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Abstract

In this work we consider the problem of confounding in offline RL, also referred
to as the delusion problem [Ortega et al., 2021]. While it is known that learning
from purely offline data is a hazardous endeavor in the presence of confounding,
in this paper we show that offline, confounded data can be safely combined with
online, non-confounded data to improve the sample-efficiency of model-based RL.
We import ideas from the well-established framework of do-calculus to express
model-based RL as a causal inference problem, thus bridging the fields of RL and
causality. We propose a latent-based method which we prove is correct and efficient,
in the sense that it attains better generalization guarantees thanks to the offline,
confounded data (in the asymptotic case), regardless of the expert’s behavior. We
illustrate the effectiveness of our method on a series of synthetic experiments.

1 Introduction

As human beings, understanding cause and effect is crucial to successfully navigate our environment.
This is also true of reinforcement learning (RL) agents, and in particular model-based agents, who
must learn the effects of their own actions (interventions) on the environment. From this perspective,
offline RL is analogous to the problem of causal inference from observational data, which requires
assumptions about the data-generating process 1. In the context of Markov Decision Processes
(MDPs), estimating causal effects from offline data can be shown to be straightforward, due to the
absence of confounding. In Partially-Observable MDPs (POMDPs) however, it requires the additional
assumption that the data-collection agent did not use any privileged information besides that available
to the learning agent. Relaxing this assumption results in confounded data, which off-the-shelf offline
RL algorithms [Lange et al., 2012, Levine et al., 2020] should not use.

A typical example is in the context of medicine, when offline data is collected from physicians
who may rely on information absent from their patient’s medical records, such as their wealthiness
or their lifestyle. Suppose that wealthy patients in general get prescribed specific treatments by
their physicians, because they can afford it, while being less at risk to develop severe conditions
regardless of their treatment, because they can also afford a healthier lifestyle. This creates a spurious
correlation called confounding, and will cause a naive recommender system to wrongly infer that
costly treatments have positive health effects. Another example is in the context of autonomous
driving, when offline data is collected from human drivers who have a wider field of vision than the
camera on which the robot driver relies. Suppose human drivers push the brakes when they see a
person waiting to cross the street, and only when the person walks in front of the car it enters the

1“behind every causal conclusion there must lie some causal assumption that is not testable in observational
studies”, Pearl [2009b].
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camera’s field of vision. Then, again, a naive robot might wrongly infer that whenever the brakes are
pushed, a person appears in front of the car. In order to minimize collisions with pedestrians, it might
get regrettably reluctant to push the brakes.

Of course, in both those situations, the learning agent can infer the right causal model by disregarding
the (confounded) offline data altogether, and by relying solely on online data instead, collected
from its own interactions. However, in both those situations also, performing interventions for the
sole purpose of seeing what happens is impractical, while collecting offline data by observing the
behaviour of human agents is much more affordable. The question we address in this paper is, how
can confounded, offline data be leveraged by an RL agent who can also collect online data?

To answer this question we import tools and ideas from the well-established field of causality [Pearl,
2009a] into the model-based RL framework. We formalize model-based RL as a causal inference
problem using the framework of do-calculus [Pearl, 2012], and we present a generic method for
combining online and offline data in model-based RL, with a formal proof of correctness and
efficiency even in the presence of confounding. We propose a practical implementation in the tabular
setting, and present three experiments on synthetic toy problems that illustrate its effectiveness.

2 Background

2.1 Notation

In this paper, upper-case letters in italics denote random variables (e.g. X,Y ), while their lower-case
counterpart denote their value (e.g. x, y) and their calligraphic counterpart their domain (e.g., x ∈ X ).
For simplicity we consider only discrete random variables. To keep our notation uncluttered, with
a slight abuse of notation we use p(x) to denote sometimes the event probability p(X = x), and
sometimes the whole probability distribution of X , which should be clear from the context. In
sequential models we also distinguish random variables with a temporal index t, which might be fixed
(e.g., o0, o1 ), or undefined (e.g., p(st+1|st, at) denotes at the same time the distributions p(s1|s0, a0)
and p(s2|s1, a1)). We also adopt a compact notation for sequences of contiguous variables (e.g.,
s0→T = (s0, . . . , sT ) ∈ ST+1 ), and for summations over sets (

∑
x∈X ⇐⇒

∑X
x ). We assume the

reader is familiar with the concepts of conditional independence (X ⊥⊥ Y | Z) and probabilistic
graphical models based on directed acyclic graphs (DAGs), which can be found in most introductory
textbooks, e.g. Pearl [1989], Studeny [2005], Koller and Friedman [2009].

2.2 Partially-Observable Markov Decision Process

We consider episodic Partially-Observable Markov Decision Processes (POMDPs) of the form M =
(S,O,A, pinit, ptrans, pobs, r), with hidden states s ∈ S, observations o ∈ O, actions a ∈ A, initial
and transition state distributions pinit(s0) and ptrans(st+1|st, at), observation distribution pobs(ot|st),
and reward function r : O → R. For simplicity we assume episodes τ = (o0, a0, . . . , oT ) of finite
length |τ | = T , and we introduce the concept of a history at time t, ht = (o0, a0, . . . , ot). The
control mechanism is represented as a stochastic policy π, which together with the POMDP dynamics
pinit, ptrans and pobs defines a probability distribution over trajectories, p(τ). In this work we consider
two types of control policies π, which result in two distinct data-generation regimes.

Definition 2.1 (Standard POMDP regime). In the standard POMDP regime, actions are decided
based only on the available information from the past, Ht, according to a standard policy πstd(at|ht).
This results in the data-generation process depicted in Figure 1, and trajectory distribution

pstd(τ) =

S|τ|+1∑
s0→|τ|

pinit(s0)pobs(o0|s0)
|τ |−1∏
t=0

πstd(at|ht)ptrans(st+1|st, at)pobs(ot+1|st+1).

This standard regime is that of the regular POMDP control problem, which formulates as:

π?std = argmax
πstd

E
τ∼pstd

 |τ |∑
t=0

r(ot)

 . (1)
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Figure 1: The standard POMDP setting (no
confounding).
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Figure 2: The privileged POMDP setting
(confounding).

Definition 2.2 (Privileged POMDP regime). In the privileged POMDP regime, actions can be decided
based on the hidden state St as well, according to a privileged policy πstd(at|ht, st). This results in
the data-generation process depicted in Figure 2, with trajectory distribution

pprv(τ) =

S|τ|+1∑
s0→|τ|

pinit(s0)pobs(o0|s0)
|τ |−1∏
t=0

πprv(at|ht, st)ptrans(st+1|st, at)pobs(ot+1|st+1).

This privileged regime allows us to consider situations where trajectories are collected by observing
an external agent who uses privileged information, in the extreme case the entire POMDP hidden
state. Such a privileged agent can be for example a human driver in the context of autonomous
driving, who might have access to privileged information that the learning robot doesn’t have for
driving, such as the weather forecast. There lies the origin of the confounding problem in offline RL.

2.3 Causality and do-calculus

Several frameworks exist in the literature for reasoning about causality [Pearl, 2009a, Imbens and
Rubin, 2015, Dawid, 2021]. Here we follow the framework of Judea Pearl, whose concept of ladder
of causation is particularly relevant to answer RL questions. The first level of the ladder, association,
relates to the passive observation of an external agent acting in the environment, while the second
level, intervention, relates to the question of what will happen to the environment as a result of
the observer’s own actions. The tool of do-calculus [Pearl, 2012], presented in Appendix A, acts
as a bridge between these two levels, and is typically used to answer whether and interventional
distribution, such as p(y|do(x), z), can be identified from an observational distribution, such as
p(x, y, z). In a nutshell, in causal systems that can be expressed as DAGs, an intervention do(x)
forces the variables in X to take the specific value X = x regardless of their causal ancestors in
the graph, and queries of form p(y|do(x), z) measure the effect of an intervention do(X = x) on
an outcome event Y = y, in the context where another event Z = z is also observed. In this
paper, we will use do-calculus to reason formally about offline model-based RL in different POMDP
data-collection regimes, which entail different causal graphs.

3 Model-based RL as causal inference

Decision-making problems are inherently causal [Gershman, 2017, Dawid, 2021]. In POMDPs,
model-based RL relies on measuring the causal effect of immediate interventions, do(at), on the
next observation, ot+1, given that past observations, o0→t, and past interventions, do(a0→t−1),
have already happened. Such causal queries are embodied in the causal transition model
p(ot+1|o0→t, do(a0→t))2, which depends only on the POMDP dynamics in M , and not on the
control policy π. Together with the initial distribution p(o0), this causal model allows for the evalua-
tion of any standard control policy πstd(at|ht). Model-based RL then decomposes Equation (1) into
two sub-problems:

1. learning: given a dataset D, estimate a model q̂(ot+1|ht, at) ≈ p(ot+1|o0→t, do(a0→t));
2Such a notation can be found also in [Ortega et al., 2021]
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2. planning: given a history ht and the model q̂, derive an optimal action at.

In this work we consider only the first problem, that is, learning the causal transition model from data.
Next, we show using do-calculus that this problem can be either trivial or impossible, depending on
whether the data is collected using a standard or a privileged control policy.

3.1 In the standard POMDP regime

In the standard POMDP regime, we assume access to a dataset Dstd ∼ pstd(τ) of episodes τ collected
using an arbitrary standard policy πstd(at|ht). A key characteristic in this setting is thatAt ⊥⊥ St | Ht

is always true, that is, every action is independent of the current hidden state given the current history.
By applying do-calculus on the causal graph from Figure 1, the causal model can be shown to be
trivially identifiable as

p(ot+1|o0→t, do(a0→t)) = pstd(ot+1|ht, at).
Because of this property, any trajectory τ ∼ pstd(τ) can be interpreted as an interventional trajectory,
where the learning agent itself could have decided on each of the action at in τ . Thus, in the remainder
of the paper we will interchangeably call the standard POMDP regime the interventional regime, and
any dataset Dstd collected in this regime an interventional dataset.

Assuming sufficient exploration, which is achieved if the control policy is strictly positive
(πstd(at|ht) > 0, ∀at, ht), an unbiased estimator of the POMDP causal model can be obtained
from Dstd via log-likelihood maximization,

q̂ = argmax
q∈Q

Dstd∑
τ

|τ |−1∑
t=0

log q(ot+1|ht, at). (2)

This corresponds to the simplest and most common form of model learning via supervised learning
[Moerland et al., 2020], which effectively solves our causal inference problem.

3.2 In the privileged POMDP regime

In the privileged POMDP regime, we assume access to a dataset Dprv ∼ pprv(τ) of episodes τ
collected using an arbitrary privileged policy πprv(at|ht, st). In this setting, actions might not
be independent of the current hidden state given the current history, and thus At ⊥⊥ St | Ht

might not hold. Because each hidden state St both has a causal effect on the current action At
and the next observation Ot+1, it acts as a hidden confounder in the POMDP causal transition
model. This confounding effect can not be adjusted for without observing the hidden states of the
POMDP, and applying do-calculus on the causal graph from Figure 2 results in the causal model
p(ot+1|o0→t, do(a0→t)) being non-identifiable from pprv(τ). In particular,

p(ot+1|o0→t, do(a0→t)) 6= pprv(ot+1|ht, at).
Because of this, trajectories τ ∼ pprv(τ) cannot be interpreted as interventional. To better relate to
the causality literature, we will interchangeably call the privileged POMDP regime the observational
regime, and any dataset Dprv collected in this regime an observational dataset.

Note that, as a consequence of this non-identifiability, naively applying any off-the-shelf offline RL
algorithm [Lange et al., 2012, Levine et al., 2020] on an observational dataset such as Dprv is a risky
endeavour, and might result in biased transition models and value functions, and sub-optimal policies.

3.3 Connection to online and offline RL

To relate the concepts of standard (interventional) and privileged (observational) data to online and
offline RL, the key question to ask is, when the samples were collected, could the control policy
have used privileged information besides the history ht? Or, more formally, can we guarantee that
At ⊥⊥ St | Ht did hold in the data-generating process?

In online RL, the learning agent explicitly controls the data-collection policy, so by design it can
not rely on privileged information, hence At ⊥⊥ St | Ht always holds. Therefore, data collected in
an online RL setting can be safely treated as interventional, and the causal transition model can be
directly estimated using Equation (2).
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In offline RL, the learning agent might have limited knowledge about the data-collection policy,
sometimes no knowledge at all. In some settings, if it can be shown that the policy could not have
used any privileged information, then the offline data can be treated as interventional. For example,
with human replays from Atari video games, it is hard to imagine a human player having access to
more information from the machine’s internal state than the regular video and audio outputs from the
game. But in more general offline RL settings, access to privileged information can not be dismissed.
This is particularly true with human demonstrations collected in the wild, such as in the context of
autonomous driving, medical recommender systems (examples in Section 1), or question answering
systems Ortega et al. [2021]. In that case, the offline trajectories can not be considered interventional,
and the offline dataset must be treated as observational.

4 Combining observational and interventional data

Given enough online data, RL agents can learn optimal policies. But in some situations collecting a
large online (interventional) dataset can be expensive (recording a robot driver in the wild), while
collecting a large offline (observational) dataset from demonstrations is relatively cheap (recording
human drivers in the wild). Is it possible then to leverage such offline data to improve the sample-
efficiency of an online RL agent, even in the presence of confounding? 3

4.1 Problem statement

We consider two datasets of POMDP trajectories, Dstd and Dprv, sampled respectively in the standard
(interventional) and the privileged (observational) regime. We then ask the following question: can
the observational datasetDprv be used in combination to the interventional datasetDstd, to improve the
POMDP causal transition model p(ot+1|o0→t, do(a0→t)) that would be obtained from Equation (2)
using the interventional data only? As we will see, answering thing question will require to go beyond
the identifiability framework of do-calculus.

4.2 The augmented learning procedure

Since both datasets are sampled from the same POMDP (pinit, ptrans, pobs) controlled in different ways,
we introduce a regime indicator [Dawid, 2021] variable I ∈ {0, 1} so that Dprv ∼ p(τ |i = 0) and
Dstd ∼ p(τ |i = 1), with the augmented control policy π(at|ht, st, i) = πprv(at|ht, st) when i = 0
and πstd(at|ht) when i = 1. This results in the augmented data-generating process from Figure 3.

S0
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ptrans

St+1

ptrans

O0

pobs

Ot

pobs

Ot+1

pobs

At

π

At−1

π

I

Figure 3: Augmented POMDP setting, with a policy regime indicator I taking values in {0, 1}
(1=standard policy, 0=privileged policy), such that π(at|ht, st, i = 1) = π(at|ht, i = 1), which
enforces the contextual independence At ⊥⊥ St | Ht, I = 1.

In order to learn the causal transition model p(ot+1|o0→t, do(a0→t) we propose the following two-
step procedure, which relies on fitting a latent probabilistic model q̂ that explains both Dstd and Dprv.
Our latent model is constrained to respect the structure of our augmented POMDP, with a latent
variable zt ∈ Z to substitute the hidden state st ∈ S.

3Note that we consider this question in its broadest, without further assumptions about the observed offline
agent. The offline agent might act sub-optimally, or optimally according to a different reward function than the
learning agent.
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Learning Our learning problem formulates as standard likelihood maximization,

q̂ = argmax
q∈Q

Dprv∑
(τ)

log q(τ |i = 0) +

Dstd∑
(τ)

log q(τ |i = 1), (3)

with Q the family of sequential models that respect the augmented POMDP structural constraints,

q(τ |i = 0) =

Z|τ|+1∑
z0→|τ|

qinit(z0)qobs(o0|z0)
|τ |−1∏
t=0

qprv(at|ht, zt)qtrans(zt+1|at, zt)qobs(ot+1|zt+1), and

q(τ |i = 1) =

Z|τ|+1∑
z0→|τ|

qinit(z0)qobs(o0|z0)
|τ |−1∏
t=0

qstd(at|ht)qtrans(zt+1|at, zt)qobs(ot+1|zt+1).

The latent model q(τ |i) decomposes into five components, qinit, qtrans, qobs, qstd and qprv. In practice
however, the component qstd(at|ht) (standard policy model) does not affect the recovered causal
transition model, and does not have to be learned. Likewise, the component qprv(at|ht, zt) (privileged
policy model) can be substituted for qprv(at|zt) with no consequence, which is simpler to implement.
As a result, only four components have to be learned: the initial latent model qinit(z0), the observation
model qobs(ot|zt), the latent transition model qtrans(zt+1|zt, at) and the privileged agent’s behaviour
model qprv(at|zt). Each of these can be implemented using a feed-forward neural network, or a
probability table in the discrete case. Interestingly, in the pure interventional regime when Dprv = ∅,
our augmented learning problem (3) boils down to solving (2) with a latent-based model.

Inference We recover the causal transition model q̂(ot+1|o0→t, do(a0→t)) = q̂(ot+1|ht, at, i = 1)
by applying do-calculus on the augmented DAG from Figure 3, with zt instead of st. The procedure
conveniently unrolls as a forward algorithm at test time, and relies on the recurrent computation of
q̂(zt|ht, i = 1), a.k.a. the agent’s belief state at time t Cassandra [1998], Striebel [1965]. First, the
initial belief state at t = 0 is recovered as

q̂(z0|h0, i = 1) =
q̂init(z0)q̂obs(o0|z0)∑Z
z0
q̂init(z0)q̂obs(o0|z0)

.

Then, for every 0 ≤ t < T , the causal transition model is recovered as

q̂(zt+1, ot+1|ht, at, i = 1) =
∑Z
zt
q̂(zt|ht, i = 1)q̂trans(zt+1|zt, at)q̂obs(ot+1|zt+1),

q̂(ot+1|ht, at, i = 1) =
∑Z
zt+1

q̂(zt+1, ot+1|ht, at, i = 1),

and the next belief state is updated to

q̂(zt+1|ht+1, i = 1) =
q̂(zt+1, ot+1|ht, at, i = 1)∑Z
zt+1

q̂(zt+1, ot+1|ht, at, i = 1)
.

How does the observational data Dprv influence the causal transition model q̂(ot+1|o0→t, do(a0→t))?
The intuition is as follows. The learned model q̂ must fit both observational and interventional
data by sharing the same latent variables Zt, and the same building blocs q̂init(z0), q̂obs(ot|zt) and
q̂trans(zt+1|zt, at). The privileged agent behaviour model, q̂prv(at|zt), is the only component that can
allow for discrepancies between the two regimes, and it offers a limited flexibility. As a result, the
observational distribution q̂(τ |i = 0) estimated from Dprv can be seen as an unbiased regularizer
for the interventional distribution q̂(τ |i = 1) estimated from Dstd. This regularization helps prevent
overfitting when learning from limited interventional data Dstd, and improves the generalization
performance of the estimated causal transition model.

4.3 Theoretical guarantees

In this section we show that our two-step approach is 1) correct, in the sense that it yields an unbiased
estimator of the standard POMDP causal transition model and 2) efficient, in the sense that it yields
a better estimator than the one based on interventional data only (asymptotically in the number of
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observational data). All proofs are deferred to Appendix C, and a companion example is given in
Appendix B.

First we show that the recovered estimator is unbiased, and then we derive bounds for
q̂(ot+1|o0→t, do(a0→t)) in the asymptotic observational scenario |Dprv| → ∞ (regardless of the
interventional data Dstd).
Proposition 4.1. Assuming |Z| ≥ |S|, q̂(ot+1|o0→t, do(a0→t)) is an unbiased estimator of
p(ot+1|o0→t, do(a0→t)).

Theorem 4.2. Assuming |Dprv| → ∞, for anyDstd the recovered causal model is bounded as follows:

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≥
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0), and

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

p(at|ht, i = 0),

∀hT−1, aT−1, T ≥ 1 where p(hT−1, aT−1, i = 0) > 0.

Note that Theorem 4.2 generalizes a famous results in econometrics known as Manski’s bounds
Manski [1990], which corresponds to the setting where T = 1. As a direct consequence, in the
asymptotic case, using observational data ensures stronger generalization guarantees for the recovered
causal transition model than using no observational data.
Corollary 4.3. For any Dint, the estimator q̂(ot+1|o0→t, do(a0→t)) recovered after solving (3) with
|Dobs| → ∞ offers strictly better generalization guarantees than the one with |Dobs| = 0.

4.4 Related work

Causal RL A whole body of work exists around the question of merging interventional and obser-
vational data in RL in the presence of confounding. Bareinboim et al. [2015] study a sequential
decision problem similar to ours, but assume that expert intentions are observed both in the inter-
ventional and the observational regimes, i.e., prior to doing interventions the learning agent can ask
“what would the expert do in my situation?” This artificially introduces an intermediate, observed
variable ât = f(ot) with the property that pprv(at = ât|ât) = 1, which effectively removes any
confounding (At ⊥⊥ St|Ht). Zhang and Bareinboim [2017, 2021] relax this assumption in the
context of binary bandits, and later on in the more general context of dynamic treatment regimes
[Zhang and Bareinboim, 2019, 2020]. They derive causal bounds similar to ours (Theorem 4.2),
and propose a two-step approach which first extracts causal bounds from observational data, and
then uses these bounds in an online RL algorithm. While their method nicely tackles the question
of leveraging observational data for online exploration, it does not account for uncertainty in the
bounds estimated from the observational data. In comparison, our latent-based approach is more
flexible, as it never computes explicit bounds, but rather lets the learning agent decide through (3)
how data from both regimes influence the final transition model, depending of the number of samples
available. Kallus et al. [2018] also propose a two-step learning procedure to combine observational
and interventional data in the context of binary contextual bandits, which relies on a series of strong
parametric assumptions (strong one-way overlap, linearity, non-singularity etc.). Finally, a specific
instantiation of this framework is off-policy evaluation, i.e., estimating the performance of a policy π
using observational data only, which corresponds to the specific setting |Dint| = 0. While it can be
shown that the causal transition model is in general not recoverable in the presence of confounding,
a growing body of literature still tries to tackle this challenge by introducing additional structural
or parametric assumptions on the data-generating process [Lu et al., 2018, Tennenholtz et al., 2020,
Bennett et al., 2021].

Large sequence models A recent trend in RL is to apply large sequence models to estimate the
environment’s dynamics in a model-based fashion Schrittwieser et al. [2021], Janner et al. [2021], or
to parameterize a goal-conditioned policy in a model-free fashion Chen et al. [2021], Zheng et al.
[2022]. While large sequence models appear promising for efficiently combining offline and online
data, they remain vulnerable to confounding, as pinpointed by Ortega et al. [2021]. Because it follows
a generic model-based approach, our method could be easily combined with a large sequence model
to address large-scale RL scenarios, while being robust to confounding.
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5 Experiments

Given two datasets of standard (interventional) and privileged (observational) POMDP trajectories,
Dstd and Dprv, our augmented method consists in recovering a causal model of the POMDP dynamics
by solving Equation (3), and then extracting q̂(ot+1|o0→t, do(a0→t)) from q̂init, q̂trans and q̂obs. To
answer the question we asked in Section 4, we compare our method against two baseline variants:
no obs which discards the observational dataset, and solves Equation (3) with Dprv ← ∅, and naive
which naively combines the observational and interventional datasets as if there was no confounding,
and solves Equation (3) with Dstd ← Dstd ∪ Dprv and Dprv ← ∅.

5.1 Experimental setup

We train all three model-based methods, augmented, no obs and naive, using the same model architec-
ture and training procedure. Each building bloc q̂init, q̂trans, q̂obs and q̂prv consists in a tabular logistic
model, and Equation (3) is solved via mini-batch stochastic gradient descent using Adam [Kingma and
Ba, 2015]. Once the POMDP dynamics are recovered we extract q̂(o0) and q̂(ot+1|o0→t, do(a0→t))
to train a "dreamer" agent [Hafner et al., 2021] via actor-critic, implemented as a feed-forward neural
network that takes as input the recovered POMDP belief state, q̂(st|o0→t, do(a0→t−1)). Finally,
we evaluate both the quality of the causal transition model q̂(ot+1|o0→t, do(a0→t)), in terms of the
Jensen-Shannon divergence to p(ot+1|o0→t, do(a0→t)), and the performance of the resulting RL
agent, in terms of its cumulated reward, in the real test environment.
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Figure 4: Top: quality of the transition model obtained by each method, in terms of the Jensen-
Shannon divergence to p(ot+1|o0→t, do(a0→t)) (lower the better). Bottom: performance obtained
after training an RL agent, in terms of cumulative reward (higher the better). We report the mean
and the standard deviation over 20 seeds. Little markers indicate a significant difference between our
augmented method and the baselines no obs (down triangles) and naive (squares), using a two-sided
Wilcoxon signed-rank test with α < 5% [Demsar, 2006].

We conduct experiments on two synthetic toy problems, tiger and sloppy gridworld. In each scenario
we sample observational (privileged) trajectories from a policy that relies on the POMDP’s internal
state, while we collect interventional (standard) trajectories using random exploration. Each time we
measure the effect of combining a large, fixed observational dataset Dprv of size 8192 (213) with a
growing interventional dataset Dstd, of size ranging from 4 (22) to 8192 (213) on a logarithmic scale.
We repeat each experiment 20 times with different random seeds to account for variability.

Our complete experimental details are available in Appendix D, and the code to reproduce our
experiments is available at https://github.com/gasse/causal-rl. We present additional ex-
periments in Appendix E where we investigate robustness to different types of confounding (privileged
policy), along with a third experiment in the simple binary bandit setting.
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5.2 Detailed results

Tiger is a classic, small-scale POMDP from Cassandra et al. [1994] with |S| = 6 hidden states and
a time horizon T = 50. The learning agent’s observation is a noisy information about the tiger’s
position (roar perceived left or right), and its actions are either to listen again or to open a door (left or
right), which triggers a +10 (treasure) or -100 (tiger) reward and resets the tiger to a random position.
The privileged agent has full knowledge of the tiger’s position, and acts as follows

action
tiger’s position listen again open left door open right door

left 0.05 0.3 0.65
right 0.05 0.8 0.15

Privileged policy πprv(action|tiger’s position)

As can be seen in Figure 4, this privileged policy results in confounding in the observational dataset
Dprv, which hurts the naive method. The naive method requires |Dstd| = 211 interventional trajectories
to overcome the confounding and obtain a good policy. The no obs method, which does not use the
observational data at all, obtains a good policy earlier with only |Dstd| = 25 interventional trajectories.
Our augmented method, thanks to its correct use of the observational data, obtains a good policy even
earlier, using only |Dstd| = 22 interventional trajectories.

Sloppy gridworld is inspired from Alt et al. [2020], and constitutes a more challenging POMDP
with |S| = 21 hidden states and a time horizon T = 20. Here the agent starts on the top-left corner
of a small 5x5 grid, and tries to reach a target placed behind a large wall at the bottom side. The grid
is sloppy, meaning that the environment will execute the agent’s actions, top, right, bottom, left or
idle, with 50% chances, and will execute a random action otherwise. The privileged agent has full
knowledge of its position at each time step, and uses a shortest-path algorithm to decide on its next
action. The learning agent is only revealed its position with 20% chances at each time step, and is
blind otherwise (a dummy position is revealed). Here again, from Figure 4 it is clear that the naive
method is hurt due to the confounding, while our augmented method benefits from the observational
data compared to the no obs method. In Figure 5 we focus on the |Dstd| = 128 (27) trajectories mark,
with a heat-map of the test-time trajectories resulting from each method. At this point, only our
augmented method manages to cross the wall and reach the target, while the two other methods still
struggle to escape the initial position.

no obs naive augmented

Figure 5: Focus on the sloppy gridworld experiment at the |Dstd| = 27 mark. Left: the initial grid.
Right: a heatmap of the tiles visited by the RL agents at test time. At this point, only the augmented
method has learned how to pass the wall.

6 Conclusion

In this paper we have presented a simple, generic method for combining interventional and observa-
tional (potentially confounded) data in model-based reinforcement learning for POMDPs. We have
demonstrated that our method is correct and efficient in the asymptotic case (infinite observational
data), and we have illustrated its effectiveness on two synthetic toy problems. A future direction is
to investigate this method in the high-dimensional POMDP setting, where learning a latent-based
transition model is more challenging. We hope that this work will help bridge the gap between the
fields of RL and causality, and will convince the RL community that causality is an adequate tool to
reason about observational data, which is plentiful in the world.
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A Introduction to do-calculus

The framework of do-calculus [Pearl, 2012] was proposed as an intuitive tool to answer identifiability
questions given a causal graph G, such as, can the interventional distribution p(y|do(x), z) be
recovered from the observational distributions p(y, x, z)? Do-calculus relies on three graphical rules,
which depend solely on the existence of specific structural constraints in G:

• R1: insertion/deletion of observations, p(y|do(x), z, w) = p(y|do(x), w) if Y and Z are
d-separated by X ∪W in G?, the graph obtained from G by removing all arrows pointing
into variables in X .

• R2: action/observation exchange, p(y|do(x), do(z), w) = p(y|do(x), z, w) if Y and Z are
d-separated by X ∪W in G†, the graph obtained from G by removing all arrows pointing
into variables in X and all arrows pointing out of variables in Z.

• R3: insertion/deletion of actions, p(y|do(x), do(z), w) = p(y|do(x), w) if Y and Z are
d-separated by X ∪W in G‡, the graph obtained from G by first removing all the arrows
pointing into variables in X (thus creating G?) and then removing all of the arrows pointing
into variables in Z that are not ancestors of any variable in W in G?.

This set of rules has been shown to be complete [Huang and Valtorta, 2006, Shpitser and Pearl, 2006],
and results in an algorithm polynomial in the number of nodes in G to answer identifiability questions,
which either outputs "no" or "yes" along with an estimate (a recovery formula) based on observational
quantities. We refer the reader to Pearl [2012] for a thorough introduction to do-calculus.

B Companion example: the door problem

Light

Button Door

Causal DAG

Figure 6: The door problem. You are sitting in a room with a door, a light that can be red or green,
and two buttons that will open the door depending on the light color. You can collect data samples
in two ways, either from interventions, i.e., you get up and press the buttons (expensive), or from
observations, i.e., you watch someone else press the buttons (cheap). A key detail: you’re colorblind
and can’t distinguish red from green. Your goal is to find which button is more likely to open the
door.

Consider the door problem described in Figure 6. The mechanism responsible for opening the door
works as follows: when the light is red, button A opens the door, when the light is green, button B
opens the door. The light is red 60% of the time, and green the rest of the time. I am told nothing
about the door’s mechanism, except that it depends on both the light color and the button pressed
(Light → Door ← Button). Since I am colorblind I cannot use the light color to make decisions,
and the question I am interested in is simply, which button is more likely to open the door? In the
do-calculus framework, this question translates to

argmax
button∈{A,B}

p(door=open|do(button)).

I thus need to estimate two causal queries: p(door=open|do(button = A)) and
p(door=open|do(button = B)).
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Interventional setting If I observe my own (or another colorblind person’s) interactions with the
door, then I know that which button is pressed is unrelated to which color the light is (Light 6→ Button).
Then, I can directly estimate the causal effect of the button on the door,

p(door=open|do(button)) = pstd(door=open|button).

In this regime, regardless of which policy is used to collect (button, door) samples, eventually I
realize that button A has more chances of opening the door (60%) than button B (40%), and thus is
the optimal action4.

Observational setting Assume now that I observe another person interacting with the door. I
do not know whether that person is colorblind or not (Light → Button is possible). In this
regime, without additional knowledge, I cannot recover the causal queries p(door=open|do(button))
from the observed distribution p(door, button). In the do-calculus framework, the queries are
said non identifiable. For example, with a privileged policy πprv(button=A|light=red) = 0.9 and
πprv(button=A|light=green) = 0.4 the observed transition probabilities are pprv(door=open|button =
A) = 0.77 and pprv(door=open|button = B) = 0.8, which are not causal due to confounding.

Augmented setting First, consider that I can observe many (button, door) interactions from a non-
colorblind person, who’s policy is π(button=A|light=red) = 0.9 and π(button=A|light=green) =
0.4. Then I can safely infer from Theorem 4.2 that p(door=open|do(button=A)) ∈ [0.54, 0.84] and
p(door=open|do(button=B)) ∈ [0.24, 0.94]. Then, I get a chance to interact with the door, and I
decide to press A 10 times and B 10 times. I am unlucky, and my interventional study results in the
following frequencies: q(door=open|do(button=A)) = 0.5 and q(door=open|do(button=B)) =
0.5. This does not coincide with my (reliable) observational study, and therefore I adjust
q(door=open|do(button=A)) to its lower bound 0.54. I now believe that pressing A is more likely to
be my optimal strategy.

C Proofs.

Proposition 4.1. Assuming |Z| ≥ |S|, q̂(ot+1|o0→t, do(a0→t)) is an unbiased estimator of
p(ot+1|o0→t, do(a0→t)).

Proof. The proof is straightforward. First, we have that D ∼ p(τ, i). Second, we have p ∈ Q,
because Q is only restricted to the augmented POMDP constraints, and because its latent space is
sufficiently large (|Z| ≥ |S|). Therefore, q̂(τ, i) solution of (3) is an unbiased estimator of p(τ, i),
and in particular q̂(ot+1|ht, at, i = 1) is an unbiased estimator of p(ot+1|ht, at, i = 1).

Theorem 4.2. Assuming |Dprv| → ∞, for anyDstd the recovered causal model is bounded as follows:

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≥
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0), and

T−1∏
t=0

q̂(ot+1|o0→t, do(a0→t)) ≤
T−1∏
t=0

p(at|ht, i = 0)p(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

p(at|ht, i = 0),

∀hT−1, aT−1, T ≥ 1 where p(hT−1, aT−1, i = 0) > 0.

Proof of Theorem 4.2. Consider q(τ, i) ∈ Q any distribution that follows our augmented POMDP
constraints. Then, for every T ≥ 1 we have

T−1∏
t=0

q(at|ht, i)q(ot+1|ht, at, i) =
q(τ |i)
q(h0|i)

=

ZT+1∑
z0→T

q(z0|h0, i)
T−1∏
t=0

q(at, zt+1, ot+1|zt, ht, i),

4One assumption though is strict positivity, π(button) > 0 ∀button, which ensures that both buttons are
pressed.
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by usingAt, Zt+1, Ot+1 ⊥⊥ Z0→t−1 | Zt, Ht, I , which can be read via d-separation in the augmented
POMDP DAG. Likewise, for every t ≥ 0 we have

q(ot+1|ht, at, i = 1) =

Z∑
zt+1

q(zt+1, ot+1|ht, at, i = 1)

=

Z∑
zt

q(zt|ht, i = 1)

Z∑
zt+1

q(zt+1, ot+1|zt, ht, at, i = 0),

by using Zt ⊥⊥ At | Ht, I = 1 and Zt+1, Ot+1 ⊥⊥ I | Zt, At, Ht. Then for every t ≥ 1 we can
further write

q(ot+1|ht, at, i = 1) =

Z∑
zt

q(zt, ot|ht−1, at−1, i = 1)

q(ot|ht−1, at−1, i = 1)

Z∑
zt+1

q(zt+1, ot+1|zt, ht, at, i = 0).

By recursively decomposing every q(zt, ot|ht−1, at−1, i = 1) until t = 0, and finally by using
Z0 ⊥⊥ I | H0, we obtain that for any T ≥ 1

T−1∏
t=0

q(ot+1|ht, at, i = 1) =

ZT+1∑
z0→T

q(z0|h0, i = 0)

T−1∏
t=0

q(zt+1, ot+1|zt, at, ht, i = 0),

which can be re-expressed as

T−1∏
t=0

q(ot+1|ht, at, i = 1) =

AT∑
a′0→T−1

ZT+1∑
z0→T

q(z0|h0, i = 0)

T−1∏
t=0

q(a′t|zt, ht, i = 0)q(zt+1, ot+1|zt, ht, at, i = 0).

By considering the case a′0→T−1 = a0→T−1 in isolation, and by assuming probabilities are positive,
we readily obtain our first bound,

T−1∏
t=0

q(ot+1|ht, at, i = 1) ≥
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0).

In order to obtain our second bound, we further isolate the cases a′0 6= a0, then a′0 = a0 ∧ a′1 6= a1,
then a′0 = a0 ∧ a′1 = a1 ∧ a′2 6= a2 and so on until a′0→T−2 = a0→T−2 ∧ a′T−1 6= aT−1, which
yields

T−1∏
t=0

q(ot+1|ht, at, i = 1) =

T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0)

+
ZT+1∑
z0→T

q(z0|h0, i = 0) (1− q(a0|z0, h0, i = 0))

T−1∏
t=0

q(zt+1, ot+1|zt, ht, at, i = 0)

+

T−2∑
K=0

ZT+1∑
z0→T

q(z0|h0, i = 0)

K∏
t=0

q(at, zt+1, ot+1|zt, ht, i = 0) (1− q(aK |zK , hK , i = 0))

T−1∏
t=K+1

q(zt+1, ot+1|zt, ht, at, i = 0).

Then by assuming probabilities are upper bounded by 1, we obtain
T−1∏
t=0

q(ot+1|ht, at, i = 1) ≤
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0) + 1− q(a0|h0, i = 0)

+

T−2∑
K=0

K∏
t=0

q(ot+1|ht, at, i = 0)

(
K−1∏
t=0

q(at|ht, i = 0)−
K∏
t=0

q(at|ht, i = 0)

)

≤
T−1∏
t=0

q(at|ht, i = 0)q(ot+1|ht, at, i = 0) + 1−
T−1∏
t=0

q(at|ht, i = 0).
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Finally, with q̂ solution of (3) and |Dobs| → ∞ we have that DKL(p(τ |i = 0)‖q̂(τ |i = 0)) = 0,
and thus q̂(at|ht, i = 0) = p(at|ht, i = 0) and q̂(ot+1|ht, at, i = 0) = p(ot+1|ht, at, i = 0), which
shows the desired result.

Corollary 4.3. For any Dint, the estimator q̂(ot+1|o0→t, do(a0→t)) recovered after solving (3) with
|Dobs| → ∞ offers strictly better generalization guarantees than the one with |Dobs| = 0.

Proof. There exists at least one history-action couple (hT−1, aT−1), T ≥ 1, that has non-
zero probability in the observational regime. This ensures that there exists a value oT for
which

∏T−1
t=0 p(at|ht, i = 0)p(ot+1|ht, at, i = 0) is strictly positive, which in turn ensures

q̂(oT+1|hT , aT , i = 1) > 0 (Theorem 4.2). As a result, the family of models {q(ot+1|ht, at, i = 1) |
q ∈ Q, q(τ |i = 0) = p(τ |i = 0)} is a strict subset of the unrestricted family {q(ot+1|ht, at, i = 1) |
q ∈ Q}, and thus offers strictly better generalization guarantees.

D Experimental details

The code for reproducing our experiments is made available online5.

We perform experiments on three synthetic toy problems: the door problem described earlier
(Figure 6), the classical tiger problem from the literature [Cassandra et al., 1994], and a 5x5 gridworld
problem inspired from Alt et al. [2020].

Data To assess the performance of our method, we consider a large observational dataset Dprv of
fixed size (512 samples for door, 8192 samples for tiger and gridworld), and an interventional dataset
Dstd of varying size, ranging on an exponential scale from 4 to |Dprv|.

Baselines We compare the performance of the transition model q̂ recovered in three different
settings: no obs, when only interventional data (D = Dstd) is used for training; naive, when
observational data is naively combined with interventional data as if there was no confounding
(D = Dstd ∪ {(τ, 1)|(τ, i) ∈ Dprv)}); and augmented, our proposed method (D = Dstd ∪ Dprv).
Note that the only difference between each of those settings is the training dataset, all other aspects
(learning procedure, model architecture, loss function) begin the same.

Training In all our experiments we use a tabular model for q̂, that is, we use discrete proba-
bility tables for each building blocs of the transition model, q(z0), q(ot|zt), q(zt+1|zt, at), and
q(at|ht, zt, i = 0). We use a latent space |Z| of size 32, 32 and 128 respectively for each toy
problem, while the true latent space |S| is of size 3, 6 and 42. We train q̂ by directly minimizing the
negative log likelihood (3) via gradient descent. We use the Adam optimizer [Kingma and Ba, 2015]
with a learning rate of 10−2, and train for 500 epochs consisting of 50 gradient descent steps with
minibatches of size 32. We divide the learning rate by 10 after 10 epochs without loss improvement
(reduce on plateau), and we stop training after 20 epochs without improvement (early stopping).
In the door experiment we derive the optimal policy π̂? exactly, while in the tiger and gridworld
experiments we train a “dreamer” RL agent on imaginary samples τ ∼ q̂(τ |i = 1) obtained from
the model, using the belief states q̂(st|ht) as features. We use a simple Actor-Critic algorithm for
training, and our agents consist of a simple MLP with one hidden layers for both the critic and the
policy parts. RL agents are trained until convergence or with a maximum number of 1000 epochs,
with a learning rate of 10−2, a discount factor γ = 0.9 and a batch size of 8.

JS divergence To evaluate the general quality of the recovered transition models, we compute
the expected Jensen-Shannon divergence between the learned q̂(ot+1|ht, i = 1) and the true

5https://supplementary.materials/disclosed.after.acceptance
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p(ot+1|ht, i = 1), over transitions generated using a uniformly random policy πrand,

1

2
Eτ∼pinit,ptrans,pobs,πrand

log p(o0)

m(o0)
+

|τ |∑
t=1

log
p(ot+1|ht, i = 1)

m(ot+1|ht, i = 1)


+
1

2
Eτ∼q̂init,q̂trans,q̂obs,πrand

log q̂(o0)

m(o0)
+

|τ |∑
t=1

log
q̂(ot+1|ht, i = 1)

m(ot+1|ht, i = 1)

 ,

where m(.) = 1
2 (q̂(.) + p(.)). In the first experiment we compute the JS exactly, while in the

second experiment we use a stochastic approximation over 100 trajectories τ to estimate each of the
expectation terms in the JS empirically.

Reward. To evaluate quality of the recovered transition models for solving the original RL task,
that is, maximizing the expected long-term reward, we evaluate the policy π̂?, obtained after planning
with the recovered model q̂, on the true environment p,

Eτ∼pinit,ptrans,pobs,π̂?

 |τ |∑
t=0

R(ot)

 .

In the first experiment we compute this expectation exactly, while in the second experiment we use a
stochastic approximation using 100 trajectories τ .

E Complete empirical results

E.1 Door experiment

The door experiment (Figure 6) corresponds to a simple binary bandit setting, that is, a specific
POMDP with horizon H = 1. The observation space is of size |O| = 0, since the learning agent
receives no observation, and the hidden state space is of minimal size |S| = 3 to encode both the
initial light color and the reward obtained afterwards. The bandit dynamics are described in Table 1.

light
red green
0.6 0.4

p(light)

door
light button closed open

red A 0.0 1.0
B 1.0 0.0

green A 1.0 0.0
B 0.0 1.0

p(door|light, button)

Table 1: Probability tables for our door bandit problem.

We repeat the door experiment in six different scenarios, corresponding to different privileged policies
πprv ranging from a totally random agent to a perfectly good and a perfectly bad agent. Each time,
we evaluate the performance of the no obs, naive and augmented approaches under different data
regimes, by varying the sample size for both the observational data Dprv and the interventional data
Dstd in the range (4, 8, 16, 32, 64, 128, 256, 512).

In each scenario, we report both the expected reward and the JS as heatmaps with |Dstd| and |Dprv|
in the x-axis and y-axis respectively, to highlight the combined effect of the sample sizes on each
approach. We also provide as a heatmap the difference between our approach, augmented, and the
two other approaches no obs and naive. We always plot the expected reward in the first row, and JS
in the second row. As a remark, shades of green show gains in reward (the higher the better), while
shades of purple show gains in JS (the lower the better).

Finally, we also present two plots which provide a focus on the data regime that corresponds to the
largest number of observational data (|Dprv| = 512), as in the main paper.
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Noisy Good Expert In the noisy good expert setting, the expert plays halfway between a perfect
and a random policy. The diversity of its action leads to a good start for the naive model but the bias
it contains is hard to overcome. In contrast, our method makes good use of the observational data
from the start and is also able to correct the bias as interventional data come in, eventually converging
towards the true transition model.

πprv(button|light)
button

light A B
red 0.9 0.1

green 0.4 0.6

23 25 27

nints (log scale)

0.00

0.05

0.10

0.15
JS divergence

no obs
naive
augmented

23 25 27

nints (log scale)

0.4

0.5

0.6

reward

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

naive obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - naive

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

naive obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - naive

0.45

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.05

0.00

0.05

0.05

0.00

0.05

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

0.050

0.025

0.000

0.025

0.050

0.050

0.025

0.000

0.025

0.050

Figure 7: Noisy good expert setting. Heatmaps correspond respectively to the expected reward (top
row, higher is better) and the JS divergence (bottom row, lower is better).
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Random Expert A random policy naturally results in unconfounded observational data, since it
does not exploits the privileged information. Hence, the naive approach is unbiased in this case,
and actually makes the best use of the observational data. Our approach, augmented, exhibits an
overall comparable performance, only slightly worse at times. We believe this can be explained by
the additional complexity of our method which tries to disentangle a confounded regime in the data,
and is not best suited to unconfounded data.
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Figure 8: Random expert setting. Heatmaps correspond respectively to the expected reward (top row,
higher is better) and the JS divergence (bottom row, lower is better).
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Perfectly Good Expert Observing a perfectly good expert playing in the door problem induces a
strong bias, because every observed action always results in a positive reward. As such, the naive
approach struggles to learn a good transition model. The bias however is quickly corrected by our
augmented approach, which eventually converges to the true transition model faster than the no obs
approach.
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Figure 9: Perfectly good expert setting. Heatmaps correspond respectively to the expected reward
(top row, higher is better) and the JS divergence (bottom row, lower is better).
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Perfectly Bad Expert Similarly to the previous setting, observing an expert that always chooses
a bad action leads to a strong bias, as every action is associated to a low reward. The behaviour in
terms of JS and reward is similar as well.
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Figure 10: Perfectly bad expert setting. Heatmaps correspond respectively to the expected reward
(top row, higher is better) and the JS divergence (bottom row, lower is better).
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Positively Biased Expert Here the expert’s policy is considered as positively biased in the sense
that the agent will only obtain a positive reward when playing button A (with 55% chances) and
never by playing button B (0% chances). Because playing button A is actually the optimal policy,
this strong bias has a positive effect on the reward for the naive approach. Hence, although worse in
terms of JS than our approach, the naive approach always results in a very good policy in terms of
reward. Our augmented approach, however, seems more conservative.
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Figure 11: Positively biased expert setting. Heatmaps correspond respectively to the expected reward
(top row, higher is better) and the JS divergence (bottom row, lower is better).
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Negatively Biased Expert In an analogous way, a negatively biased expert will overuse button A,
leading to mixed feelings regarding this button, whereas it will always get a positive reward each
time it uses button B. This leads to the opposite behavior as we had in the previous setting, with the
naive approach always favoring the use of button B, and obtaining a bad performance in terms of
reward. The naive approach only gets better when a lot of interventional data is combined with the
biased observational data, while our augmented approach is able to overcome this pessimistic bias
very early on, and converges faster than both no obs and naive.

πprv(button|light)
button

light A B
red 1.0 0.0

green 0.8 0.2

23 25 27

nints (log scale)

0.00

0.05

0.10

0.15
JS divergence

no obs
naive
augmented

23 25 27

nints (log scale)

0.4

0.5

0.6

reward

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

naive obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - naive

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

naive obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented obs+int

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - no obs

4 8 16 32 64 128
nints

4
8

16
32
64

128
256
512

no
bs

augmented - naive

0.45

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.10

0.15

0.05

0.00

0.05

0.05

0.00

0.05

Figure 12: Pessimistic bias expert setting. Heatmaps correspond respectively to the expected reward
(top row, higher is better) and the JS divergence (bottom row, lower is better).
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E.2 Tiger experiment

The tiger experiment corresponds a synthetic POMDP toy problem proposed by Cassandra et al.
[1994]. In short, in this problem the agent stands in front of two doors to open, one of them having
a tiger behind it (-100 reward), and the other one a treasure (+10 reward). The agent also gets a
noisy observation of the system in the form of the roar from the tiger, which seems to originate from
the correct door most of the time (85% chances) and the wrong door sometimes (15% chances). In
order to reduce uncertainty the agent can listen to the tiger’s roar again, at the cost of a small penalty
(-1). We present the simplified POMDP dynamics in Table 2, and in our experiments we impose a
fixed horizon of size H = 50. The observation space is of size |O| = 6, to encode the roar location
perceived by the agent and the obtained reward, ot = (roart, rewardt), and the hidden state space is
of minimal size |S| = 6 to encode both the tiger position and the reward obtained at each time step,
st = (tigert, rewardt).

tiger0
left right
0.5 0.5

p(tiger0)

tigert+1

tigert actiont left right

left
listen 1.0 0.0

open left 0.5 0.5
open right 0.5 0.5

right
listen 0.0 1.0

open left 0.5 0.5
open right 0.5 0.5

p(tigert+1|tigert, actiont)

roart
tigert left right
left 0.85 0.15

right 0.15 0.85

p(roart|tigert)

rewardt+1

tigert actiont -1 -100 +10

left
listen 1.0 0.0 0.0

open left 0.0 1.0 0.0
open right 0.0 0.0 1.0

right
listen 1.0 0.0 0.0

open left 0.0 0.0 1.0
open right 0.0 1.0 0.0

p(rewardt+1|tigert, actiont)

Table 2: Probability tables for the tiger problem.

For the tiger experiment we consider four different privileged policies πprv for the ob-
served agent. We then evaluate the performance of the no obs, naive and augmented ap-
proaches under different data regimes, by keeping the observational data fixed to |Dprv| =
8192 while varying the varying the number of interventional data for Dstd in the range
(4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192).
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Noisy Good Expert In this scenario the privileged expert adopts a policy that plays the optimal
action most of the time (open the treasure door), but also sometimes decides to just listen or to
open the wrong door. As can be seen, in this scenario our augmented method makes the best use of
the observational data, and is significantly better than both the no obs and naive approaches in the
low-sample regime, both in terms of quality of the estimated transition model and obtained reward.
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Figure 13: Noisy good agent.

Random Expert In the random scenario there is no confounding, and observational data can be
safely mixed with interventional data. The naive approach thus does not suffer from any bias, and
in fact is the one that converges the fastest to the optimal transition model and policy. Our method,
while it manages to leverage the observational data to converge faster than no obs, suffers from a
worse performance than naive in the low sample regime, most likely because it tries to recover a
spurious confounding variable to distinguish the observational and interventional regimes, when none
actually exists.
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Figure 14: Random agent.
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Very Good Expert Here the privileged expert never opens the wrong door, and thus never receives
the very penalizing -100 reward. As a result the naive approach seems to be overly optimistic with
respect to the action of opening a door, which strongly affects the expected reward it obtains in the
true environment. While our augmented approach seems also to suffer from this bias in the very low
sample regime (as can be seen on the reward plot), overall the quality of the recovered transition
model is still superior to both other approaches, and converges faster to the true transition model.
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Figure 15: Very good agent.

Very Bad Expert Here the privileged expert never opens the correct door, and thus never receives
a positive reward (+10). As a result, the naive approach seems to be very conservative, and prefers
not to take any chances opening a door. It turns out that this strategy is not too bad in terms of reward
(always listening yields a -51 total reward), and as such this causal bias seems to positively affect the
performance of the naive approach in the low sample regime, but prevents it from obtaining a better
policy in the high sample regime too. Our augmented method, on the other hand, is able to escape
this overly conservative strategy earlier on, and converges to a good-performing policy faster than
both other approaches.
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Figure 16: Very bad agent.
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E.3 Gridworld experiment

The gridworld experiment, represented in Figure 17, is inspired from [Alt et al., 2020]. It consists in
a small 5x5 grid where the agent starts on the top-left corner, and tries to get to a target placed on
the bottom side behind a large wall. The agent can use five actions: top, right, bottom, left and idle,
and only receives a noisy signal about its current position. At each time step, the agent’s position is
revealed with 20% chances, and remains completely hidden otherwise. In addition, the agent’s actions
only have a stochastic effect, i.e., the agent moves into the desired direction with 50% chances, and
otherwise slips at random to one of the 5 adjacent tiles or current tile. In case the agent would bump
into a wall, it simply remains at its current position. The observation space is of size |O| = 44, to
encode both the agent’s location (or the indication that the location is hidden) and the reward, and the
hidden state space is of size |S| = 21 to encode the agent’s location. In this experiment we impose a
fixed horizon of size H = 20.

Figure 17: The gridworld problem

For the gridworld experiment we consider a single policy πprv for the privileged agent, who acts
optimally (shortest path from current location to target). We then evaluate the performance of the no
obs, naive and augmented approaches under different data regimes, by keeping the observational data
fixed to |Dprv| = 8192 while varying the varying the number of interventional data for Dstd in the
range (4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192).

Very Good Expert In this scenario the privileged agent adopts a perfect policy, and always chooses
an action leading to the shortest path towards the target. As can be seen, here again our augmented
method makes the best use of the observational data, and converges faster than both the no obs and
the naive approaches for recovering the true transition model. This improvement in the transition
model also translates into an improvement in terms of the learned policy, which starts converging
towards high reward values with fewer samples (27) than both no obs and naive (29).
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Figure 18: Perfect agent.
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|Dstd| no obs naive augmented
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Figure 19: Average heat-maps over 100 episodes × 10 seeds, of the tiles visited by each trained
agent (no obs, naive, augmented) for different interventional data sizes (22, 23, 24, 25, 26, 27). The
augmented approach is the fastest (in terms of interventional data) to learn how to properly escape
the top part of the maze through tile (4, 2), and then move towards the treasure on tile (1, 3).
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|Dstd| no obs naive augmented
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Figure 20: Average heat-maps over 100 episodes × 10 seeds, of the tiles visited by each trained agent
(no obs, naive, augmented) for different interventional data sizes (28, 29, 210, 211, 212, 213). The
augmented approach is the fastest (in terms of interventional data) to learn how to properly escape
the top part of the maze through tile (4, 2), and then move towards the treasure on tile (1, 3).
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