76.16±0.01 8.24±1.23 0.102±0.026 140.04±1.42
RL 99.93±0.01 100.0±0.0 95.66±0.05 0.0±0.0 0.830±0.005 3.09±0.03 99.96±0.03 86.46±0.07 75.23±0.01 0.23±0.01 1.002±0.007 200.73±1.87
GA 100.0±0.0 99.06±0.25 93.10±0.50 25.37±3.24 0.334±0.014 4.00±0.08 100.0±0.0 80.77±0.22 71.49±0.10 4.20±0.46 0.328±0.023 212.14±2.61
Bad-T 99.90±0.14 99.99±0.0 94.99±0.12 68.17±42.80 1.014±0.004 4.64±0.05 98.01±0.02 84.03±0.03 73.42±0.03 69.13±12.57 1.152±0.011 211.52±0.96
BoundaryExpand 71.39±0.31 99.20±0.04 92.53±0.02 7.69±0.33 0.892±0.001 0.19±0.01 77.22±0.11 82.79±0.08 71.78±0.09 1.43±0.51 0.628±0.005 5.14±0.02
BoundaryShrink 85.16±0.42 99.60±0.17 93.48±0.40 0.25±0.43 0.887±0.009 0.59±0.02 91.20±0.02 81.41±0.17 70.55±0.08 1.45±0.34 0.543±0.011 4.81±0.03
EU-5 100.0±0.0 100.0±0.0 95.25±0.02 0.06±0.03 0.528±0.005 1.54±0.0 100.0±0.0 79.62±0.0 71.22±0.13 13.33±1.53 0.183±0.028 193.38±0.78
CF-5 98.13±1.39 100.0±0.0 95.54±0.09 0.0±0.0 0.675±0.027 1.57±0.03 100.0±0.0 84.31±0.08 74.16±0.06 10.21±5.33 0.701±0.014 81.53±0.56
EU-10 100.0±0.0 99.50±0.02 93.61±0.08 15.24±1.08 −0.349±0.019 2.42±0.11 100.0±0.0 71.84±0.03 65.78±0.02 16.65±1.91 −0.051±0.021 193.79±0.47
CF-10 100.0±0.0 99.98±0.0 94.95±0.05 11.61±0.91 −0.060±0.017 2.31±0.03 100.0±0.0 80.87±0.04 72.34±0.08 13.99±5.41 0.608±0.012 82.29±0.34
SCRUB 100.0±0.0 100.0±0.0 95.37±0.04 19.73±1.92 −0.056±0.008 3.49±0.02 99.28±0.07 88.39±0.04 76.51±0.03 7.42±0.51 0.517±0.011 426.04±2.98
SALUN 99.99±0.01 100.0±0.0 95.42±0.12 0.01±0.01 0.936±0.012 3.54±0.11 89.67±0.27 86.25±0.15 75.54±0.10 0.50±0.09 0.343±0.017 793.82±3.32
ℓ1-sparse 100.0±0.0 99.93±0.02 94.90±0.10 1.56±0.09 0.293±0.012 2.96±0.03 97.57±0.61 85.33±0.07 74.77±0.03 8.84±1.39 0.239±0.031 226.74±1.35
COLA 100.0±0.0 100.0±0.0 95.36±0.06 12.64±0.92 0.010±0.006 4.91±0.04 100.0±0.0 87.93±0.05 76.15±0.04 9.95±1.21 0.040±0.042 171.44±0.75

studies likely ranked MU methods based on MIA and RTE. However, as discussed earlier, relying
solely on black-box metrics can be misleading, as they fail to account for residual information.

Table 2: Performance summary for random data
forgetting on (CIFAR-10, ResNet-18). The nota-
tion for bold and underline, as well as the number
of independent trials, is consistent with Table 1.

CIFAR-10 (500 samples per class)
Methods UA RA TA MIA JSD IDI RTE (min)

Retrain 3.94 100.0 95.26 75.12 0.0 0.0 152.87

HD 3.64±1.66 97.93±1.38 92.80±1.18 77.47±4.09 0.08±0.04 1.000±0.0 0.30±0.05
FT 5.03±0.40 98.95±0.21 92.94±0.26 83.52±0.58 0.07±0.11 −0.069±0.013 8.11±0.03
RL 4.77±0.27 99.92±0.0 93.54±0.04 22.47±1.19 0.38±0.02 0.084±0.030 2.75±0.01
GA 2.86±0.76 98.37±0.71 91.90±0.70 85.49±2.17 0.09±0.01 0.924±0.028 4.31±0.03
Bad-T 5.47±1.05 99.87±0.05 91.51±0.61 39.53±3.43 0.27±0.03 0.939±0.053 4.78±0.09
EU-10 3.16±0.19 98.68±0.08 93.07±0.12 83.40±0.21 0.06±0.01 −0.110±0.013 2.13±0.05
CF-10 2.71±0.24 99.11±0.06 93.47±0.15 84.33±0.05 0.05±0.01 0.219±0.029 2.10±0.06
SCRUB 4.31±1.50 96.21±1.70 88.83±1.86 37.88±7.65 0.56±0.09 0.322±0.016 3.37±0.05
SALUN 2.74±0.30 97.77±0.04 91.68±0.44 83.52±2.20 0.10±0.03 0.861±0.012 5.69±0.04
ℓ1-sparse 5.47±0.22 96.66±0.07 91.31±0.25 77.12±0.21 0.09±0.01 −0.157±0.026 3.03±0.04
COLA+ 3.90±0.08 99.24±0.17 93.23±0.09 83.48±0.10 0.06±0.01 0.024±0.010 7.80±0.02

Indeed, some methods show strong MIA perfor-
mance but fail to remove forget data from inter-
mediate layers, as reflected by high IDI values.
For instance, CF-5 on ImageNet-1K achieves
a favorable MIA value (10.21) close to Retrain
(9.41) in the shortest time (81.53 min), yet its
IDI (0.701) shows significant retention of forget
data. Similarly, EU-5 on CIFAR-10, which ap-
pears highly efficient (1.54 min), presents a high
IDI (0.528), suggesting that its efficiency stems
from incomplete unlearning. The discrepancy
between black-box metrics (MIA, JSD) and IDI
is similarly observed in random data forgetting,
as shown in Table 2, particularly for methods like SALUN. By incorporating IDI alongside existing
metrics, we gain a more comprehensive and insightful evaluation of MU methods.
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Figure 7: IDI and TA of
Retrain and MU methods for
single-class forgetting (ResNet-
18, CIFAR-100).

In Figure 7, we present the CIFAR-100 results comparing task per-
formance (TA) and unlearning quality (IDI). Methods like Bad-T
achieve high accuracy but retain substantial residual information
(high IDI). In contrast, EU-5 and ℓ1-sparse effectively remove forget
set (low IDI) but experience substantial accuracy loss (low TA), in-
dicating damage to essential features for task performance. Despite
its simplicity, COLA (and COLA+) achieves state-of-the-art IDI
performance across all experiments, as shown in Table 1, Table 2,
and Figure 7, effectively eliminating feature-level information.
This is further supported by the recovery experiment (Figure 4),
where COLA achieves low accuracy comparable to Retrain. In
addition to excelling in IDI, COLA (and COLA+) performs well
on black-box metrics, preserving task performance and maintaining
output similarity (Table 1 and Table 2). While it’s computational
cost (RTE) is relatively high, we emphasize the inherent challenge of thoroughly removing the forget
set while retaining model utility. Further experimental results are provided in Appendix D.

5.3 DISCUSSIONS

IDI as a Real-World Efficacy Metric. Accuracy metrics (UA, RA, TA) and efficacy metrics
(MIA, JSD), commonly used in recent unlearning studies, require the presence of Retrain as a gold
standard to compare model outputs. While this approach is crucial for advancing MU methods in
controlled experimental settings, where the field of unlearning for DNNs is still in its infancy, it
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becomes impractical in real-world applications where Retrain is unavailable. Similar to current
black-box metrics, the original formulation of IDI (see Equations 1 and 2) uses Retrain as a reference
to assess unlearning efficacy. However, IDI allows for flexibility by using any available unlearned
model as the reference. Although the absence of Retrain changes the interpretation of IDI (i.e., an
IDI of zero means complete unlearning as Retrain), it still provides valuable insights relative to the
chosen reference. This adaptability enhances the IDI’s practicality, making it useful for evaluating
unlearned models even in real-world scenarios. A detailed explanation and examples are provided
in Appendix E.3.

1:5 1:20 1:99
Ratio (Forget : Retain)

−0.1

0.1

0.3

0.5

0.7

ID
I

FT
RL
GA
CF-10
SALUN
SCRUB

Figure 8: IDI of six methods
with varying binary label ratios,
in the single-class forgetting on
(CIFAR-100, ResNet-18), where
a ∶ b denotes the ratio of forget-
ting to retaining samples.

Consistency and Scalability of IDI. Consistency is crucial for
unlearning metrics, but many fall short (Chundawat et al., 2023a;
Tarun et al., 2023b; Becker and Liebig, 2022). Also, a major issue
with using model parameters for white-box efficacy evaluation in
DNNs is their inconsistency, as weights can vary significantly due
to stochastic factors (e.g., random seeds), making comparisons
between the unlearned model and Retrain ambiguous (Yang and
Shami, 2020; Goel et al., 2022). In contrast, IDI remains robust,
delivering consistent results across models from the same algo-
rithm, as evidenced by low standard deviations in independent
trials (see Table 1 and Table 2).

Furthermore, IDI provides consistent results without requiring the
entire dataset D. As shown in Figure 8, the relative rankings of
methods remain stable across different data ratios in the class-
wise forgetting task on CIFAR-100. This efficiency allows for
unlearning evaluations with reduced computational cost, where white-box metrics often demand
significant resources.

Table 3: Performance summary of MU methods on
white-box MIAs (Activation, Gradient) and IDI for
single-class forgetting on ResNet-18. MIA values
represent the attack success rate (%) for distinguish-
ing forgetting samples. “Random” refers to a model
randomly initialized without prior training.

CIFAR-10 CIFAR-100
Methods Activation Gradient IDI Activation Gradient IDI
Original 99.98±0.03 100.0±0.0 1.000 53.13±2.88 61.34±3.23 1.000
Retrain 94.89±1.07 95.13±1.12 0.000 52.87±6.15 59.12±4.12 0.000
Random 52.89±41.03 45.23±23.04 −1.281±0.018 53.20±5.15 47.12±7.21 −2.955±0.046
RL 100.0±0.0 99.98±0.01 0.830±0.005 93.20±3.53 95.30±0.82 0.467±0.010
GA 97.07±0.35 96.01±0.13 0.334±0.014 97.44±2.12 82.44±0.95 0.392±0.021
EU-10 86.13±4.78 89.42±2.32 −0.349±0.019 64.41±1.65 72.13±4.13 −0.221±0.009
CF-10 97.99±0.38 98.33±0.23 −0.060±0.017 21.62±0.61 23.15±1.23 0.175±0.040
SCRUB 99.43±0.09 99.15±0.05 −0.056±0.008 46.44±1.28 62.31±1.73 0.339±0.069
COLA 92.26±0.08 93.12±0.11 0.010±0.006 61.08±0.23 65.24±0.43 −0.037±0.006

IDI compare to White-Box MIA. While
black-box MIA, adapted from privacy studies,
is widely used as an evaluation tool in unlearn-
ing literature, we explore the potential of white-
box MIA, which has not traditionally been em-
ployed for this purpose, and compare it with
IDI. Specifically, we evaluate two white-box
MIA methods: one leveraging model activa-
tions and another utilizing gradients (Nasr et al.,
2019). Table 3 presents the results of white-
box MIA and IDI in single-class forgetting sce-
narios. White-box MIA delivers consistent re-
sults on CIFAR-10 but becomes unstable as the
dataset scales to CIFAR-100, with significant
variability in MIA values across algorithms. This instability is further highlighted with a randomly
initialized model, which produces MIA values comparable to Retrain despite no actual training. In
contrast, IDI provides stable and interpretable results, yielding strongly negative values for randomly
initialized models, accurately reflecting their lack of residual information. This underscores IDI’s
reliability as a robust and interpretable metric for unlearning evaluation.

6 CONCLUSION

We highlight the limitations of relying on black-box metrics to assess unlearning efficacy in typical
approximate unlearning studies. Although intermediate features capable of reconstructing forgotten
information persist, these metrics fail to capture the key aspects required for strong unlearning,
often misleading evaluations. To address this, we introduce the Information Difference Index (IDI)
from an information-theoretic perspective, alongside the contrastive-based COLA baseline for direct
feature-level unlearning. Through extensive experiments, we demonstrate the validity and practicality
of IDI, showing that it complements existing metrics for a more comprehensive evaluation of strong
unlearning. In addition, we highlight the effectiveness of the COLA baseline, despite its simplicity.
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A RANDOM DATA FORGETTING

Another scenario in machine unlearning (MU) is random data forgetting, which involves forgetting a
randomly selected subset of data across multiple classes. This differs from the class-wise forgetting
task, which aims to forget entire data from single or multiple classes.

A.1 INFORMATION DIFFERENCE INDEX FOR RANDOM DATA FORGETTING

To calculate the information difference index (IDI) for class-wise forgetting, we employ a binary
label Y to determine whether a sample belongs to the retain or forget set. However, this approach is
inadequate for random data forgetting, where samples span multiple classes and a minor fraction of
each class is targeted for forgetting. As a result, no single class is completely removed. To address
this, we transform the binary label Y into a multiclass label YC , which reflects the ground-truth class
label of each sample. Consequently, we define the IDI for random data forgetting as follows:

IDIrandom(θu) =
IDrandom(θu)

IDrandom(θ0)
, (3)

where IDrandom(θu) = ∑
L
ℓ=1(I(Z

(u)
ℓ ;YC) − I(Z

(r)
ℓ ;YC)). Unlike the ID computed in a class-wise

forgetting, IDrandom(⋅) utilizes only the forget set Df . Intuitively, we expect the mutual information
I(Z(o);YC) to be higher than I(Z(r);YC) because Original explicitly learned the relationship
between the forget samples and their ground truth labels, while Retrain did not. Although the labels
have transitioned from binary to multiple classes, the function fνℓ

remains unchanged. For gηℓ
, it

now employs the C dimension of vectors, where C represents the total number of data classes.

A.2 COLA+

The core idea behind COLA is to induce catastrophic forgetting within the model’s encoder in the
collapse phase, making the influence of the forget set vanish implicitly. This approach is effective
for class-wise forgetting tasks, where the forget set includes distinct classes. However, it may be
less effective for random data forgetting, where the forget set and retain set samples generally share
the same classes and are not easily distinguishable. To address this, we aim to explicitly remove
the information of the forget set through pseudo-labeling. This variant, called COLA+, assigns the
second-highest predicted label to the forget set samples before unlearning with supervised contrastive
loss (Khosla et al., 2020). This pseudo-labeling effectively collapsing the forget set features into
the retain set clusters of other classes, while reducing the confusion of the knowledge of the retain
set. The results of the COLA+ experiment on the random data forgetting task are presented in
Appendix D.5.

B NETWORK PARAMETRIZATIONS FOR INFONCE LOSS

This section provides a detailed explanation of the parameterization of the neural network critic
functions used in the InfoNCE loss, including layer-specific adaptations.

B.1 CRITIC FUNCTIONS FOR INFONCE LOSS

To compute the InfoNCE loss, we parameterize two critic functions: fν and gη, where ν and η
represent the learnable parameters of their respective neural networks. For each layer ℓ in the network,
these functions are defined as follows:

1. Critic fνℓ
:

• fνℓ
∶ Zℓ → Rd, where Zℓ represents the feature space at layer ℓ.

• This function maps raw or intermediate features Zℓ to a d-dimensional embedding
space. In earlier layers, fνℓ

must process raw, less interpretable features, making it
more complex. For later layers, where features are more structured, fνℓ

can leverage
the refined representations for better alignment with Y .
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2. Critic gηℓ
:

• gηℓ
∶ {0,1}→ Rd.

• For the binary variable Y , gηℓ
is parameterized as a pair of trainable d-dimensional

vectors: gηℓ
(0) and gηℓ

(1). Depending on the label Y , the corresponding vector is
selected to represent the target embedding for contrastive learning.

B.2 LAYER-SPECIFIC PARAMETERIZATION

Each layer ℓ has independent sets of parameters νℓ and ηℓ. This design allows the model to adapt to
the varying complexity of feature representations across the network. Specifically:

• In earlier layers, fνℓ
focuses on extracting information from raw features Zℓ, which are less

structured and more challenging to interpret.

• In later layers, fνℓ
benefits from more refined features, enabling a more direct alignment

with Y .

C EXPERIMENT DETAILS

C.1 EVALUATION METRICS DETAIL

UA, RA, TA We compute accuracy as follows:

AccD(θ) =
1

∣D∣
∑

(x,y)∈D
1 [argmax (f(x; θ)) = y] , (4)

where f(x; θ) represents the model’s output logits for input x with parameters θ, and y is the ground
truth label. Unlearning accuracy (UA), which quantifies the model’s task performance on forgetting
data, is defined as UA(θu) = 1 − AccDf

(θu). Remaining accuracy (RA) measures the model’s
performance on the retain set Dr, which should be preserved after unlearning, and is defined as
RA(θu) = AccDr(θu). Finally, testing accuracy (TA) evaluates generalization to unseen data, and is
defined as TA(θu) = AccDtest

(θu). It is important to note that better unlearning in terms of accuracy
reflects a smaller performance gap between the unlearned model and Retrain, meaning that higher
accuracy levels are not necessarily better. Refer to (Jia et al., 2023) for detailed explanation.

MIA. Membership Inference Attack (MIA) (Shokri et al., 2017; Carlini et al., 2022) determines
whether a specific data record was part of a model’s training set by leveraging auxiliary classifiers to
distinguish between training and non-training data based on the model’s output.

In the context of unlearning, membership inference attack (MIA) is primarily used as an evaluation
metric, rather than representing an adversarial scenario where an attacker attempts to extract member-
ship information from the unlearned model. Consequently, a comparable MIA success rate on the
forgetting data relative to Retrain signifies a more effective unlearning algorithm. Unlike the original
MIA implementation (Shokri et al., 2017), which utilizes multiple shadow models, MIA variants in
the unlearning often employ a single auxiliary classifier for each unlearning method (Jia et al., 2023).
A detailed comparison of these approaches can be found in (Hayes et al., 2024).

The MIA implementation in our study has two phases: the training phase and the testing phase.

During the training phase, we create a balanced dataset by equally sampling from the retain set (Dr)
and the test set, explicitly excluding the forget set (Df ). We then use this balanced dataset to train
the MIA predictor with two output categories (train, non-train), allowing it to differentiate between
training and non-training samples.

In the testing phase, the trained MIA predictor is used to evaluate the efficacy of the unlearning
methods. Specifically, the MIA metric is calculated by applying the MIA predictor to the unlearned
model (θu) using the forget set (Df ). The objective is to determine how many samples within Df are
identified as training samples by the MIA predictor.

Formally, MIA is defined as:
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MIA = 1 −
TN
∣Df ∣

(5)

where TN represents the number of true negatives (i.e., the number of forget samples correctly
predicted as non-training examples by the MIA predictor), and ∣Df ∣ denotes the total number
of samples in the forget set. Overall, MIA leverages privacy attack mechanisms to validate the
effectiveness of the unlearning process, providing a quantitative measure of how successfully the
model has ‘forgotten’ specific data resembling Retrain.

We consider two widely adopted variants of MIA. The first variant, C-MIA (Confidence-based
MIA), assesses membership based on the confidence score, which is the predicted probability of
the true class (Fan et al., 2024; Jia et al., 2023). The second variant, E-MIA (Entropy-based
MIA), infers membership by examining the entropy of the model’s outputs, calculated as H(x) =
−∑i pi(x) ⋅ logpi(x) (Chundawat et al., 2023b; Foster et al., 2024; Kurmanji et al., 2023). Higher
entropy indicates greater uncertainty in the model’s predictions, often signaling non-training samples.
We primarily report results using E-MIA due to its more pronounced differences across various
baselines compared to C-MIA. It is noteworthy that our head distillation (HD) method achieves
similar performance outcomes with both E-MIA and C-MIA.

U-LiRA U-LiRA is a variant of black-box membership inference attack (MIA) designed to evaluate
the privacy protection of unlearning algorithms (Hayes et al., 2024). For our LiRA MIA experiments
in Appendix D, we followed the U-LiRA methodology from Hayes et al. (2024), training 128
ResNet-18 models on random splits of half the CIFAR-10 training set, ensuring that each sample
is included in 64 and excluded from 64 models on average. We applied the unlearning algorithm
to 40 random forget sets (200 samples each) per model, resulting in 5,120 unlearned models. For
evaluation, we used 2,560 shadow and 2,560 target models, focusing on class 4 samples. Testing each
method required 300–500 GPU hours, highlighting the cost-intensive nature of LiRA when adopting
to unlearning; additional details can be found in (Hayes et al., 2024).

JSD Jensen-Shannon divergence (JSD) is presented in Bad-T (Chundawat et al., 2023b). It measures
the distance between the output distributions of the unlearned model and Retrain. JSD is measured as
follows:

JSDD(θu, θr) = 0.5 ⋅KL(f(x; θu) ∣∣m) + 0.5 ⋅KL(f(x; θr) ∣∣m), (6)

where KL(⋅) is Kullback-Leibler divergence, x is data from D, and m = f(x;θu)+f(x;θr)
2

. Here,
f(x; θ) represents the model’s output probability distribution for input x with parameters θ. A
smaller distance means better unlearning as the unlearned model better mimics Retrain.

RTE Runtime efficiency (RTE) measures the time that an algorithm spends to complete the
unlearning, where smaller RTE indicates more efficient unlearning (Fan et al., 2024; Jia et al., 2023;
Foster et al., 2024). Since it measures the experiment wall-clock time, it has high variance depending
on the experiment environment.

C.2 APPROXIMATE MU BASELINES.

We conduct our experiments on several widely used or recent approximate MU baselines: Finetun-
ing (FT) (Golatkar et al., 2020a) finetunes Original θo with retain set Dr, inducing catastrophic
forgetting (French, 1999; Kirkpatrick et al., 2017) of Df . Random labeling (RL) (Golatkar et al.,
2020a) involves finetuning θo with randomly labeled forget set Df . Gradient ascent (GA) (Thudi
et al., 2022) trains θo with reverse gradient steps using Df . Bad-T (Chundawat et al., 2023b) uses a
teacher-student framework that utilizes distillation techniques, distinguishing between beneficial and
detrimental influences through good and bad teachers to refine the learning process. Catastrophic
forgetting-k (CF-k) and exact unlearning-k (EU-k) (Goel et al., 2022) involve either finetuning
(CF-k) or retraining (EU-k) the last k layers of the model using Dr while freezing the prior layers.
SCRUB (Kurmanji et al., 2023) employs a technique of positive distillation from θo using the Dr,
and negative distillation on the Df , which helps in selectively retaining beneficial knowledge while
discarding the unwanted influences. ℓ1-sparse (Jia et al., 2023) enhances the model’s ability to
forget by strategically inducing weight sparsity in θo. SALUN (Fan et al., 2024) finetunes the salient
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Table 4: Training configuration for Original and Retrain.

Settings CIFAR-10 / CIFAR-100 ImageNet-1K

Resnet-18 / Resnet-50 ViT ResNet-50 ViT

Epochs 300 3 90 30

Batch Size 128 256 512

LR 0.1 0.00002 0.1 0.02

Optimizer SGD

Momentum 0.9

L2 regularization 0.0005 0

Scheduler CosineAnnealing

weights of θo using a method that incorporates random labeling. BoundaryShrink (Chen et al., 2023)
reassigns the Df to their nearest but incorrect labels, splitting the decision space of the forgetting
class. BoundaryExpand (Chen et al., 2023) maps Df to an extra shadow class, bypassing the need
to find nearest labels.

C.3 DATASETS AND MODELS

We conduct image classification experiments utilizing well-established datasets and models. The
datasets include CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and ImageNet-1K (Deng et al., 2009);
and the models are ResNet-18, ResNet-50 (He et al., 2016), and Vision Transformer (ViT) (Doso-
vitskiy et al., 2021). CIFAR-10 and CIFAR-100 each comprise 50,000 training images distributed
across 10 and 100 classes, respectively, each with an original resolution of 32 x 32 pixels. In our
experiments, we resize the images in ImageNet-1K, which consists of 1,281,167 training images
across 1,000 classes, to 224 x 224 pixels. Similarly, for the ViT experiments, we resize CIFAR
images to 224 x 224 pixels to accommodate the architecture’s requirements. Throughout the training
process, including pretraining and unlearning phases, we employ basic data augmentation techniques
such as random cropping and random horizontal flipping.

C.4 PRETRAINING SETTINGS

To perform unlearning, we require two models: Original, trained on the entire dataset D, and
Retrain, trained on the retain set Dr. Original initializes the unlearning model. After unlearning,
Retrain evaluates them. Table 4 summarizes the training configurations for each dataset and model
combination. We train ResNet models from scratch and initialize ViT models with ImageNet-21K
pretrained weights. For training on ImageNet-1K, we follow the configurations provided by Pytorch1.

C.5 UNLEARNING SETTINGS

We aim to follow the hyperparameters provided by the original papers. However, many hyperparame-
ters are missing since most existing works do not experiment with large-scale datasets and models.
Additionally, some values from the original papers result in poor performance, likely due to different
experiment settings, as most previous work performed unlearning without any data augmentation,
unlike our experiments. Therefore, we conduct thorough hyperparameter searches for each baseline.
The detailed hyperparameters of each baseline, including our method COLA and COLA+, are shown
in Table 9 and Table 10. We use the same optimizer and batch size from the original papers and focus
on finding the best epoch number and learning rate in terms of unlearning accuracy (UA) and testing
accuracy (TA). Note that we implement gradient ascent (GA) from SCRUB (Kurmanji et al., 2023)
(referred to as ’NegGrad+’) due to its strong performance.

1https://github.com/pytorch/examples/tree/main/imagenet
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C.6 COLA AND COLA+ PSEUDO CODE

Before Collapse After

Figure 9: Illustration of the collapse phase of COLA. Features (post-encoder, pre-head) from forget
set Df are represented in red, while features from retain set Dr are represented in green and blue.
The figure shows a class-wise forgetting task. Best viewed in color.

Algorithm 1 shows the pseudo code of our two-step framework COLA. Only using the retain set
Dr, in the collapse phase (see Figure 9), We first train the encoder of the model using supervised
contrastive loss (Khosla et al., 2020) as follows:

SupConLoss(b, θenc) =
1

∣b∣
∑
i

1

∣P (i)∣
∑

p∈P (i)
− log

exp(zi ⋅ zp/τ)

∑a∈A(i) exp(zi ⋅ za/τ)
, (7)

where P (i) is the set of indices of positive samples sharing the same label as sample i, A(i) is the
set of all indices excluding sample i, τ is a temperature, and zi = F (xi; θenc), the output feature of
the model encoder. Then we train the whole network using cross-entropy loss in the align phase.
COLA+ additionally utilizes forget set Df in the collapse phase, where the label of forget samples is
changed to the class label closest to the original label, determined by the logit output of the head of
Original. Its pseudo code is presented in Algorithm 2.

Algorithm 1 Pseudo Code of COLA

Require: learning rate η, number of epochs E1,E2, retain set Dr = {(xi, yi) ∣ (xi, yi) ∈ Dr},
encoder F (⋅; θ), and model weight θ = {θenc, θhead}

θu,enc ← θo,enc ▷ Collapse phase
for e← 0 to E1 − 1 do

for all batches b of Dr do
L = SupConLoss(b, θu,enc) ▷ Equation 7
θu,enc ← θu,enc − η∇θu,encL

end for
end for

θu,head ← random initialization ▷ Align phase
for e← 0 to E2 − 1 do

for all batches b of Dr do
θu ← θu − η∇θuLCE

end for
end for
return θu = {θu,enc, θu,head}

C.7 IDI DETAILS

To derive IDI from features, it is necessary to train the critic functions fνℓ
and gηℓ

, as referenced in
Section 4. For the training of gηℓ

, a learning rate of 5 ⋅ 10−4 is applied in all architectures and datasets.
Meanwhile, for fνℓ

, the learning rates are set at 2 ⋅ 10−5 for CIFAR10 ResNet-18, 2 ⋅ 10−6 for ViT
ImageNet-1K, and 1 ⋅ 10−5 for the remaining architectures of the data set.

To get IDI, we analyzed the outputs from the layers of different models. Specifically, we evaluated the
last two block outputs for ResNet18 and the final three for ResNet50. For Vision Transformer (ViT),
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Algorithm 2 Pseudo Code of COLA+

Require: learning rate η, number of epochs E1,E2, retain set Dr = {(xi, yi) ∣ (xi, yi) ∈ Dr},
forget set Df = {(x

′
i, y
′
i) ∣ (x

′
i, y
′
i) ∈ Df}, encoder F (⋅; θ), head G(⋅; θ), and model weight

θ = {θenc, θhead}

θu,enc ← θo,enc ▷ Collapse phase
θu,head ← θo,head
for e← 0 to E1 − 1 do

for {br, bf} in all batches of {Dr,Df} do
for x′i ∈ bf do

y′i ← argmaxy softmax(G(F (x′i; θu,enc); θu,head)) ⋅ I[y ≠ y′i] ▷ Pseudo-labeling
end for
b← br + bf
L = SupConLoss(b, θu,enc) ▷ Equation 7
θu,enc ← θu,enc − η∇θu,encL

end for
end for

▷ Align phase
for e← 0 to E2 − 1 do

for all batches b of Dr do
θu ← θu − η∇θuLCE

end for
end for
return θu = {θu,enc, θu,head}

we examined the outputs of the final three transformer encoder blocks. Note that these selections of
layers is based on the observation that the information differences of outputs from the initial layers of
both original and retrained models are similar. For empirical justifications of these selections, please
refer to Appendix E.2.

C.8 SYSTEM SPECIFICATION

For fair comparison, all experiments are executed in Python 3.10, on an Ubuntu 18.04 machine with
72 CPU cores, 4 Nvidia RTX A6000 GPUs and 512GB memory.

D ADDITIONAL UNLEARNING RESULTS

In this section, we provide the full experiment results on various machine unlearning settings,
extending the results in Section 3 and Section 5.2.

D.1 HEAD DISTILLATION (HD) RESULTS

By achieving strong black-box performance while modifying only the model head and retaining
intermediate layer information (i.e., preserving the information of the forget samples), we highlighted
the limitations of black-box metrics in Section 3. To examine whether HD consistently exposes
these limitations across diverse metrics (e.g., Accuracy, MIA, JSD, ZRF (Chundawat et al., 2023b),
AUS (Cotogni et al., 2023), LiRA MIA (Carlini et al., 2022)) and scenarios (single-class, multi-class,
and random data forgetting), we extend our analysis to include a broader range of evaluations. We
compare HD with five other methods: FT, RL, GA, ℓ1-sparse, and SALUN.

Single-Class Forgetting. Figure 10 presents the results for single-class forgetting on CIFAR-10.
Despite modifying only the last layer, HD achieves the best MIA performance among the five methods.
Additionally, it delivers competitive results across accuracy, JSD, ZRF, and AUS metrics, completing
the task in under ten seconds (RTE). Notably, HD also performs comparably on LiRA MIA (Kurmanji
et al., 2023; Hayes et al., 2024), one of a recently proposed black-box MIA metrics. The strong
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Figure 10: Performance of six methods (HD, FT, RL, GA, ℓ1-sparse, SALUN) on (CIFAR-10,
ResNet-18), evaluated in efficiency (RTE), accuracy (TA), and efficacy (MIA, JSD, ZRF, AUS, LiRA
MIA) in single-class forgetting scenarios. Lower differences from Retrain in TA, MIA, and JSD
indicate closer similarity to Retrain, while higher values for ZRF and AUS represent better efficacy.
Additionally, LiRA MIA values closer to 0.5 reflect higher efficacy.
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Figure 11: Performance of six methods (HD, FT, RL, GA, ℓ1-sparse, SALUN) on (CIFAR-100,
ResNet-18), evaluated in efficiency (RTE), accuracy (TA), and efficacy (MIA, JSD, ZRF, AUS) in
multi-class forgetting scenarios (5 classes). For TA, MIA, and JSD, lower differences from Retrain
are preferred, indicating similarity to Retrain. For ZRF and AUS, higher values reflect better efficacy.

performance of HD across various black-box metrics underscores the need for robust white-box
metrics to more effectively assess unlearning quality.

Multi-Class Forgetting. For the multi-class forgetting scenario, we extend the logit masking
technique of HD, as described in Section 3, by incorporating additional masking for multiple classes.
As shown in Figures 11 and 12, HD achieves comparable performance across TA, MIA, JSD, ZRF,
and AUS, completing the tasks within the shortest time frame (31.32 seconds for forgetting 5 classes
and 25.83 seconds for forgetting 20 classes). Similar to the single-class forgetting scenario, HD’s
comparable performance in this extended setup further highlights the limitations of black-box metrics.

Random Data Forgetting. In random data forgetting scenarios, HD cannot be directly applied, as
all classes are included in the retain set. To address this, we use gradient descent on the retain set and
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Figure 12: Performance of six methods (HD, FT, RL, GA, ℓ1-sparse, SALUN) on (CIFAR-100,
ResNet-18), evaluated in efficiency (RTE), accuracy (TA), and efficacy (MIA, JSD, ZRF, AUS) in
multi-class forgetting scenarios (20 classes). For TA, MIA, and JSD, lower differences from Retrain
are preferred, indicating similarity to Retrain. For ZRF and AUS, higher values reflect better efficacy.
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Figure 13: Performance of six methods (HD, FT, RL, GA, ℓ1-sparse, SALUN) on (CIFAR-10,
ResNet-18), evaluated in efficiency (RTE), accuracy (TA), and efficacy (MIA, JSD, AUS) in random
data forgetting scenarios (500 samples per class). For TA, MIA, and JSD, lower differences from
Retrain are preferred, indicating similarity to Retrain. For AUS, higher values reflect better efficacy.

gradient ascent on the forget set while training only the model’s head. While this approach differs
from HD, which uses logit masking, we retain the name to emphasize its defining characteristic of
modifying only the last layer. As shown in Figure 13, HD achieves strong performance on black-box
metrics (accuracy, MIA, and JSD) within less than 20 seconds (RTE). This result demonstrates that
HD can still deceive black-box metrics with comparable performance. Note that ZRF is omitted in this
scenario, as it is not ideally suited for random data forgetting; for more details, refer to (Chundawat
et al., 2023b).
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D.2 STANDARD DEVIATION

Due to the visual complexity of Figures 5 and 8, representing the standard deviation directly in these
figures is challenging. Therefore, we include the standard deviation values separately in Tables 16
and 17 for Figure 5, and in Table 18 for Figure 8.

D.3 SINGLE-CLASS FORGETTING RESULTS

CIFAR-10 with Various Architectures Table 11 shows the full experiment results of the single-
class forgetting experiments from Table 1 on CIFAR-10 using different models. This extended
table includes Jensen-Shannon divergence (JSD) and the unlearning results with ResNet-50 and ViT.
Although many baselines show promising results on output based evaluation metrics, they generally
exhibit poor feature-level unlearning. In contrast, COLA not only outperforms existing baselines in
IDI but also shows decent results in other metrics, demonstrating its effectiveness in removing the
influence of the forget set within the encoder of the model.

CIFAR-100 with Various Architectures As demonstrated in Table 12, we also compare COLA
with other baselines on CIFAR-100. The results consistently highlight the difficulty of comparing
and validating the efficacy of each unlearning method using existing output-based metrics. With the
help of IDI, it is clear that COLA shows robustness in model unlearning on datasets with a large
number of classes across various model architectures. Although SCRUB has achieved IDI near 0
for the CIFAR-10 ResNet-18 experiment, it shows significant variations in feature-level unlearning
across different datasets and architectures.

D.4 MULTI-CLASS FORGETTING RESULTS

Multi-Class Forgetting on CIFAR-10 and CIFAR-100 Table 13 presents the results of multi-class
forgetting experiments on CIFAR-10 and CIFAR-100 using ResNet-18, which involves erasing the
information of more than one class in the training set. We remove two classes from CIFAR-10 and
five and twenty classes from CIFAR-100. Notably, many baselines exhibit higher IDI values as the
number of forgetting class increases, demonstrating that the tendency to modify the head of the
model strengthens with the difficulty of the unlearning tasks. In contrast, COLA shows remarkable
effectiveness, achieving metric values closely aligned with Retrain. Specifically, COLA consistently
achieves the lowest IDI values among the evaluated methods, indicating the necessity of the collapse
phase for effective feature-level unlearning no matter the number of class to forget.

Multi-Class Forgetting on ImageNet-1K We conduct 5-class unlearning on ImageNet-1K using
ResNet-50 and ViT. Table 14 provides the complete results of Table 1 for ImageNet-1K, including all
evaluation metrics and outcomes on the ViT architecture. However, it is important to note that IDI
alone should not be used to assess unlearned models, as a low IDI might indicate a loss of overall
information, including that from the retain set, which should be maintained at the same level as
Original. This issue is evident in the RA, TA, and IDI of EU-10 and CF-10 in Table 14. In contrast,
COLA consistently achieves IDI near 0 while maintaining accuracy measurements comparable to
Retrain, demonstrating the scalability of our framework to the large-scale datasets.

D.5 RANDOM DATA FORGETTING RESULTS

Table 15 presents the results of the random data forgetting task conducted on ResNet-18. For CIFAR-
10 and CIFAR-100 datasets, we randomly selected 500 and 50 forget samples per class, respectively.
COLA+, which incorporates pseudo-labeling, successfully eliminates the influence of the forgetting
data while maintaining competitive performance.

E ADDITIONAL DISCUSSIONS

E.1 MUTUAL INFORMATION CURVES

Figure 18 illustrates the estimated mutual information I(Zℓ;Y ) of the features from the ℓ-th layer Zℓ

and the binary label Y , computed by the InfoNCE loss across various architectures and datasets. We
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Table 5: IDI values of methods on ResNet-18 with CIFAR-10 singleclass forgetting, computed
using the last n selected layers, where n = 1 considers only the final representation, and larger n
incrementally include earlier layers. ⋆ marks the IDI values reported in our work.

Methods Full Layers n = 4 n = 3 n = 2⋆ n = 1

FT 0.670±0.011 0.670±0.011 0.670±0.013 0.671±0.008 0.673±0.012
RL 0.833±0.005 0.833±0.004 0.830±0.004 0.830±0.005 0.837±0.002
GA 0.338±0.006 0.336±0.007 0.334±0.007 0.334±0.014 0.333±0.008
Bad-T 1.020±0.023 1.016±0.023 1.012±0.023 1.014±0.004 1.016±0.022
EU-5 0.531±0.004 0.531±0.005 0.530±0.006 0.528±0.005 0.524±0.007
CF-5 0.674±0.023 0.675±0.023 0.673±0.024 0.675±0.027 0.679±0.026
EU-10 −0.352±0.007 −0.347±0.007 −0.344±0.006 −0.349±0.019 −0.310±0.018
CF-10 −0.058±0.010 −0.060±0.010 −0.061±0.010 −0.060±0.017 −0.056±0.008
SCRUB −0.055±0.028 −0.053±0.029 −0.051±0.027 −0.056±0.008 −0.048±0.026
SALUN 0.941±0.029 0.937±0.029 0.935±0.029 0.936±0.012 0.935±0.027
l1-sparse 0.292±0.011 0.293±0.012 0.294±0.011 0.293±0.012 0.297±0.013
COLA 0.010±0.009 0.012±0.009 0.012±0.008 0.010±0.006 0.015±0.013

Table 6: IDI values of methods on ResNet-50 with CIFAR-10 single class forgetting, computed
using the last n selected layers, where n = 1 considers only the final representation, and larger n
incrementally include earlier layers. ⋆ marks the IDI values reported in our work.

Methods Full Layers n = 5 n = 4 n = 3⋆ n = 2 n = 1

FT 0.617±0.006 0.618±0.009 0.618±0.013 0.607±0.009 0.610±0.013 0.563±0.014
RL 0.808±0.012 0.808±0.012 0.811±0.006 0.804±0.006 0.814±0.003 0.797±0.000
GA 0.334±0.018 0.338±0.018 0.337±0.018 0.334±0.023 0.339±0.017 0.269±0.015
Bad-T 1.156±0.016 1.151±0.020 1.152±0.021 1.153±0.026 1.157±0.018 1.163±0.024
EU-5 1.044±0.009 1.043±0.008 1.050±0.005 1.047±0.005 1.061±0.002 1.080±0.002
CF-5 0.904±0.005 0.906±0.005 0.910±0.006 0.906±0.002 0.916±0.001 0.914±0.002
EU-10 0.760±0.014 0.766±0.011 0.766±0.011 0.757±0.011 0.756±0.010 0.715±0.010
CF-10 0.592±0.015 0.594±0.017 0.590±0.018 0.579±0.009 0.582±0.018 0.516±0.024
SCRUB 0.067±0.005 0.073±0.007 0.071±0.007 0.067±0.020 0.076±0.008 0.011±0.005
SALUN 0.831±0.014 0.833±0.011 0.832±0.019 0.832±0.027 0.842±0.009 0.771±0.005
l1-sparse 0.185±0.005 0.183±0.007 0.181±0.007 0.184±0.023 0.185±0.016 0.191±0.007
COLA 0.019±0.006 0.023±0.009 0.021±0.009 0.019±0.025 0.022±0.009 0.007±0.011

compute mutual information (MI) for all layers from the ResNet encoder and last five layers from the
ViT encoder based single-class forgetting retain and forget sets. The upper bound of MI is given by
the entropy H(Y ) ≥ I(Zℓ;Y ) =H(Y ) −H(Y ∣ Zℓ). The estimated MI values fall within the range
of the upper and lower bounds (0), validating the use of InfoNCE for MI estimation. Notably, all MI
curves consistently show a larger difference between Original and Retrain in the later layers of the
encoder across various datasets and architectures, while differences are minimal in the earlier layers.
These observations underscore the validity of computing the information difference (ID) for the last
few layers to quantify unlearning. Furthermore, the difference between Original and Retrain becomes
more significant with increasing numbers of forget classes, as shown in Figure 19.

E.2 EFFECT OF NUMBER OF LAYERS FOR IDI

Conceptually, estimating mutual information for IDI involves all intermediate layers, as introduced
in Section 4.3. However, in practice, earlier layers exhibit similar mutual information levels across
models, as shown in Figure 5, Figure 18, and Figure 19. Consequently, estimating mutual information
from only a few later layers is sufficient for evaluation. This observation aligns with findings
in Yosinski et al. (2014); Zeiler and Fergus (2014), which indicate that earlier layers primarily
capture general features, while later layers focus on distinctive features, resulting in greater variability
in mutual information. To validate this approach, we measure IDI using different numbers of
accumulated layers from the back, as presented in Table 5 and Table 6. These experiments use the
same settings discussed in Figure 5. Our results demonstrate minimal differences in IDI as n increases,
indicating a negligible contribution of earlier layers to IDI. Specifically, when comparing the two
columns (“Full layers” and “n with ∗”), the discrepancy between the ideal IDI and our practical
approach is minimal, empirically supporting the validity of focusing on the last selected layers.
This property is particularly beneficial for reducing computational costs, as mutual information
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Table 7: IDI for four different reference models (Retrain, COLA, EU-10, and FT⋆). FT⋆ is finetuned
with a learning rate of 5e-5, while FT is finetuned with a learning rate of 1e-5. Since FT typically
does not remove all residual information while maintaining test accuracy, using a higher learning rate
for FT⋆ can be justified if you want to use it as the reference model. The ‘Order’ has been arranged
in ascending sequence according to the IDI values.

CIFAR-10 CIFAR-100
Methods Order θs = Retrain θs = COLA θs = EU-10 θs = FT⋆ Order θs = Retrain θs = COLA θs = EU-10 θs = FT⋆

FT 8 0.671±0.008 0.668±0.008 0.756±0.006 0.662±0.008 11 0.610±0.022 0.624±0.021 0.680±0.018 0.481±0.029
RL 10 0.830±0.005 0.828±0.005 0.874±0.004 0.825±0.005 9 0.467±0.010 0.486±0.010 0.563±0.008 0.291±0.013
GA 6 0.334±0.014 0.328±0.014 0.506±0.010 0.315±0.014 8 0.392±0.021 0.414±0.020 0.502±0.017 0.191±0.028
Bad-T 12 1.014±0.004 1.014±0.004 1.010±0.003 1.014±0.004 12 1.079±0.024 1.076±0.023 1.065±0.020 1.105±0.032
EU-5 7 0.528±0.005 0.523±0.005 0.650±0.004 0.515±0.005 3 0.064±0.037 0.098±0.036 0.233±0.030 −0.245±0.049
CF-5 9 0.675±0.027 0.672±0.027 0.759±0.020 0.666±0.028 7 0.388±0.010 0.410±0.010 0.499±0.008 0.186±0.013
EU-10 1 −0.349±0.019 −0.362±0.019 0.0±0.014 −0.387±0.020 1 −0.221±0.009 −0.177±0.009 0.0±0.007 −0.624±0.012
CF-10 2 −0.060±0.017 −0.070±0.017 0.214±0.013 −0.090±0.017 4 0.175±0.040 0.205±0.039 0.324±0.033 −0.097±0.053
SCRUB 3 −0.056±0.008 −0.066±0.008 0.217±0.006 −0.086±0.008 6 0.339±0.069 0.363±0.067 0.458±0.057 0.121±0.092
SALUN 11 0.936±0.012 0.935±0.012 0.953±0.009 0.934±0.012 10 0.529±0.022 0.546±0.021 0.614±0.018 0.373±0.029
ℓ1-sparse 5 0.293±0.012 0.286±0.012 0.476±0.009 0.273±0.012 5 0.334±0.026 0.358±0.025 0.454±0.021 0.114±0.035
COLA 4 0.010±0.006 0.0±0.006 0.266±0.004 −0.018±0.006 2 −0.038±0.006 0.0±0.006 0.150±0.005 −0.381±0.008

IDI: 1.000
(a) Original

IDI: 0.906±0.002
(b) CF-5

IDI: 0.607±0.009
(c) FT

IDI: 0.184±0.023
(d) ℓ1-sparse

IDI: 0.019±0.025
(e) COLA

IDI: 0.000
(f) Retrain

Figure 14: t-SNE visualizations of encoder outputs for Original, Retrain, and unlearned models from
four MU methods (SALUN, ℓ1-sparse, SCRUB, EU-10) on single-class forgetting with (CIFAR-10,
ResNet-50). In each t-SNE plot, features of the forgetting class are represented in purple.
computations for later layers require less time due to the shallower g networks involved (refer
to Section 4.1). Practitioners can determine the appropriate n by observing the information gap per
layer between Original and Retrain for a given unlearning setup.

E.3 IDI WITHOUT RETRAIN MODEL

In real-world applications, using the Retrain is often infeasible. In such cases, any reasonable model
can be used as the standard model, denoted as θs. Although the absence of a Retrain inevitably
affects how the IDI value is interpreted (i.e., an IDI value of zero indicates that unlearning has
been properly achieved, equivalent to the Retrain), it still provides useful insights into the degree of
unlearning achieved relative to the chosen reference. To accommodate this, we introduce an extended
version of the ID metric. Differences are highlighted with (⋅):

ID(θu, θs) =
L

∑
ℓ=1
(I(Z

(u)
ℓ ;YC) − I(Z

(s)
ℓ ;YC)) . (8)

The main difference from the original ID is that θs can be set as any model including θr (Retrain),
while the previous version fixed θs = θr. This extension also leads to the modified IDI metric:

IDI(θu, θs) =
ID(θu, θs)

ID(θ0, θs)
=
∑

L
ℓ=1 (I(Z

(u)
ℓ ;Y ) − I(Z

(s)
ℓ ;Y ))

∑
L
ℓ=1 (I(Z

(o)
ℓ ;Y ) − I(Z

(s)
ℓ ;Y ))

. (9)

We test IDI using different reference models, as demonstrated in Table 7. Intuitively, since only the
standard model changes in Equation (9), the order of the IDI values remains consistent.

E.4 IDI AND T-SNE RELATIONSHIP

In Section 3.2, we identified significant residual information in unlearned models through their
tightly clustered t-SNE plots (see Figure 3) and their ability to easily recover forgotten information
(see Figure 4). Black-box assessments failed to detect these residuals, as shown by the success of HD
(see Figure 2), which only altered the last layer. In contrast, IDI effectively captures these hidden
residuals, showing a strong correlation with t-SNE plots (see Figure 14), and aligning with accuracy

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

recovered across unlearned models (see Figure 4). By complementing existing metrics, IDI offers a
comprehensive evaluation of approximate MU methods, addressing crucial aspects to ensure strong
unlearning beyond superficial modifications.

Figure 15 presents the full t-SNE plots illustrating the intermediate features and corresponding IDI
measurements of MU baselines on the single-class unlearning on CIFAR-10 with ResNet-18. A high
IDI corresponds to better clustering and similarity among features of the forgetting class, as seen
in (l) SALUN and (f) Bad-T, which show inadequate unlearning performance. These examinations
show the high relationship between IDI and the residual information of forget set. Additionally,
the IDI metric reveals instances of over-unlearning, where the forgetting class becomes excessively
dispersed, as demonstrated in (i) EU-10. Among the evaluated methods, (n) COLA has the closest
IDI to Retrain, suggesting its high efficacy in achieving the desired removal of the forget set influence
in the intermediate layers of the model. This trend is also visible in ResNet-50 (see Figure 16) and
ViT (see Figure 17).

Furthermore, we confirm that IDI for the random data forgetting correctly captures the encoder‘s
information, similar to IDI for the class-wise forgetting. In Figure 21, the t-SNE plots of forget sample
features for two baselines with the same unlearning accuracy (UA) – Bad-T and ℓ1-sparse – and their
IDI values in the random data forgetting task is visualized. Comparing them, IDI successfully reflects
the residual information in the features, as the features of Bad-T form more compact clusters than
those of ℓ1-sparse, indicating more influence of the forget set remains in Bad-T. IDI the for random
data forgetting captures the hidden information that cannot be noticed from existing metrics, which
may suggest that both methods unlearn similarly due to their same forget accuracy.

E.5 MUTUAL INFORMATION AND ACCURACY

We extend the experiment to measure the accuracy of the intermediate features of the model’s encoder.
Similar to measuring MI using the InfoNCE loss, we freeze the layers up to the ℓ-th layer of the
encoder and train the remaining encoder layers and an additional head using cross-entropy loss. The
additional head perform binary classification to determine whether the input belongs to the retain or
forget set.

Figure 20 shows the train accuracy curves on the CIFAR-10 single-class forgetting dataset with
ResNet-18. For Original encoder, the trained model readily classifies the retain and forget sets.
However, for Retrain encoder, the model fails to classifies all samples at the last two layers, with
the accuracy dropping more in the later layer. These curves correspond to the those from Figure 18,
indicating that the estimated MI accurately reflects the model’s knowledge of the retain and forget
sets. In addition, the small accuracy gap between Original and Retrain provides the necessity of MI
for accurate residual information quantification.

E.6 COMPUTATIONAL COMPLEXITY OF IDI

Table 8 presents the runtime of mutual information (MI) computation for intermediate features from
each block, using the MI estimation method proposed in Section 4.1, in the CIFAR-100 single-class
forgetting setup with ResNet-18, ResNet-50, and ViT.

Although MI estimation across all layers can be time-consuming, our selected layers for IDI compu-
tation (i.e., features from the last two blocks for ResNet-18 and the last three blocks for ResNet-50
and ViT, as detailed in Appendix C.7, and empirically justified in Appendix E.2) significantly reduce
runtime without harming metric performance. Specifically, the runtime decreases by factors of 2.63,
2.18, and 4.30 for ResNet-18, ResNet-50, and ViT, respectively, when the estimation is sequentially
processed for each block. Furthermore, using only 10% of the retain set improves runtime by an
additional 4 to 5 times without affecting the general trend, as shown in Figure 8. Since training the
latter layers requires fewer FLOPs compared to earlier layers, the computational complexity of IDI is
further reduced. These techniques can effectively alleviate potential computational challenges when
applying our metric in practice.
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Table 8: Runtime (in minutes) for mutual information estimation at the final layer of each block.
A ‘block’ refers to a group of residual layers in ResNet (commonly referred to as stages, with four
blocks in ResNet-18) or a transformer block in ViT. Results are presented for evaluations conducted
using 10% of the retain set and the full dataset in the CIFAR-10 single-class forgetting scenario.

ResNet-18 ResNet-50

Ratios Block1 Block2 Block3 Block4 Block5 Ratios Block1 Block2 Block3 Block4 Block5 Block6

10% 1.61±0.05 1.55±0.21 1.63±0.09 1.49±0.11 1.42±0.13 10% 4.17±0.13 3.85±0.04 3.43±0.01 3.42±0.15 3.35±0.02 3.24±0.15
Full 6.64±0.08 6.51±0.17 6.32±0.12 6.04±0.10 5.90±0.15 Full 19.91±0.18 17.70±0.01 15.75±0.02 15.32±0.11 14.98±0.07 14.83±0.04

ViT

Ratios Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9 Block10 Block11 Block12

10% 32.46 32.12 31.43 30.99 30.64 30.21 29.50 29.01 28.75 28.43 27.95 27.14
Full 167.00 162.81 160.64 159.56 157.65 155.35 151.82 147.78 146.05 144.25 142.81 139.61

F BROADER IMPACT

Our work on improving machine unlearning focuses on foundational research aimed at enhancing
privacy and data removal. However, there is a potential risk that our methodology could be misused
to evade data retention policies or obscure accountability. Despite this possibility, it is unlikely that
our work will introduce new harmful practices beyond what existing unlearning methods already
permit, as we are not introducing new capabilities. Therefore, while there might be concerns related
to privacy, security, and fairness, our work does not pose a greater risk compared to other foundational
research in machine unlearning.

G LIMITATIONS

Our methodology accomplishes its main objective, but there are a few limitations we point out.
Although our IDI successfully investigates hidden information in intermediate features, its compu-
tation requires multiple training runs, which can be computationally intensive. For instance, The
computation of IDI for ResNet-50 on the CIFAR-100 dataset takes approximately 40-50 minutes.
However, one can mitigate this by computing mutual information for only the last few layers, as
the early stages of the encoder are largely similar for both the Retrain and Original models. Thus,
this approach requires fine-tuning only the later layers, reducing the overall computational burden.
Additionally, by adjusting the forget-to-retain ratio, it is possible to improve efficiency and possibly
decrease the processing time to merely 3-4 minutes.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters of baselines for class-wise forgetting. Retain Batch Size is the batch size
of retain set Dr and Forget Batch Size is the batch size of forget set Df . Baselines without Forget
Batch Size imply that they do not use forget set Df . Bad-T uses the entire dataset D, so there is no
separation of retain and forget of Batch Size. SCRUB has separate epochs for retain set and forget set,
which is visualized as Retain Epochs (Forget Epochs). For COLA, A + B Epochs indicates collapse
epochs A and align epochs B.

Class-wise Forgetting

Settings CIFAR-10 CIFAR-100 ImageNet-1K
ResNet-18 / ResNet-50 / ViT ResNet-50 / ViT

FT
25 Epochs, Adam 3/4 Epochs, Adam

LR 10−5/10−5/10−4 LR 10−5
Retain Batch Size 64 Retain Batch Size 128

RL

7 / 7 / 10 Epochs, SGD 7 / 7 / 10 Epochs, SGD 3 Epochs, SGD
LR 10−5 / 2 ⋅ 10−5 / 10−3 LR 2 ⋅ 10−5 / 10−4 / 10−4 LR 10−3 / 10−4

Retain Batch Size 64 Retain Batch Size 64 Retain Batch Size 128
Forget Batch Size 16 Forget Batch Size 16 Forget Batch Size 16

GA

10 Epochs, SGD 10 Epochs, SGD 3 Epochs, SGD
LR 2 ⋅ 10−3 / 2 ⋅ 10−3 / 5 ⋅ 10−3 LR 9 ⋅ 10−4 / 9 ⋅ 10−4 / 5 ⋅ 10−3 LR 2 ⋅ 10−3 / 10−3

Retain Batch Size 64 Retain Batch Size 64 Retain Batch Size 128
Forget Batch Size 16 Forget Batch Size 16 Forget Batch Size 16

Bad-T
10 Epochs, Adam 3 Epochs, Adam

LR 10−5 LR 10−5
Batch Size 256 Batch Size 256

Boundary Expand /
Boundary Shrink

10 Epochs, SGD
LR 10−5

Forget Batch Size 64

EU-5 /
EU-10

14 Epochs, SGD 2 Epochs, SGD
LR 10−2 LR 5 ⋅ 10−3

Retain Batch Size 64 Retain Batch Size 128

CF-5 /
CF-10

14 / 14 / 18 Epochs, SGD 5 Epochs, SGD
LR 10−2 / 10−2 / 3 ⋅ 10−2 LR 5 ⋅ 10−3

Retain Batch Size 64 Retain Batch Size 128

SCRUB

3(2) Epochs, SGD 3(2) Epochs, SGD 2(2) Epochs, SGD
LR 5 ⋅ 10−4 / 5 ⋅ 10−4 / 10−4 LR 5 ⋅ 10−4 LR 5 ⋅ 10−4 / 10−4

Retain Batch Size 64 Retain Batch Size 128 Retain Batch Size 128
Forget Batch Size 256 / 256 / 64 Forget Batch Size 8 Forget Batch Size 256

SALUN

10 Epochs, SGD 15 Epochs, SGD 5/2 Epochs, SGD
LR 5 ⋅ 10−4 / 10−3 / 10−3 LR 10−3 LR 10−3

Retain Batch Size 64 Retain Batch Size 64 Retain Batch Size 128
Forget Batch Size 16 Forget Batch Size 16 Forget Batch Size 16

ℓ1-sparse
10 Epochs, SGD 10 Epochs, SGD 5 Epochs, SGD

LR 2 ⋅ 10−4 / 2 ⋅ 10−4 / 9 ⋅ 10−4 LR 2 ⋅ 10−4 / 2 ⋅ 10−4 / 5 ⋅ 10−4 LR 9 ⋅ 10−4
Retain Batch Size 64 Retain Batch Size 64 Retain Batch Size 128

COLA

10+10 Epochs, Adam 10+10 Epochs, Adam 1+2 Epochs, Adam
Contrast LR 2 ⋅ 10−4 / 2 ⋅ 10−4 / 1.5 ⋅ 10−4 Contrast LR 5 ⋅ 10−4 / 5 ⋅ 10−4 / 5 ⋅ 10−4 Contrast LR 2 ⋅ 10−5 / 5 ⋅ 10−5

Finetune LR 5 ⋅ 10−6 / 10−5 / 5 ⋅ 10−5 Finetune LR 5 ⋅ 10−6 / 10−5 / 5 ⋅ 10−5 Finetune LR 1 ⋅ 10−5 / 5 ⋅ 10−5
Retain Batch Size 64 Retain Batch Size 256 Retain Batch Size 256
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Table 10: Hyperparameters of baselines for random data forgetting. Retain Batch Size is the batch
size of retain setDr and Forget Batch Size is the batch size of forget setDf . Baselines without Forget
Batch Size imply that they do not use forget set Df . Bad-T uses the entire dataset D, so there is no
separation of retain and forget of Batch Size. SCRUB uses separate epochs for retain set and forget
set, which is visualized as Retain Epochs (Forget Epochs). For COLA+, A + B Epochs indicates
collapse epochs A and align epochs B.

Random Data Forgetting

Settings CIFAR-10 CIFAR-100
ResNet-18

FT
25 Epochs, Adam

LR 10−4 LR 2 ⋅ 10−4
Retain Batch Size 64

RL

7 Epochs, SGD
LR 10−3 LR 5 ⋅ 10−4

Retain Batch Size 64
Forget Batch Size 16

GA

10 Epochs, SGD 10 Epochs, SGD
LR 2.5 ⋅ 10−3 LR 1 ⋅ 10−3

Retain Batch Size 64
Forget Batch Size 16

Bad-T
10 Epochs, Adam

LR 1 ⋅ 10−5
Batch Size 256

EU-5 /
EU-10

14 Epochs, SGD
LR 10−1 LR 5 ⋅ 10−2

Retain Batch Size 64

CF-5 /
CF-10

14 Epochs, SGD
LR 10−1 LR 5 ⋅ 10−2

Retain Batch Size 64

SCRUB

5(5) Epochs, SGD
LR 2.5 ⋅ 10−5 LR 5.4 ⋅ 10−4

Retain Batch Size 16
Forget Batch Size 64

SALUN

10 Epochs, SGD 15 Epochs, SGD
LR 8.3 ⋅ 10−4 LR 5 ⋅ 10−4

Retain Batch Size 64
Forget Batch Size 16

ℓ1-sparse
10 Epochs, SGD

LR 4 ⋅ 10−4 LR 3 ⋅ 10−4
Retain Batch Size 64 Retain Batch Size 64

COLA+

10+10 Epochs, Adam 10+10 Epochs, Adam
Contrast LR 2 ⋅ 10−4 Contrast LR 2.5 ⋅ 10−4

Finetune LR 1 ⋅ 10−4 Finetune LR 2 ⋅ 10−5
Retain Batch Size 32 Retain Batch Size 64
Forget Batch Size 64 Forget Batch Size 192
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Table 11: Single-class forgetting result on CIFAR-10 dataset across different model architectures. A
better performance of an MU method corresponds to a smaller performance gap with Retrain (except
RTE), with the top method in bold and the second best underlined. The ⋆ symbol indicated in RTE
of Original and Retrain means that models are pretrained on ImageNet-21K and then finetuned on
CIFAR-10, with the reported time reflecting only the finetuning process. In contrast, Original and
Retrain without ⋆ are trained from scratch on CIFAR-10.

CIFAR-10 - ResNet-18
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 100.0 95.46 91.50 3.21 1.000 170.32
Retrain 100.0 100.0 95.64 10.64 0.0 0.0 154.56

FT 100.0±0.0 100.0±0.0 95.12±0.09 0.17±0.05 0.57±0.03 0.671±0.008 6.44±0.07
RL 99.93±0.01 100.0±0.0 95.66±0.09 0.0±0.0 0.79±0.01 0.830±0.005 3.09±0.03
GA 100.0±0.0 99.06±0.25 93.10±0.50 25.37±3.24 0.59±0.05 0.334±0.014 4.00±0.08
Bad-T 99.90±0.14 99.99±0.0 94.99±0.12 68.17±42.80 3.69±0.85 1.014±0.004 4.64±0.05
BoundaryExpand 71.39±0.31 99.20±0.04 92.53±0.02 7.69±0.33 1.16±0.0 0.892±0.001 0.19±0.01
BoundaryShrink 85.16±0.42 99.60±0.17 93.48±0.40 0.25±0.43 0.75±0.01 0.887±0.009 0.59±0.02
EU-5 100.0±0.0 100.0±0.0 95.25±0.02 0.06±0.03 0.53±0.02 0.528±0.005 1.54±0.00
CF-5 98.13±1.39 100.0±0.0 95.54±0.09 0.0±0.0 0.56±0.04 0.675±0.027 1.57±0.03
EU-10 100.0±0.0 99.50±0.02 93.61±0.08 15.24±1.08 0.40±0.01 −0.349±0.019 2.42±0.11
CF-10 100.0±0.0 99.98±0.0 94.95±0.05 11.61±0.91 0.41±0.01 −0.060±0.017 2.31±0.03
SCRUB 100.0±0.0 100.0±0.0 95.37±0.04 19.73±1.92 0.47±0.01 −0.056±0.008 3.49±0.02
SALUN 99.99±0.01 100.0±0.0 95.42±0.12 0.01±0.01 0.73±0.04 0.936±0.012 3.54±0.11
ℓ1-sparse 100.0±0.0 99.93±0.02 94.90±0.10 1.56±0.09 0.47±0.03 0.293±0.012 2.96±0.03
COLA 100.0±0.0 100.0±0.00 95.36±0.06 12.64±0.92 0.44±0.04 0.010±0.006 4.91±0.04

CIFAR-10 - ResNet-50
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 100.0 95.42 95.58 4.11 1.000 341.86
Retrain 100.0 100.0 95.49 14.92 0.0 0.0 312.24

FT 100.0±0.0 99.99±0.0 95.28±0.11 2.17±1.28 0.73±0.02 0.607±0.009 14.50±0.34
RL 100.0±0.0 100.0±0.0 95.56±0.03 0.0±0.0 0.99±0.02 0.804±0.006 6.26±0.04
GA 100.0±0.0 98.06±0.34 92.07±0.63 20.56±3.87 0.66±0.06 0.334±0.023 8.69±0.03
Bad-T 100.0±0.0 99.94±0.04 94.74±0.24 49.95±40.74 3.02±0.64 1.153±0.026 10.19±0.32
EU-5 100.0±0.0 100.0±0.0 95.59±0.08 0.0±0.0 0.78±0.08 1.047±0.005 4.86±0.43
CF-5 17.84±0.93 100.0±0.0 95.64±0.11 0.0±0.0 1.43±0.04 0.906±0.002 4.84±0.10
EU-10 100.0±0.0 100.0±0.0 95.51±0.12 0.17±0.05 0.65±0.02 0.757±0.011 6.92±0.02
CF-10 100.0±0.0 100.0±0.0 95.49±0.13 0.07±0.03 0.67±0.08 0.579±0.009 7.09±0.02
SCRUB 100.0±0.0 100.0±0.0 95.23±0.20 18.19±0.10 0.59±0.01 0.067±0.020 8.69±0.03
SALUN 100.0±0.0 99.67±0.17 93.90±0.48 1.58±0.98 0.67±0.03 0.832±0.027 11.00±0.06
ℓ1-sparse 100.0±0.0 99.88±0.06 94.49±0.29 4.06±0.91 0.47±0.01 0.184±0.023 12.33±0.04
COLA 100.0±0.0 99.99±0.0 95.45±0.05 13.69±0.84 0.52±0.02 0.019±0.025 11.98±0.03

CIFAR-10 - ViT
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.36 99.55 98.40 89.12 3.96 1.000 100.68⋆
Retrain 100.0 99.40 97.96 4.96 0.0 0.0 90.96⋆

FT 98.10±0.24 99.85±0.06 97.58±0.36 21.14±0.92 0.71±0.13 −0.871±0.141 130.13±0.63
RL 97.88±2.12 99.88±0.01 99.01±0.02 0.0±0.0 0.74±0.04 1.052±0.011 65.45±0.12
GA 100.0±0.0 99.80±0.03 98.49±0.12 4.82±0.98 0.39±0.05 0.498±0.025 68.32±0.80
Bad-T 100.0±0.0 99.55±0.03 98.40±0.20 0.0±0.0 0.84±0.06 0.997±0.016 100.90±1.02
EU-5 100.0±0.0 99.76±0.01 98.80±0.01 0.30±0.01 0.28±0.03 0.901±0.006 29.89±0.09
CF-5 100.0±0.0 99.76±0.0 98.86±0.02 0.35±0.03 0.26±0.01 0.941±0.001 34.12±0.09
EU-10 100.0±0.0 99.72±0.02 98.63±0.04 0.64±0.02 0.23±0.03 0.268±0.016 32.74±0.19
CF-10 100.0±0.0 99.77±0.01 98.75±0.02 0.64±0.04 0.21±0.02 0.377±0.039 36.79±0.15
SCRUB 100.0±0.0 99.66±0.0 98.57±0.01 94.74±0.26 3.87±0.07 0.907±0.027 22.99±0.24
SALUN 100.0±0.0 99.78±0.02 98.89±0.02 0.01±0.01 0.39±0.05 1.066±0.041 61.37±0.10
ℓ1-sparse 100.0±0.0 97.48±0.27 95.78±0.16 3.89±0.79 0.41±0.03 −0.573±0.290 51.44±0.04
COLA 99.44±0.02 100.0±0.0 98.82±0.06 11.90±1.36 0.63±0.11 -0.067±0.010 116.01±0.96
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Table 12: Single-class forgetting result on CIFAR-100 dataset across different model architectures. A
better performance of an MU method corresponds to a smaller performance gap with Retrain (except
RTE), with the top method in bold and the second best underlined. The ⋆ symbol indicated in RTE
of Original and Retrain means that models are pretrained on ImageNet-21K and then finetuned on
CIFAR-100, with the reported time reflecting only the finetuning process. In contrast, Original and
Retrain without are ⋆ trained from scratch on CIFAR-100.

CIFAR-100 - ResNet-18
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 99.98 78.18 92.80 2.91 1.000 175.08
Retrain 100.0 99.96 79.48 2.00 0.0 0.0 171.27

FT 100.00±0.0 99.97±0.0 77.49±0.14 0.07±0.09 0.37±0.01 0.610±0.022 9.50±0.03
RL 93.80±0.75 99.98±0.0 77.94±0.10 0.0±0.0 0.52±0.01 0.467±0.010 3.52±0.0
GA 99.93±0.09 96.87±0.52 69.87±0.78 21.40±2.04 1.18±0.02 0.392±0.021 5.32±0.01
Bad-T 100.0±0.0 99.98±0.0 77.66±0.26 40.87±36.87 2.53±0.44 1.079±0.024 5.78±0.02
BoundaryExpand 98.93±0.12 98.30±0.10 69.47±0.16 1.60±0.0 0.69±0.0 0.757±0.008 0.11±0.01
BoundaryShrink 99.13±0.42 98.67±0.12 69.73±0.52 1.13±0.42 0.68±0.01 0.752±0.018 0.59±0.04
EU-5 100.0±0.0 99.78±0.01 75.01±0.04 9.33±0.75 0.66±0.01 0.064±0.037 2.14±0.0
CF-5 100.0±0.0 99.97±0.0 77.30±0.28 2.87±0.66 0.40±0.03 0.388±0.010 2.14±0.01
EU-10 100.0±0.0 91.94±0.08 72.84±0.04 12.67±0.47 0.53±0.02 −0.221±0.009 4.39±0.02
CF-10 100.0±0.0 99.89±0.02 76.49±0.02 7.07±0.84 0.49±0.01 0.175±0.040 4.29±0.04
SCRUB 100.0±0.0 99.98±0.0 78.17±0.04 0.07±0.09 0.31±0.01 0.339±0.069 2.27±0.02
SALUN 95.73±0.85 99.22±0.13 74.20±0.52 0.09±0.02 0.65±0.01 0.529±0.022 4.63±0.06
ℓ1-sparse 96.93±0.19 98.90±0.12 74.69±0.06 6.60±0.43 0.34±0.01 0.334±0.026 4.55±0.01
COLA 100.0±0.0 99.80±0.00 76.48±0.11 9.60±1.31 0.26±0.01 -0.037±0.006 7.51±0.02

CIFAR-100 - ResNet-50
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 99.98 79.84 91.60 3.43 1.000 345.54
Retrain 100.0 99.97 79.42 3.40 0.0 0.0 338.58

FT 99.33±0.09 99.93±0.03 77.71±0.18 0.40±0.16 0.57±0.02 0.618±0.018 16.34±0.47
RL 100.0±0.0 99.95±0.02 79.56±0.04 0.0±0.0 0.80±0.0 0.649±0.013 8.38±0.14
GA 99.60±0.43 98.00±0.72 72.73±1.16 13.33±4.43 0.99±0.04 0.526±0.009 9.50±0.54
Bad-T 100.0±0.0 99.90±0.10 77.53±1.21 94.80±2.75 3.98±0.25 0.990±0.033 12.69±1.54
EU-5 100.0±0.0 99.97±0.01 78.31±0.21 1.20±0.99 0.61±0.04 0.520±0.023 6.81±0.01
CF-5 100.0±0.0 99.97±0.01 78.98±0.16 0.27±0.09 0.50±0.02 0.575±0.016 6.82±0.01
EU-10 100.0±0.0 98.52±0.14 75.66±0.03 15.00±1.45 0.69±0.01 0.050±0.004 7.81±0.01
CF-10 100.0±0.0 99.95±0.01 78.47±0.10 5.87±0.09 0.50±0.02 0.302±0.035 7.82±0.02
SCRUB 100.0±0.0 99.97±0.0 79.61±0.09 0.20±0.16 0.43±0.02 0.620±0.034 4.59±0.13
SALUN 99.73±0.38 99.98±0.0 79.51±0.15 0.0±0.0 0.80±0.01 0.679±0.010 12.83±0.87
ℓ1-sparse 96.20±0.16 99.42±0.06 76.16±0.31 2.60±0.33 0.43±0.01 0.325±0.018 15.78±0.05
COLA 100.0±0.0 99.90±0.01 78.59±0.28 10.27±0.90 0.42±0.02 0.016±0.031 16.25±0.10

CIFAR-100 - ViT
Methods UA RA TA MIA JSD IDI RTE (min)

Original 7.00 95.85 90.78 69.20 2.71 1.000 102.45⋆
Retrain 100.0 95.79 90.58 10.00 0.0 0.0 94.29⋆

FT 100.0±0.0 99.79±0.04 88.69±0.11 14.80±2.40 0.57±0.03 −0.934±0.011 140.61±0.25
RL 99.19±0.23 97.11±0.02 92.28±0.06 0.31±0.01 0.82±0.01 1.091±0.031 73.12±0.18
GA 100.0±0.0 98.19±0.20 90.59±0.21 17.60±4.78 0.31±0.01 0.587±0.011 75.22±0.61
Bad-T 95.80±0.08 95.88±0.12 90.15±0.02 0.0±0.0 1.11±0.14 1.213±0.002 96.43±0.01
EU-5 100.0±0.0 97.59±0.04 92.04±0.02 7.10±0.70 0.27±0.01 1.143±0.008 32.17±0.02
CF-5 100.0±0.0 97.81±0.01 91.98±0.05 6.93±0.32 0.27±0.01 1.087±0.050 36.73±0.03
EU-10 100.0±0.0 97.87±0.01 91.45±0.07 13.30±1.97 0.36±0.02 0.849±0.012 34.23±0.02
CF-10 100.0±0.0 97.87±0.01 91.61±0.05 15.80±0.80 0.32±0.02 0.734±0.011 39.12±0.0
SCRUB 100.0±0.00 96.95±0.03 92.12±0.06 17.00±1.21 0.27±0.02 0.037±0.036 17.84±0.13
SALUN 99.73±0.31 98.32±0.04 92.23±0.05 0.47±0.06 0.78±0.02 1.123±0.043 203.12±0.51
ℓ1-sparse 100.0±0.0 96.37±0.06 90.92±0.07 3.80±1.62 0.23±0.01 1.144±0.002 56.93±0.32
COLA 100.0±0.0 99.76±0.02 90.23±0.04 12.00±2.20 0.54±0.01 -0.022±0.016 112.58±0.82
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Table 13: Multi-class forgetting on CIFAR-10 and CIFAR-100 datasets on ResNet-18 model. A better
performance of an MU method corresponds to a smaller performance gap with Retrain (except RTE),
with the top method in bold and the second best underlined.

CIFAR-10 - 2-class forgetting
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 100.0 95.76 91.10 3.55 1.000 170.32
Retrain 100.0 100.0 96.38 29.58 0.0 0.0 135.23

FT 99.98±0.01 100.0±0.0 96.36±0.09 0.96±0.53 0.58±0.08 0.750±0.009 5.92±0.09
RL 99.70±0.02 100.0±0.0 96.39±0.01 0.0±0.0 1.07±0.01 0.863±0.001 2.79±0.02
GA 99.07±0.38 99.43±0.13 94.83±0.22 26.71±3.68 0.42±0.02 0.612±0.001 3.72±0.13
Bad-T 99.96±0.05 100.0±0.0 95.33±0.09 67.47±34.59 3.98±1.08 1.010±0.005 4.40±0.20
EU-5 100.0±0.0 100.0±0.0 96.48±0.06 0.06±0.03 0.57±0.05 0.624±0.001 1.39±0.02
CF-5 80.06±8.26 100.0±0.0 96.70±0.04 0.0±0.0 0.80±0.02 0.781±0.006 1.41±0.05
EU-10 100.0±0.0 99.67±0.02 94.94±0.17 25.92±0.79 0.35±0.01 -0.011±0.011 2.20±0.17
CF-10 100.0±0.0 99.67±0.02 94.94±0.17 21.20±1.43 0.35±0.01 0.221±0.007 2.19±0.14
SCRUB 99.98±0.0 99.99±0.0 96.31±0.08 46.74±5.31 1.47±0.10 0.374±0.005 3.27±0.01
SALUN 95.86±4.18 99.99±0.01 96.27±0.11 0.04±0.01 0.89±0.05 0.951±0.019 3.17±0.02
ℓ1-sparse 99.91±0.05 99.98±0.0 96.47±0.09 1.57±0.11 0.50±0.02 0.560±0.004 2.62±0.06
COLA 100.0±0.0 99.92±0.0 96.41±0.15 31.40±2.98 0.26±0.01 0.011±0.029 4.59±0.02

CIFAR-100 - 5-class forgetting
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 99.98 77.95 95.00 3.18 1.000 175.08
Retrain 100.0 99.98 78.45 7.12 0.0 0.0 165.92

FT 100.00±0.0 99.93±0.06 77.43±0.20 0.20±0.06 0.38±0.01 0.596±0.009 9.21±0.06
RL 98.61±0.22 99.98±0.0 77.78±0.19 0.0±0.0 0.71±0.01 0.613±0.008 3.39±0.09
GA 79.99±4.75 95.18±0.40 68.68±0.52 32.25±2.02 1.36±0.06 0.236±0.010 4.99±0.04
Bad-T 100.0±0.0 99.98±0.0 75.93±0.57 44.60±31.96 2.86±0.25 1.021±0.031 5.51±0.11
EU-5 100.0±0.0 99.75±0.02 75.14±0.12 12.40±0.26 0.54±0.01 0.054±0.010 2.01±0.0
CF-5 100.0±0.0 99.97±0.0 77.36±0.06 3.37±0.52 0.36±0.02 0.319±0.011 2.10±0.0
EU-10 100.0±0.0 91.76±0.12 73.24±0.11 21.96±0.49 0.48±0.01 −0.155±0.008 4.25±0.0
CF-10 100.0±0.0 99.88±0.01 76.59±0.24 10.69±1.29 0.40±0.01 0.087±0.019 4.29±0.01
SCRUB 100.0±0.0 99.97±0.0 77.64±0.11 0.95±0.35 0.56±0.03 0.289±0.015 2.27±0.03
SALUN 100.0±0.0 99.96±0.01 77.18±0.14 0.13±0.09 0.55±0.01 0.597±0.029 4.46±0.04
ℓ1-sparse 98.63±0.37 97.50±0.14 73.46±0.25 12.35±0.82 0.38±0.01 0.196±0.011 4.19±0.01
COLA 100.0±0.0 99.82±0.0 77.47±0.26 11.16±0.54 0.29±0.01 0.044±0.010 7.31±0.02

CIFAR-100 - 20-class forgetting
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 99.97 78.03 95.04 3.15 1.000 175.08
Retrain 100.0 99.98 80.01 7.55 0.0 0.0 139.93

FT 99.81±0.04 99.97±0.00 79.11±0.35 0.22±0.05 0.37±0.01 0.474±0.007 7.43±0.07
RL 95.77±0.09 99.98±0.01 78.42±0.05 0.0±0.0 0.63±0.01 1.207±0.004 2.94±0.01
GA 67.06±2.58 96.65±0.47 70.80±0.65 30.16±1.42 1.46±0.11 1.027±0.006 4.11±0.02
Bad-T 95.54±0.61 99.98±0.01 69.71±0.32 32.07±35.23 2.83±0.26 1.211±0.011 5.17±0.11
EU-5 100.0±0.0 99.82±0.02 76.89±0.03 14.50±0.54 0.52±0.01 0.807±0.003 1.83±0.04
CF-5 100.0±0.0 99.96±0.02 78.82±0.06 2.68±0.21 0.33±0.01 1.060±0.008 1.80±0.03
EU-10 100.0±0.0 93.25±0.32 74.79±0.39 25.63±0.38 0.47±0.01 0.617±0.005 3.61±0.51
CF-10 100.0±0.0 99.91±0.01 78.39±0.24 13.57±0.32 0.39±0.01 0.889±0.005 3.68±0.16
SCRUB 95.03±0.75 99.90±0.00 77.61±0.07 0.93±0.13 0.38±0.01 0.997±0.007 2.14±0.02
SALUN 90.69±0.76 98.97±0.14 74.72±0.54 0.17±0.03 0.60±0.01 1.113±0.008 3.85±0.0
ℓ1-sparse 83.49±0.46 99.52±0.03 76.79±0.20 6.36±0.59 0.38±0.01 1.035±0.007 3.08±0.07
COLA 100.0±0.0 99.92±0.0 78.59±0.32 11.52±0.39 0.24±0.01 0.007±0.010 6.97±0.01
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Table 14: 5-class forgetting results on ImageNet-1K dataset across different model architectures. A
better performance of an MU method corresponds to a smaller performance gap with Retrain (except
RTE), with the top method in bold and the second best underlined. The ⋆ symbol indicated in RTE
of Original and Retrain means that models are pretrained on ImageNet-21K and then finetuned on
ImageNet-1K, with the reported time reflecting only the finetuning process. In contrast, Original and
Retrain without ⋆ are trained from scratch on ImageNet-1K.

ImageNet-1K - ResNet-50
Methods UA RA TA MIA JSD IDI RTE (min)

Original 11.72 87.45 76.11 61.69 3.73 1.000 2680.15
Retrain 100.0 88.80 75.88 9.41 0.0 0.0 2661.90

FT 100.0±0.0 88.52±0.0 76.16±0.01 8.24±1.23 0.24±0.01 0.102±0.026 140.04±1.42
RL 99.96±0.03 86.46±0.07 75.23±0.01 0.23±0.01 1.57±0.03 1.002±0.007 200.73±1.87
GA 100.0±0.0 80.77±0.22 71.49±0.10 4.20±0.46 0.42±0.03 0.328±0.023 212.14±2.61
Bad-T 98.01±0.02 84.03±0.03 73.42±0.03 69.13±12.57 3.51±0.41 1.152±0.072 211.52±0.96
BoundaryExpand 77.22±0.11 82.79±0.08 71.78±0.09 1.43±0.51 1.34±0.0 0.628±0.005 5.14±0.02
BoundaryShrink 91.20±0.02 81.41±0.17 70.55±0.08 1.45±0.34 1.13±0.01 0.543±0.011 4.81±0.03
EU-5 100.0±0.0 79.62±0.0 71.22±0.13 13.33±1.53 0.26±0.01 0.183±0.028 193.38±0.78
CF-5 100.0±0.0 84.31±0.08 74.16±0.06 10.21±5.33 0.23±0.01 0.701±0.014 81.53±0.56
EU-10 100.0±0.0 71.84±0.03 65.78±0.02 16.65±1.91 0.35±0.04 −0.051±0.021 193.79±0.47
CF-10 100.0±0.0 80.87±0.04 72.34±0.08 13.99±5.41 0.25±0.01 0.608±0.012 82.29±0.34
SCRUB 99.28±0.07 88.39±0.04 76.51±0.03 7.42±0.51 0.25±0.01 0.517±0.011 426.04±2.98
SALUN 89.67±0.27 86.25±0.15 75.54±0.10 0.50±0.09 0.88±0.01 0.343±0.017 793.82±3.32
ℓ1-sparse 97.57±0.61 85.33±0.07 74.77±0.03 8.84±1.39 0.32±0.02 0.239±0.031 226.74±1.35
COLA 100.0±0.0 87.93±0.05 76.15±0.04 9.95±1.21 0.24±0.01 0.040±0.042 171.44±0.75

ImageNet-1K - ViT
Methods UA RA TA MIA JSD IDI RTE (min)

Original 2.48 98.18 80.59 71.00 4.45 1.000 1943.69⋆
Retrain 100.0 98.33 80.42 8.09 0.0 0.0 1920.77⋆

FT 96.39±0.01 98.85±0.03 80.93±0.06 3.88±0.33 0.65±0.02 0.937±0.009 281.73±2.30
RL 98.33±0.02 98.99±0.07 81.65±0.07 0.0±0.0 2.13±0.15 1.152±0.033 150.32±4.31
GA 100.0±0.0 97.04±0.01 80.17±0.04 8.26±2.14 0.52±0.23 0.674±0.021 193.73±2.23
Bad-T 98.21±0.03 97.85±0.07 80.58±0.03 0.0±0.0 2.62±0.06 1.312±0.015 721.15±5.23
EU-5 100.0±0.0 93.82±0.02 80.00±0.01 4.74±1.33 0.63±0.02 0.519±0.008 300.55±0.76
CF-5 98.75±0.0 96.57±0.01 80.09±0.04 4.49±0.34 0.64±0.01 0.731±0.024 122.39±0.53
EU-10 100.0±0.0 87.33±0.10 76.26±0.13 8.09±0.20 0.36±0.02 −2.662±0.231 345.37±0.70
CF-10 99.95±0.01 93.86±0.02 78.69±0.01 7.68±1.11 0.72±0.03 0.009±0.021 140.11±0.49
SCRUB 100.0±0.00 98.84±0.02 81.62±0.01 3.19±0.91 1.062±0.03 −0.846±0.032 404.02±2.96
SALUN 94.64±0.76 98.13±0.21 80.74±0.05 0.13±0.01 1.83±0.09 0.980±0.065 321.13±2.75
ℓ1-sparse 93.55±0.62 94.69±0.37 78.84±0.10 2.98±0.33 0.49±0.01 0.831±0.022 717.42±3.21
COLA 100.0±0.0 96.42±0.03 79.28±0.21 8.02±1.36 0.59±0.02 0.006±0.007 501.12±2.17
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Table 15: Random data forgetting on CIFAR-10 and CIFAR-100 datasets on ResNet-18 model. A
better performance of an MU method corresponds to a smaller performance gap with Retrain (except
RTE), with the top method in bold and the second best underlined.

CIFAR-10 - ResNet-18
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 100.0 95.54 92.90 0.09 1.000 170.32
Retrain 3.94 100.0 95.26 75.12 0.0 0.0 152.87

FT 5.03±0.40 98.95±0.21 92.94±0.26 83.52±0.58 0.07±0.11 −0.069±0.013 8.11±0.03
RL 4.77±0.27 99.92±0.0 93.54±0.04 22.47±1.19 0.38±0.02 0.084±0.030 2.75±0.01
GA 2.86±0.76 98.37±0.71 91.90±0.70 85.49±2.17 0.09±0.01 0.924±0.028 4.31±0.03
Bad-T 5.47±1.05 99.87±0.05 91.51±0.61 39.53±3.43 0.27±0.03 0.939±0.053 4.78±0.09
EU-10 3.16±0.19 98.68±0.08 93.07±0.12 83.40±0.21 0.06±0.01 −0.110±0.013 2.13±0.05
CF-10 2.71±0.24 99.11±0.06 93.47±0.15 84.33±0.05 0.05±0.01 0.219±0.029 2.10±0.06
SCRUB 4.31±1.50 96.21±1.70 88.83±1.86 37.88±7.65 0.56±0.09 0.322±0.016 3.37±0.05
SALUN 2.74±0.30 97.77±0.04 91.68±0.44 83.52±2.20 0.10±0.03 0.861±0.012 5.69±0.04
ℓ1-sparse 5.47±0.22 96.66±0.07 91.31±0.25 77.12±0.21 0.09±0.01 −0.157±0.026 3.03±0.04
COLA+ 3.90±0.08 99.24±0.17 93.23±0.09 83.48±0.10 0.06±0.01 0.024±0.010 7.80±0.02

CIFAR-100 - ResNet-18
Methods UA RA TA MIA JSD IDI RTE (min)

Original 0.0 99.98 78.09 95.82 0.56 1.000 175.08
Retrain 23.10 99.98 77.78 39.72 0.0 0.0 170.31

FT 17.44±1.12 98.46±0.24 70.99±0.45 67.35±0.53 0.46±0.02 0.311±0.034 8.40±0.13
RL 24.67±0.42 99.66±0.0 73.10±0.49 2.13±0.17 0.84±0.02 −0.246±0.056 2.95±0.03
GA 11.73±1.43 95.21±0.78 68.38±1.03 74.97±1.10 0.65±0.01 0.704±0.039 4.66±0.03
Bad-T 64.35±7.44 99.07±0.56 53.05±2.53 11.85±5.93 1.51±0.16 1.003±0.006 5.04±0.05
EU-10 24.15±0.09 90.15±0.08 72.25±0.36 59.47±0.39 0.27±0.01 0.404±0.085 2.31±0.02
CF-10 20.40±0.20 95.06±0.24 74.44±0.23 62.18±0.27 0.25±0.01 0.464±0.061 2.30±0.02
SCRUB 3.47±2.85 97.77±2.31 71.89±2.87 71.49±4.15 0.37±0.02 0.528±0.013 3.59±0.05
SALUN 32.77±1.20 99.87±0.02 71.97±0.37 3.32±0.28 0.81±0.02 −0.226±0.078 5.99±0.09
ℓ1-sparse 22.83±0.15 88.94±0.41 69.54±0.73 62.36±0.37 0.26±0.01 0.634±0.072 3.37±0.03
COLA+ 23.50±0.16 93.78±0.07 73.15±0.59 59.58±0.24 0.24±0.01 0.078±0.013 10.2±0.16
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Table 16: Standard Deviation of Figure 5 - (CIFAR-10, ResNet-18)

Method Block 1 Block 2 Block 3 Block 4 Block 5 IDI

Original 0.002 0.002 0.003 0.006 0.006 0.005
Retrain 0.001 0.003 0.003 0.006 0.007 0.007
FT 0.001 0.002 0.004 0.010 0.008 0.007
RL 0.002 0.004 0.005 0.003 0.005 0.004
GA 0.001 0.001 0.004 0.006 0.011 0.013
l1-sparse 0.001 0.000 0.002 0.007 0.007 0.011
SCRUB 0.001 0.005 0.003 0.004 0.005 0.007
SALUN 0.002 0.001 0.003 0.005 0.012 0.011

Table 17: Standard Deviation of Figure 5 - (CIFAR-10, ResNet-50)

Method Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 IDI

Original 0.003 0.002 0.009 0.007 0.013 0.008 0.011
Retrain 0.001 0.003 0.001 0.008 0.005 0.007 0.009
FT 0.003 0.005 0.008 0.015 0.011 0.012 0.019
RL 0.005 0.005 0.007 0.003 0.008 0.004 0.009
GA 0.002 0.001 0.003 0.011 0.010 0.013 0.018
l1-sparse 0.002 0.004 0.002 0.004 0.021 0.015 0.023
SCRUB 0.000 0.004 0.004 0.023 0.028 0.031 0.060
SALUN 0.001 0.000 0.006 0.005 0.020 0.011 0.019

Table 18: Standard Deviation of Figure 8

Method Ratio 1:5 Ratio 1:20 Ratio 1:99

FT 0.013 0.008 0.019
RL 0.016 0.007 0.009
GA 0.020 0.008 0.018
CF-10 0.007 0.016 0.035
SALUN 0.023 0.025 0.019
SCRUB 0.006 0.013 0.023
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(a) Original (b) Retrain

(c) FT (d) RL (e) GA (f) Bad-T

(g) EU-5 (h) CF-5 (i) EU-10 (j) CF-10

(k) SCRUB (l) SALUN (m) ℓ1-sparse (n) COLA

Figure 15: t-SNE visualizations of features of Original, Retrain, and unlearned models (FT, RL,
GA, Bad-T, EU-5, CF-5, EU-10, CF-10, SCRUB, SALUN, ℓ1-sparse, and COLA) on CIFAR-10
with ResNet-18. The forgetting class is represented in purple, while rest of the points represents the
remaining class.
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(a) Original (b) Retrain

(c) FT (d) RL (e) GA (f) Bad-T

(g) EU-5 (h) CF-5 (i) EU-10 (j) CF-10

(k) SCRUB (l) SALUN (m) ℓ1-sparse (n) COLA

Figure 16: t-SNE visualizations of feature of Original, Retrain, and unlearned models (FT, RL, GA,
Bad-T, EU-5, CF-5, EU-10, CF-10, SCRUB, SALUN, ℓ1-sparse, and COLA) on CIFAR-10 with
ResNet-50. The forgetting class is represented in purple, while rest of the points represents the
remaining class.
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(a) Original (b) Retrain

(c) FT (d) RL (e) GA (f) Bad-T

(g) EU-5 (h) CF-5 (i) EU-10 (j) CF-10

(k) SCRUB (l) SALUN (m) ℓ1-sparse (n) COLA

Figure 17: t-SNE visualizations of features of Original, Retrain, and unlearned models (FT, RL, GA,
Bad-T, EU-5, CF-5, EU-10, CF-10, SCRUB, SALUN, ℓ1-sparse, and COLA) on CIFAR-10 with ViT.
The forgetting class is represented in purple, while rest of the points represents the remaining class.
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(a) CIFAR-10 - ResNet-18
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(b) CIFAR-100 - ResNet-18
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(c) CIFAR-10 - ResNet-50
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(d) CIFAR-100 - ResNet-50
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(e) CIFAR-10 - ViT
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(f) CIFAR-100 - ViT

Figure 18: Mutual information curves across various datasets and model architectures. It illustrates
the estimated mutual information I(Zℓ;Y ) of the features from the ℓ-th layer Zℓ and the binary label
Y , computed by the InfoNCE loss. ‘block(-k)’ means the k block front from the last layer.
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(a) CIFAR10 (2 classes)
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(b) CIFAR-100 (5 classes)
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(c) CIFAR-100 (20 classes)

Figure 19: Mutual information curves for multiple class unlearning in ResNet-18 architecture. It
illustrates the estimated mutual information I(Zℓ;Y ) of the features from the ℓ-th layer Zℓ and the
binary label Y , computed by the InfoNCE loss.
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Figure 20: Binary train accuracy on CIFAR-10 in single-class forgetting with retain and forget sets.
Interestingly, it shows similar results with mutual information plots shown Figure 18.

IDI: 0.939

(a) Bad-T

IDI: -0.157

(b) ℓ1-sparse

Figure 21: t-SNE visualizations of features of forget samples of Bad-T and ℓ1-sparse in a random
data forgetting task on (CIFAR-10, ResNet-18). The clusters of ℓ1-sparse are more disperse than
those of Bad-T.
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