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Abstract

A recent study [40] has shown that large-scale visual datasets are very biased:
they can be easily classified by modern neural networks. However, the concrete
forms of bias among these datasets remain unclear. In this study, we propose a
framework to identify the unique visual attributes distinguishing these datasets. Our
approach applies various transformations to extract semantic, structural, boundary,
color, and frequency information from datasets, and assess how much each type
of information reflects their bias. We further decompose their semantic bias with
object-level analysis, and leverage natural language methods to generate detailed,
open-ended descriptions of each dataset’s characteristics. Our work aims to help
researchers understand the bias in existing large-scale pre-training datasets, and
build more diverse and representative ones in the future. Our project page and code
are available at boyazeng.github.io/understand_bias.

1 Introduction

Recently, Liu and He [40] revisited the “Name That Dataset” experiment introduced by Torralba
and Efros [69] in 2011, which highlighted the built-in bias of visual datasets. It is a classification
task where each dataset forms a class, and models are trained to predict the dataset origin of each
image. The datasets back in 2011 were found to be classified quite accurately by SVMs [69]. Since
then, significant efforts have been devoted to creating more diverse, large-scale, and comprehensive
datasets [15, 37, 35, 60]. Surprisingly, a decade later, the largest and supposedly most diverse datasets
(e.g., YFCC [66], CC [11], DataComp [19]) can still be classified with remarkably high accuracy by
modern neural networks [40].

Although we now know these large-scale datasets are very biased, a lingering question remains: what
are the concrete forms of bias among them1, that cause them to be easily classified? Understanding
the bias among datasets is essential for addressing it, and for improving dataset diversity and
coverage. Creating datasets that more comprehensively represent the real world is challenging yet
crucial [64, 55, 31]—only then can we build truly general-purpose vision systems—systems capable of
handling various scenarios out of the box, and performing reliably in real-world situations [30, 29, 24].

To this end, we develop a framework for understanding the concrete forms of bias among datasets.
We isolate the semantic, structure, boundary, color, and frequency information through various
transformations. For example, transforming an image into a semantic segmentation map preserves
semantics while discarding most texture information. We then perform the dataset classification task
on the transformed datasets, to quantify how each type of information reflects the dataset bias.

To pinpoint the semantic bias in datasets, we further conduct object-level and open-ended language
analysis. Specifically, we leverage pre-trained recognition models to identify objects that characterize
each dataset. In addition, using a Vision-Language Model (VLM), we generate image captions as

1Note that in this work we study bias among datasets. This concerns the coverage of concepts and content
(i.e., how representative the dataset is for the real world). This is related to, but different from, another notion of
bias that concerns social and stereotypical bias, as well as algorithm fairness [8, 75, 6, 47].
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surrogate language representations of the images. We then apply topic models and Large Language
Models (LLMs) to generate natural language descriptions for each dataset.

We apply our framework to three popular large-scale visual datasets: YFCC, CC, and DataComp,
following [40]. Surprisingly, after transforming images into various semantic and structure represen-
tations (e.g., object bounding boxes and contours), neural networks can almost always still accurately
predict their dataset origin. This highlights the bias in semantics and object shapes. Our object-level
queries further reveal a discrepancy in object diversity and distribution across the YCD datasets.
Lastly, open-ended language analysis indicates that YFCC emphasizes outdoor and natural scenes
with human interactions, while DataComp features digital graphics heavily.

Our framework operates on images only and does not require any human annotations, making it
compatible with any image dataset. It can be applied in future dataset curation to assess data diversity,
and guide the inclusion of data with various attributes. We hope this work can help researchers
address dataset bias based on their needs, and develop more inclusive and diverse visual datasets.

2 Related Work

Dataset classification. The dataset classification problem was originally proposed by Torralba and
Efros [69] in 2011. Tommasi et al. [68] later also studied this problem with linear classifiers using
pre-trained CNN features. In contrast to prior work focusing on labeled smaller-scale datasets with
shared object classes, Liu and He [40] recently revisited the dataset classification problem with
large-scale, diverse, and presumbly less-biased datasets. They demonstrated that modern neural
networks are still excellent at capturing bias among these datasets. Our work identifies the exact
forms of the bias among datasets beyond dataset classification results.

Social bias and fairness. Extensive literature has highlighted that various visual datasets underrep-
resent certain demographic groups [70, 75, 51], contain various gender stereotypes [81, 28, 45], or
ignore some geographical regions [62, 75, 71]. These social fairness issues in datasets result in the
deployment of flawed models [8, 72, 6] that may produce biased predictions or struggle to generalize
well across different domains. Instead of focusing on social fairness in each dataset, we study the
representativeness (i.e., coverage of real-world concepts and objects) and understand its differences
among datasets. Note that Meister et al. [45] also use transformations to isolate different types of
information, with a specific focus on gender bias in datasets.

Bias detectors and debiasing tools. There are approaches that can locate the imbalance of object
representation within datasets [23, 71]. Dataset rebalancing methods [8, 75] seek to correct these
representation imbalances across protected attributes. Algorithmic intervention and regularization,
such as adversarial training [78, 79, 44] and domain-independent training [73], can counteract the
propagation of bias and stereotypes in downstream modeling. Note that these prior methods often
require ground-truth annotations to identify or mitigate potential bias, while our framework can
analyze unlabeled pre-training datasets and provide insights beyond object distribution imbalances.

3 Isolating Bias with Transformations

Although modern neural networks can achieve excellent accuracy in the dataset classification prob-
lem [40], what bias is captured by neural networks remains unclear. To better understand this, we
selectively preserve or suppress specific types of information using various transformations. We then
train a new model on the transformed datasets to perform the dataset classification task. As a result,
its dataset classification performance indicates the level of bias in the extracted information. For
example, transforming an image into a depth map captures the spatial geometry while discarding
texture, allowing us to assess bias present solely in spatial information.

3.1 Datasets and Settings

Based on Liu and He [40], we take YFCC100M [66], CC12M [11], and DataComp-1B [19] (collec-
tively referred to as “YCD”) and study their bias in this work. Figure 1 shows example images.

Our training setup is also adapted from [40]. Specifically, we randomly sample 1M and 10K images
from each dataset as training and validation sets, respectively. We employ the same ConvNeXt-Tiny
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YFCC CC DataComp

original 82.0%
±0.3%

Figure 1: Original images. We sample two images from each of YFCC [66], CC [11], and
DataComp [19]. Dataset classification on the original images has a reference accuracy of 82.0%.

image classification model [41] and train it for 30 epochs to classify the combined dataset with
3M samples. Note that the original work [40] achieves 84.7% accuracy on the validation set, while
we achieve 82.0% accuracy due to shorter training (roughly 23% of original length). We refer to
this 82.0% as the reference accuracy in this paper. For all image transformations, we use the
same ConvNeXt-Tiny model and almost identical recipes (details in Appendix A.1). We repeat data
sampling and experiments three times, reporting mean validation accuracy and standard deviation.

3.2 Semantics

To start, we seek to understand how semantically biased the datasets are. Specifically, we extract
semantic components from the images with fine-grained, coarse-grained, or no spatial detail. Also,
we apply a variational autoencoder, potentially reducing low-level signatures (e.g., color quantization,
JPEG compression). Figure 2 shows the transformations and their dataset classification accuracies.

YFCC CC DataComp
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61.9%
±0.4%
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Figure 2: Transformations preserving semantic information (semantic segmentation, object
detection, and caption) and potentially reducing low-level signatures (VAE) result in high dataset
classification accuracy. This suggests that semantic discrepancy is an important form of dataset bias.

Semantic segmentation offers fine-grained semantic annotation with rich object information by
assigning a class label to each pixel. We take a semantic segmentation model ViT-Adapter-Large [12]
(with BEiT-v2 [53] backbone) trained on ADE20K [83] with 150 semantic classes (e.g., wall, building,
sky, etc.) to generate a semantic segmentation mask for each image. This mask is represented as an
RGB image using a color palette for different classes, as shown in Figure 2. The model trained on
this color-coded mask achieves 69.8% accuracy, well above the chance level.
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Object detection provides coarse spatial annotations for objects through rectangle bounding boxes.
We use ViTDet-Huge [36] trained on LVIS [25] with 1203 object categories to derive bounding boxes
from each image. We keep object class names on the bounding boxes to account for semantic meaning.
This representation reaches 61.9% dataset classification accuracy, below semantic segmentation.

Image captioning discards all visual information and produces semantic representations through
natural language. Captions are less affected by pixel variations and spatial cues in images. Using
LLaVA 1.5 [39, 38], we generate a single-sentence caption and a long-paragraph caption for each
image. Short captions are shown in Figure 2, and long captions are in Appendix D. We finetune a
sentence embedding model Sentence T5-base [50] to perform dataset classification on these captions.
This results in 63.8% accuracy on short captions and 66.1% on long ones, both nearing the accuracy
for semantic segmentation. The richer details in longer captions enhance performance.

Variation autoencoder (VAE) [33] encodes each image into a latent vector and then reconstructs the
original image from it. The datasets may use different JPEG compressions or image resolutions, which
could be exploited as shortcuts by dataset classification models. However, VAE’s low-dimensional
latent space may encode semantic information and suppress such low-level signatures. Reconstructing
the images with a pre-trained VAE from Stable Diffusion [58] only slightly decreases the accuracy
from 82.0% to 77.4%, suggesting that low-level bias may have a smaller impact than semantic bias.

Semantic segmentation, object detection, and image captioning extract semantic information with
decreasing levels of spatial information. On the other hand, VAE could potentially reduce low-level
signatures while preserving the semantics. The high accuracies of dataset classification models
indicate that semantic bias is an important component of dataset bias in YCD.

3.3 Structures

Next, we analyze the dataset bias rooted in object shape and spatial geometry rather than object
semantics. To capture such structural visual bias, we use the Canny edge detector and the Segment
Anything Model (SAM) [34] to outline object contours, and the Depth-Anything-V2 model [76] to
measure pixel-level depth. While contour delineates fine-grained object shape, and depth estima-
tion offers relative object positions, both lack the rich object semantic details present in semantic
segmentation masks and bounding boxes (e.g., object class). Figure 3 visualizes the transformations.

YFCC CC DataComp

Canny
edge

71.0%
±0.2%

SAM
(contour)

73.2%
±0.6%

depth 73.1%
±0.2%

Figure 3: Transformations outlining object shapes and estimating pixel depth. Dataset clas-
sification achieves even higher accuracies on object contours and depth images than on semantic
information, indicating that object shapes and spatial geometry vary significantly across YCD.

Canny edge detector [10] is a classical algorithm that outlines rough object boundaries by capturing
sharp intensity changes. It removes noise with a Gaussian filter, calculates intensity gradients, and
applies non-maximum suppression to form edges, represented as a binary mask. This results in 71.0%
classification accuracy, 11% below the reference accuracy (82.0%).
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Segment Anything Model (SAM) [34] can provide high-quality object segmentation masks. We
could then use them to delineate cleaner and more accurate shapes of objects that are minimally
affected by local pixel variations, compared to the Canny edge detector. Specifically, we use SAM
with the ViT-Large backbone to generate class-agnostic segmentation masks and identify boundaries
by finding pixels whose surrounding pixels are not all from the same object. The classification
accuracy on SAM contours (73.2%) is slightly higher than that on Canny edge (71.0%).

Depth estimation captures the scene’s spatial geometry, offering fine-grained spatial context and
relative object positioning. Like contours, it excludes explicit semantic information about objects.
The Depth-Anything-V2 (ViT-L) model [76] generates pixel-level depth estimation, encoded as a
normalized grayscale image. The resulting 73.1% accuracy is comparable to that of SAM contours.

The dataset classification accuracies on object contours and depth are even higher than the ones on
semantics. This shows that object shape and spatial geometry variations are significant among YCD.

3.4 Spatial Permutations

To further understand the level of bias captured in spatial information as opposed to semantics, we
keep the RGB values of all pixels in each image unchanged but shuffle the pixel positions to disrupt
spatial coherence. We shuffle each image on the pixel level and the patch level, following a fixed
order and a random order for all images. Figure 4 shows the images shuffled in a random order.

YFCC CC DataComp

pixel
shuf.

52.2%
±0.8%

(rnd.)
58.5%
±0.5%

(fixed)

patch
shuf.
(16x16)

80.1%
±0.2%

(rnd.)
81.2%
±0.3%

(fixed)

Figure 4: Transformations breaking spatial structure. Pixel shuffling drastically decreases dataset
classification accuracy, but patch shuffling has minimal impact. This demonstrates that local structure
is important and sufficient for models to learn the patterns of each dataset.
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Figure 5: Effect of patch sizes. Dataset
classification accuracy approaches the
reference one with larger patch sizes.

Pixel shuffling obfuscates the image classifier with a per-
mutation of the pixels and forces it to find patterns from
the color distribution of pixels in each image. As expected,
this significantly decreases the classification accuracy to
52.2% for the random order and 58.5% for the fixed order.

Patch shuffling first divides each image into smaller
patches and then rearranges the order of the patches. Con-
sequently, it preserves more local spatial information.
Here we vary the patch size and show the results in Fig-
ure 5. The accuracies of the fixed order and the random
order shuffling are almost identical when the patch size is
larger than 1. Surprisingly, with a patch size of 16, we almost reach the 82% reference accuracy.

The significant performance drop with pixel shuffling shows completely destructing the local structure
in YCD can reduce its dataset bias to a large extent. However, the minimal accuracy decrease after
shuffling patches of size 16 indicates patch-level local structures in spatial information is sufficient
for identifying visual signatures of the YCD datasets.

3.5 RGB

The high classification accuracy after pixel shuffling implies a discrepancy in pixel color distributions
among YCD. To further assess this difference in color statistics among datasets, we transform each
image into its average value for each color channel. Figure 6 shows the resulting images.
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YFCC CC DataComp

mean
RGB

48.5%
±0.7%

Figure 6: Averaging each color channel. Even when the values of each channel in images are
averaged, the model can still achieve non-trivial dataset classification performance.
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Figure 7: Distribution of mean RGB values and confusion matrix. YFCC’s RGB values are overall
smaller, while CC’s and DataComp’s are very similar. This is also reflected in the confusion matrix
of dataset classification on mean RGB images, where YFCC can be classified very easily (indicated
by the dark blue box on the top left), while there is high confusion between CC and DataComp.

Mean RGB. We compute the mean RGB value for each image. This abstracts the pixel details into
a constant RGB color map and forces the image classifier to only use color statistics. The model’s
accuracy on mean RGB images is 48.5%, about 15% higher than the chance-level accuracy of 33.3%.

In Figure 7, we visualize the distribution of mean RGB values for YCD. There is only a moderate
difference in mean RGB distribution between CC and DataComp. However, YFCC is much darker
than CC and DataComp. This is further suggested by the confusion matrix of the dataset classification
model trained on mean RGB images shown in Figure 7, where the model classifies YFCC accurately
but shows more confusion when distinguishing between CC and DataComp.

3.6 Frequency

Neural networks tend to exploit texture patterns even when the recognition task is inherently about
the semantics [32, 21, 20]. If we decompose visual signals by frequencies, high-frequency bands
typically capture these texture patterns and sharp transitions, whereas low-frequency components
represent general structure and smooth variations. To explore how different frequency components
contribute to dataset bias, we apply high-pass and low-pass filters to the original images.

YFCC CC DataComp

low-
pass
filter

70.4%
±0.5%

high-
pass
filter

79.2%
±0.2%

Figure 8: Transformations filtering high-frequency and low-frequency components retain close-
to-reference accuracy. This indicates that dataset bias exists in different frequencies. The high-pass
filtered images are equalized for better visualization.

High-pass filter and low-pass filter. To filter signals based on frequencies, we first perform a 2D
Fast Fourier Transform on each grayscaled image to obtain its representation in the frequency domain.
We then apply an ideal filter [22] with a hard threshold radius of 40 in the frequency domain, so as
to only keep either high (i.e., high-pass filter) or low (i.e., low-pass filter) frequencies. The filtered
results are finally inversely transformed to the original grayscale domain, visualized in Figure 8.
Additional results and visualizations are in Appendix B.6.
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The model trained on images with high frequencies kept has an accuracy of 79.2%. This is slightly
better than the one trained on images with low frequencies kept, which has an accuracy of 70.4%.
Both accuracies are close to the reference accuracy of 82.0%.

The high accuracy of models trained on either frequency component indicates that visual bias in the
YCD datasets exists in both low-frequency and high-frequency components.

3.7 Synthetic Images

Synthetic images hold significant potential in augmenting data for various vision tasks [27, 3, 67, 1, 5].
Diffusion models [56, 46, 58] can generate synthetic images. However, if dataset bias can be inherited
from a diffusion model’s training images to its generated images, bias may persist and even amplify
in downstream tasks that use generated images for training. To assess the bias in synthetic images,
we run dataset classification on images generated from diffusion models, illustrated in Figure 9.

YFCC CC DataComp

uncond.
(custom-
trained)

77.6%
±0.8%

text-
to-

image
(pre-

trained)

58.1%
±0.4%

Figure 9: Synthetic images from unconditional and text-to-image generation models. Uncondi-
tionally generated images can be classified with near-reference accuracy. Images from text-to-image
diffusion models using short captions have reasonable dataset classification accuracy.

Unconditional generation. We train an unconditional Diffusion Transformer (DiT) [52] on each
individual dataset in YCD. The models learn to generate synthetic images from random noise. Dataset
classification is performed on the combination of synthetic data generated from each model, resulting
in a very high accuracy of 77.6%, nearly matching the reference accuracy of 82.0%.

Text-to-Image generation on image captions potentially preserves the semantic bias in the original
images. We generate synthetic images from the SDXL-Turbo [59] diffusion model, conditioned on
short captions produced by LLaVA (Section 3.2). By converting the original images into caption text
and then back to the visual domain, we only retain the semantics captured in captions. Note that,
unlike the unconditional generation experiment above, here we do not train our own text-to-image
model for each dataset; instead, we use the same pre-trained model for all datasets. We reach 58.1%
accuracy, falling slightly short of 63.8% when directly classifying short captions.

The high classification accuracy from unconditionally generated images shows that synthetic images
sampled from a diffusion model can inherit the bias in the model’s training images. The ability to
classify synthetic images generated by pre-trained text-conditional generation model further confirms
that semantic discrepancy is a major contributor to dataset bias.

Summary. We analyzed the impact of various transformations on dataset classification, identifying
semantics and structures as important contributors to dataset bias. Patch-level local structure informa-
tion is sufficient to classify YCD, with datasets differing even in color statistics. Bias spans across
frequency components, particularly in high-frequency bands. Finally, we showed that bias can be
inherited in synthetic images of diffusion models. More results are in Appendix B.

4 Explaining Semantic Bias among Datasets

In the preceding section, we explore transformations to extract various types of image information,
each exhibiting varying levels of bias. Among them, semantic bias heavily contributes to the high
accuracy in the dataset classification task [40]. In this section, we identify specific interpretable
semantic patterns within each dataset through object-level and language-based analysis.
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4.1 Object-level Queries

YFCC CC DataComp

Figure 10: Grad-CAM heatmap [82, 61] on the dataset classification model trained on original
datasets. The model focuses on specific objects to determine the dataset origin of each image.

Grad-CAM [82, 61] highlights key regions in an input image that explain neural network predictions.
In Figure 10, applying Grad-CAM to the reference model (Section 3.1) shows that the model focuses
on semantically meaningful objects: elephant herd in the third image, table and chair in the fourth
image, and pen in the sixth image. This suggests that the model might have leveraged the object-level
information to recognize the dataset identity of each image. To better understand this, we apply
models pre-trained on other vision datasets (ImageNet-1K [15], LVIS [25], and ADE20K [83]) to
provide object annotations for each YCD image, and analyze their object-level bias. As a result, the
analysis below is in the context of 3 sets of object classes, defined by these 3 datasets.

Imbalanced object distribution. Imbalance in object distribution is a common form of semantic
bias. For each object class, we calculate the number of images in each dataset in YCD that contain
the object class and their percentage share relative to all images with that object class. Note for
LVIS and ADE20K models’ output, we count each object class only once per image, even if multiple
instances or pixels of the same object class are present. Figure 11 shows the top 8 object classes with
the highest percentage of images from YFCC, CC, or DataComp. The dominance of a certain dataset
within these classes highlights a considerable imbalance in object-level distribution across datasets.
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Figure 11: Object classes with the highest proportions of YFCC, CC, or DataComp images.
Less-frequent classes are not shown. Most classes consist predominantly of images from one dataset.

Figure 11 also shows that YFCC constitutes much higher proportions in its top object classes than
CC and DataComp in their respective classes (note the different x-axis scales in each subplot). To
further see this, we visualize the distribution of unique object class counts per image in Figure 12.
The higher variety of objects in YFCC images shows a notable gap in object diversity among YCD.
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Figure 12: Unique object classes per image.
On average, YFCC contains the highest num-
ber of unique objects in each image, followed
by CC, while DataComp exhibits the lowest.

Interpretable dataset classification with objects.
The coefficients of a logistic regression model form
a natural importance ranking of input features when
the features are binary. To leverage this, we represent
each image with a binary vector, where each element
indicates the presence of a specific object class from a
set of objects (i.e., ImageNet, LVIS, or ADE20K). We
train a logistic regression model to predict the dataset
origin of the images based on their binary vector rep-
resentations. This simple model achieves validation
accuracies of 52.0% with ImageNet objects, 52.4%
with LVIS objects, and 52.4% with ADE20K objects.

Figure 13 shows the top objects based on logistic regression coefficients. It highlights outdoor
infrastructures (e.g., traffic light, clock tower, telephone pole, and building) in YFCC and household
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Figure 13: Object class ranking from logistic regression coefficients. The regression classifies
images based on object presence. YFCC has more top objects related to outdoor scenes, while CC
and DataComp focus on household items and products. Classes with low frequencies are not shown.

items, products, and digital graphics (e.g., doll, ring, vase, blazer, and website) in CC and DataComp.
These rankings partially overlap with the list of objects that are much more prevalent in one dataset
than the others (Figure 11). However, the object rankings also identify objects that are more balanced
across datasets, since logistic regression receives more weight updates based on more common objects
during training. Thus, it provides a complementary angle on object-level bias among the datasets.

4.2 Open-ended Language Analysis

The word clouds [48] in Figure 14 offer a visual representation of the most prevalent phrases in
the long paragraph captions of each dataset from Section 3.2. We observe several frequent phrases
featuring human subjects (e.g., people, group, wearing) in YFCC, elements of indoor scenes (e.g.,
room, and dining table) in CC, and a focus on white background in DataComp. In this section, we
will use the long captions as a proxy to dive deeper into the semantic themes in each dataset.

YFCC CC DataComp

Figure 14: Word clouds [48] on the 100 most
frequent phrases in each dataset. Phrase size
corresponds to its frequency.

Unsupervised topic discovery. We treat each cap-
tion as a document and apply the Latent Dirichlet
Allocation (LDA) [7] for topic discovery to each
dataset in YCD (with the number of topics set to
5). Figure 15 presents the top 5 words for each topic.
Notably, in YFCC, three topics (first, second, and
fifth) feature words associated with outdoor scenes;
in CC and DataComp, their topics cover “logo” and
“design,” suggesting the presence of digital graphics.

YFCC CC DataComp

[building, scene, street, car, sign]
[scene, field, game, person, dog]
[table, room, dining, scene, items]

[people, man, woman, scene, group]
[scene, water, sky, trees, tree]

[room, table, chairs, chair, dining]
[design, background, colors, logo, display]

[woman, man, shirt, scene, dress]
[scene, people, water, group, atmosphere]

[scene, building, car, person, dog]

[logo, background, design, book, colors]
[scene, table, room, building, atmosphere]

[car, scene, truck, background, kitchen]
[background, table, design, box, bottle]

[man, woman, scene, shirt, person]

Figure 15: LDA-extracted topics for each generated caption set. Each row lists the top 5 words for a
topic. YFCC focuses on outdoor scenes, while CC and DataComp contain more digital graphics.

Large Language Model (LLM) summarization. To assess whether dataset bias in captions can be
identified by LLMs with limited examples, we provide GPT-4o with 120 captions per dataset and ask
it to infer the dataset origin of new captions. Inference is performed on one validation caption at a
time until accuracy stabilizes at 52.9% on 480 captions. Further details are in Appendix A.2.

This powerful ability of LLMs allows them to provide open-ended and detailed natural language
explanations. Specifically, we procedurally prompt GPT-4o to extract dataset-specific characteristics
from caption datasets and refine its answers into 5 bullet points, shown in Figure 16. In summary,
YFCC is characterized by abundant outdoor, natural, and human-related scenes, while DataComp
concentrates on static objects and digital graphics with clean backgrounds and minimal human
presence. In contrast, CC blends elements of both YFCC’s dynamic scenes and DataComp’s static
imagery. Appendix A.2 provides the entire prompt structure and the complete LLM summariza-
tion output. We further verify the validity of the semantic features from LDA and LLM in Appendix C.
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YFCC CC DataComp

1. Organized Indoor and Outdoor 
Scenes
Captions depict well-structured 
environments, including cozy bedrooms, 
dining areas, cityscapes, and architectural 
landmarks, emphasizing the arrangement 
and detail. 

2. Human Interactions and Social 
Events
Emphasis on social and formal gatherings 
like weddings, concerts, and ceremonies, 
highlighting attire, decor, and the lively 
atmosphere.
 

3. Vivid and Dynamic Elements
Descriptions focus on colorful and lively 
scenes, with vibrant attire, festive settings, 
and active engagements, emphasizing 
visual appeal and movement.

4. Detailed Objects and Clothing
⋯
 

5. Creative and Artistic Themes
⋯

1. Object-Focused Descriptions
Captions prominently feature specific 
objects or products (e.g., coffee mugs, 
toys, cars), often isolated against 
minimalistic backgrounds to highlight their 
characteristics.
  
2. Vibrant and Playful Visuals
Scenes frequently include vibrant, colorful, 
and playful elements, focusing on visually 
appealing and lively imagery that captures 
attention.
 
3. Close-Up and Detailed Views
Descriptions often emphasize close-up 
shots, highlighting the intricate details, 
textures, and designs of objects, with a 
focus on aesthetic and functional 
attributes.
 
4. Serene and Artistic Compositions
⋯
  

5. Simplistic and Isolated Backgrounds
⋯

1. Group Dynamics and Activities
This distribution frequently showcases 
groups of people engaged in activities 
such as playing music, attending events, 
or participating in sports, emphasizing 
social interactions and communal settings.

2. Urban and Social Settings
Captions often describe dynamic 
environments filled with people and 
activity in urban or public settings, such as 
busy city streets, transportation hubs, and 
social events.

3. Serene Natural Settings
Many images feature serene outdoor 
environments, including natural 
landscapes, gardens, and bodies of water, 
highlighting a calm and peaceful 
atmosphere.

4. Detailed Environmental Context
⋯

5. Emotions and Interactions
⋯

Figure 16: LLM summarization of dataset features. The bullet points highlight outdoor, natural,
and human scenes in YFCC and static objects and synthetic images in DataComp. CC contains both
YFCC’s dynamic scenes and DataComp’s static images.

Summary. We leveraged closed-set object-level queries and open-ended language analysis to interpret
the semantic bias among datasets. The object-based analysis identified objects indicative of each
dataset within a predefined object set. On the other hand, natural language methods are able to
provide open-ended explanations for the characteristics of each dataset with rich details.

5 Discussion

YCD have different sources: YFCC is selected with minimal filtering from user-uploaded images on
Flickr.com, while CC and DataComp filter web-sourced images with high quality in caption, image,
or their alignment. We build on the interpretable semantic bias in Section 4 to discuss the dataset
curation procedures, and provide potential suggestions.

Filtering based on a reference dataset or model may inherit its bias. DataComp has the fewest
unique objects per image (Figure 12). This is possibly because DataComp filters for images with
visual content close to ImageNet data in the embedding space [19]. Therefore, the remaining images
tend to be object-centric [4]. It also filters for images that align well with its captions in CLIP [54]
embedding space, therefore favoring certain types of images, e.g., images containing text. To mitigate
this, we may use datasets or models that contain less bias themselves for filtering.
The source website’s image collection mechanism can introduce bias. We note that YFCC is heavily
skewed towards outdoor scenes and human interactions (Section 4.2). This bias likely stems from its
reliance on a single data source, Flickr.com, where user-uploaded content often focuses on personal
photos, landscapes, and social interactions.
Web images naturally contain more digital graphics. Since CC and DataComp images are from
Internet webpages, professionally created content like advertisements, infographics, and digital media
are prioritized. Dataset users should evaluate if this composition aligns with the downstream goals.

6 Conclusion

We proposed a framework to study the bias in large-scale visual datasets and used it to analyze three
representative datasets. By classifying transformed images’ dataset origin, we identified structures
and semantics as key factors in dataset bias. We further investigated specific forms of semantic bias
among datasets through fixed object queries, highlighting distinctive concepts characterizing each
dataset. Lastly, we extracted key topics and natural language summaries for each dataset. We hope
this framework and these findings can encourage further exploration of dataset bias and help improve
diversity and representation in future datasets.
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A Implementation Details

A.1 Dataset Classification with Transformations

Dataset classification training. Following Liu and He [40], for image-text datasets CC and Data-
Comp, we only use their images. For each dataset in the YCD combination, we uniformly sample
1M / 10K to form the train / val sets. To speed up image loading, the shorter side of each image is
resized to 500 pixels if the original shorter side is larger than this, with the aspect ratio preserved. We
observe that this resizing has minimal effect on model performance. The dataset classification model
is trained for 30 epochs, 23% of the original training length in Liu and He [40]. Table 1 details our
default training recipe for dataset classification in Section 3.

config value
optimizer AdamW [42]
learning rate 1e-3
weight decay 0.3
optimizer momentum β1, β2=0.9, 0.95

batch size 4096
learning rate schedule cosine decay
warmup epochs 2
training epochs 30
augmentation RandomResizedCrop [65] & RandAug (9, 0.5) [13]
label smoothing 0.1
mixup [80] 0.8
cutmix [77] 1.0

Table 1: Training recipe for dataset classification.

During training, the model receives randomly augmented 224×224 image crops as input. At inference
time, each image is first resized so that its shorter side has 256 pixels, with the aspect ratio maintained.
A 224×224 center crop is then extracted and used as the model’s input.

Data processing. By default, we use RandomResizedCrop and RandAug as data augmentations in
training. Nevertheless, the data augmentations may need adjustments for certain image transforma-
tions. Specifically, we have the following two design choices: (1) We apply most transformations
before data augmentations to avoid the time cost of transforming every augmented image. However,
for pixel / patch shuffling and low-pass / high-pass filter, we apply these transformations after data
augmentations. This is because patch sizes in patch shuffling often cannot evenly divide the original

transformation transformation before data augmentation use RandAug
original N/A ✓

semantic segmentation ✓ ✗

object detection ✓ ✓

VAE ✓ ✓

Canny edge detector ✓ ✗

SAM contour ✓ ✗

depth ✓ ✗

pixel shuffling ✗ ✓

patch shuffling ✗ ✓

RGB mean ✓ ✓

low-pass filter ✗ ✗

high-pass filter ✗ ✗

unconditional generation ✓ ✓

text-conditional generation ✓ ✓

SIFT ✓ ✗

HOG ✓ ✗

Table 2: Data augmentation details for classifying transformed images.
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image dimensions. Moreover, shuffling with a fixed patch size on original images of varying dimen-
sions before augmentations leads to inconsistent patch sizes in the final 224× 224 augmented images.
For high-pass / low-pass filter, image augmentations alter the frequency of visual signals, so applying
these filters after augmentations ensures the intended frequency range is preserved. (2) RandAug
is not used for images transformed into binary or grayscale formats (e.g., Canny edge detector and
low-pass filter) and those represented by color palettes (e.g., semantic segmentation). This is because
brightness and contrast adjustments in RandAug are designed for standard RGB images. Table 2
shows whether we apply transformation before data augmentation and whether we use RandAug.

Other details. In Section 3.2, we use LLaVA 1.5 [39, 38] with 4-bit quantization [16] for image
captioning. The quantization minimally degrades performance. To perform the dataset classification
on the generated captions, we finetune the Sentence T5-base [50] model using a batch size of 128. We
search over learning rates {1e-3, 1e-4, 1e-5} and numbers of training epochs {1, 2, 4, 6}. The number
of warmup iterations is set to 6% of the total training iterations. For VAE, we use the KL-regularized
VAE [58] with a downsampling factor of 4, which encodes an RGB image of shape 256×256×3 into
a latent vector of size 64×64×3. In Section 3.7, we train a DiT-B/2 [52] model on each of YCD
datasets for 275K iterations, using a batch size of 1024 and a constant learning rate of 1e-4.

A.2 LLM-based Analysis

In Section 4.2, we leverage LLMs to perform dataset classification with in-context learning on LLaVA-
generated captions of YCD datasets and summarize the characteristics of each dataset. GPT-4o is the
default LLM in our analysis. We accessed it via ChatGPT Temporary Chat in May 2024.

Here are some samples from three different distributions of captions.
 

{Caption 1} is from distribution {1, 2, or 3}
{Caption 2} is from distribution {1, 2, or 3}
⋯ 
{Caption 360} is from distribution {1, 2, or 3}
 

Determine which of the three distributions is this caption sampled from:
{validation caption}

Figure 17: In-context learning prompt. We provide an LLM with 360 in-context demonstrations,
comprising 120 captions sampled from each of the YCD datasets. The model is then prompted it to
predict the dataset origin of a hold-out caption. To prevent the LLM from using any prior knowledge
of the YCD datasets, each dataset is anonymized as “distribution 1 / 2 / 3”.

In-context learning. Figure 17 shows our in-context learning prompt. We create 360 in-context
examples by sampling 120 long captions from each of the YCD datasets. Based on these in-context
examples, the LLM needs to determine the source dataset of a hold-out caption. To avoid the LLM
using any prior knowledge about the YCD datasets, we randomly assign an index from {1, 2, 3} to
represent each dataset. We repeat the entire process with different in-context examples and evaluate
the classification accuracy averaged across different hold-out samples. As shown in Figure 18, the
accuracy stabilizes as the number of samples from each dataset reaches 160.
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Figure 18: The accuracy of in-context learning converges at 160 samples per dataset.

Summarization for dataset characteristics. We employ a two-step process for an LLM to sum-
marize the unique characteristics of each dataset. Figure 19 illustrates our two-step procedure and
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the prompts. First, we provide the LLM with a combination of 360 randomly sampled captions (120
per dataset) and ask it to identify 2 distinctive patterns for each dataset. We repeat this process 10
times with different samples, generating 20 patterns for each dataset. Second, the LLM condenses
the 20 patterns into 5 bullet points that characterize each dataset. Figure 20 shows the full LLM
summarization of each dataset’s characteristics.

2 unique 
characteristics 

for each 
distribution

Below are 20 bullet points summarizing the unique characteristics of 
a distribution of images. Remove the redundant ones and combine 
them into 5 bullet points focusing on visual elements, each consisting 
of one title and one short sentence.
 

{Bullet point 1} 
⋯ 
{Bullet point 5}

×10 times

5 summarized 
dataset 
features

for each of YFCC, CC, and DataComp:

Here are some samples from three different distributions of captions.
 

{Caption 1} is from distribution {1, 2, or 3}
{Caption 2} is from distribution {1, 2, or 3}
⋯ 
{Caption 360} is from distribution {1, 2, or 3}
 

Determine the unique characteristics of the three distributions with 
two concise bullet points for each. Focus on the content rather than 
the textual features.

Figure 19: Prompting procedure for LLM summarization. The LLM summarizes the dataset char-
acteristics over 10 iterations, with 360 randomly sampled captions per iteration. These characteristics
are then aggregated, and the LLM consolidates them into five bullet points for each dataset.

YFCC CC DataComp

1. Organized Indoor and Outdoor 
Scenes
Captions depict well-structured 
environments, including cozy bedrooms, 
dining areas, cityscapes, and 
architectural landmarks, emphasizing the 
arrangement and detail.
  
 

2. Human Interactions and Social 
Events
Emphasis on social and formal 
gatherings like weddings, concerts, and 
ceremonies, highlighting attire, decor, 
and the lively atmosphere.
 

3. Vivid and Dynamic Elements
Descriptions focus on colorful and lively 
scenes, with vibrant attire, festive 
settings, and active engagements, 
emphasizing visual appeal and 
movement.
 

4. Detailed Objects and Clothing
Captions highlight specific objects and 
items of clothing, such as jewelry and 
accessories, with intricate details on 
patterns, colors, and designs.
 

5. Creative and Artistic Themes
There is a notable presence of artistic 
scenes including paintings, murals, 
sculptures, and elements of performance 
and fantasy, showcasing creativity.

1. Object-Focused Descriptions
Captions prominently feature specific 
objects or products (e.g., coffee mugs, 
toys, cars), often isolated against 
minimalistic backgrounds to highlight 
their characteristics.
 
 

2. Vibrant and Playful Visuals
Scenes frequently include vibrant, 
colorful, and playful elements, focusing 
on visually appealing and lively imagery 
that captures attention.
 

3. Close-Up and Detailed Views
Descriptions often emphasize close-up 
shots, highlighting the intricate details, 
textures, and designs of objects, with a 
focus on aesthetic and functional 
attributes.
 

4. Serene and Artistic Compositions
Many images showcase static, 
picturesque environments or artistic 
designs, creating a calm and detailed 
visual representation of both natural and 
structured settings.
 

5. Simplistic and Isolated 
Backgrounds
Scenes are often set against simplistic, 
plain backgrounds, drawing attention to 
the main subject and creating a clean, 
uncluttered look.

1. Group Dynamics and Activities
This distribution frequently showcases 
groups of people engaged in activities such 
as playing music, attending events, or 
participating in sports, emphasizing social 
interactions and communal settings.
 

2. Urban and Social Settings
Captions often describe dynamic 
environments filled with people and activity 
in urban or public settings, such as busy 
city streets, transportation hubs, and social 
events.
 

3. Serene Natural Settings
Many images feature serene outdoor 
environments, including natural 
landscapes, gardens, and bodies of water, 
highlighting a calm and peaceful 
atmosphere.
 

4. Detailed Environmental Context
Descriptions typically include detailed 
elements of the scene, focusing on settings 
like trees, buildings, and objects in natural 
or urban environments, emphasizing the 
rich context and interactions between 
elements.
 

5. Emotions and Interactions
Scenes frequently capture moments of 
celebration, competition, or personal 
interaction, highlighting the emotions and 
dynamic aspects of the subjects in various 
social and communal settings.

Figure 20: Full list of LLM summarization of dataset features.
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B Additional Results on Dataset Classification with Transformations

B.1 Handcrafted Features

In Sections 3.2 and 3.3, we primarily leverage modern neural networks to transform images into
alternative representations. Here, we apply classic computer vision algorithms to extract handcrafted
features and assess whether these features can effectively capture dataset bias.

YFCC CC DataComp

SIFT 65.2%
±1.4%

HOG 79.9%
±0.2%

Figure 21: Transformations encoding handcrafted features. SIFT keypoints can moderately
capture dataset bias, while HOG achieves close-to-reference accuracy by capturing local gradients.

Scale-Invariant Feature Transform (SIFT) [43] identifies keypoints that are invariant to scale
changes. Each keypoint is characterized by location, scale, and orientation. SIFT computes the
Difference of Gaussian (DoG) across multiple scales and identifies keypoints as the local extrema in
the DoG images. These keypoints are then refined through a Taylor expansion for precise localization,
and orientation is assigned based on local gradient directions. In Figure 21, we visualize each keypoint
as a circle, with radius length and direction indicating its size and orientation. The classification
accuracy of 65.2% indicates that SIFT features are moderately effective at capturing dataset bias.

Histograms of Oriented Gradients (HOG) [14] robustly represents gradient patterns by aggregating
gradient information within small spatial regions (cells) into histograms. These histograms are
normalized over a block of adjacent cells for better invariance to changes in illumination and contrast.
Figure 21 visualizes HOG with the dominant gradient direction in each cell, where brightness
indicates gradient magnitude. The near-reference accuracy of 79.9% suggests that the shape and
contour features captured by HOG are highly indicative of the dataset identity.

B.2 Ablation of Different Pre-trained Models

Here we explore how the performance of different pre-trained models used for transformations
affects our results in Section 3. Specifically, we perform object detection, contour extraction, and
depth estimation using smaller and less powerful models ViTDet-Base, SAM (ViT-Base), and Depth-
Anything-V2 (ViT-Base). As shown in Table 3, the pre-trained model size minimally impacts the
classification accuracy.

ViTDet-B ViTDet-H
# parameters 145M 695M
accuracy 60.8% 61.5%

SAM (ViT-B) SAM (ViT-L)
# parameters 94M 312M
accuracy 72.3% 73.1%

Depth-Anything-V2 (ViT-B) Depth-Anything-V2 (ViT-L)
# parameters 98M 335M
accuracy 72.6% 73.4%

Table 3: Varying pre-trained model size for object bounding box generation, SAM contour forma-
tion, and depth estimation minimally affects dataset classification accuracy on transformed datasets.
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Additionally, we apply our LLM summarization method in Section 4.2 to other LLMs: Claude
3.5-Sonnet [2] and Llama-3.1-8B-Instruct [17]. Figures 22 and 23 list the 5 summarized dataset
features. The features from different LLMs express highly similar concepts for each dataset.

1. Detailed Focus
Emphasizes specific objects, people, or 
scenes with technical details and close-up 
views.

2. Artistic Representation
Frequently includes stylized or creative 
designs, from logos to cartoon characters 
and abstract compositions.

3. Clothing and Accessories
Often provides detailed descriptions of 
attire, personal items, and their positioning 
within the image.

4. Setting Variety
Covers diverse environments, from 
intricate indoor layouts to historical scenes 
and unique scenarios.

5. Text and Branding
Commonly features written elements, 
references to specific brands, characters, 
or pop culture icons.

1. Object Focus
Close-up views of individual products or 
simple scenes dominate the imagery.

2. Background
Items are frequently presented against 
plain, often white backgrounds for clarity.

3. Branding
Product images commonly feature visible 
brand names, logos, or technical 
specifications.

4. Detail Emphasis
Descriptions highlight specific features, 
materials, colors, and designs of objects.

5. Content Variety
Imagery includes diverse elements like 
household items, abstract designs, and 
informational content such as diagrams or 
book covers.

1. Outdoor Settings
Predominantly features natural 
landscapes, cityscapes, and public 
spaces, showcasing diverse environments 
from beaches and forests to urban streets.
 

2. Group Dynamics
Frequently depicts large gatherings and 
crowded scenes, capturing social 
interactions and collective activities in 
various contexts.
 

3. Action and Movement
Often portrays dynamic scenes with 
people or animals in motion, emphasizing 
the energy and liveliness of the captured 
moments.
 

4. Wildlife and Nature
Regularly includes flora and fauna 
elements, highlighting the presence of 
animals and natural features within the 
images.
 

5. Visual Details
Provides rich descriptions of clothing, 
surroundings, and contextual elements, 
offering a comprehensive view of the 
scenes depicted.

Figure 22: Claude 3.5-Sonnet’s summarization of dataset features.

1. Detailed Compositions
The images often feature detailed and 
composed scenes, with an emphasis on 
showcasing the textures and details of the 
subject matter.
 
 

2. Urban Landscapes and Settings
The images frequently depict urban 
environments, such as streets, buildings, 
and cityscapes, capturing the energy and 
activity of city life.
 
 

3. Stylized and Artistic Visuals
The images often have a more stylized or 
artistic quality, with a focus on 
composition, lighting, and texture, and 
may include text, logos, or other visual 
elements that add context or meaning to 
the scene.
 

4. Emphasis on Objects and Concepts
The images frequently focus on objects, 
concepts, or ideas, highlighting their 
significance, functionality, or emotional 
resonance, often with a mix of objects, 
people, and text.
 

5. Visual Arrangement and 
Composition
The images often feature objects, food, or 
other visual elements arranged in a 
visually appealing manner, with a focus on 
color, texture, or composition.

1. Focus on Color and Texture 
The images often feature a focus on color, 
shape, or texture, particularly in abstract 
or conceptual images, and detailed close-
up views of objects or visual elements.
 

2. Minimalist Backgrounds
The images frequently have a more 
minimalist or neutral background, which 
allows the object or product to be the main 
focus, often with a focus on showcasing 
their design, texture, and visual appeal.
 

3. Object-Centric Compositions
The images often feature objects, 
products, or scenes that are more static or 
still, such as a product on a white 
background, a diagram or chart, or a 
scenic view, with a focus on showcasing 
their design, texture, and visual appeal.
 

4. Attention to Detail
The images frequently include detailed, 
close-up views of objects or visual 
elements, such as intricate designs, 
patterns, or textures, which suggests a 
focus on craftsmanship and artistry.
 

5. Simple yet Effective Composition
The images often feature a focus on 
simple colors, clean backgrounds, and a 
focus on the main subject or information 
being conveyed, resulting in a sense of 
simplicity and minimalism.

1. Natural Environments
The distribution features images of serene 
and picturesque natural environments, 
such as landscapes, forests, and 
mountains.
 
 

2. Everyday Life and Human 
Connection
The images depict people engaging in 
various activities, creating a sense of 
everyday life and human connection in 
natural or everyday settings.
 
 

3. Vibrant Colors and Dynamic 
Compositions
The images often feature vibrant colors, 
dynamic compositions, and a sense of 
energy or movement, capturing the beauty 
and excitement of the world around us.
 

4. Focus on People and Relationships
The images frequently include people as 
the main subject, with a focus on their 
actions, emotions, or interactions with 
their environment, often conveying a 
sense of energy, movement, or 
excitement.
 

5. Realistic and Detailed Scenes
The images often feature everyday 
scenes, presented in a realistic and 
detailed manner, showcasing natural 
environments and ordinary activities.

Figure 23: Llama-3.1-8B-Instruct’s summarization of dataset features.
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B.3 Dataset Classification with Different Vision Backbones

In Section 3, we employ ConvNeXt-Tiny as the base classifier to perform the dataset classification
task on transformed images. To see how our results change for models with different sizes and
architectures, we further train ConvNeXt-Femto [74], ConvNeXt-Nano, and ResNet-34 [26] to
perform the dataset classification task for each transformation. In Table 4, the results show that the
classification accuracy for each transformation is stable across different models.

ConvNeXt-Femto ConvNeXt-Nano ResNet-34 ConvNeXt-Tiny
# parameters 4.8M 15.0M 21.3M 27.8M
reference 79.9% 81.2% 81.6% 81.7%
semantic segmentation 68.8% 69.8% 71.7% 70.3%
object detection 59.8% 60.1% 61.7% 61.5%
VAE 73.7% 76.2% 77.3% 77.1%
Canny edge detector 69.2% 70.3% 71.1% 70.8%
SAM contour 70.6% 72.3% 73.8% 73.1%
pixel shuffling (random order) 52.6% 52.6% 60.8% 52.2%
pixel shuffling (fixed order) 56.6% 57.7% 59.5% 58.5%
patch shuffling (random order) 78.5% 78.7% 79.2% 80.2%
patch shuffling (fixed order) 78.5% 79.2% 79.9% 81.0%
RGB mean 47.9% 47.9% 48.0% 47.9%
low-pass filter∗ 71.2% 72.7% 70.4% 73.8%
high-pass filter∗ 76.6% 78.9% 81.6% 79.1%
unconditional generation 77.1% 79.9% 81.6% 76.5%
text-conditional generation 56.8% 57.3% 57.9% 57.8%

Table 4: Different image classification models’ validation accuracy on transformed datasets. The
accuracy remains consistent across models and transformations. ∗ Note the frequency filters here are
Butterworth filters [9] with a threshold of 30.

We also finetune two additional sentence embedding models MPNet-Base [63] and Sentence-BERT-
Base [57] for dataset classification on LLaVA-generated captions for YCD images. Note both of
these models are weaker [49] than our default Sentence-T5-Base in Section 3.2. Nevertheless, as
shown in Table 5, the classification accuracy remains consistent across models and transformations.

transformation MPNet-Base Sentence-BERT-Base Sentence-T5-Base
short caption 63.6% 63.4% 63.7%
long caption 66.2% 65.9% 66.0%

Table 5: Different sentence embedding models’ dataset classification accuracy on generated captions
of YCD images. The accuracy is still high even on weaker sentence embedding models.
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B.4 Combining Information from Multiple Transformations

We are interested in whether combining several visual attributes can jointly contribute to a larger
dataset bias. To this end, we transform each image in the YCD datasets using two different transfor-
mations, and concatenate the two resulting images along the channel dimension into a single image.
We consider all pairwise combinations of object detection, pixel shuffling, and SAM contour. Table 6
shows the resulting classification accuracies. Combining semantic and structural attributes can result
in higher dataset classification accuracy compared to using a single attribute alone.

transformation 1 (accuracy) transformation 2 (accuracy) combined accuracy
pixel shuffling (52.2%) object detection (61.5%) 68.9%
pixel shuffling (52.2%) SAM contour (73.1%) 74.2%

object detection (61.5%) SAM contour (73.1%) 73.1%

Table 6: Combination of different transformations can lead to larger bias.

B.5 Is the Dataset Classification Model Memorizing or Generalizing?

To show that the high validation accuracy on the transformed datasets in Section 3 is achieved through
generalization rather than memorization of training examples, we follow Liu and He [40] to perform
the dataset classification task on pseudo-datasets. However, unlike Liu and He [40], we construct the
pseudo-datasets from transformed images instead of original images.

Specifically, we create three pseudo-datasets, each sampled without replacement from the YFCC
dataset applied with one specific transformation. Tables 7 and 8 present the pseudo-dataset clas-
sification training accuracy on YFCC bounding boxes and YFCC Canny edges, without or with
augmentations. As expected, the classification models fail to converge with more training images
or stronger augmentations. All pseudo-dataset classification models have a chance-level validation
accuracy of 33%, as they merely memorize the dataset origin of each training image rather than
learning generalizable patterns.

imgs per set w/o aug w/ aug
100 100% 100%
1K 100% 100%
10K 100% fail
100K fail fail

Table 7: Training accuracy for YFCC bound-
ing box pseudo-dataset classification.

imgs per set w/o aug w/ aug
100 100% 100%
1K 100% 100%
10K 100% fail
100K fail fail

Table 8: Training accuracy for YFCC Canny
edge pseudo-dataset classification.
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B.6 High-pass and Low-pass Filters at Different Thresholds

low-
pass
filter

high-
pass
filter

5 35 65 95 125 155

Figure 24: Ideal filter [22] with different thresholds. We select filtering thresholds {5, 35, 65, 95,
125, 155}. The high-pass filtered images are equalized for better visualization.

low-
pass
filter

high-
pass
filter

5 35 65 95 125 155

Figure 25: Butterworth filter [9] with different thresholds. We select filtering thresholds {5, 35,
65, 95, 125, 155}. The high-pass filtered images are equalized for better visualization.
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In Section 3.6, we perform dataset classification on high-pass and low-pass filtered images to
quantify the dataset bias in different frequency components. Here, we further investigate how varying
thresholds affect classification performance. Figures 24 and 25 display transformed images with ideal
filter [22] and Butterworth filter [9]. Figure 26 presents the resulting dataset classification accuracies
across different thresholds. While accuracies generally decline at very strict threshold values, in other
cases, ideal and Butterworth filters achieve high accuracies for both low-pass and high-pass filters.
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Figure 26: Accuracy on filtered images at different thresholds. For most thresholds, both ideal
and Butterworth filters achieve high accuracies for both high-pass and low-pass filters.

It is worth noting that the Butterworth filter employs a soft thresholding approach when filtering
frequencies, therefore allowing each image to retain some frequency information beyond the selected
threshold. This likely contributes to the high accuracy observed on Butterworth high-pass filtered
images, even at higher thresholds. Additionally, we observe that the ideal high-pass filter can achieve
a higher classification accuracy with a threshold of 150 compared to 115. This is possibly because
when the threshold is at 115, the biased higher-frequency information is dominated by less-biased
lower-frequency information.

B.7 Representing Semantic Segmentation Masks with Binary Arrays

In Section 3.2, we apply semantic segmentation to capture semantic information from images and
perform dataset classification on the segmentation masks. In particular, we represent the 150-class
semantic segmentation mask as an RGB image using a color palette, where each semantic class
is assigned a distinct color from the predefined palette. This results in 69.8% accuracy. Alterna-
tively, training the classification model directly on the 150-channel binary segmentation mask yields
a slightly lower accuracy of 67.6%. The difference in performance may result from the model
processing the compact RGB format more effectively than the sparse, 150-channel binary format.

C Verifying Semantic Patterns

In Section 4.2, we leverage various language analyses to provide natural language descriptions of
each dataset’s characteristics. Here, we aim to validate these characteristics with a Vision-Language
Model (VLM) and VisDiff [18].

C.1 Vision-Language Models

0 50 100

DataComp

CC

YFCC

Is this image a
product showcase?

0 50 100

Does this image have an
entirely white background?

0 50 100

Is there any person
in this image?

0 50 100

Is this image depicting
an outdoor scene?

0 50 100

Is this image depicting
a domestic scene?

Yes
No

percentage (%)

Figure 27: High-level semantic features’ distributions annotated by LLaVA. The imbalanced
distributions across YCD confirm the dataset characteristics in Section 4.2.
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To confirm the semantic patterns we found in the YCD datasets, we pick five representative ones
and prompt a VLM LLaVA 1.5 [38] to answer whether each pattern exists in images. In Figure 27,
we plot the distribution of LLaVa’s responses across the YCD datasets. The results quantitatively
substantiate the identified dataset themes, further evidencing that (1) DataComp is characterized by
product showcase and white backgrounds but lacks human figures and (2) YFCC focuses on outdoor
scenes, while CC and DataComp contains more images depicting domestic and indoor environments.

We also manually check the LLaVA annotation quality with a handful of samples. Table 9 displays
some examples. The question and images involving human presence are omitted for privacy reasons.

dataset YFCC CC DataComp

image

product
showcase ✓ ✗ ✓ ✗ ✓ ✓

white
background ✗ ✗ ✓ ✗ ✗ ✓

outdoor scene ✗ ✓ ✗ ✓ ✗ ✗

domestic
scene ✗ ✗ ✗ ✗ ✓ ✓

Table 9: Examples of LLaVA annotations. LLaVA can answer our question with reasonable
accuracy. The four rows correspond to the first, second, fourth, and fifth questions in Figure 27.

C.2 VisDiff

YFCC CC DataComp

(compared to) 
YFCC

• unique home décor
• pictures with elements 

of food or cooking
• furniture and interiors

• product Images
• images of beauty 

products
• clothing or fashion items

(compared to) 
CC

• outdoor sports activities
• interactions between 

people
• outdoor recreational 

activities

• furniture and appliances
• Images of sports goods
• objects in black and 

white photography

(compared to) 
DataComp

• people involved in 
activities

• interactions between 
people

• people posing for photos

• people at gatherings
• human focused images
• performing tasks

Figure 28: Dataset features generated by VisDiff [18]. Each cell lists the top 3 concepts distinguish-
ing the dataset in each column from the one in each row. Note the VisDiff concepts highly overlap
with the dataset characteristics from our language analysis in Section 4.2.

VisDiff [18] is a recently proposed method for describing differences between two image sets in
natural language. It first uses a VLM to generate image captions, and then leverages an LLM to
propose concepts that distinguish the first image set from the second image set based on these captions.
For each concept, VisDiff uses the CLIP similarity scores between the images and that concept to
classify two image sets, and calculates the AUROC of this classification. The final output concepts
are ranked based on their corresponding AUROC scores.

For each dataset pair in the YCD datasets, we use VisDiff to identify the top 5 concepts that better
describe the first dataset compared to the second one, as shown in Figure 28. VisDiff’s concepts
closely align with the dataset characteristics of our language analysis in Section 4.2, highlighting
“people” and “outdoor activities” for YFCC and “products” for DataComp. However, our method can
also identify specific visual biases across datasets with various transformations, fixed object-level
queries, and in-depth natural language analysis.

25



D Examples of Long Captions

Table 10 shows examples of long paragraph captions generated by LLaVA 1.5 [38] in Section 3.2.

dataset images long paragraph caption

YFCC

A black and white dog is standing in a shallow body of water, possibly
a river or stream. The dog appears to be drinking from the stream,
surrounded by rocks. The scene captures the dog’s natural behavior
as it quenches its thirst at a water source.

A food truck is parked on the side of the road, with a man standing
nearby. The truck is blue and features a surfboard on the side, indi-
cating a surf theme for its offerings. The man, possibly the owner or
an employee, stands beside the truck, either waiting for customers or
preparing to serve food.

CC

A large herd of elephants is walking across a grassy field, with at least
13 elephants visible. Some are closer to the foreground, while others
are further in the background, spread out across the field in pairs or
individually. The scene captures the majesty of these creatures in
their natural habitat.

A cozy bedroom featuring a bed, desk, and chair. Above the desk, a
TV is mounted on the wall, and a laptop rests on the desk, accom-
panied by a vase of flowers that adds elegance to the room. The
space also includes a dining table and chairs, providing versatility
for different activities.

DataComp

A spacious dining room with a large wooden table surrounded by
chairs. The table is set with a white tablecloth, and pillows on
the chairs add to the cozy ambiance. Natural light fills the room,
and potted plants are placed around the area, enhancing the overall
atmosphere.

A notebook and pen are placed on a table next to a lollipop. The
notebook, open with a polka dot design, lies beside the pen, ready
for use. The colorful lollipop adds a playful element to the scene.

Table 10: Examples of long paragraph captions generated from LLaVA 1.5 [38].
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E Additional Information on ImageNet Object Analysis
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Figure 29: Majority dataset share for each ImageNet object class positively correlates with the
reference dataset classification accuracy on YCD images within that object class.

The difference in object distribution among datasets based on ImageNet object queries in Section 4.1
can be further used to perform dataset classification. Specifically, we classify an image into the
dataset that has the highest frequency of this image’s label. Without any learnable parameters (unlike
logistic regression in Section 4.1), this simple decision rule achieves a validation accuracy of 50.41%.

The dataset classification model trained on original YCD datasets in Section 3.1 might also leverage
the imbalance of underlying object-level distributions. To investigate this, we partition the YCD
images by their ImageNet object annotations in Section 4.1. For each object class, we calculate
the proportion of its images originating from YFCC, CC, and DataComp, respectively, and define
the highest proportion as the majority dataset share. Further, we calculate the dataset classification
accuracy for images with each ImageNet object annotation. Figure 29 shows that the dataset
classification accuracy for each object class is positively correlated with its majority dataset share.

F Limitations

Since our framework relies heavily on pre-trained recognition and generative models [58, 12, 36, 34,
39] for extracting semantic and structural information from images, the analysis may be affected by
the bias inherent to those models or the datasets they are trained on. For example, if the pre-trained
models are trained on data very similar to a certain dataset under study (e.g., one of YCD), the
measured level of bias may be affected. In addition, dataset classification can only reveal bias by
comparing multiple datasets, and can not be directly applied to a single dataset to understand its bias.

G Broader Impacts

Our framework can be used to analyze the datasets before model training, to better determine whether
the dataset composition aligns with training goals. It is relatively a fast process compared to a full
training cycle. This can help researchers reduce experiment iterations and thus total energy usage.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have accurately made claims both in the abstract and introduction to reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included all details about training with transformed inputs in Ap-
pendix A.1 and LLM’s in-context learning in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release our code before the conference date.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Question 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform our experiments in Section 3 on 3 random samples of 3M training
images and 30K validation images, and report the mean validation accuracy and standard
deviation. For in-context learning in Section 4.2, GPT-4o is provided with 360 randomly
sampled captions from the train set and evaluated on 1 validation sample each time. We
sample a total of 480 validation samples until accuracy stabilizes, as shown in Figure 18.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details about compute resources here. We use 8 NVIDIA
2080 Ti to train the ConvNeXt-T model for the dataset classification task with 8 gradient
accumulation steps. The average compute time for each experiment is about 1.5 days.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the papers for all datasets we leverage in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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