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ABSTRACT

We propose a novel framework for solving continuous-time, non-Markovian
stochastic optimal problems with the use of neural rough differential equations
(Neural RDEs). By parameterising the control process as the solution of a Neural
RDE driven by the state process, we show that the control-state joint dynamics
are governed by an uncontrolled RDE with structured vector fields, allowing for
efficient trajectories simulation, Monte-Carlo estimation of the value function and
backpropagation. To deal with input paths of infinite 1-variation, we refine the uni-
versal approximation result in Kidger et al. (2020) to a probabilistic density result
for Neural RDEs driven by random rough paths. Experiments on various non-
Markovian problems indicate how the proposed framework is time-resolution-
invariant and capable of learning optimal solutions with higher accuracy than tra-
ditional RNN-based approaches. Finally, we discuss possible extensions of this
framework to the setting of non-Markovian continuous-time reinforcement learn-
ing and provide promising empirical evidence in this direction.

1 INTRODUCTION

The field of stochastic control is concerned with problems where an agent interacts over time with
some random environment through the action of a control. In this setting, the agent seeks to select
the control such that some objective depending on the trajectory of the system under their control
and the choice of the control itself is optimised; commonly, as the system is stochastic, such an
objective takes the form of an expectation of some pathwise cost or reward. The study of this class
of problems is intimately related to reinforcement learning (RL) and has been successfully applied
to many fields of modern sciences, including biology Cucker & Smale (2007), economics Kamien
& Schwartz (2012), engineering Grundel et al. (2007), finance Pham (2009), and more recently,
epidemics control Hubert et al. (2022).

Stochastic control is nowadays regarded as a well-established field of mathematics. Two main ap-
proaches govern the analysis: the stochastic maximum principle and the dynamic programming
approach, see Yong & Zhou (1999); Pham (2009). In either case, an agent is interested in character-
ising a set of optimal strategies, the dynamics of the system under such strategies, and the optimal
value of the corresponding reward functional. The two main sources of complexity for tackling
these problems are: 1) the continuous-time nature of the underlying stochastic dynamics, and 2) the
presence of memory yielding a non-negligible impact of the system’s history on its future evolution.

On the one hand, compared to their discrete counterparts, continuous-time stochastic control prob-
lems have received an increasing amount of attention in recent years, partly because the underlying
physical processes themselves often develop in continuous time, partly because of their characterisa-
tion via partial differential equations (PDEs) or backward stochastic differential equations (BSDEs).

On the other hand, non-Markovian stochastic control problems, where the evolution of the sys-
tem depends on its history and not only on its current state, often provide a more faithful class of
models to describe real-world phenomena than their Markov counterparts, where the (infinitesimal)
displacement of the state dynamics depend only on the current state.
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Typical examples of settings where non-Markovian stochastic control problems in continuous-time
arise include rough volatility models Gatheral et al. (2018) from quantitative finance in which the
non-Markovianity stems from having a fractional Brownian motion as the driving noise. Another
common source of non-Markovian problems are delayed control problems, where memory is incor-
porated into the system by assuming path-dependence of the vector fields governing the dynamics
(see Sec. 3 for a precise statement). These are ubiquitous in economics, for example in the study of
growth models with delayed production or pension funds models, Kydland & Prescott (1982); Sal-
vatore (2011), in marketing for models of optimal advertising with “distributed lag” effects Gozzi
et al. (2009), and in finance for portfolio selection under the market with memory and delayed re-
sponses Øksendal et al. (2011). See also Kolmanovskiı & Shaıkhet (1996) for modelling systems
with after-effect in mechanics, engineering, biology, and medicine.

Despite recent theoretical advances in simplified settings, non-Markovian stochastic control prob-
lems in continuous-time are often not analytically tractable, a fact that undeniably motivates the
need for developing efficient numerical schemes to solve them. Additionally, such methods could
provide a fruitful basis for (non-Markovian) reinforcement learning in continuous time, studied in
the Markovian case recently by Jia & Zhou (2021); Wang et al. (2020).

Contributions Using the modern tool set offered by neural rough differential equations (Neural
RDEs) Morrill et al. (2021) — a continuous-time analogue to recurrent neural networks (RNNs) —
we propose a novel framework which, to the best of our knowledge, is the first numerical approach
allowing to solve non-Markovian stochastic control problems in continuous-time. More precisely,
we parameterise the control process as the solution of a Neural RDE driven by the state process, and
show that the control-state joint dynamics are governed by an uncontrolled RDE with vector fields
parameterised by neural networks. We demonstrate how this formulation allows for trajectories sam-
pling, Monte-Carlo estimation of the reward functional and backpropagation. To deal with sample
paths of infinite 1-variation, which is necessary in stochastic control, we also extend the universal
approximation result in Kidger et al. (2020) to a probabilistic density result for Neural RDEs driven
by random rough paths. The interpretation is that we are able to approximate continuous feed-back
controls arbitrarily well in probability. Through various experiments, we demonstrate how the pro-
posed framework is time-resolution-invariant and capable of learning optimal solutions with higher
accuracy than traditional RNN-based approaches. Finally, we discuss possible extensions to the
setting of non-Markovian reinforcement learning (RL) in continuous-time and provide promising
empirical evidence in this direction.

The rest of the paper is organised as follows: in Sec. 2 we discuss some related work, in Sec. 3
we present our numerical scheme and the universality result, in Sec. 4 we study the extension to
non-Markovian RL in continuous-time, and in Sec. 5 we present our numerical results.

2 RELATED WORK

Over the last decade, a large volume of research has been conducted to solve Markovian stochastic
control problems numerically using neural networks, either by directly parameterising the control
and then sampling from the state process, such as done by Han et al. (2016), or by solving the PDEs
or BSDEs associated with the problem; see Germain et al. (2021) for a recent survey about neural
networks-based algorithms for stochastic control and PDEs. We also mention two examples from
the growing literature. The Deep BSDE model from Han et al. (2017), where the authors propose
an algorithm to solve parabolic PDEs and BSDEs in high dimension and think of the gradient of
the solution as the policy function, approximated with a neural network. The Deep Galerkin model
Sirignano & Spiliopoulos (2018) is a mesh-free algorithm to solve PDEs associated with the value
function of control problems; the authors approximate the solution with a deep neural network which
is trained to satisfy the PDE differential operator, initial condition, and boundary conditions.

Recently, signatures methods Lyons (2014); Kidger et al. (2019) have been employed for solv-
ing both Markovian and non-Markovian control problems in simplified settings Kalsi et al. (2020);
Cartea et al. (2022). This approach does not rely on a model underpinning the dynamics of the
unaffected processes and has shown excellent results when solving a number of algorithmic trading
problems. However, this method has two main drawbacks: (i) it suffers from the curse of dimension-
ality — this happens when one wishes to compute signatures of a high-dimensional (more than five)
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process to make online decisions, and (ii) it requires that the flow of information observed by the
controller is unaffected by the control and everything else the controller observes can be explicitly
constructed from such information and the policy. We also point out the theoretical contribution by
Diehl et al. (2017) studying control problems where the driving noise is a random rough path.

The approach of directly parameterising the control and training by sampling trajectories from the
system was recently studied in the setting of delay-type non-Markovian stochastic control by Han
& Hu (2021). Specifically, the control is taken to be a Long Short-Term Memory (LSTM) recurrent
neural network with the discrete simulated values of the state process as input, so as to capture the
path-dependence of the problem. The method is shown to outperform a baseline parameterisation
using a fully-connected feed-forward network taking as input a segment of the history of the sample
path, and demonstrated to have theoretical advantages in handling non-Markovian problems.

Neural RDEs, as popularised by Kidger et al. (2020); Morrill et al. (2021) provide an elegant way
of modelling temporal dynamics by parameterising the vector fields of some classes of differential
equations by neural networks. The input to such models is a multivariate time series interpolated into
a continuous path X . Depending on the level of (ir)regularity of X , the corresponding equation can
be solved in different ways. In (Kidger et al., 2020), X is assumed differentiable almost everywhere,
and the equation becomes an ordinary differential equation (ODE) that can be evaluated numerically
via a call to an ODE solver of choice. More generally, if X is of bounded variation, then the Neural
RDE can be solved using classical Riemann–Stieltjes or Young integration (Young, 1905).

Of particular interest in the field of stochastic control is the setting where the driving noise is Brow-
nian motion , and the resulting dynamical systems are typically referred to as stochastic differential
equations (SDEs). Because sample paths from Brownian motion are not of bounded variation, the
integral cannot be interpreted in the classical sense, but rather using the framework of stochastic
integration (Itô, Stratonovich, etc.). The corresponding ”neural” version of such models has been
the object of several studies Liu et al. (2019); Li et al. (2020); Kidger et al. (2021b;a), in particular in
the context of generative modelling for time series. Rough integration Lyons (1998) is arguably the
most general type of integration theory accommodating driving signals X of arbitrary roughness,
and in particular non-Markovian processes such as fractional Brownian motion. In this paper, we
position ourselves in this general setting. In the appendix, we provide a minimal summary of the
basic notions of this theory underpinning the content of this paper.

3 METHOD

3.1 STOCHASTIC CONTROL PROBLEMS WITH PATH-DEPENDENT COEFFICIENTS

Let us introduce the non-Markovian control problems over closed-loop controls. We fix d, da, dW ∈
N, a real number T > 0 and Cd := C([0, T ];Rd), the space of continuous paths from [0, T ] to Rd

endowed with the sup norm. Let (Ω,F ,P) be a probability space supporting a dW -dimensional
Brownian motion W = (Wt)t∈[0,T ], and F be the natural filtration of W augmented with the P-null
sets. Let H2(Rda) be the space of all square integrable F-progressively measurable processes, and
for each α ∈ H2(Rda), consider the following controlled state dynamics:

dXt = µ(t,X·∧t, αt)dt+ σ(t,X·∧t, αt)dWt, t ∈ [0, T ]; X0 = x0, (1)

where X·∧t = {Xs}s∈[0,t], (µ, σ) : [0, T ] × Cd × Rda −→ Rd × Rd×dW are non-anticipative
and sufficiently regular mappings so that equation (1) admits a unique solution X in H2(Rd).1 We
denote by A the set of admissible controls containing all α ∈ H2(Rda) that are adapted to the
filtration generated by X . Such controls are often referred to as closed-loop, or feedback, controls.

The agent’s goal is to minimise the following objective functional

J(x0, α) = E

[∫ T

0

f(t,X·∧t, αt)dt+ g(X·∧T )

]
(2)

over all closed-loop controls α ∈ A, where f : [0, T ] × Cd × Rda → R and g : Cd → R are given
measurable functions.

1This is the case if, for instance, Cd × A ∋ (x, a) 7−→ φ(t, x, a) has linear growth and is Lipschitz
continuous uniformly in t for φ = µ, σ, see Protter (2005).
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3.2 A MODEL-BASED APPROACH

Here, we are going to parameterise the control process α in equation (1) as the solution of a Neural
RDE driven by the state process X . Let ℓθ : Rda → Rdh , hθ : Rdh → Rdh×d, Aθ ∈ Rd×dh be
(Lipschitz) neural networks. Collectively, they are parameterised by θ. The dimension dh > 0 is a
hyperparameter describing the size of the hidden state.

We parameterise controls αθ ∈ A as solutions to Neural RDEs driven by X ,

Y0 = ℓθ(x0), dYt = hθ(Yt)dXt, αθ
t = AθYt. (3)

With this choice of parameterisation, the dynamics of the joint process (X,Y ) are governed by the
following uncontrolled RDE with structured vector fields

d

(
X
Y

)
t

= µ (t,X·∧t, AθYt)

(
1

hθ(Yt)

)
dt+ σ (t,X·∧t, AθYt)

(
Id 0
0 hθ(Yt)

)
d

(
W
W

)
t

(4)

Thus, the infinite dimensional minimisation over admissible controls of the reward functional J in
equation (2) can be replaced with the finite-dimensional minimisation over the parameters θ of the
following objective functional

J(x0, α
θ) = E

[∫ T

0

f(t,X·∧t, AθYt)dt+ g(X·∧T )

]
, (5)

Here, we perform this minimisation by first solving numerically the uncontrolled Neural RDE (4)
using a classical Euler-Maruyama scheme2; we then use the obtained sample trajectories to compute
a Monte-Carlo estimate of the objective functional in (5), where the integral is approximated using
classical quadrature; finally we compute gradients of the estimated objective functional with respect
to model parameters θ and optimise by (stochastic) gradient descent.

Contrary to the approach taken by Han & Hu (2021) using an LSTM-parameterisation of the control,
our formulation does not rely on any specific discretisation or choice of numerical method. A key
feature of Neural RDEs is their robustness to irregular sampling of the data, essentially due to oper-
ating continuously in time. The sampled data enters the model only through the construction of the
interpolated path, after which the RDE can be solved numerically on any desired grid using adaptive
schemes that changes the step size to appropriately resolve the variations in the path. Therefore, be-
cause our scheme can be formulated completely in continuous-time and independently of whichever
way one chooses to estimate J(α), it is naturally time-resolution invariant, so that even if trained on
a coarser resolution it can be directly evaluated on a finer resolution without retraining.

3.3 UNIVERSALITY

Unless σ ≡ 0 in equation (4), X will not be of bounded variation and its support is generally not
a compact set. Therefore, the universal approximation result for Neural RDEs given by (Kidger
et al., 2020, Theorem B.7.) does not apply. In the next theorem, formally stated and proved in the
Appendix (see Theorem A.1), we reformulate this universality result as a probabilistic density result
for Neural RDEs driven by random paths of arbitrary (ir)regularity (or rough paths).
Theorem 3.1 (Informal). The action of a linear map on the terminal value of a Neural RDE is a
universal approximator, in probability, from random rough paths to R.

The interpretation of this result in the present setting is that we are able to approximate any contin-
uous feed-back control arbitrarily well, in probability, using the proposed Neural RDE method.

3.4 EXTENSION TO CONTROL PROBLEMS WITH NON-MARKOVIAN NOISE

Up until now we have considered stochastic control problems where the non-Markovianity stems
from some path-dependence of the coefficients on the history of the system. Indeed, the heuristic
meaning of equation (1) is that the infinitesimal increment Xt+dt −Xt is normally distributed with

2For convergence guarantees of Euler-Maruyama schemes applied to SDEs with path-dependent vector
fields we refer the reader to Mao (2003). Other choices of solvers are possible.
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mean µ(t,X·∧t, αt)dt and variance σ(t, X·∧t, αt)
2dt, and independent of the past Ft: the solution

is not Markovian because knowing the value of Xt does not contain all the information necessary to
evaluate the path-dependent coefficients µ and σ, which are needed to compute mean and variance
of the increment. There is a second, very different way in which the process X can fail to satisfy
the Markov property: consider equation (1) in the case in which W is a process with correlated
increments such as fractional Brownian motion WH . Now Markovianity does not hold because the
increment Xt+dt − Xt is not independent of the past, even if µ and σ are state-dependent: this
is because the noise increment dWH is correlated with its own history, even conditionally on the
present. However, the approach in Sec. 3.2 can be naturally extended to this setting, as the algorithm
directly parameterizes the feedback controls and hence is invariant up to different driving noises.

4 TOWARDS NON-MARKOVIAN REINFORCEMENT LEARNING IN
CONTINUOUS-TIME

In this section we describe a heuristic extension of the framework developed in Sec. 3 to the setting
of non-Markovian RL in continuous-time. In what follows, we will assume that the state dynamics
of equation (1) are not known to the user, but instead we will assume that the user has the ability
to interact with a random environment and generate a collection of state-action trajectories to learn
from. We begin by reminding the classical Markovian RL setup in discrete-time.

Markovian RL in discrete-time In RL, it is typical to consider a Markov Decision Process
(MDP) where for any two states x, x′ ∈ Rd and action a ∈ Rdα , the quantity P(x′|a, x) denotes
the probability that the system transitions from state x to x′ given action a. The agent’s actions are
represented by a parametric (deterministic) policy pθ : Rd → Rdα that, upon interaction with the
Markov environment, generates a collection of state-action discrete sequences{

xi
t0 , ..., x

i
tn

ait0 , ..., a
i
tn

}N

i=1

such that

{
xi
tk+1
∼ P(x′|x = xi

tk
, a = aitk)

aitk = pθ(x
i
tk
)

Finally, the agent aims at maximising an expected final reward E [
∑n

k=0 R(xtk , pθ(xtk))]. In deep
RL, pθ is commonly parameterised by a neural network and the optimisation is carried out by
(stochastic) gradient descent. The gradient∇θJ(πθt) is usually not directly computable, and policy
gradients methods allow to approximate it (PPO, TRPO etc.) Schulman et al. (2015; 2017).
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Figure 1: The first and second plot from the left illustrate the dynamics of the first two channels
of the true process X (in blue) and of the learnt process Xϕ (in red). The third plot from the left
indicates the convergence of the signature MMD to a value close to 0 during the first part of the
two-step optimisation described in this section, indicating that the learnt dynamics of the process
Xϕ are, statistically speaking, close to the dynamics of the true process X as per equation (8). The
last plot on the right shows the convergence of the estimate of the value function J(αθ) obtained by
subsequently training the parameters θ of the control process αθ in equation (7).

Non-Markovian RL in continuous-time In a non-Markovian, continuous-time setting, we as-
sume that the dynamics for the state variable X are governed by an unknown controlled diffusion

5



Under review as a conference paper at ICLR 2023

process with path-dependent vector fields 3. The (deterministic) policy is now a function of the form
C([0, T ],Rd) → Rdα , taking as input a continuous trajectory of states, and producing as output a
configuration of actions. Thanks to the results established in Sec. 3 we know that Neural RDEs
form a dense class of approximators for functions on rough paths, thus it is natural to parameterise
the policy as a Neural RDE. Upon interaction with the non-Markovian environment, we obtain a
collection of state-action continuous sample trajectories{

Xi : [0, T ]→ Rd

αi : [0, T ]→ Rdα

}N

i=1

s.t.

{
Xi ∼ dXt = µ(t,X·∧t, αt)dt+ σ(t,X·∧t, αt)dWt

αi ∼ AθYt, Y0 = ℓθ(X0), Yt = Y0 +
∫ t

0
hθ(Ys)dXs

(6)

As in the stochastic control setting of Section 3, the agent aims at maximising and expected final
reward J(αθ) as given in equation (5). This time however, because the controlled dynamics of X
are unknown, it is not possible to directly compute gradients of J(αθ) with respect to θ and optimise
the reward functional J by backpropagation.

To overcome this issue, we parameterise the unknown drift µ and diffusion σ in equation (6) by
neural networks µϕ and σϕ and train a second Neural RDE as a generative model in order to learn
the unknown dynamics of the random environment. In this way, equation (4) becomes

d

(
X
Y

)
t

= µϕ (t,X·∧t, AθYt)

(
1

hθ(Yt)

)
dt+ σϕ (t,X·∧t, AθYt)

(
Id 0
0 hθ(Yt)

)
d

(
W
W

)
t

(7)

As it can be observed, this approach introduces a second collection of parameters ϕ that needs to be
optimised in such a way that the dynamics of X are statistically indistinguishable from the observed
dynamics of the environment. Similarly to the setting of generative models, this statics-matching
procedure can be achieved through the action of a discriminator, i.e. a carefully chosen set of
statistics that seeks to match the distribution of trajectories sampled from model to the distribution
of trajectories sampled from the environment. An optimally-trained model is one for which

EXϕ∼model[F (Xϕ)] = EX∼environment[F (X)] ⇐⇒ Xϕ = X (8)

for a well-chosen class of statistics F (or ‘witness functions’ in the language of integral probability
metrics Müller (1997)). As shown in Salvi et al. (2021b), if F is chosen to be the signature (see Ap-
pendix for a definition), then the difference of the two expected signatures in equation (8) precisely
defines the signature maximum mean discrepancy (MMD)

LS(X
ϕ) :=

∥∥EXϕ∼model[S(X
ϕ)]− EX∼environment[S(X)]

∥∥
where the norm is the L2 norm over the ambient space of signatures, known as the tensor algebra
(see Appendix). Consequently, we achieve the desired property through the signature MMD

LS(X
ϕ) = 0 ⇐⇒ Xϕ = X

Minimising LS over ϕ is equivalent to training a moment matching network on pathspace. The
signature MMD LS can be computed efficiently by means of the signature kernel studied in Salvi
et al. (2021a). Other choices of metrics are possible, for example using the Wasserstein distance on
pathspace, as done in Kidger et al. (2021b).

With this choice of discriminator, we follow the following two-step optimisation procedure:

1. Firstly, we solve minϕ LS(X
ϕ) for a randomly initialised Neural RDE αθ;

2. Secondly, we solve minθ J(α
θ), where the objective functional J , and its derivatives with

respect to θ, are computed using the minimiser X∗ of 1.

To demonstrate the effectiveness of this approach, we consider some ”black-box dynamics” de-
scribed by equation (9) from Sec. 5.1, and assume we are able to sample (X,α)-trajectories from
such black-box system. The encouraging results regarding the fitting of the parameters ϕ and θ in
equation (7) using the two-step optimisation described in this section are presented in Figure 1.

3This setup encompasses a broad class of stochastic processes which we assume are general enough to
model many real-world phenomena.
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5 EXPERIMENTS

We present a number of numerical experiments demonstrating the capabilities of our method to com-
pute approximate solutions of non-Markovian stochastic control problems in continuous-time. We
benchmark the performance of our approach against a selection of alternative RNN-based models
parameterising the feed-back control Han & Hu (2021). This choice of benchmarks is motivated
mainly by the fact that this class of models, due to the connection between neural RDEs and RNNs,
are the closest currently available alternatives to our method. The three alternative architectures we
consider are: 1) RNN, 2) Long Short-Term Memory (LSTM), and 3) a Gated Recurrent Unit (GRU).

One key feature of the proposed model that we wish to study empirically is the time-resolution
invariance discussed at the end of Sec. 3.2. Concretely, to test their robustness to changes in time-
resolution, we train all models on a coarser time grid and then we evaluate them on a finer grid.
Such a property is desirable both from the perspective of efficient training under computational
budget constraints, and as an indication that the model is in fact learning a solution to the actual
continuous-time problem. Lastly, a learned control that is heavily dependent on the grid that it was
trained on may not be suitable for practical use; in such a case, this invariance property is critical.

Another performance criterion we will be using is the pathwise L2 error between the state trajecto-
ries obtained using the NCDE control strategy and the ones obtained using the theoretical optimal
control. The lower this error, the closer the trajectories sampled from the learnt state process to the
trajectories of the theoretical state process.

All models are trained by sampling batches of trajectories from the state process under the parametric
control, of the form given by equation (4), and then performing direct backpropagation using an
Adam optimiser (Kingma & Ba, 2014) to minimise the Monte-Carlo estimate of the value of the
reward functional J(αθ) in equation (5). For each experiment, the grid on which the system is
simulated and the number of sample trajectories used to train and evaluate all models are kept the
same. For a fair comparison, the hyperparameters of each model are adjusted such that the models
all have an approximately equal number of trainable parameters. All experiments are implemented
using version 1.11.0 of PyTorch and run on an NVIDIA Tesla K80 GPU. Additional experimental
details can be found in the appendix.

5.1 STOCHASTIC CONTROL PROBLEM WITH DELAY

We consider first the example of a linear-quadratic problem with delay, also used by Han & Hu
(2021). These problems are widely used to address real-world challenges. An example from the
mathematical finance community is the control of intraday fill ratios when volatility is stochastic;
see Cartea & Sánchez-Betancourt (2021). In their paper, the control affects the state dynamics
linearly and the performance criterion is composed of a square running penalty on the control and
a square running penalty on one of the entries of the state process. A detailed discussion of this
problem and how an explicit solution may be obtained is given by Bauer & Rieder (2005).

With notation as before, the dynamics of the state process X under a control α are given by
dXt = (A1Xt +A2Yt +A3Xt−δ +Bαt)dt+ σdWt, t ∈ [0, T ] (9)

with Xt = ϕ for t ∈ [−δ, 0], δ > 0 a delay parameter, the distributed delay satisfying

Yt :=

∫ 0

−δ

eλξh(Xt+ξ)dξ, t ∈ [0, T ]

and the goal functional that we seek to minimise

J(α) = E
[ ∫ T

0

(
Z⊤
t QZt + α⊤

t Rαt

)
dt+ Z⊤

T GZT

]
, Zt := (Xt + eλδA3Yt), t ∈ [0, T ].

The parameters A1, A2, A3 ∈ Rd×d, B ∈ Rd×dα , σ ∈ Rd×dW , Q,G ∈ Rd×d,R ∈ Rd×d,λ, δ
and T are all taken to be the same values as those used by Han & Hu (2021). In particular, the
problem is considered in 10 dimensions in state, noise and control, Q,R,G are proportional to
identity matrices, the elements of A1, A3, B and σ are selected randomly and A2 is determined by
a condition guaranteeing an explicit solution. We refer to Han & Hu (2021) for further details. The
constant initial condition ϕ is taken to be zero. The explicit value function and optimal control are
obtained in terms of the solution to an associated Riccati equation, which can be solved numerically.
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Table 1: Linear-quadratic problem with delay. Final estimate
of the goal functional on the evaluation grid. Lower indicates
smaller error. Analytical value: 2.231. Training resolution is given
as a percentage of the evaluation resolution of 80 time steps.

Training Resolution
Model 100% 50% 25% 12.5%

RNN 2.493 5.162 8.870 7.600
LSTM 2.357 7.323 5.888 6.863
GRU 2.356 2.830 7.311 18.70

Neural RDE (ours) 2.358 2.457 2.509 2.803

The results for this experiment
are shown in table 1. We see
that, trained at full resolution,
the LSTM, GRU and Neural
RDE models all perform ap-
proximately as well. However,
when the training grid is made
coarser, the Neural RDE model
remains relatively stable with
only slight increases in error,
dramatically outperforming the
benchmark models whose per-
formance rapidly deteriorates.

5.2 STOCHASTIC CONTROL PROBLEM DRIVEN BY FRACTIONAL BROWNIAN MOTION

Next, we demonstrate the application of the proposed method to a problem with non-Markovianity
stemming from correlated noise increments by considering a linear-quadratic problem driven by
fractional Brownian motion. The dynamics for the state X are given by

dXt = (AXt + Cαt)dt+ σdWH
t , t ∈ [0, T ], X0 = 0 (10)

where A ∈ Rd×d, C ∈ Rd×da , σ ∈ Rd×dW are parameters and WH is a dW -dimensional fractional
Brownian motion with components with Hurst parameters H ∈ (0, 1) (assumed the same across all
dW channels). We choose the Hurst parameter H = 0.3, so as to highlight the applicability of the
method also in the case where solution paths are rougher than Brownian motion (H = 0.5).

The quadratic cost functional is as follows

J(α) =
1

2
E

[∫ T

0

(
X⊤

s QXs + α⊤
s Rαs

)
ds+X⊤

T GXT

]
, (11)

where Q,R,G are symmetric and positive definite. We consider the problem specifically in two
dimensions in both state and control and take T = 1, σ = I ,

A =
1

10

(
12 2
2 12

)
, C =

1

10

(
15 −3
−3 15

)
, Q = R = G =

1

10
I.

Table 2: Linear-quadratic problem driven by fractional Brow-
nian motion. Final estimate of the goal functional on the evalua-
tion grid. Lower indicates smaller error. Training resolution is
given as a percentage of the evaluation resolution of 40 time steps.

Training Resolution
Model 100% 50% 25% 12.5%

RNN 0.923 0.911 1.246 2.785
LSTM 0.873 0.961 1.779 3.422
GRU 0.891 0.925 1.236 2.791

Neural RDE (ours) 0.896 0.902 0.927 1.104

Table 2 shows the results for this
experiment. We observe compara-
ble performance between the LSTM,
GRU and Neural RDE models at full
training resolution, but with the Neu-
ral RDE significantly outperforming
the other models when training res-
olution is decreased. At 12.5% of
evaluation resolution, the models are
trained on simulations using just five
time steps; nevertheless, the Neural
RDE appears to produce reasonable
results with an error compared to the

full resolution case more than one order of magnitude smaller than for the other models.

5.3 PORTFOLIO OPTIMISATION PROBLEM WITH COMPLETE MEMORY

We consider a portfolio optimisation problem with complete memory also studied in Han & Hu
(2021). A detailed analysis of this problem including derivations of explicit solutions under ex-
ponential, power and log utilities is given in Pang & Hussain (2017). Here, the state process Xt

represents the wealth of an investor and the αt = (α1
t , α

2
t ) is a 2-dimensional control process, where

8
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α1
t is the amount of investment and α2

t is the consumption of the underlying asset, i.e. the fraction
of wealth consumed at time t. The dynamics are given, for t ∈ [0, T ], by

dXt = (((µ1 − r)α1
t − α2

t + r)Xt + µ2Yt)dt+ σα1
tXtdWt, Yt :=

∫ 0

−∞
eλξXt+ξdξ, (12)

with X0 = ϕ(0), Y0 =
∫ 0

−∞ eλξϕ(t + ξ)dξ, for some square integrable function ϕ. The goal
functional that we seem to maximise is as follows

J(α) = E
[ ∫ T

0

e−βtU1(α
2
tXt)dt+ e−βTU2(XT ,YT )

]
,

where U1(x) = log(x), U2(x, y) =
1
β log(x+ ηy), η = 1

2 (
√

(r + λ2) + 4µ2 − (r + λ)). As in the
previous example all the parameters are taken to be the same as in Han & Hu (2021).

Table 3: Portfolio optimisation with complete memory. Rela-
tive difference between the estimated and the theoretical goal func-
tionals as well as relative pathwise L2 error between the true and
estimated process trajectories. Lower indicates smaller error.

Relative errors (×10−3)
Model Goal functional Pathwise L2

RNN 0.262 0.555
LSTM 1.034 2.929
GRU 0.541 1.116

Neural RDE (ours) 0.238 0.043

The results for this experiment are
shown in table 3, where we report
the relative difference between the
estimated and the theoretical goal
functionals as well as relative path-
wise L2 error between the true and
estimated process trajectories. We
can see that the Neural RDE model
slightly outperforms all alternative
models on the relative difference of
goal functionals and outperforms the
second best model by one order of
magnitude on the pathwise L2 error.

6 CONCLUSION

We proposed a framework for solving non-Markovian stochastic control problems continuous-time
leveraging Neural RDEs. The main idea consists in parameterising the control process as the solu-
tion of a Neural RDE driven by the state process, so that the control-state joint dynamics are gov-
erned by an uncontrolled RDE with vector fields parameterised by neural networks. To deal with
input paths of infinite 1-variation, we prove Theorem 3.1 which extends the universal approxima-
tion result in Kidger et al. (2020) to Neural RDEs driven by random rough paths. We showcased the
time-resolution-invariance of our approach on various non-Markovian problems, achieving better
performance than traditional RNN-based approaches. Finally, we discussed possible extensions of
this framework to the setting of non-Markovian continuous-time reinforcement learning and provide
promising empirical evidence in this direction.

6.1 LIMITATIONS AND FUTURE WORK

Path-dependent PDEs-BSDEs As highlighted in the introduction, stochastic control problems
are intimately linked with PDEs and BSDEs. The path-dependent case is still an active area of
research, both from the theoretical and numerical standpoints. We find that extending methods
such as Han et al. (2017) and Sirignano & Spiliopoulos (2018) to the case of path-dependent or
fractionally driven control problems could be an interesting future research direction.

Exploration-exploitation trade-off An analysis of exploration-exploration trade-off is an impor-
tant component of many RL algorithms. In our setting we opted for a simple explore-then-commit
strategy, where exploration is carried out in full first during training (no exploitation), and exploita-
tion is performed only during evaluation. Rigorously analysing the exploration-exploitation trade-
off requires quantifying the finite-sample accuracy of the estimated Neural SDE, and the sensitivity
of the neural CDE policy with respect to the underlying model (Szpruch et al., 2021). Both com-
plements are technically involved in the present non-Markovian setting. Nonetheless, as mentioned
in the abstract and introduction, the RL component of our paper (model-free approach) constitutes
what we believe being a promising extension of the model-based framework that we hope will be
leveraged and fully analysed by the RL community in the near future.

9
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A APPENDIX

A.1 BACKGROUND ON ROUGH PATH THEORY

The purpose of this appendix is to give an informal and concise introduction to rough paths, their
signatures, and their applications to machine learning.

For the abstract theory of rough paths we refer to Friz & Victoir (2010); Friz & Hairer (2020). An
α-Hölder rough path X consists of an α-Hölder continuous path X : [0, T ] → Rd (the trace of
X) together with a collection of higher-order functions defined on the simplex ∆[0, T ] := {(s, t) ∈
[0, T ]2 | 0 ≤ s ≤ t ≤ T}which represent, in a precise algebraic and analytic sense, iterated integrals
of X against itself. When X is smooth or of bounded variation, such integrals can be defined
canonically in the usual Stieltjes sense, and similarly when X is 1/2 < α-Hölder continuous they
can be defined canonically via Young integration. However, when α ≤ 1/2 there is no canonical
way of defining them, and if X is a stochastic process, X is often defined through some notion of
stochastic integration such as Itô or Stratonovich. X takes values in T ⌊1/α⌋(Rd), where TN (Rd) :=⊕N

n=0(Rd)⊗n denotes the tensor algebra over Rd truncated at level N and ⌊·⌋ is the floor function:
this means, the rougher X is, the more terms X must contain. Once such terms are defined, the
signature S(X) of X is canonically defined through well-known notions of path integration. S(X)
is a map ∆[0, T ] → T ((Rd)) (the algebra of formal series of tensors), and when α > 1/2 it is
canonically defined by Young integration as

S(X)
(n)
st :=

∫
s<u1<...<un<t

dXu1
⊗ · · · ⊗ dXun

where the superscript (n) denotes projection onto (Rd)⊗n. When α ≤ 1/2 the whole of X , not
just the trace X , is needed to define S(X), and S(X)(n) = X(n) for n ≤ ⌊1/α⌋. We will denote
C α([0, T ],Rd) the metrisable topological space of α-Hölder rough paths taking values in Rd with
time horizon T : this is what Friz & Victoir (2010) call Cα-Höl([0, T ], G⌊1/α⌋(Rd)); in Friz & Hairer
(2020) (which only treats the case of α > 1/3, nevertheless sufficient for Brownian motion, which is
α-Hölder regular for any α < 1/2) this space is denoted C α

g ([0, T ],Rd), the superscript g standing
for “geometric”. Geometric rough paths are those which satisfy integration by parts relations, and
are the only ones considered here; for example, Itô and Stratonovich integration both define rough
paths above Brownian motion, but only the latter is geometric. This is not an issue when considering
Itô SDEs, however, which can canonically be rewritten in Stratonovich form. The main example of
rough path that we will consider is the Stratonovich Brownian rough path augmented with time:
if W is a d-dimensional Brownian motion, we take α to be any real number in (1/3, 1/2) and for
i, j = 1, . . . d we let W ij

st :=
∫
s<u<v<t

◦dW i
u ◦dW j

v , where ◦dW denotes Stratonovich integration.
Time will take the zero-th coordinate, which means that when i or j above is 0, the integral is defined
through standard Young/Stieltjes integration.

The main purpose of rough path theory is to give meaning to rough differential equations (RDEs)
dY = V (Y )dX which, in addition to having usual existence and uniqueness theorems, have the
property that the solution map X 7→ Y is continuous. This is not the case when considering SDEs:
the map sending the Brownian sample path to the corresponding path of the solution, though well-
defined and measurable, is not continuous. An important RDE is the one satisfied by the signature
itself on T ((Rd)): given a rough path X it holds that

dS(X)0t = S(X)0t ⊗ dXt (13)

The study of signatures is somewhat independent from that of rough paths, and is interesting even
in the case of smooth or bounded variation paths (in which case X = X). The main property of
interest of the signature, established in Hambly & Lyons (2010) (and extended to the full rough
path case in Boedihardjo et al. (2016)), is that, for paths of bounded variation, the series of tensors
S(X)0T determines the path X up to treelike equivalence. Roughly speaking, the latter means that
if two paths X , Y are such that X ⋆

←−
Y — with ⋆ denoting path concatenation and

←−
denoting path

inversion — is a path that retraces itself and returns to the starting point, then the signature will not
distinguish them: S(X)0T = S(Y )0T . We will write X ∼ Y for treelike equivalence (and similarly
X ∼ Y in the generalised rough path sense of Boedihardjo et al. (2016)), and note that this includes
(but is not limited to) the case in which Y is a reparameterisation of X . “Generic” paths Rd valued
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paths can be expected not to be tree-like (i.e. not to retrace themselves) when d > 1; for example, in
Le Jan & Qian (2013) it was shown that Brownian rough paths in dimension 2 or greater a.s. do not
contain tree-like pieces.

The result of Hambly & Lyons (2010) is a powerful statement that makes it possible to understand a
path X : [0, T ] → Rd in terms of the series of tensors S(X)0T . What’s more, the signature has the
property of “linearising” all functions on paths: any non-linear function of X can be approximately
expressed as a linear functional on S(X). A precise version of this statement in the random rough
path case is proved in A.1 below. A fundamental ingredient for proving this type of result is the
Stone-Weierstrass theorem: given a compact Hausdorff topological space K and a subalgebra A of
C(K,R) which contains a non-zero constant function and separates points (this means that for any
two distinct x, y ∈ K there exists a ∈ A s.t. a(x) ̸= a(y)), it holds that A is dense in C(K,R).
The prototypical application of this theorem is the proof of density of polynomials in C([a, b],R).
An important property that makes it possible to apply it to signatures is that linear functions on the
signature, just like polynomials, form an algebra: if ℓ1, ℓ2 : T ((Rd))→ R are linear maps then

⟨ℓ1, S(X)0T ⟩⟨ℓ1, S(X)0T ⟩ = ⟨ℓ1 � ℓ2, S(X)0T ⟩
where� is the combinatorial operation of shuffling. This relation can be understood as a generalised
integration by parts relation, as can be seen by taking ℓ1 and ℓ2 to be evaluations against elementary
tensors: in this case (and X of bounded variation) the above identity reads(∫

s<u1<...<un<t

dXi1
u1
· · · dXim

um

)(∫
s<v1<...<vn<t

dXj1
v1 · · · dX

jn
vn

)
=

∑
k∈Sh(i,j)

∫
s<r1<...<rn+m<t

dXk1
r1 · · · dX

km+n
rm+n

where we are summing over all multiindices k obtained by shuffling the multiindices (i1, . . . , im)
and (j1, . . . , jm). For these reasons, signatures have been extensively used for in the context of
machine learning for time series, see e.g. Chevyrev & Kormilitzin (2016); Fermanian (2021b).

A.2 PROOF OF 3.1

We will now prove a density result for linear functionals on the signature in a precise probabilistic
sense; this is what provides motivation for considering neural SDEs as universal approximators.
Let α ∈ (0, 1] and X : Ω × [0, T ] → T ⌊1/α⌋(R1+d) be a stochastic α-Hölder rough path with
the property that the zero-th component of its trace is the time coordinate, X0

t = t, and whose
higher components that involve the zero-th are defined canonically through Stieltjes integration.
The following is the probabilistic analogue of a well-known property of the deterministic signature
(see, for instance Fermanian (2021a)); it is not to be confused with the universality property of the
expected signature (Lemercier et al., 2021, Theorem 3.2) with respect to functions of distributions
on paths.
Theorem A.1. Let β < α and F : C β([0, T ],R1+d) → R be a continuous map. Then for each
ε, δ > 0 there exists a truncation level N and a linear map ℓ ∈ TN (R1+d)∗ such that

P
[
|F (X)− ⟨ℓ, SN (X)0T ⟩| ≥ ε

]
< δ (14)

Proof. Let Dα
r be the closed disk centred at the 0 rough path, of radius r > 0 in C α([0, T ],R1+d).

Since X is α-Hölder continuous in the rough path sense

lim
r→∞

P[X ∈ Dα
r ] = P

[ ⋃
r>0

X−1(Dα
r )
]
= P

[
X−1(

⋃
r>0

Dα
r )
]
= P[X ∈ C α([0, T ],R1+d)] = 1

and thus given δ as in the statement there exists r s.t. P[X ∈ Dα
r ] > 1−δ. By (Friz & Victoir, 2010,

Proposition 8.17 (ii)), for any β < α, Dα
r is sequentially compact in C β([0, T ],R1+d), and thus

compact since this is a metric space. Let D̃α
r be the intersection of Dα

r with the aforementioned set
of rough paths in C α([0, T ],R1+d) whose zero-th coordinate is time t; this is a closed set and thus
D̃α

r is still compact. Thanks to the inclusion of the time coordinate, linear functions on the signature
separate points in D̃α

r , and by the Stone-Weierstrass theorem applied to F |D̃α
r

there exist N and ℓ

as in the statement s.t. |F (X(ω)) − ⟨ℓ, SN (X(ω))0T ⟩| < ε for ω ∈ Ω s.t. X(ω) ∈ Dα
r , and the

conclusion now follows.
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The choice for F that we have in mind is the solution map of an SDE, or equivalently of an RDE
driven by the enhanced Brownian rough path. The reason for the lowering of the Hölder exponent
from α to β lies in the cited compactness result, but does not affect the validity of applying the
theorem with this choice of F .
Remark A.2 (Universal approximations of neural RDEs in probability). It follows immediately from
the theorem above, the fact that the signature of a stochastic process satisfies a linear SDE, and the
fact that solutions of SDEs are continuous images of functions on the driving rough path, that neural
SDEs parametrised by feedforward neural nets with linear activations are dense in probability (in
the same probabilistic sense of equation (14)) among all continuous functions on rough paths. In
practice, one can expect superior performance (e.g. lower dimensions involved) when using non-
linear activations, even though this is not needed for the theoretical result. This is because the
non-linearity is already contained in operation of solving the SDE.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

In this final section of the appendix we present additional experimental details.

Stochastic control problem with delay (sec. 5.1) Trajectories of equation (9) are simulated using
an Euler-Maruyama-type scheme on a uniform grid. All models are trained over 300 batches of
256 sample trajectories simulated on grid with 80, 40, 20 and 10 time steps. The final evaluation
estimates of the goal functional are computed using 4096 sample trajectories simulated on a grid
with 80 time steps. The dimension of the hidden states in the baseline models are: 400 for the
RNN, 200 for the LSTM and 230 for the GRU. The latent dimension of the Neural RDE model is
200 and the vector field and initial lift are parameterised by fully connected feed-forward neural
networks with two hidden layers of width 64. We take activations given by elementwise application
of the SiLU function x 7→ x

1+e−x and apply a final tanh non-linearity to the outputs to prevent
unreasonably large values and initial losses.

Stochastic control problem driven by fractional Brownian motion (sec. 5.2) Trajectories are
simulated using an Euler-Maruyama scheme with increments of fractional Brownian motion sam-
pled using the Python package fbm (Flynn). We use uniform grids with 40 time steps for evaluation
and 40, 20, 10 and 5 steps for training. All models are trained over 300 batches of 256 sample
trajectories. The final evaluation estimates of the value of the goal functional are computed using
4096 sample trajectories. The dimension of the hidden states in the baseline models are: 250 for the
RNN, 130 for the LSTM and 150 for the GRU. The latent dimension of the Neural RDE model is
200 and the vector field and initial lift are parameterised by feed-forward neural networks with two
hidden layers of width 64 respectively.

Portfolio optimisation problem with complete memory (sec. 5.3) We simulate trajectories of
equation (12) using an Euler-Maruyama-type scheme on a uniform grid of 200 time steps. All mod-
els are trained over 500 batches of 256 sample trajectories (similarly for evaluation). The dimension
of the hidden states in the baseline models are: 600 for the RNN, 300 for the LSTM and 300 for the
GRU. The latent dimension of the Neural RDE model is 350 and the vector field and initial lift are
parameterised by feed-forward neural networks with two hidden layers of width 128.
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