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ABSTRACT

Diffusion Transformers (DiTs) are emerging as a powerful class of generative
models for high-fidelity image and video generation, powering highly diverse
applications where requests vary in image resolution, video length, and number
of denoising steps. Current serving infrastructures largely optimize each request
in isolation, missing key opportunities to multiplex GPU compute across requests.
Our analysis uncovers two fundamental inefficiencies: spatial underutilization,
where GPUs waste compute and memory by padding heterogeneous requests to a
common resolution and duration; and temporal underutilization, where batching
jobs with varying denoising steps forces GPU cores to idle as shorter requests
wait for the longest-running request to finish. We introduce DiT-Serve, an efficient
serving engine for image and video models. First, we propose step-level batching,
which the scheduler preempts and swaps requests every denoising step, eliminating
temporal bubbles. The second innovation is a new attention algorithm, Brick
Attention, that binpacks requests of different context lengths onto a set of GPUs,
significant reducing padding overhead. Our evaluation over three state-of-the-art
models show that DiT-Serve achieves on average 2-3× higher throughput and 3-4×
lower latency compared to prior systems.

1 INTRODUCTION

Beyond large language models (LLMs)
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Figure 1: Serving Diffusion Transformers. Users submit
requests that vary in resolution, time, and the number of de-
noising steps. Such requests are encoded as long sequences
of visual patches/tokens. Finally, DiT-Serve batches user re-
quests and schedules their execution over many GPUs.

for text domains, diffusion transformers
(DiTs) (14) have emerged as powerful,
deep generative models for content cre-
ation, including high resolution image,
video, and 3D model generation (30; 46;
7; 25; 3). DiTs blend 3D Transformer at-
tention—which captures long-range spa-
tial relationships in images and temporal
dependencies across video frames—with
a diffusion-based denoising process that
iteratively turns random noise into in-
creasingly detailed, high-fidelity outputs.
As such, diffusion-based models power
a wide array of applications—from auto-
mated marketing (15) and cinematic edit-
ing (35; 6; 28; 31) to social-media con-
tent creation (27; 51), personalized enter-
tainment, and high-fidelity restoration and
upscaling (13; 2; 50)—transforming how

videos are produced, enhanced, and consumed cost-effectively at scale (12; 21). Moreover, such
diversity in applications yields highly heterogeneous workloads, with users’ requests varying widely
in both image resolution, denoising steps, and video duration.

However, serving DiTs at scale remains both technically challenging and cost-prohibitive: the
quadratic complexity of self-attention from transformers means that generating a single high-
resolution video often takes minutes (20). Innovations like FastVideo (45; 9) and Pyramid At-
tention (47) mitigate this by caching and reusing attention states across frames, and hardware-aware
kernels, such as FlashAttention 3 (36), further accelerate attention computation. Yet, existing work
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Figure 2: Inefficiences stemming from suboptimal batching. (a) Temporal Underutilization: Batching
requests with different decode steps under-utilizes GPUs over time. (b) Spatial Underutilization: Due to
limitations of existing sequence-parallel algroithm, batching requests of different resolutions and durations leads
to excessive padding and hence under-utilization across GPUs.

optimize individual requests in isolation. Critically, few existing diffusion-based serving systems (11)
exploit optimization across concurrent video requests to better multiplex GPU compute—a strategy
that existing LLM serving frameworks (e.g., vLLM (17), SGLang (48)) leverage via continuous
batching, paged attention, prefix caching, and priority-aware scheduling to boost throughput for
model providers and reduce latency for users.

Figure 1 illustrates a common end-to-end deployment for serving DiTs. First, each user request is
defined by three parameters: (i) spatial resolution—ranging from 240p to full HD (1080p), (ii) the
number of denoising steps, or model feed-forwards, required for the desired fidelity, and (iii) video
duration (2–60 s) ①. Together, these dimensions determine the total number of visual patches to be
encoded for the transformer—which grows quadratically with resolution and linearly with frame
count ②. DiT-Serve’s central scheduler then tracks all active requests and dynamically schedules
them onto data-parallel (DP) replicas of the diffusion transformer model ③. When an individual
request’s total patches exceeds the memory of a single replica (e.g. long, high-resolution videos),
DiT-Serve invokes sequence parallelism, which slices long-context patches across DP instances to
perform inference (23; 49).

Naturally, to efficiently serve video and image models, service providers must batch requests together
to fully utilize their GPUs. However, batching heterogeneous DiT requests exposes two key inefficien-
cies, across space and time, in Fig. 2. First, temporal underutilization occurs when videos that require
different numbers of denoising steps are batched together: GPUs processing the shorter requests finish
early and then sit idle until the longest request completes. In Fig. 2a, requests A, B, and C require 2,
6, and 4 denoising steps respectively; due to heterogeneous steps, GPUs handling A and C idle for
4 and 2 units of time while waiting on B. Second, spatial underutilization happens when requests
differ in resolutions or duration, resulting in patch sequences of varying lengths. Sequence-parallel
schemes, like Ring Attention (23), pad every sequence to the maximum length, wasting compute and
memory across GPUs. In Fig. 2b, A, B and C’s patch sequence spans 8, 4 and 2 GPUS respectively,
but all three are padded to 8 GPUs, leaving 50–75% of each batch’s capacity unused.

We introduce DiT-Serve, an end-to-end serving system for diffusion transformers that efficiently
batches heterogeneous video and image workloads to maximize GPU utilization. To eliminate
temporal underutilization, DiT-Serve employs step-level batching, which preempts requests at each
denoising step rather than running them to completion1. In Fig. 2a, shorter jobs (e.g., A and C) can
yield GPU slots to pending tasks (e.g., D and E) while longer jobs (e.g., B) continue running. To
mitigate spatial underutilization, we propose Brick Attention, which extends Ring Attention (23) by
binpacking requests of different lengths into multiple independent rings of varying sizes, so that each
request maps to its own ring. In Fig. 2b, Brick Attention would pack B and C onto separate rings
totaling 6 separate GPUs, freeing remaining capacity for additional requests. Finally, DiT-Serve’s
scheduler employs a Shortest-Job-First (SJF) style policy: it ranks requests by their estimated compute
and memory footprint—fewer denoising steps times patch sequence length—so that lightweight jobs
complete quickly rather than being blocked by larger, long-running videos. Together, these techniques
fully multiplex compute and memory across concurrent inferences, delivering cost-effective, high
throughput performance.

1Analogous to continuous batching for LLM serving.
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Figure 3: Diffusion Transformer (DiT) Architecture. Starting from a noisy latent tensor, an encoder extracts
a 3D grid of spatio-temporal patches and flattens them into a sequence of visual embeddings. These tokens are
concatenated with embeddings of the user’s text prompt—obtained via a text encoder—and passed through a
series of DiT encoder blocks that apply 3D self-attention across multiple denoising steps. Finally, a decoder
upsamples the transformer outputs to reconstruct the denoised video.

We implement a prototype of DiT-Serve as a FastAPI server atop a production-ready, PyTorch-
powered engine, and evaluate it on three state-of-the-art video diffusion models (Open-Sora (49),
Mochi (40), CogVideoX (43)) under realistic, heterogeneous workloads. Our results show that
DiT-Serve achieves up to 2-3× higher throughput and 3-4× lower latency compared to prior serving
systems.

In summary, the primary contributions of this paper are:
• DiT-Serve is the first to integrate video and image generation as a service across user applications.
• We propose step-level batching, which preempts requests at each denoising step, and a novel

sequence-parallel algorithm, Brick Attention, that binpacks requests of heterogeneous lengths.
• Our system is easily deployable, seamlessly integrates with FastAPI, supports many existing

models, and demonstrates significant throughput and latency gains.

2 BACKGROUND & RELATED WORK

To detail relevant context for DiT-Serve, we provide a brief overview of Diffusion Transformers,
state-of-the-art models, and existing serving systems.

2.1 DIFFUSION TRANSFORMERS

Diffusion Models. Diffusion models have emerged as a powerful class of generative models that
achieve state-of-the-art performance across image, video, and 3D model generation. They assume a
feedforward process that gradually applies Gaussian noise to real data x0 ∼ q(x):

q(xt | x0) = N
(
xt;
√
αt x0, (1− αt)I

)
,

where αt defines the standard deviation. Conversely, diffusion models are trained to learn the reverse
the diffusion process, where a neural network (θ) learns pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)), itera-
tively applying K denoising steps. Prior to diffusion transformers (DiTs), many models employed a
U-net architecture (33; 34; 10). Current state-of-the-art video and image models integrate transformer
encoder blocks (41), which applies full bidirectional, 3D attention across all patches (11; 49; 5; 29).

Figure 3 illustrates the general inference process for text-to-video diffusion models. Starting from
a randomly sampled 3D Gaussian noise, an encoder extract a 3D grid of spatial–temporal patches,
which is later flattened and concatenated with token embeddings produced by a text encoder. The
combined sequence is passed through a transformer model, typically a transformer encoder (41), over
K passes, defined as denoising steps. Finally, the latent embedding is fed through a decoder, which
upsamples and assembles the latent embedding back into a high-fidelity image or video.

2.2 VIDEO MODELS

Our engine supports three popular open-sourced diffusion transformers, which differ via their
encoding scheme and transformer computation.

Open-Sora (49). Open-Sora replaces the full 3D, patch attention with a two-stage Spatial-Temporal
Diffusion Transformer (STDiT). First, a 3D variational autoencoder (VAE) (16) compresses a latent
3D embedding by 8× over spatial resolution and 4× over time. Second, Open-Sora applies two
forms of attention: spatial attention, which attends over image resolution, and temporal attention,
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which attends over video frames. Decoupling space and time for attention dramatically reduces the
computation and memory requirement compared to full 3D attention.

Mochi (40). Mochi 1’s AsymmDiT applies a causally-structured VAE (16) to compress a latent 3D
embedding by 8× over spatial resolution and 6× over time For it’s attention computation, Asym-
mDiT concatenates the spatial–temporal patch embeddings and text token embeddings into a single
sequence and applies full bidirectional self-attention over the combined embeddings. Importantly, it
allocates more attention heads to the visual patch tokens than to the textual tokens, prioritizing image
information.

CogVideoX (43). CogVideoX 1.5 combines a 3D-causal VAE (8× spatial, 4× temporal) with
causal masking in the latent encoder, employs an Expert Transformer that concatenates T5 text
embeddings (32) and patch embeddings, and runs full 3D self-attention over the combined sequence.
Uniquely, it applies separate adaptive LayerNorm parameters for text and video embeddings.

2.3 SERVING SYSTEMS

Much of DiT-Serve’s innovations follow

Figure 4: DiT-Serve Architecture. Execution flow begins
with the FastAPI interface; each coroutine runs its own Diffu-
sion algorithm, submitting requests to the engine when needed,
which then distributes requests using the brick coordinator.

suite from popular LLM serving systems
(i.e. vLLM (17), SGLang (48)). Re-
cent innovations in LLM serving optimize
memory management, kernel optimiza-
tion, and scheduling (26; 39). To bet-
ter manage memory, existing solutions,
such as Orca and vLLM, integrate con-
tinuous batching and paging techniques to
reduce KV-cache fragmentation (44; 17),
introduce shared memory to cache pre-
fixes across LLM requests (22; 48), and
manage cache hierarchies between GPU,
CPU, and disk (52; 38; 37). For improved
kernels, other works improve the under-
lying CUDA kernels to accelerate atten-
tion (8), pipeline different operators (52),
or implement different forms of paral-
lelism (42; 19). Finally, LLM engines
can leverage better scheduling, such as bin-
packing prefills and decodes together (1)
and preempting LLM requests (42), to im-
prove response times.

DiT-Serve core contributions align with innovations found in LLM scheduling. In particular, step-level
batching, which preempts requests at step-level, is similar to continuous batching (44). DiT-Serve’s
Brick Attention binpacks requests onto GPUs, which better manages memory. Finally, the scheduler
employs a preemptive scheduling policy, similar to prior LLM serving schedulers (42; 24). In the
diffusion space, the closest work, xDiT (11), also addresses the inefficiencies of DiTs over multi-GPU
clusters. xDit employs sequence and pipeline parallelism through PipeFusion and CFG parallelism.
However, this work solely focuses optimizing a single request’s latency, while DiT-Serve tackles
optimization across requests, which vary via denoising steps, resolution, and time.

3 DIT-SERVE DESIGN

We present DiT-Serve’s overall architecture and then explore its two key components: (1) a step-level
request coordinator and (2) a distributed, multi-GPU attention algorithm for bin-packing requests
with diverse context lengths.

3.1 OVERVIEW

DiT-Serve is a online serving engine that processes text-to-video Diffusion Transformers. DiT-Serve
focuses on two primary objectives: (1) improving the end-to-end latency of each video generation
request and (2) maximizing GPU utilization for providers.
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(a) Naive Batching (b) Step-level Batching

Figure 5: Batching Strategies. (a) Naive Batching: Requests are grouped in fixed-size batches regardless of
arrival time, leading to idle periods and underutilized GPU resources when shorter requests finish earlier. (b)
Step-level Batching: With step-level batching, temporal GPU utilization is improved as request 3 can be batched
together with request 2.

Architecture. Figure 4 illustrates DiT-Serve’s overall architecture. Users interact with the system
through Fast API calls, which sends requests to the Diffusion Scheduler that executes a defined
scheduling policy2. The engine manages data parallel (DP) replicas of the DiT model and, similar to
vLLM (17), runs a core engine loop that continually processes available requests provided by the
scheduler. These requests are sent to dedicated GPU processes that use Brick Attention for processing
variable context lengths across requests.

3.2 STEP-LEVEL BATCHING

DiT-Serve introduces step-level batching, a fine-grained scheduling strategy inspired by efficient
memory management in large language model (LLM) serving (18; 44). Unlike existing diffusion
serving systems—which treat each request as an indivisible job that must run to completion—our
approach exploits the fact that each generation comprises of K denoising steps. At every timestep,
the scheduler selects the highest-priority requests, executes their current denoising step in a single
GPU batch (Fig. 5b), and then returns completed requests to the pool. By continuously injecting new
high-priority requests and evicting requests that have finished a step, step-level batching eliminates
idle GPU cycles, maximizes GPU utilization, and yields substantially higher throughput compared to
monolithic batching methods.

3.3 DISTRIBUTED ATTENTION

Due to long context length of long videos (1M-2M tokens), DiT-Serve employs sequence parallelism
(SP) to chunk long sequences across GPUs, which prevents potential OOMs for GPUs and improves
request latency. Existing SP implementations (i.e. Ring and Stripe Attention (23; 4)) do not consider
the heterogeneity of requests and pad sequences to the longest context length. Hence, we introduce
Brick Attention, a generalization of Ring Attention.

3.3.1 RING ATTENTION

Ring Attention (23) is an attention mechanism initially designed to overcome the limitations of
training transformers over long contexts. Ring Attention distributes the input sequence across
multiple devices in a ring-like topology. Each device processes a portion of the sequence, and
the key-value pairs are incrementally passed along the ring, terminating when all key-value pairs
have visited all GPUs. This allows for efficient computation of attention over a large sequence
without materializing the entire attention matrix, thereby avoiding quadratic memory requirements
and reducing model latency.

3.3.2 BRICK ATTENTION

We note that batching with Ring Attention assumes all requests have similar context lengths. For our
system, requests vary based on resolution and duration; hence, context length varies significantly. In
this scenario, Ring Attention would pad the shortest requests to the longest context, wasting GPU
memory and computation (Fig. 2b).

2DiT-Serve supports a wide range of scheduling policies, such as First-Come-First-Serve (FCFS), Short Job
First (SJF), and SRPTF (Shortest Remaining Processing Time First).
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Figure 6: Distributed Attention. (a) Ring Attention: Ring Attention falls short when considering the need
to pad shorter requests together with longer ones; padding leads to wasted computation (gray blocks). This
example contains three requests, one that takes four GPUs, and two that take two GPUs. (b) Brick Attention:
Brick Attention supports batching of diverse context length requests by sending KVs to the correct devices for
each ring. This example contains three requests, one that takes four GPUs, and two that take two GPUs.

Brick Attention extends Ring Attention by building multiple rings of different sizes—e.g., rings of 1,
2, 4, and 8 GPUs—over the same hardware, so that each GPU can serve several rings in parallel. We
assign each request to its own ring whose size is proportional to its context length: on an eight-GPU
cluster, the longest requests occupy the full eight-GPU ring, while shorter ones use smaller rings
scaled accordingly. Finally, we apply a best-fit bin-packing algorithm across batch sizes and GPU
resources to maximize utilization. By restricting ring sizes to powers of two, Brick Attention both
simplifies the packing process and guarantees predictable performance.

We modify the KV communication logic so that each ring’s attention computation does not interfere
with each other. Attention calculation is still performed in one batch for efficiency, but cross-GPU KV
communication for each batch is processed independently, allowing each device to send and receive
KV to multiple different devices (Fig. 6b). This essentially creates, within each batch, multiple
overlapping rings that each house the computation for a single request. Similar to Ring Attention,
Brick Attention pipelines computation and KV communication. Due to multiple smaller rings and
a sophisticated coordination logic, Brick Attention significantly improves resource utilization and
scalability for heterogeneous requests.

3.4 SCHEDULING POLICY

Average request latency is highly sensitive to scheduling (see Fig. 10a). While classical queueing
theory identifies Shortest Job First (SJF) as optimal, the notion of “shortest” must be reinterpreted
for video-diffusion workloads on multi-GPU clusters. We therefore implement Shortest Remaining
Processing Time First (SRPTF). For a request at diffusion step t, let Ttotal denote total diffusion
steps and S(reqt) denote tokenised sequence length of the video at step t.

The remaining work for the request is defined as L(reqt) =
(
Ttotal − t

)
S(reqt), or the product of

the denoising steps still to run and the sequence length yet to process. Finally, requests are ordered
by ascending L(reqt); the request with the smallest remaining work executes first, mirroring SJF’s
theoretical optimality for job completion times.

4 EVALUATION

In this section, we evaluate DiT-Serve’s performance across three leading video diffusion models and
conduct ablations to analyze its behavior under varying workloads, its scalability with increasing
GPU resources, and the effectiveness of its scheduling and batching strategies.

4.1 WORKLOADS

We simulate realistic workloads representative of practical usage scenarios encountered by video
diffusion models. Specifically, synthetic requests are generated as follows:
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Algorithm 1 Brick Attention

Require: List of input tensors X = {X(1), X(2), . . . , X(M)} with varying lengths
Require: Number of devices D
Ensure: Output tensors {Y (1), Y (2), . . . , Y (M)}

1: X.sort descending()
2: batch← 0, cur len← 0
3: Lmax ← max(X[0].length)
4: for each sequence x in X do
5: block size← 2⌈log2( x

Lmax
)⌉

6: Compute Q,K, V with x
7: devices← [cur len, . . . , cur len+ block size− 1]
8: [Qbatch,i], [Kbatch,i], [Vbatch,i]i∈devices ← split(Q,K, V )
9: cur len← cur len+ block size

10: if cur len = D then
11: cur len← 0
12: batch← batch + 1
13: end if
14: end for
15: for each device i = 1 to N in parallel do
16: KV ← [(Kk,i, Vk,i)k|k ∈ {0, . . . , batch− 1}]
17: for each block j = 1 to N do
18: for all k ∈ {0, . . . , batch− 1} do send(KVk)
19: Aj = Attention(Qi,KV )
20: for all k ∈ {0, . . . , batch− 1} do KVk ← recv(k)
21: end for
22: Yi ← Combine outputs A1−N

23: end for
24: Concatenate all Yi to form Y
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Figure 7: Main Results. Average latency and job completion time for different Video Diffusion models.

Arrival Distribution. Request’s interarrival times follow an exponential distribution with varying
rates (λ), simulating different levels of request frequency. Different arrival distributions are ablated in
Fig. 10b.

Request Specifications. Each request randomly selects parameters to mimic realistic user scenarios:

• Prompts: Chosen from 300 textual prompts such as ”A beautiful waterfall” or ”A Chinese Lunar
New Year celebration video with a Chinese dragon.”

• Resolution: Uniformly sampled across [240p, 360p, 480p, 720p].
• Sampling Steps: Uniformly sampled across [20, 40, 80, 120] denoising steps.
• Frame Count: We use each model’s default frame counts: 41 frames for CogVideoX (43), 31

frames for Mochi (40), and 48 frames for Open-Sora (49).
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4.2 EXPERIMENT SETUP

Models and Testbed. We evaluate three
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Figure 8: Tail Latencies. 95th (P95) and 99th (P99) percentile
latencies of different models.

state-of-the-art video diffusion models:
CogVideoX (43), Mochi (40), and Open-
Sora (49) , configured to utilize 1, 2, 4,
and 8 GPUs, respectively. Experiments
are conducted on a Google Cloud Platform
Compute Engine a2-ultragpu-8g in-
stance, featuring eight interconnected
A100-SXM4-80GB GPUs via NVLink,
1360 GB host memory, PCIe-4.0×16 con-
nectivity, and 2 TB storage capacity.

Metrics. Our primary metric measures
normalized latency, measured as requests’
end-to-end response time divided by the
number of patch computations, defined
as the product of denoising steps times
patches per step. An efficient, high-
throughput system should minimize nor-
malized latency, even under high request
rates. For the rest of evaluation, this metric
simply referred to as latency.

Baselines. To rigorously assess our system, we benchmark against four baselines, each constrained
by identical maximum batch sizes of five for fairness:

• Naive (Naive + Ring Attention + FCFS). Naively processes requests individually without batching
and assigns requests GPUs based on computational demand determined by resolution and frame
count. Tasks follow a First-Come-First-Served (FCFS) approach, leading to head-of-line (HoL)
blocking. It employs Ring Attention (23) to distribute computation across GPU clusters.

• Static Batch (Naive Batching + Ring Attention + FCFS): Groups similar requests (matching
resolution and frame count) up to a max batch of five to alleviate head-of-line (HoL) blocking.
Engine schedules requests based on FCFS order and employs Ring Attention (23) to schedule
requests across GPUs.

• Step-level FIFO Batch (Step-level Batching + Brick Attention + FCFS): Employs step-level
batching method, dynamically integrating incoming requests and promptly removing completed
ones to enhance responsiveness. It leverages Brick Attention for improved handling of diverse
requests across GPU clusters and maintains FIFO scheduling for fairness. Maximum batch size
when binpacked with Brick Attention is five.

• DiT-Serve (Step-level Batching + Brick Attention + SRPTF): Enhances step-level batching
with Brick Attention and adopts Shortest Remaining Processing Time First (SRPTF) scheduling.
Maximum batch size when binpacked with Brick Attention is five. SRPTF prioritizes requests with
the lowest remaining computational load, significantly reducing wait times and enhancing overall
throughput and responsiveness.

4.3 END-TO-END PERFORMANCE

Figure 7 compares normalized latency and job completion times across scheduling and batching
strategies for Open-Sora (49), Mochi (40), and CogVideoX (43). Our approach—Step Level Batching
integrated with Brick Attention and SRPTF scheduling—significantly outperforms other baselines,
consistently delivering the lowest latency and shortest completion times, particularly under moderate
to high workloads. In contrast, Naive Scheduling and Static Batching exhibit notably higher latencies
due to inefficient resource use and head-of-line blocking. For Open-Sora, our method reduces latency
by approximately 3-4× compared to naive methods under moderate to heavy workloads. Similar
improvements are noted with Mochi and CogVideoX, confirming the general efficacy of our method
across diverse video diffusion models.
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Figure 9: Scalability and Inference Overheads. (a) Given same SLO (ms/patch), DiT-Serve’s max arrival rate
(req/s) scales linearly w.r.t number of GPUs. (b) This example from Mochi 1 Preview shows that DiT-Serve
significantly reduces wait time and introduces trivial scheduler overheads. Scheduling time is negligible
compared to execution and wait times.

Tail Latency. Figure 8 provides a detailed analysis of tail latencies (95th and 99th percentiles,
P95/99) across all models. Step Level Batching with Brick Attention significantly reduces tail latency
relative to Naive Scheduling and Static Batching, especially under intensive workloads. For instance,
Open-Sora and CogVideoX demonstrate substantial decreases in P95 and P99 latencies, highlighting
the robustness and effectiveness of our proposed system under demanding conditions. Similar trends
are observed with Mochi, further validating our method’s reliability and overall efficiency.

4.4 SCALABILITY.

We evaluate how well DiT-Serve scales with increasing GPU resources by measuring the maximum
sustained request arrival rate that meets a fixed service-level objective (SLO). In this experiment,
the SLO is defined as end-to-end latency of 0.01 ms per token on average. We vary the number
of available GPUs from 2 to 8 and record the highest arrival rate (in req/s) at which the system
can operate without violating the SLO. As shown in Figure ??, DiT-Serve demonstrates near-linear
scalability: doubling the number of GPUs consistently leads to a proportional increase in throughput.
With 2, 4, and 8 GPUs, the system achieves maximum arrival rates of 0.02, 0.05, and 0.10 req/s
respectively. These results highlight DiT-Serve’s ability to efficiently utilize additional hardware and
meet service requirements under growing workloads.

4.5 TIMING BREAKDOWN

Figure 9b breaks down the time that video generation requests spend in the serving layer for both
DiT-Serve and the Naive baseline with head-of-line blocking. Overall, DiT-Serve consistently incurs
significantly lower waiting time, primarily attributed to its Step Level batching strategy and the
SRPTF scheduling policy. Although SRPTF introduces preemption overhead, the incurred scheduling
cost is minimal and virtually imperceptible. In contrast, the Naive baseline suffers from substantial
waiting time due to a FCFS scheudling policy and substantial lack of batching, which leads to
severe head-of-line (HoL) blocking. Notably, as request arrival rate increases, the waiting time
under the Naive policy grows sharply, while DiT-Serve maintains significantly better scalability, with
only modest increases in waiting time. This highlights the benefits of fine-grained scheduling and
coordinated attention mechanisms for reducing wait times in video serving systems.

5 CONCLUSION

We present DiT-Serve, a distributed Diffusion Transformer serving system designed to efficiently
handle diverse, online text-to-video generation requests. By addressing both spatial and temporal
inefficiencies, DiT-Serve leverages two core innovations to improve GPU utilization: step-level
batching and Brick Attention. Step-level batching improves throughput by preempting requests at
each denoising step, while Brick Attention enables efficient, batched sequence parallelism. Our exper-
iments across three state-of-the-art video diffusion models demonstrate that DiT-Serve significantly
reduces latency by 3-4x and increases throughput by 2-3x compared to prior systems.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) exclusively for editorial assistance to improve clarity,
grammar, and concision. Specifically, LLM support was limited to refining wording and reducing
redundancy, reorganizing sentences for readability and flow, standardizing terminology and style,
and minor copy-editing (spelling, punctuation, formatting). LLMs were not used for research
ideation, literature review, methodological design, data analysis, result interpretation, or drafting
novel scientific content. All scientific claims, framing, methods, results, and conclusions were
conceived, written, and verified by the authors. The authors take full responsibility for the paper’s
content, including text refined with LLM assistance.

A.2 IMPLEMENTATION

DiT-Serve is an end-to-end Diffusion Transformer serving system totaling 10k lines of Python code.

Backend. DiT-Serve’s API is exposed using FastAPI. Each FastAPI coroutine submits model requests
to the engine when needed. Any mathematical calculations needed for the Diffusion Scheduler are
performed on the same coroutine, on GPU 0. These calculations have a negligible impact on
performance, and are not optimized through batching across requests or multi-GPU inference.

Engine. The engine’s model running loop runs as a coroutine on the same asyncio event loop
that the FastAPI server runs on. The engine also initializes GPU communication protocols for Brick
Attention at the beginning of every model call. Currently, DiT-Serve supports serving one model at a
time and does not route across different models.

System Initialization. Upon server startup, the model weights are replicated onto each GPU. New
processes are spawned to handle model execution for each GPU, and communication between the
server and the processes is done through PyTorch Multiprocessing queues.

Brick Attention. The implementation of Brick Attention is based on an open-source PyTorch imple-
mentation of Ring Attention (53). It uses PyTorch Multiprocessing (MPI) for GPU communication,
which leverages NVLink for fast inter-GPU communication for KV blocks. The interface of Brick
Attention closely mirrors that of the Ring Attention implementation, which itself mirrors that of Flash
Attention. Since Diffusion Transformers employ bidirectional attention, load balancing variants of
Ring Attention like Zig-zag and Stripe Attention (4) were not implemented for Brick Attention.

VAE Parallelism Our engine incorporates Variational Autoencoder (VAE) parallelism (16; 49),
inspired by techniques presented in recent Diffusion Transformer inference engines (11). This
technique divides the latent feature maps into multiple patches, distributing them across GPUs to
parallelize decoding computations, alleviating memory bottlenecks.

A.3 COMPARISON TO OPTIMAL SCHEDULING

Besides SRPTF, we evaluate the impact of different scheduling policies within DiT-Serve on nor-
malized latency and job completion time under varying request rates. We include the following
policies:

• FCFS (First Come First Serve): Jobs that arrive first run first.
• SJF (Shortest Job First): Jobs with the lowest total number of denoising steps run first.
• SRTF (Shortest Remaining Time First): Jobs with the fewest remaining denoising steps run first.
• SRPTF (Shortest Remaining Process Time First): Sorted by remaining steps multiplied by context

length.

Our experiments in Fig. 10a indicate that SRPTF consistently outperforms all other policies, achiev-
ing the lowest latency and shortest completion times. In contrast, FIFO performs worst due to
significant head-of-line (HoL) blocking. SJF and SRTF provide intermediate performance, reflecting
improvements from prioritizing shorter tasks dynamically. These results underline the advantage of
clairvoyance-based scheduling, highlighting DiT-Serve’s optimality.
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Figure 10: Scheduling Ablations. (a) DiT-Serve with SRPTF outperforms other scheduling policies. (b) We
simulate burstiness in request arrivals using a Gamma Distribution with varying coefficient of variation (CV).
DiT-Serve maintains robust performance across varying levels of request burstiness.

A.4 ARRIVAL DISTRIBUTION/WORKLOAD

We ablate the effect of burstiness by varying the coefficient of variation (CV) of request inter-arrival
times, drawing requests from a Gamma Distribution. This models a range from relatively uniform (CV
= 1) to highly bursty (CV = 8) arrival processes to capture variability observed in production-scale
inference workloads. Figure 10b shows the effect of varying burstiness on normalized latency and
average job completion time (JCT). We observe that across all CVs, both latency and JCT remain
relatively low when arrival rate is low. As the rate increases, however, high-CV workloads generate
sudden request bursts that lengthen queues and degrade performance.

A.5 OFFLINE INFERENCE.

In many real-world scenarios, video diffu-

Figure 11: Offline batch inference. DiT-Serve decreases
the makespan to process a batch.

sion workloads may not always arrive on-
line; but instead in large, queued batches.
To evaluate DiT-Serve’s performance un-
der such ”offline” scenarios, we simulate
the processing of a fixed number of video
generation requests, all arriving simulta-
neously at time zero. The key metric of
interest is makespan, defined as the time
between the start of the first request’s pro-
cessing and the completion of the last re-
quest. Figure ?? presents the makespan
across four baselines under offline batch
settings. DiT-Serve with Brick Attention
consistently achieves the lowest start-to-finish times, reducing makespan by 25–65% compared to
other baselines. Together, these results highlight DiT-Serve’s efficiency in offline, high-throughput
environments.
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