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Abstract10

Diffeomorphic Image Registration is a critical part of the analysis in various imaging modalities11

and downstream tasks like image translation, segmentation, and atlas building. Registration12

algorithms based on optimization have stood the test of time in terms of accuracy, reliability, and13

robustness across a wide spectrum of modalities and acquisition settings. However, these algorithms14

converge slowly, are prohibitively expensive to run, and their usage requires a steep learning15

curve, limiting their scalability to larger clinical and scientific studies. In this paper, we develop16

multi-scale Adaptive Riemannian Optimization algorithms for diffeomorphic image registration.17

We demonstrate compelling improvements on image registration across a spectrum of modalities18

and anatomies by measuring structural and landmark overlap of the registered image volumes.19

Our proposed framework leads to a consistent improvement in performance, and from 300× up20

to 2000× speedup over existing algorithms. For the first time, we demonstrate diffeomorphic21

registration of submicron volumes at native resolution, and tractability of hyperparameter search22

algorithms for registration.23

Keywords: image registration, image matching, image alignment, diffeomorphisms, multi-scale24

optimization, scalability, MRI, computed tomography, microscopy25

1 Main26

Deformable Image Registration is one of the most ubiquitous tasks in image analysis. It refers to the27

non-linear and local (hence deformable) alignment of two or more images into a common coordinate28

system. Depending on the problem and modality, the images can be sourced from different subjects or29

events, modalities, and timepoints. Image registration is routinely used in neuroimaging 1–5, cardiac30

imaging 6–8, lung imaging 9–11, microscopy and histology 12–16 to name a few biomedical applications.31

In neuroimaging, inter-subject registration is used to align structural regions for automatic segmenta-32

tion, or to construct an anatomical template (atlas) for anomaly detection or deviations from a healthy33
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population. In lung imaging, registration is used to understand the dynamics of the lung deformation34

during inspiration-expiration cycles, or to track lesions over temporally spaced breathhold scans.35

Image registration is used in microscopy12,13,16 to compensate for the large deformations that occur36

between staining rounds, and stitching misaligned 2D histology slides to generate a 3D volume. We37

note that registration is often used beyond biomedical applications; in planetary image alignment38

17, satellite imagery and remote sensing 18–20, robotics 21–23, and astronomy 24–26 and traditional39

computer vision applications like optical flow27–30. In this paper, we focus on image registration40

for biomedical applications, including microscopy, Magnetic Resonance Imaging (MRI), and Com-41

puted Tomography (CT) imaging, but our method is more generally applicable to other imaging as well.42

43

Image registration methods are typically divided into two categories – optimization-based and44

learning-based. Optimization-based methods focus on mathematically formulating registration as a45

variational optimization problem. This involves selecting a dissimilarity function between the refer-46

ence and warped image, the family of deformation fields over which to optimize, and the optimization47

algorithm to use. In the literature, the reference and warped images are typically called fixed and48

moving images respectively. Diffeomorphisms are of special interest as a family of deformations, which49

are invertible transformations such that both the transform and its inverse are differentiable. Some of50

the earliest approaches considered models for small deformations 31–35. Other approaches perform51

gradient based optimization on the variational objective function 36–39, modelling diffeomorphisms52

as solutions of a differential equation with a time-dependent velocity field40. Later works computed53

diffeomorphisms with geodesic formulations41–43, and direct integration of the velocity fields using54

gradient descent44,45. These methods focus on the representation choice and optimization technique.55

An orthogonal problem in image registration is the lack of discriminative features in medical images56

which are noisy and contain artifacts, making registration susceptible to local minima and slow conver-57

gence. To overcome these problems, learning based methods train a deep neural network that inputs58

the intensity images and predicts the deformation directly9,46–52. These deep networks are trained59

with the loss functions and deformation representations proposed in optimization based methods, but60

instead of iterating to find the optimal deformation, it is predicted directly. Such methods can be61

thought of as converting the homogenous and noisy intensity images into a feature image that is used to62

predict the deformation in a single step. Optimization methods study the family of deformations, their63

representations (elastostatics, viscous fluid, underlying Lie algebra, etc.) and how to optimize them,64

and learning focuses on automatic featurization of the intensity image that are conducive to registration.65

66

Despite the extensive literature, Diffeomorphic Image Registration remains an active research67

area due to its high-dimensional solution space, ill-conditioned optimization53–55, and non-Euclidean68

manifold of the transformation space56. The significance of our work stems from the observation69

that these problems remain unaddressed by state-of-the-art optimization based registration methods,70

which typically use Gradient Descent40,45,57 to optimize diffeomorphisms. In particular, first-order71

adaptive optimization methods are shown to speed up convergence in ill-conditioned optimization72

problems58–60 without computing expensive second-order terms. Although first-order adaptive73

optimization methods have shown faster convergence to better local minima in fixed-dimensional74

Euclidean parameter spaces58–60 (i.e. deep learning) and fixed low-dimensional non-Euclidean75

manifolds61–63, these optimizers do not exist for diffeomorphic registration. This is because the76

size of the transform depends on the size of the image and changes over multi-scale optimization.77
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We implement a novel multi-scale Adaptive Riemannanian optimization for Diffeomorphic Regis-78

tration to mitigate the high-dimensional, ill-conditioned, non-Euclidean optimization problem. We79

introduce key technical contributions (§4) to avoid computing terms like the Riemannian Metric80

Tensor, and Parallel Transport of the optimization state, which are computationally expensive and81

not feasible for high-dimensional diffeomorphisms. To our knowledge, we are the first to implement82

a multi-scale Riemannian Adaptive Optimization algorithm for diffeomorphic registration. This83

leads to a state-of-the-art adaptive optimization algorithm for diffeomorphic registration(Figs. 2 and 3).84

85

Our work also addresses the lack of scalability of existing registration algorithms. Existing86

optimization toolkits57,64–66 have prohibitively slow runtimes, which limits their applicability to87

hyperparameter studies for novel modalities or high-resolution images. Deep learning methods88

provide very fast runtimes but have steep compute and memory requirements, making them infeasible89

for high-resolution registration. Most deep learning methods perform registration on low-resolution90

image volumes67 of size 160×192×224 voxels, which is much smaller than the native resolution91

of many common imaging modalities in the biomedical and clinical sciences, such as CT scans in92

EMPIRE1010 (up to 420× 312 × 537 voxels) and RnR-ExM68 (2048×2048×81 voxels) challenges.93

Most notably, for modalities like microscopy, existing methods52,66 either downsample the image94

volume by up to 64× or register image chunks independently. This aggressive downsampling or95

chunking leads to substantial loss of rich image features necessary for accurate registration. Our96

method can register these volumes at native resolution (Fig. 4), introducing a new benchmark97

for accurate and scalable image registration algorithms. This scalability also makes large-scale98

hyperparameter studies more computationally feasible (Figs. 5 and 6).99

100

Our key contributions are as follows: first, we propose FireANTs: a novel multi-scale Adaptive101

Riemannan Optimization framework for diffeomorphisms. Our framework leverages mathematical102

correspondences to avoid expensive operations like the Riemannanian Metric Tensor and Parallel103

Transport which are needed for implementing first-order adaptive algorithms. This leads to a104

state-of-the art optimization algorithm that is accurate, fast and robust across various registration105

settings. Second, we accompany the method with a Python library that is easy to use and extend,106

and is packaged with optimizers for other transforms like rigid and affine transforms. Similar to107

existing toolkits64, FireANTs can compose transformations, avoiding resampling artifacts across108

transformations. This is designed to push the frontier of scalability in image registration algorithms.109

Our method scales in time, leading to up to a 3200 × speedup over existing state-of-the-art toolkits110

(Fig. 5) and scales in resolution, performing diffeomorphic registration on microscopy images at111

native resolution (Fig. 4). Our implementation is agnostic to modality, resolutions, and is not sensitive112

to hyperparameters, making it a versatile benchmark for diverse applications.113

2 Results114

We validate the proposed features of our method using a comprehensive evaluation setup. First, we115

show that our proposed Riemannanian Adaptive Optimization leads to consistently better registration116

performance compared to state-of-the-art optimization algorithms that utilize Gradient Descent. This117

is shown on two challenges5,10 which are established community standards for evaluating registration118
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(a) Supported data types and modalities

MRI CT Microscopy Anatomical label maps / landmarks

Speed
Ø ~2000x speedup 

on MRI brain 
datasets

Ø Up to 1200x 
speedup - lung CT

Ø Makes 
hyperparameter 
tuning tractable

Accuracy
Ø State-of-the-art 

performance on 
four community 
reference brain 
datasets

Ø Best fissure 
alignment in lung 
data challenge

Ø First place in RnR 
ExM mouse brain

Robustness
Ø Across 

hyperparameters 
–  low sensitivity 
of dice score

Ø Across datasets – 
Performance 
does not collapse 
for specific data

Tunability
Ø Representation
Ø Loss function

Ø Customizable
Ø Optimizer
Composability
𝜑! ←	r1, l1, o1 
𝜑" ←	r2, l2, o2 

…
𝜑 = 𝜑#∗ ∘ ⋯ ∘ 𝜑"∗ ∘ 𝜑!∗

❌

✅

Bilinear – no folding

Bicubic – introduces folding

Riemannian gradient at arbitrary transform 
 is interchangeable with that at 

 Parallel transport (         )

Requires Parallel TransportDoesn't require Parallel Transport

Scaling 
and 

squaring

Backprop

(b) Adaptive optimization (c) Multiscale considerations

(d) Ease of experimentation

Figure 1: Overview of FireANTs and its features: (a) shows the modalities our method is tested on. We
demonstrate results on in-vivo T1-weighted brain MRI, lung CT, and expansion microscopy volumes. FireANTs
can optimize intensity images as well as binary masks (lung masks in CT) or entire anatomical label maps (brain
MRI). (b) shows the technical contributions of FireANTs. We extend Adaptive Optimization to multi-scale
Diffeomorphisms by first writing the Riemannian gradient update, and then avoiding parallel transport of the
optimization state by leverging the interchangability of the Riemannian gradient at arbitrary transform φt with
the Riemannian gradient at φ = Id. For the Lie-algebra representation, the Gateaux derivative ∂L

∂φ
is projected

to ∂L
∂v

using analytical backprop. Since the Lie algebra is a vector space, we use standard adaptive optimizers
(see §4 for more details). (c) takes a closer look at multi-scale interpolation for diffeomorphisms represented as a
warp field. Bicubic interpolation can introduce folding of the warp field at a finer resolution due to overshooting,
but bilinear interpolation does not. Therefore, we use this for interpolating the warp field and the optimizer
state. (d) shows the extensive experimental setup. Our method is orders of magnitude faster, has state-of-the-art
performance on 3 challenges, is robust across hyperparameters and datasets, and is modular and easy to extend.
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Figure 2: FireANTs demonstrates state-of-the-art performance on Klein et al.challenge 5 : Registration
quality is validated by measuring the average volume overlap measurements of all anatomical label maps
between the fixed and warped label maps (see §4.1 for description of all metrics used). Our method outperforms
state-of-the-art registration algorithms, including ANTs which was the top performing method in the challenge,
and deep learning algorithms like VoxelMorph and SynthMorph. For deep learning baselines, appropriate
preprocessing (intensity normalization, alignment, and resampling to 1mm isotropic) is performed to ensure
a fair comparison, whereas no such preprocessing is required for optimization methods, including FireANTs.
Boxplots show that the gains in performance are consistent across all four datasets, with the median overlap
scores outperforming the third quartile of all other methods for IBSR and CUMC12 datasets. Results of per
region overlap metrics are in Fig. S.1. For the overlap aggregation mentioned in 5, results are shown in Fig. S.2.
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algorithms, and present various challenges such as different modalities, anatomical regions and119

variations, voxel resolutions and anisotropy, and acquisition settings. Next, we demonstrate FireANTs’120

scalability in resolution by performing deformable registration on high-resolution microscopy images68
121

at native resolution, which are previously registered either at a significantly lower resolution or in122

chunks. We also show scalability in runtime by showing speedups of up to 3 orders of magnitude123

compared to existing SOTA algorithms. Finally, we show that FireANTs is robust to choice of124

registration hyperparameters, and its signifcant speedup allows for fast hyperparameter tuning, which125

is otherwise infeasible with existing algorithms.126

2.1 Comparison on human brain MRI registration127

Analysis of functional and physiological data in neuroscience requires different brain images to lie128

in the same coordinate space to establish correspondences across different brain regions. As such,129

registration algorithms are at the forefront of such analysis. Klein et al.5 present a comprehensive,130

unbiased, and thorough evaluation of different registration algorithms on four MRI brain datasets,131

with Advanced Normalization Tools (ANTs)64 being the top performing method overall. Four datasets132

are used in the challenge, with a total of 80 brains. The datasets were obtained with different voxel133

resolutions, scanners, preprocessing pipelines, and labeled anatomical regions. More details about the134

datasets and evaluation protocol are discussed in §4.1. The challenge therefore evaluates robustness135

of registration algorithms across a wide variety of dataset attributes and anatomical alignment. We136

compare our method with two state-of-the-art optimization algorithms: ANTs - which won the original137

Klein challenge, and Symmetric Log Demons65, and two widely used deep learning algorithms:138

VoxelMorph46 and SynthMorph51 using their provided pretrained models. In addition to the proposed139

metrics in5, we also propose alternate versions of the same metrics, but averaged over all the brain140

regions (see §4.1). For all the four datasets, we first fit an affine transformation from the moving141

image to the fixed image, followed by a diffeomorphic transform. Results for the brain datasets are142

shown in Fig. 2 and Fig. S.1.143

Our algorithm outperforms all baselines on all four datasets, with a monotonic improvement in all144

metrics evaluating the volume overlap of the fixed and warped label maps. The improvements are145

consistent in all datasets, with varying number and sizes of anatomical label maps. In the IBSR and146

CUMC12 datasets, the median target overlap of our method is better than the third-quantile of ANTs.147

Fig. S.1 also highlights the improvement in label overlap per labeled brain region across all datasets. A148

small caveat with deep learning methods is that their performance is highly dependent on the domain149

gap between the training and test datasets. VoxelMorph is trained on the OASIS dataset, which has150

different image statistics compared to the four datasets, and consequently we see a performance drop.151

Moreover, VoxelMorph is sensitive to the anisotropy of the volumes, consequently all volumes are152

resampled to 1mm isotropic, and renormalized for VoxelMorph. A noticable performance drop is153

observed when the anisotropic volumes are fed into the network, which is undesirable as the trained154

model is essentially ‘locked’ to a single physical resolution - which limits the generalizability of the155

model to various modalities with different physical resolutions. For Demons, ANTs, and FireANTs156

(Ours), we do not perform any additional normalization or resampling. SynthMorph is more robust157

to the domain gap than VoxelMorph due to its training strategy with synthetic images, but still158

underperforms optimization baselines when their recommended hyperparameters are chosen.159
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2.2 Results on the EMPIRE10 lung CT challenge160

Registration of thoracic CT data is one of the most common areas of research in the medical image161

registration community. The EMPIRE10 challenge 10 is an established benchmark challenge and it162

provides a platform for in-depth evaluation and fair comparison of available registration algorithms163

for this application. We discuss more details about the challenge in §4.1. ANTs is, again one of the164

top performing methods in this challenge. Unlike the brain datasets, ground truth labels for fissure165

and landmarks are not provided for validation. Therefore, we rely on the evaluation metrics computed166

in the evaluation server. We compare our method with two powerful baselines (i) ANTs, which167

optimizes the diffeomorphism directly, and (ii) the DARTEL57 formulation optimizing a stationary168

velocity field (SVF), where the diffeomorphism is obtained using an exponential map of the SVF. We169

first affinely align the binary lung masks of the moving and fixed images using Dice loss69. This is170

followed by a diffeomorphic registration using the intensity images.171

We focus on three evaluation critera of the challenge - (1) fissure alignment errors (in %) denoting172

the fraction of fissure voxels that are misaligned after registration, (2) landmark distance (in mm),173

and (3) singularity errors - which is defined as the fraction of the image volume that is warped174

non-diffeomorphically. Results are summarized in Fig. 3 which also demonstrates the effect of175

representation choice for modeling diffeomorphisms. For the same scan pairs and cost functions, the176

DARTEL baseline performs substantially poorly in terms of fissure alignment, landmark distance and177

singularities than that of ANTs by three orders of magnitude. Our method has about a 5× lower error178

than ANTs on the fissure alignment task, and performs better on 5 out of 6 subregions on the landmark179

distance alignment task. Moreover, although all methods return deformations that are theoretically180

diffeomorphic, the SVF representation introduces significant signularity errors (voxels where the181

deformation is not diffeomorphic) due to discretization errors in the Euler integration. The ANTs182

baseline also introduces some singularities in its proposed diffeomorphic transform. Our method, on183

the other hand computes numerically perfect diffeomorphic transforms.184

2.3 Evaluation on high-resolution mouse cortex registration185

Expansion Microscopy (ExM) has been a fast-growing imaging technique for super-resolution186

fluorescence microscopy through tissue expansion70. ExM currently offers 3D nanoscale imaging in187

tissues with resolution comparable to that of super-resolution microscopy71, which enable morpho-188

hological studies of cells and tissues, molecular architecture of diverse multiprotein complexes72,189

super-resolution imaging of RNA structure and location73. Expansion Microscopy brings forth an190

unprecedented amount of imaging data with rich structures, but they remain largely unusable by191

existing registration algorithms due to its scale. Registration in ExM presents a number of challenges,192

such as repetitive small-scale texture, highly non-linear deformation of the hydrogel, noise in the193

acquired images, and image size. The Robust Non-rigid Registration Challenge for Expansion194

Microscopy (RnR-ExM)68 provides a challenging dataset for image registration algorithms. Out195

of the three species in the challenge, we choose the registration of mouse cortex images, due to its196

non-linear deformation of the hydrogel and loss of staining intensity. Each volume has a voxel size197

of 2048×2048×81 with a voxel spacing of 0.1625µm × 0.1625µm × 0.4µm for both the fixed and198

moving images. The volume is 40.5 times bigger than volumes in the brain datasets. To the best199

of our knowledge, existing solutions66 only consider registering individual chunks of the volumes200
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(a) Comparison of fissure alignment error
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(c) Landmark distance across lung subregions

Method Left Lung Right Lung Score
(% Error Overall)

Ours 0.0185 0.0254 0.0227
MRF Correspondence Fields 0.0824 0.0211 0.0485
ANTs 0.0249 0.1016 0.0747
Dense Displacement Sampling 0.0578 0.0919 0.0826
ANTs + BSpline 0.0821 0.0848 0.0861
DISCO 0.1256 0.0499 0.0882
VIRNet 0.0834 0.0934 0.0890
Feature-constrained nonlinear registration 0.1210 0.0758 0.1032
Explicit Boundary Alignment 0.1063 0.1246 0.1209
MetaReg 0.1049 0.2224 0.1791

(d) Fissure alignment error on top 10 algorithms in the challenge, averaged on all scan pairs

Figure 3: FireANTs demonstrates state-of-the-art performance on EMPIRE10 lung registration challenge:
(a): Lung fissure plates are an important anatomical landmark demarcating lobes within the lung. Fissure
alignment errors (in %) denote the percentage of locations near the lung fissure plates that are on the wrong side of
the fissure post-registration. Over all 30 scan pairs, our method performs 5× better than ANTs. (b): Singularity
errors defined as percentage of voxels that have a non-diffeomorphic deformation. In the DARTEL baseline,
singularities can be introduced for larger deformations due to numerical approximations of the integration. Even
for the ANTs baseline, the solutions (deformations) returned are not entirely diffeomorphic. Our method shows
much better fissure and landmark alignment ( Fig. 3(a,c), Fig. S.4, Fig. S.5) with guaranteed diffeomorphic
transforms. (c): Landmark distance in mm for selected landmarks. Across different lung subregions, our method
shows results at least at par with ANTs, with slightly better average and median results across all regions. (d):
Shows the top 10 algorithms for average fissure alignment error in % in the EMPIRE10 challenge. Error metrics
are taken from the evaluation server. Other methods perform well on one lung (MRF for right, ANTs for left) but
comparatively poorly on the other lung, compared to our method showing both accurate and robustness to both
the left and right lung. = First, = Second, = Third best result.8



(a) Snapshot of the RnR-ExM leaderboard

(b) Qualitative comparison of registration of Bigstream and FireANTs

Figure 4: Results on the RnR-ExM mouse dataset: (a): As of March 15, 2024, our method ranks first in the
mouse brain registration task, which is the only task in the challenge requiring deformable registration. Our
top two successful submissions secure the first and second position, with a 0.361 improvement in Dice score
compared to the 3rd ranked submission, which is 0.261 better than the 5th ranked submission (bigstream). Note
that among the top 10 submissions, our method has the lowest standard deviation (4.42× lower than the second
best submission) showing the robustness of our model across different microscopy volumes. (b): A qualitative
comparison of FireANTs with Bigstream 66, the other top leading method in the challenge. The moving image
volumes have substantially more noise than the fixed image volumes, making intensity-based registration difficult.
The non-rigid deformation dynamics of the hydrogel are clearly visible, as the moving volume has a thicker
boundary than the fixed volume. The bigstream baseline does not capture this dynamics very well - the registered
volume looks closer to the moving than the fixed volume. Moreover, the affine registration in Bigstream knocks
the boundary slices out of the volume, leading to drop in registration performance. On contrary, our method’s
affine and deformable stages are more stable, leading to better registration and avoiding spurious out-of-bound
artifacts at the boundary slices.
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independently to reduce the time complexity of the registration at the cost of losing information201

between adjacent chunks of the image, or register highly downsampled versions of the image52 (64×202

smaller in-plane resolution).203

FireANTs is able to register the volume at native resolution. We perform an affine registration204

followed by a diffeomorphic registration step. The entire method takes about 2-3 minutes on a single205

A6000 GPU. As shown in Fig. 4, our method secures the first place on the leaderboard, with a206

considerable improvement in the Dice score and a 4.42× reduction in the standard deviation of the207

Dice scores compared to the next best method. Fig. 4 also shows qualitative comparison of our208

method compared to Bigstream66, the winner of the RnR-ExM challenge. Bigstream only performs209

an affine registration, leading to inaccurate registration in one of three test volumes, leading to a lower210

average Dice score and higher variance. Moreover, the affine registration leads to boundary in-plane211

slices being knocked out of the volume, leading to poor registration (Fig. 4). FireANTs preserves the212

boundary in-plane slices during its affine step, and subsequently performs an accurate diffeomorphic213

registration. This shows the versatility and applicability of FireANTs for high-resolution microscopy214

registration.215

2.4 Ease of experimentation due to efficient implementation216

One of the major contributions of our work is to enable fast and scalable image registration while217

improving accuracy. In applications like atlas/template building, registration is used in an iterative218

manner (in the ‘inner loop’) of the optimization. Another application that requires fast runtimes is219

hyperparameter tuning, since different datasets and modalities admit notably different hyperparameters220

for optimal registration. This calls for an increasing need for fast and scalable registration algorithms.221

To demonstrate the computational and runtime efficiency of our method, we demonstrate the runtime222

of our library on the brain and lung datasets. All the experiments for our method are run on a single223

A6000 GPU, with a batch size of 1 (to avoid amortizing the time over a bigger batch size). For the224

brain datasets, we run ANTs with the recommended configuration with AMD EPYC 7713 Processor225

(single thread) and 512GB RAM. For the EMPIRE10 lung dataset, we use the runtimes described in226

the writeup provided as part of the challenge. A runtime analysis of our method on the brain and227

EMPIRE10 datasets are shown in Fig. 5.228

For the EMPIRE10 dataset, our method reduces the runtime from 1 to 12 hours for a single scan229

pair to under a minute. We compare our method with both ANTs and DARTEL implementations.230

Since the exponential map requires a few integration steps for each iteration, this variant is even231

slower than ANTs. Our method enjoys a minimum of more than 300× speedup over ANTs. On the232

brain datasets, our method achieves a consistent speedup of 3 orders of magnitude. This happens233

due to a better choice of hyperparameters compared to the baseline, faster convergence due to the234

adaptive optimization, and better memory and compute utilization by cuDNN implementations. These235

improvements in runtime occur while also providing at par, or superior results (Fig. 2, 3, Extended236

Data S.4, S.5).237

2.4.1 Fast hyperparameter tuning using FireANTs238

In optimization toolkits such as ANTs, several hyperparameters are key to high quality registration.239

Some of these hyperparameters are the window size for the similarity metric Cross-Correlation or bin240
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(a) Timing analysis on four brain MRI datasets.
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Avg 7273.74 7.02 1036.03
Min 5692.80 6.36 821.20
Max 12068.08 7.66 1635.29

(b) Timing analysis on EMPIRE10 dataset

ANTs DARTEL Ours Speedup (ANTs) Speedup (DARTEL)

Avg 6hr 14m 7hr 16m 0m 39s 562.67 663.77
Min 0h 55m 1h 8m 0m 9s 320.74 315.23
Max 12h 41m 10h 11m 1m 5s 1231.27 796.51

Figure 5: Timing analysis of our library: We compare the runtime of our implementation with the ANTs
library. (a) shows distribution of speedup (runtime of ANTs divided by runtime of our method) and statistics of
runtimes (in seconds) for the four brain MRI datasets. For all datasets, our implementation runs a minimum of
two orders of magnitudes faster, making it suitable for hyperparameter search algorithms, and larger datasets.
Table (b) shows the runtime of ANTs, DARTEL and our implementation on the EMPIRE10 challenge data. The
first three colums show the actual runtime of the methods, followed by the speedup obtained by our method when
compared to ANTs and DARTEL. Note that our method runs a minimum of 320 times faster than ANTs, saving a
substantial amount of time, at no loss in registration quality.
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(a) Grid search on LPBA40 dataset
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(b) Grid search on the EMPIRE10 dataset, with Dice score
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Figure 6: Feasibility of hyperparameter searches on LPBA40 and EMPIRE10 datasets: The speed of
FireANTs makes hyperparameter studies like these feasible, which ANTs would take years to complete. (a): We
perform a hyperparameter grid search on three hyperparameters of interest - smoothing kernel for the warp field
(σwarp) in pixels, smoothing kernel for the gradient of warp field (σgrad) in pixels and learning rate η. The metric
to optimize in this case is the target overlap. For the LPBA40 dataset, we perform a hyperparameter sweep over
640 configurations in 40 hours with 8 A6000 GPUs. A corresponding hyperparameter sweep with 8 concurrent
jobs with each job consuming 8 CPUs would take ∼3.6 years to complete. The white contour representing the
level set for target overlap = 0.75, and the black contour representing the level set for target overlap of 0.74
show the robustness of our method to hyperparameters - performance is not brittle or sensitive to choice of
hyperparameters. (b): Hyperparameter grid search on the EMPIRE10 dataset over σwarp and σgrad parameters
(456 configurations), with a fixed learning rate of η = 0.25. The metric to optimize is the Dice score of the
provided binary lung mask. This sweep takes about 12.37 hours on 8 GPUs, whereas a corresponding sweep
would take 296 days for ANTs and 345 days for DARTEL (more in Fig. 5). The white contour corresponds to the
level set for Dice score = 0.96, showing both a huge spectrum of parameters that achieve high Dice scores, and
low sensitivity of the method to choice of hyperparameters.
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size for Mutual Information. In our experience, the Gaussian smoothing kernel σgrad, σwarp for the241

gradient and the warp field are two of the most important parameters for diffeomorphic registration.242

The optimal values of these hyperparameters vary by image modality, intensity profile, noise and243

resolution. Typically, these values are provided by some combination of expertise of domain experts244

and trial-and-error. However, non experts may not be able to adopt these parameters in different245

domains or novel acquisition settings. Recently, techniques such as hyperparameter tuning have246

become popular, especially in deep learning. In the case of registration, hyperparameter search247

can be performed by considering some form of label/landmark overlap measure between images248

in a validation set. We demonstrate the stability and runtime efficiency of our method using two249

experiments : (1) Owing to the fast runtimes of our implementation, we show that hyperparameter250

tuning is now feasible for different datasets. The optimal set of hyperparameters is dependent on the251

dataset and image statistics, as shown in the LPBA40 and EMPIRE10 datasets; (2) within a particular252

dataset, the sensitivity of our method around the optimal hyperparameters is very low, demonstrating253

the robustness and reliability of our method.254

We choose the LPBA40 dataset among the 4 brain datasets due to its larger size (40×39 =255

1560 pairs). We choose three parameters to search over : the learning rate (η), and the gaussian256

smoothing parameters σwarp, σgrad. We use the Ray library (https://docs.ray.io/) to perform a257

hyperparameter tuning using grid search. For the LPBA40 dataset, a grid search over three parameters258

(shown in Fig. 6) takes about 40.4 hours with 8 parallel jobs. On the contrary, ANTs would require259

around 3.6 years to complete the same grid search, with 8 threads allocated to each job and 8 parallel260

jobs. This makes hyperparameter search for a unknown modality computationally feasible. 6(a) shows261

a dense red region suggesting the final target overlap is not sensitive to the choice of hyperparameters.262

Specifically, the maximum target overlap is 0.7565 and 58.4% of these configurations have an average263

target overlap of ≥ 0.74. This is demonstrated in Fig. 6 (top) by the white contour line denoting264

the level set for target overlap = 0.75, and the black contour line denoting the level set for target265

overlap of 0.74. The target overlap is quite insensitive to the learning rate (≥ 0.4) showing that our266

algorithm achieves fast convergence with a smaller learning rate. On the EMPIRE10 dataset, we267

fix the learning rate and perform a similar hyperparamter search over two parameters, the Gaussian268

smoothing parameters σwarp, σgrad. We use the average Dice score between the fixed and moving269

lung mask to choose the optimal hyperparameters. FireANTs can perform a full grid search over270

456 configurations on the EMPIRE10 dataset in 12.37 hours with 8 A6000 GPUs, while it takes271

SyN 10.031 days to run over a single configuration. Normalizing for 8 concurrent jobs and 456272

configurations, it would take ANTs about 296 days, and DARTEL about 345 days. This shows that273

our method and accompanying implementation can now make hyperparameter search for 3D image274

registration studies feasible.275

3 Discussion276

We present FireANTs, a powerful and general purpose multi-scale registration algorithm. Our method277

performs registration by generalizing the concept of first-order adaptive optimization schemes for278

optimizing parameters in the Euclidean space, to diffeomorphisms. This is highly non-trivial because279

diffeomorphisms are typically implemented as an image grid proportional to the size of the fixed280

image, and are optimized in a multi-scale manner to capture large deformations32,57,64 leading to281
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changing grid size over the course of optimization. Our method also avoids a computationally282

expensive parallel transport step for diffeomorphisms by solving a modified instance of registration at283

each time step. Our method achieves consistent improvements in performance over state-of-the-art284

optimization-based registration algorithms like ANTs, DARTEL, SynthMorph and Bigstream. This285

improvement is shown across six datasets with a spectrum of anatomies (in-vivo human brain, human286

and ovine lungs, mouse cortex), contrast, image volume sizes (ranging from 196 up to 2048 voxels287

per dimension), and modalities (MRI, CT, microscopy). A key advantage of our method is that we do288

not tradeoff any of accuracy, speed or robustness for the others, thus being a powerful registration289

algorithm.290

291

Our method shows consistent improvements and robust performance on four community reference292

brain MRI datasets. Many classical image registration methods have been developed for neuroimaging293

studies38,57,64,74 but registration still remains an open challenge in brain mapping75,76. FireANTs’294

consistent improvement in performance can be attributed to the quasi-second-order update which295

normalizes the varying curvature of the per-pixel gradient, leading to faster convergence and better296

local minima. This performance is consistent across metrics ( Fig. 2) and anatomical structures297

( Fig. S.1). With acquisition of larger datasets77 and high-resolution imaging78, fast and accurate298

registration runtimes become imperative to enable large-scale studies. Our performance comes with a299

reduction of runtime of up to three orders of magnitude.300

301

We also demonstrate competitive performance in the EMPIRE10 challenge, widely regarded302

as a comprehensive evaluation of registration algorithms67,79. Unlike the brain imaging datasets,303

the EMPIRE10 dataset contains images with large deformations, anisotropic image spacings and304

sizes, and thin structures like airways and pulmonary fissures which are hard to align based on305

image intensity alone. These image volumes are typically much larger than what deep learning306

methods can currently handle at native resolution46,52,79. FireANTs performs much better registration307

in terms of landmark, fissure alignment and singularities, while being two orders of magnitude308

faster. This experiment also calls attention to a much overlooked detail - the performance gap due309

to choice of representation of diffeomorphisms (direct Riemannian optimization versus exponential310

map). We show that direct Riemannian optimization is preferable to exponential maps, both in311

FireANTs and in baselines (ANTs versus DARTEL). This can be attributed to the representation -312

direct optimization can be interpreted as integrating a set of time-dependent velocity fields since313

the gradients change over the course of optimization, allowing more flexibility in the space of314

diffeomorphisms it can represent, whereas SVF performs the integral of a time-independent velocity315

field by design. Moreover, computing the exponential map is expensive for diffeomorphisms, the316

number of iterations can be large for large deformations57. For example, in Fig. 5(a), the exponential317

map representation (DARTEL) takes substantially longer to run, compared to ANTS. Shooting318

methods modify the velocity field at each iteration and tend to be sensitive to hyper-parameter choices.319

For example, in Fig. 3 the results for shooting methods are substantially worse those for methods320

that optimize the transformation directly. We also observe this for the LPBA40 dataset in Fig. S.6,321

where over a wide range of hyperparameter choices, the shooting method consistently underperformed.322

323

Our method is consistently 300–2000× faster, is robust to choice of hyperparameters, allowing324

users to utilize principled hyperparameter search algorithms for novel applications or modalities. This325
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opens up many other avenues in registration, including modalities such as microscopy, ex-vivo imaging326

where advanced imaging techniques have led to ultra high resolution data acquisition protocols.327

Registration algorithms are crucial to subsequent downstream tasks in these studies, it is therefore328

imperative for registration algorithms to be accurate and scale with the data as well. Our method329

showcases this on the RnR-ExM mouse cortex dataset, where our method performs the best overall330

in a 2-3 minute runtime on a single GPU. Our method and accompanying implementation is a step331

towards this avenue, making advanced registration algorithms fast and accessible.332

333

In summary, FireANTs is a powerful and general purpose multi-scale registration algorithm and334

sets a new state-of-the-art benchmark. We propose to leverge the accurate, robust and fast library to335

speed up registration workflows for modalities like microscopy and ex-vivo imaging (humans, mice,336

C. Elegans, etc.), where imaging resolutions are large and algorithms are bottlenecked by scalability.337

4 Methods338

Given d-dimensional images I : Ω → Rd and I ′ : Ω → Rd where the domain Ω is a compact subset339

of R2 or R3, image registration is formulated as an optimization problem to find a transformation340

φ that warps I ′ to I . The transformation can belong to a group, say G, whose elements g ∈ G act341

on the image by transforming the domain as (I ◦ g)(x) = I(g(x)) for all x ∈ Ω. The registration342

problem solves for343

φ∗ = argmin
φ∈G

L(φ)
.
= C(I, I ′ ◦ φ) +R(φ) (1)

where C is a cost function, e.g., that matches the pixel intensities of the warped image with those of344

the fixed image, or local normalized cross-correlation or mutual information across image patches.345

There are many types of regularizers R used in practice, e.g., total variation, elastic regularization33,346

enforcing the transformation to be invertible34, or volume-preserving80 using constraints on the347

determinant of the Jacobian of φ, etc. If, in addition to the pixel intensities, one also has access to348

label maps or different anatomical regions marked with correspondences across the two images, the349

cost C can be modified to ensure that φ transforms these label maps or landmarks appropriately.350

We perform registration over the group of diffeomorphisms G = Diff(Ω); a diffeomorphism is351

a smooth and invertible map with a corresponding differentiable inverse map81–83. It is useful to352

note that unlike rigid or affine transforms that have a fixed number of parameters, the number of353

parameters in a diffeomorphism scales with the size of the domain. When groups of transformations354

on continuous domains are endowed with a differentiable structure, they are called Lie groups. Lie355

groups equipped with a Riemannian metric are Riemannian manifolds. Diffeomorphisms are also356

examples of Riemannian manifolds.357

To summarize, there are three key parts of registration methods: the objective, the group G, and358

the optimization algorithm. Our work focuses on developing new optimization algorithms.359

Euclidean gradient descent using the Lie algebra in shooting methods Each Lie group has360

a corresponding Lie algebra g which is the tangent space at identity. This creates a one-to-one361

correspondence between elements of the group g ∈ G and elements of its Lie algebra v ∈ g given by362
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the exponential map363

exp : g → G;

effectively to reach g = exp(v)Id from identity Id ∈ G, the exponential map says that we have to364

move along v for unit time. Exponential maps for many groups can be computed analytically, e.g.,365

Rodrigues transformation for rotations, Jordan-Chevalley decomposition84, or the Cayley Hamilton366

theorem85 for matrices. For diffeomorphisms, the Lie algebra is the space of all smooth velocity367

fields v : Ω → Rd. There exist iterative methods to approximate the exponential map called the368

scaling-and-squaring approach46,57 which uses the identity369

φ = exp(v) = lim
N→∞

(
Id +

v

N

)N

to define a recursion by choosing N to be a large power of 2, i.e. N = 2M as370

φ(1/2M ) = x+ v(x)/2M

φ(1/2k) = φ(1/2(k+1)) ◦ φ(1/2(k+1)) ∀k ∈ {0, 1 . . . ,M − 1};

By virtue of the exponential map, we can solve the registration problem of finding φ ∈ G by directly371

optimizing over the Lie algebra v. This is because the Lie algebra is a vector space and we can372

perform, for example, standard Euclidean gradient descent for registration86–88. Such methods are373

called stationary velocity field or shooting methods. At each iteration, one uses the exponential map to374

get the transformation φ from the velocity field v, computes the gradient of the registration objective375

with respect to φ, pulls back this gradient into the tangent space where v lies376

∇vL =
∂φ

∂v
∇φL

and finally makes an update to v. Traditional methods like DARTEL57 implement this approach.377

This is also very commonly used by deep learning methods for registration8,42,46 due to its simplicity.378

Geodesic shooting methods are more sophisticated implementations of this approach where the379

diffeomorphism φ is the solution of a time-dependent velocity which follows the geodesic equation;380

the geodesic is completely determined by the initial velocity v0 ∈ g.381

Riemannian gradient descent Solving the registration problem directly on the space of diffeomor-382

phisms avoids repeated computations to and fro via the exponential map. The downside however383

is that one now has to explicitly account for the curvature and tangent spaces of the manifold. The384

updates for Riemannian gradient descent63 at the tth iteration are385

φt+1 = expφt

(
−η Projφt

(∇φL)
)

∇φL = g−1
φt

∂L

∂φ
,

(2)

where one pulls back the Euclidean gradient ∂L
∂φ onto the manifold using the inverse metric tensor386

g (which makes the gradient invariant to the parameterization of the manifold of diffeomorphisms)387

before projecting it to the tangent space using Projφt
. Since the tangent space is a local first-order388
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approximation of the manifold’s surface, we can move along this descent direction by a step-size389

η and compute the updated diffeomorphism φt+1, represented as the exponential map from φt390

computed in the direction of −Projφt
(∇φL). In our work, we take advantage of a few key properties391

of diffeomorphisms. (a) If the step-size η is small, the exponential map can be well approximated392

with a retraction map, which is quick to compute 44,45. (b) The metric tensor is the Jacobian of the393

diffeomorphism φt
40,83 which can be approximated with finite differences. (c) The tangent space is394

the set of all C∞ velocity fields, which is the same as the ambient space of the diffeomorphisms and395

therefore we can omit the projection step. We also implement a stochastic variant of Riemannian396

gradient descent whereby we only update the diffeomorphism on a subset of the image domain;397

convergence properties of this algorithm can be studied61.398

For high-dimensional groups like diffeomorphisms, optimizing the transformation directly on399

the manifold is preferable to optimizing on the Lie algebra. We noticed this empirically in a400

number of instances. In Fig. 3, the greedy SyN method (which performs Riemannian optimization)401

outperforms the Lie algebra variant (DARTEL) significantly, runs much faster on average (computation402

of the exponential map and its derivative adds additional time and memory overhead), and results403

in substantially fewer singularities in the velocity field. Similar observations may be made for404

EMPIRE10 dataset in the ANTs baseline. In Fig. S.6 we observed the across a large variety of405

hyper-parameters (obtained via grid search), Riemannian gradient descent leads to better target overlap406

compared to the Lie algebra variant on the LPBA40 dataset.407

Adaptive Riemannian optimization for diffeomorphisms Adaptive optimization algorithms408

such as RMSProp58, Adagrad60 and Adam59 have become popular because they can handle poorly409

conditioned optimization problems in deep learning. Variants for optimization on low-dimensional410

Riemannian manifold exist61,62,89,90. Diffeomorphisms are a high-dimensional group (e.g., the size411

of velocity field scales with that of the domain). Also, often the number of parameters (e.g., size412

of the image) in these methods is fixed which makes it difficult to run them on diverse datasets and413

modalities. We develop a multi-scale45,57,64,91 approach to optimization on Riemannian manifolds414

that can adapt the updates to the curvature of the manifold and that work for pairs of images of415

different sizes.416

Adaptive optimization methods, in Euclidean space, typically maintain a moving average of past417

gradients (momentum) and an approximation of the Hessian (which allows approximate second-order418

updates). The Hessian is generally expensive to compute and store, and therefore only diagonal419

elements are sometimes computed; one may resort to further approximations (like Adam does) and420

maintain a running average of the element-wise squared gradients (we will call this the “curvature421

vector”). Both the momentum and the curvature vector can be thought of as vectors in the tangent422

space. For Euclidean manifolds, the tangent space is the same as the manifold and it is easy to423

compute the modified descent direction by transporting the momentum and the curvature vectors424

along a straight line; in Euclidean space such transport does not change the magnitude or direction of a425

vector. On curved manifolds, parallel transport generalizes the notion of transporting a vector v from426

the paths connecting a point φ to another φ′. And unlike Euclidean space, parallel transport depends427

upon the path between the two points. It is expensive to compute parallel transport for groups such as428

diffeomorphisms. This makes it difficult and expensive to implement adaptive optimization methods.429

We can work around the above issue using a result of Younes et al.83 on computing the differentials430

at any transformation φ using the differential at identity Id. Let us first rewrite (2) in a slightly431
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different notation. The Eulerian differential ∂̄L(φ) is a linear map (also called a linear form) from432

vector fields on Ω to real numbers, and denotes the change in L when φ is changed along a velocity433

field v434 (
∂̄L(φ) | v

)
= ∂ϵL(φ+ ϵ(v ◦ φ))|ϵ=0.

Much like standard gradient descent in Euclidean space, iterative updates to the diffeomorphism φ435

using the Eulerian differential minimize the objective L. We have436

(
∂̄L(φ) | v

)
=

(
δL

δφ
| v ◦ φ

)
,

for any velocity field v. This is a direct correspondence between the Eulerian differential that performs437

Riemannian gradient descent in (2) on the left-hand side and the conventional derivative that can438

be calculated analytically on the right-hand side. Exploiting this correspondence for optimization439

requires computing v ◦ φ each time. But Younes et al.show in Section 10.2 of their book83 that:440 (
∂̄L(φ; I, I ′) | v

)
=

(
∂̄L(Id; I, I ′ ◦ φ) | v

)
. (3)

This allows us to represent the Riemannian gradient at arbitrary φ (left) in terms of the gradient at441

φ = Id calculated for the deformed image I ′ ◦ φ (right). In simpler words, we can pretend as if the442

optimization algorithm always works at identity Id at every iteration if we match to a warped image443

I ′ ◦ φt. When Riemannian gradient descent is implemented like this, gradients, momentum and444

curvature vector lie in the tangent space at identity for all iterations, and calculating the gradient445

descent update is therefore identical to that of the Euclidean case. Parallel transport is not required.446

The Riemannian metric tensor gφt
is also the outer product of the Jacobian of the diffeomorphism at447

identity; this is identity. We therefore do not need to pullback the gradient in (2) on the manifold.448

This is a very useful technique that eliminates a number of computationally expensive steps. We449

should emphasize that it is mathematically rigorous and does not result from any approximations. We450

illustrate this procedure in Fig. S.3(a).451

Interpolation strategies for multi-scale registration Classical approaches to deformable image452

registration is performed in a multi-scale manner. Specifically, an image pyramid is constructed from453

the fixed and moving images by downsampling them at different scales, usually in increasing powers454

of two. Optimization is performed at the coarsest scale first, and the resulting transformation at each455

level is used to initialize the optimization at the next finer scale. Specifically, for the fixed image I and456

the moving image I ′ and K levels, let the downsampled versions be {Ik}Kk=1 and {I ′k}Kk=1, where k457

is the scale index from coarsest to finest. At the k-th scale, the transformation φk is optimized as458

φ∗
k = argmin

φk∈G
L(Ik, I

′
k ◦ φk)

where φk is initialized as459

φk =

{
Id if k = 1

Upsample(φk−1) otherwise
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Unlike existing gradient descent based approaches, our Riemannian adaptive optimizer also contains460

state variables mk corresponding to the momentum and νk corresponding to the EMA of squared461

gradient, at the same scale as φk, which require upsampling as well.462

Unlike upsampling images, upsampling warp fields and their corresponding optimizer state463

variables requires careful consideration of the interpolation strategy. Bicubic interpolation is a464

commonly used strategy for upsampling images to preserve smoothness and avoid aliasing. However,465

bicubic interpolation of the warp field can lead to overshooting, leading to introducing singularities466

in the upsampled displacement field when there existed none in the original displacement field. In467

contrast, bilinear or trilinear interpolation does not lead to overshooting, and therefore diffeomorphism468

of the upsampled displacement is guaranteed, if the original displacement is diffeomorphic.469

We demonstrate this using a simple 2D warp field in Fig. S.3(b). On the left, we consider a470

warp field created by nonlinear shear forces. This warp field does not contain any tears or folds -471

and is diffeomorphic. We upsample this warp field using bicubic interpolation (top) and bilinear472

interpolation (bottom). We also plot a heatmap of the negative of the determinant of the Jacobian of473

the upsampled warp, with a contour representing the zero level set. Qualitatively, bicubic interpolation474

introduces noticable folds in the warping field, leading to non-diffeomorphisms in the upsampled475

warp field. The heatmap shows a significant portion of the upsampled warp field has a negative476

determinant, indicating non-invertibility. On the other hand, bilinear interpolation looks blocky but477

preserves diffeomorphism everywhere, as also quantitatively verified by the absence of a zero level478

set in the heatmap.479

Modular software implementation to enable effective experimentation Registration is a key480

part of many data processing pipelines in the clinical literature. Our software implementation is481

designed to be extremely flexible, e.g., it implements a number of existing registration methods482

using our techniques, modular, e.g., the user can choose different group representations (rigid or483

affine transforms, diffeomorphisms), objective functions, optimization algorithms, loss functions, and484

regularizers. Users can also stack the same class of transformations, but with different cost functions.485

For example, they can fit an affine transform using label maps and Dice loss, and use the resultant486

affine matrix as initialization to fit another affine transform using the cross-correlation registration487

objective. This enables seamless tinkering and real-time investigation of the data. Deformations can488

also be composed in increasing order of complexity (rigid → affine → diffeomorphisms), thereby489

avoiding multiple resampling and subsequent resampling artifacts. We have developed a simple490

interface to implement custom cost functions, which may be required for different problem domains,491

with ease; these custom cost functions can be used for any of the registration algorithms out-of-the-box.492

Our implementation can handle images of different sizes, anisotropic spacing, without the need for493

resampling into a consistent physical spacing or voxel sizes. All algorithms also support multi-scale494

optimization (even with fractional scales) and convergence monitors for early-stopping.495

Our software is implemented completely using default primitives in PyTorch. All code and496

example scripts is available at https://github.com/rohitrango/fireants.497

4.1 Experiment Setup498

Klein et al. brain mapping challenge 5 Brain mapping requires a common coordinate reference499

frame to consistently and accurately communicate the spatial relationships within the data. Auto-500
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matically determining anatomical correspondence is almost universally done by registering brains to501

one another or to a template. Klein et al.evaluate a suite of fully automated nonlinear deformation502

algorithms applied to human brain image registration. A natural way to evaluate whether two images503

are in a common coordinate frame is to evaluate the accuracy of overlap of gross morphological504

structures (gryi, sulci, subcortical regions for example). The evaluation considers a total of four505

T1-weighted brain datasets with different whole-brain labelling protocols, eight different evaluation506

measures and three independent analysis methods. The paper evaluates 14 nonlinear registration507

algorithms with different parameterizations and assupmtions about the deformation field, and different508

regularizations.509

Brain image data and their corresponding labels for 80 normal subjects were acquired from four510

different datasets. The LPBA40 dataset contains 40 brain images and their labels to construct the511

LONI Probabilistic Brain Atlas (LPBA40). All volumes were skull-stripped, and aligned to the512

MNI305 atlas 92 using rigid-body transformation to correct for head tilt. For all these subjects, 56513

structures were manually labelled and bias-corrected using the BrainSuite software. The IBSR18514

dataset contains brain images acquired at different laboraties through the Internet Brain Segmentation515

Repository. The T1-weighted images were rotated to be in Talairach alignment and bias-corrected.516

Manual labelling is performed resulting in 84 labeled regions. For the CUMC12 dataset, 12 subjects517

were scanned at Columbia University Medical Center on a 1.5T GE scanner. Images were resliced,518

rotated, segmented and manually labeled, leading to 128 labeled regions. Finally, the MGH10 dataset519

contains 10 subjects who were scanned at the MGH/MIT/HMS Athinoula A. Martinos Center using520

a 3T Siemens scanner. The data is bias-corrected, affine-registered to the MNI152 template, and521

segmented. Finally the images were manually labeled, leading to 74 labeled regions. All datasets522

have a volume of 256× 256× {128, 124} voxels with varying amounts of anisotropic voxel spacing,523

ranging from 0.84× 0.84× 1.5mm to 1× 1× 1.33mm.524

ANTs was one of the top performing methods for this challenge, performing well robustly across525

all four datasets. The method considers measures of volume and surface overlap, volume similarity,526

and distance measures to evaluate the alignment of anatomical regions. Given a source label map Sr527

and target label map Tr and a cardinality operator |.|, we consider the following overlap measures.528

The first measure ‘target overlap’, defined as the overlap between the source and target divided by the529

target.530

TOr =
|Sr ∩ Tr|

|Tr|
(4)

Target overlap is a measure of sensitivity, and the original evaluation5 considers the aggregate total531

overlap as follows532

TOKlein =

∑
r |Sr ∩ Tr|∑

r |Tr|
(5)

However, we notice that this measure of overlap is biased towards larger anatomical structures, since533

both the numerator
∑

r |Sr ∩ Tr| and denominator
∑

r |Tr| sums are dominated by regions with534

larger number of pixels. To normalize for this bias, we also consider a target overlap that is simply the535

average of region-wise target overlap.536

TO =
1

Nr

∑
r

TOr (6)
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We also consider a second measure, called mean overlap (MO), more popularly known as the
Dice coefficient or Dice score. It is defined as the intersection over mean of the two volumes. Similar
to target overlap, we consider two aggregates of the mean overlap over regions:

MOr = 2
|Sr ∩ Tr|
|Sr|+ |Tr|

(7)

MOKlein = 2

∑
r |Sr ∩ Tr|∑

r(|Sr|+ |Tr|)
(8)

MO =
1

Nr

∑
r

MOr (9)

Klein et al.5 also propose a ‘Union Overlap’ metric which is a monotonic function of the Dice score.
Therefore, we do not use this in our evaluation. To complement the above agreement measures, we
also compute false negatives (FN), false positives (FP), and volume similarity (VS) coefficient for
anatomical region r:

FNr =
|Tr\Sr|
|Tr|

, FPr =
|Sr\Tr|
|Sr|

, V Sr = 2
|Sr| − |Tr|
|Sr|+ |Tr|

(10)

Similar to the overlap metrics, we compute the aggregates as in the original evaluation denoted by537

FNKlein, FPKlein, V SKlein and average over regions denoted simply by FN, FP, VS. This leads to538

a total of 10 aggregate metrics that we use to compare our method with 4 baselines - ANTs, Demons,539

VoxelMorph and SynthMorph.540

EMPIRE10 challenge 10 Alignment of thoracic CT images, especially the lung and its internal541

structures is a challenging task, owing to the highly deformable nature of the lungs. Pulmonary542

registration is clinically useful, for example registering temporally distinct breathhold scans make543

visual comparison of these scans easier and less error prone. Registering inspiration and expiration544

scans can also be used to model or understand the biomechanics of lung expansion. Registration545

of temporally spaced breathhold scans can help in tracking disease progression, or registration546

between inspiration and expiration scans can enable improved monitoring of airflow and pulmonary547

function. Murphy et al.propose the Evaluation of Methods for Pulmonary Image REgistration 2010548

(EMPIRE10) challenge to provide a platform for a comprehensive evaluation and fair comparison549

of registration algorithms for the task of CT lung registration. The dataset consists of 30 scan pairs550

including inspiration-expiration scans, breathhold scans over time, scans from 4D data, ovine data,551

contrast-noncontrast, and artificially warped scan pairs. The ovine data was acquired where breathing552

was controlled, and metallic markers were surgically implanted to provide landmark annotations,553

followed by a hole-filling algorithm to disguise the markers so that registration algorithms cannot use554

this artificial information. Artificially warped scan pairs also provide ground truth correspondences for555

landmarks and lung boundaries. The challenge provides a broad range of data complexity, voxel sizes556

and image acquisition differences. In this challenge, only intrapatient registration is considered, and557

lungs and lung fissures were segmented using an automated method, and altered manually wherever558

necessary. The challenge only provides scan pairs and binary lung masks. All the other data (fissures559

and landmarks) are withheld for evaluation. All the scan pairs have varying spatial and physical560
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resolutions, are acquired over a varying set of imaging configurations. This calls for a registration561

algorithm that is agnostic to any assumptions about anisotropy of image resolution, both physical and562

voxel. We use the evaluation provided by the challenge, and compare the fissure alignment, landmark563

alignment, and singularity of registration. More details about the evaluation can be found in 10. We564

compare our method with ANTs which performs direct gradient descent updates and DARTEL which565

optimizes a stationary velocity field using the metrics reported in the evaluation server.566

RnR ExM mouse dataset 68 Expansion microscopy (ExM) is a fast-growing imaging technique for567

super-resolution fluorescence microscopy. It is therefore critical to robustly register high-resolution568

3D microscopy volumes from different sets of staining. The RnR-ExM challenge checks the ability to569

perform non linear deformable registration on images that have a very high voxel resolution. The570

challenge releases 24 pairs of 3D image volumes from three different species. Out of the three species571

(mouse brain, C. elegans, zebrafish), the mouse brain dataset is the only dataset with non-trivial572

non-linear deformations, and the other datasets mostly require a rigid registration. The mouse dataset573

has non-rigid deformation of the hydrogel and loss of staining intensity. Deformation of the hydrogel574

occurs because the sample sits for multiple days and at a low temperature between staining rounds.575

This calls for a cost function like cross-correlation which is sufficiently robust to the change in576

intensity as long as the structures are visible. The voxel size of each image volume is 2048x2048x81577

and the voxel spacing is 0.1625µm x 0.1625µm x 0.4µm. The challenge reports the average Dice578

score for the test set and also reports individual dice scores.579
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Figure S.1: Regionwise target overlap on the brain MRI datasets: We further evaluate regionwise overlap
scores by sampling 15 regions from each dataset, and comparing their distribution using our method and ANTs.
Our method has a much higher median score, and better interquartile ranges across regions, demonstrating both
accuracy and robustness.
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Figure S.2: Comparison of our method with ANTs on 4 MRI brain datasets: Registration quality is
validated by measuring volume overlap of label maps between the fixed and warped label maps. (a): For
anatomical region r, warped (binary) label map Sr and fixed label map Tr , target and mean overlap are defined
as |Sr ∩ Tr|/|Tr| and 2|Sr ∩ Tr|/(|Sr| + |Tr|). We define the aggregate target overlap over all anatomical
regions as

∑
r(|Sr ∩ Tr|/|Tr|) and Klein et al. 5 define it as (

∑
r |Sr ∩ Tr|)/(

∑
r |Tr|), likewise for other

metrics. The latter aggregation is denoted with the suffix (Klein) in the figure. In all four datasets, the boxplots
show a narrower interquartile range and substantially higher median than ANTs (higher is better), underscoring
the stability and accuracy of our algorithm. (b): Other measures of anatomical label overlap used in 5 are false
positives (|Tr\Sr|/|Tr|), false negatives (|Sr\Tr|/|Sr|), and volume similarity (2(|Sr| − |Tr|)/(|Sr|+ |Tr|))
(lower is better). We observe similar trends as in (a), with a narrower interquartile range and substantially lower
median values. Results of per region overlap metrics are in the Fig. S.1.
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(a) Trick to avoid parallel transport in Riemannian Adaptive Optimization

Riemannian gradient at arbitrary transform 
 is interchangeable with that at 

 Parallel transport (         )

Requires Parallel TransportDoesn't require Parallel Transport

(b) Bicubic interpolation of diffeomorphic map does not preserve diffeomorphism
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Figure S.3: Effect of downsampling on the warp and determinant of the Jacobian: We show the effect of
downsampling on the warp and determinant of the Jacobian for a single image pair. The first column shows the
initial warp, and the second and third columns show the warp and determinant of the Jacobian for the cubic and
bilinear interpolations, respectively.
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Figure S.4: Qualitative results on EMPIRE10 challenge: (a) shows the fixed image, (b) shows the registration
performed by ANTs, and (c) our method, all with zoomed in regions. ANTs performs a coarse registration with
ease, but still leaves out critical alignment of lung boundary and airways by not utilizing adaptive optimization.
Our method performs perfectly diffeomorphic registration by construction, and does not lead to any registration
errors, both in the lung boundaries or internal features.
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Figure S.5: More Qualitative results on EMPIRE10 challenge: (a) shows the fixed image, (b) shows the
registration performed by ANTs, and (c) our method, all with zoomed in regions. ANTs performs a coarse
registration with ease, but still leaves out critical alignment of lung boundary and airways by not utilizing adaptive
optimization. Our method performs perfectly diffeomorphic registration by construction, and does not lead to
any registration errors, both in the lung boundaries or internal features.
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Figure S.6: Comparison of exponential versus direct optimization on LPBA40 dataset: We run the
hyperparameter grid search on the LPBA40 dataset using direct Riemannian gradient updates with Adam
optimizer (denoted as rgd), and optimizing the velocity field by computing the exponential map to represent the
diffeomorphism (denoted as exp) across all the configurations shown in Fig. 6(a). The average target overlap for
each configuration is then stored, and a histogram of target overlap values of the dataset is constructed. Note
that the rgd variant has a significantly more number of configurations near the optimal value, and the average
performance and the overall distribution of our optimization is better for the rgd variant than exp. Similar trends
can be observed for the EMPIRE10 lung challenge in Fig. 3, where the exp representation underperforms for the
same cost function, data, etc. Therefore, we recommend direct RGD optimization for diffeomorphisms.
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