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Abstract

Foundation large language models (LLMs) can
be instruction-tuned to perform open-domain
question answering, facilitating applications
such as Al assistants. While such efforts are
often carried out in a single language, we empir-
ically analyze cost-efficient approaches to mul-
tilingual tuning. Our study employs the Alpaca
dataset and machine translations of it to form
multilingual training data, which is then used
to tune LLMs through low-rank adaptation and
full-parameter training. Under a fixed budget,
comparisons show that multilingual tuning is
on par or better than separately tuning a model
for each language. Further, multilingual tuning
with downsampled data can be as powerful and
more robust. Our findings serve as a guide for
expanding language support through instruc-
tion tuning with constrained computational re-
sources.

1 Introduction

In natural language processing with large language
models (LLMs), language capacity has attracted
much attention (Conneau et al., 2020). Some pi-
oneering works like BERT (Devlin et al., 2019)
focused on a single language, while recent research
usually adopts multilingual datasets, e.g. BLOOM
(Scao et al., 2022). Models pre-trained with texts
in many languages seem attractive when the down-
stream tasks require multilingual capabilities, be-
cause these reduce operational costs such as storage
and enable zero-shot language transfer (Artetxe and
Schwenk, 2019).

With autoregressive LLMs trained to complete
inputs, instruction tuning makes them follow and
respond to inputs (Sanh et al., 2022; Wei et al.,
2022). Building on research that turns an LLM into
a chat model in an inexpensive way (Alpaca, Taori
etal., 2023), this work extends it to multilingualism.
Unlike prior works on multilingual multitask tun-
ing (Mishra et al., 2022; Muennighoff et al., 2023),
we focus on open-ended question answering.

Our data setting combines two low-cost prac-
tices: self-instruct, which distils data from a power-
ful LLM (Wang et al., 2023) and the idea of lever-
aging machine translation to create multilingual
datasets (Muennighoff et al., 2023). We fine-tune
several LLMs with both full-parameter fine-tuning
(FFT) and low-rank adaptation (LoRA, Hu et al.,
2022), using different language combinations. Our
experiments use a fixed budget to offer practical
insights. It is shown that multilingual tuning is
preferred to monolingual tuning for each language
under LoRA, but the results are mixed under FFT.
We also propose a budget-aware multilingual tun-
ing scheme that is demonstrated to be more robust.
Finally, we examine our conclusions by general-
izing to unseen languages and various LLMs of
roughly the same size.

2 Methodology

2.1 Instruction data

We follow the work of Alpaca by tuning base LLMs
with instruction-response data. We use the publicly
available cleaned version with 52K instances, and
machine-translated it into eight languages: Bul-
garian, Czech, Chinese, German, Finnish, French,
Russian, and Spanish, using open-source systems.

2.2 Budget-constrained instruction tuning

For monolingual tuning, we tune an LLM on each
language data separately, whereas, for multilingual
tuning, we combine and shuffle the data in all lan-
guages. This enables a resource-constrained com-
parison between monolingual and multilingual tun-
ing, where a fixed computational budget is given
to support all languages of interest. Experimental
resource usage is described as follows:
(1) Let Cyjpaca denote the cost of monolingual
Alpaca fine-tuning for a single language, then
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it costs NX Cyjpaca to tune individual models
to support N languages of interest.

(2) Multilingual instruction-tuning will cost
Nx Caipaca 100, as it trains on data available in
all N languages in one go.

We can fairly compare the performance of an LLM
tested on any language trained via (1) and (2). In
addition, we propose to benchmark two budget-
saving options:

(3) As abaseline, we use an English-tuned model
to respond to other languages. It has the same
cost Cyipaca as a single monolingual Alpaca.

(4) Downsampled multilingual: we downsample
the multilingual dataset in (2) to the size of a
single monolingual dataset, with training cost
Calpaca too.

Our study covers two training paradigms: low-
rank adaptation and full-parameter fine-tuning.
Both continue-train an LLM with the causal lan-
guage modelling objective using the instruction-
response data, with hyperparameters listed in Ap-
pendix A.1. Five LLMs are involved: Baichuan-
2 (Yang et al., 2023), BLOOM (Scao et al., 2022),
LLaMA (Touvron et al., 2023), OpenLLaMA
(Geng and Liu, 2023), and Pythia (Biderman et al.,
2023), aiming to test with different language cover-
age in the base LLMs. Pythia, LLaMA, and OpenL-
LaMA are predominantly English, while Baichuan-
2 and BLOOM are more versatile in languages. We
attach a detailed LLM description in Appendix A.2.

2.3 Evaluation setup

Test data  Our instruction-tuned LLMs are bench-
marked on languages both seen and unseen during
tuning. We employ native speakers to manually
translate 50 prompts sampled from OpenAssistant
(Kopf et al., 2023) into eight languages: six seen
during training and two unseen. The seen cate-
gory includes English, French, Spanish, Bulgarian,
Russian, and Chinese. Among the six, English is
the highest-resourced, and French and Spanish are
high-resource and share the same script as English.
Bulgarian and Russian are European languages but
use a writing system distinct from English. Finally,
Chinese is a high-resource distant language in a dif-
ferent script. For unseen tests, we pick Bengali and
Norwegian. Bengali is distant and uses a different
script, whereas Norwegian is under-resourced but
overlaps with English writing script to some extent.

LLM evaluation To avoid expensive evaluation
costs, we adopt LLM-as-a-judge (Zheng et al.,

2023) to score instruction-response pairs from 1
to 3, and the final score is obtained by summing
up a model’s scores across all test samples. We
use GPT-3.5 (gpt-3.5-turbo-0613) as the judge;
it is queried with a question-model response pair
each time without model information or request
history. We make modifications to Zheng et al.
(2023)’s prompt to ask the LLM to consider that
a question and a response should be in the same
language. The exact wording is listed in Figure 5
in Appendix B.1.

Language consistency Our early manual inspec-
tion suggests that GPT-3.5 does not always obey
the language requirement imposed. We show an
example in Appendix B.2 Table 2, where the LLM
response is in a language different from the query
but scored highly. Hence, we run language identi-
fication and force-set a score to O if the response
language is incorrect. We use the fastText frame-
work (Joulin et al., 2017) with a recent checkpoint
(Burchell et al., 2023). The final score of a re-
sponse can be represented as a product of GPT’s
quality score and a binary language identification
score = eval_score X language_id. The total
score thus ranges between 0 and 150.

LLM-human agreement Finally, we confirm
strong LLM-human agreement in evaluation. We
pick a total of 600 outputs from 12 models to cover
multilingual and monolingual systems and invite
human evaluators to score each sample with an in-
struction similar to the LLM-as-a-judge prompt,
with details in Appendix B.3 and Table 3. Four lan-
guages, English, Spanish, Bulgarian, and Chinese,
are human-evaluated. We obtain very high system-
level Pearson correlation coefficients of 0.9225,
0.9683, 0.9205, and 0.8685, respectively, between
GPT-3.5 and human evaluation scores. This indi-
cates the reliability of LLM-as-a-judge in our study
to draw meaningful conclusions.

3 Performance and Discussions

3.1 Model sizes

Results from LoRA fine-tuning of BLOOM at dif-
ferent sizes are shown in Figure 1. At smaller
sizes, multilingual (—=—) and monolingual (—&-)
instruction-tuning attain similar performance, and
at larger sizes, multilingual models are generally
better except for English. We observe similar
trends for Pythia, placed in Appendix C.1 Fig-
ure 7 due to space constraints. Moving on to full-
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Figure 1: LoRA with BLOOM at different sizes. Caption:
language; y-axis: evaluation score; x-axis: model size (B).

parameter fine-tuning of BLOOM in Figure 2, we
discover that at relatively small (<1.7B) or large
sizes (7B), monolingual models are generally better
than multilingual models for individual languages.
These observations suggest that multilingualism
works well with LoRA, but separate monolin-
gual tuning might be better with FFT. Overall,
the LLMs’ performance is correlated with sizes
regardless of the tuning technique as anticipated.

3.2 Budget-efficient tuning

To aid our exploration of resource-constrained in-
struction tuning, in the aforementioned Figures 1,
2, and 7 (in appendix C.1), we add the comparison
plots of two budget data conditions: using English-
tuned models to respond to instructions in other
languages (—e—), as well as instruction-tuning with
downsampled multilingual data (—4—).

When using a single English model for all lan-
guages, its efficacy depends on the intended lan-
guage/script’s closeness to English: Spanish and
French can maintain reasonable scores, but Bul-
garian, Russian, and Chinese record very low per-
formance. The only exception is BLOOM FFT in
Figure 2, where the model is not too behind when
operating in Chinese. Interestingly, BLOOM with
LoRA sees a performance spike at 1.1B for non-
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Figure 2: FFT with BLOOM at different sizes. Caption:
language; y-axis: evaluation score; x-axis: model size (B).
Same legend as Figure 1.

English tests but does not stand out in the English
test. At this specific size, it learned to follow multi-
lingual instructions despite being tuned in English,
without losing much multilingual transfer ability
from pre-training,

In contrast, using the same computational bud-
get, downsampled multilingual tuning is signifi-
cantly more robust across all test languages. They
sometimes achieve on-par performance with mono-
lingual tuning in individual languages. This means
that to support several languages with limited
resources, the best practice is to train on small
multilingual data even created with machine
translation instead of the full English data.
Nonetheless, if the budget permits, training with
the full multilingual data is still slightly better.

3.3 Unseen languages

Further in Figure 3, we look at BLOOM models
which underwent LoRA or FFT, but were subse-
quently used to respond in unseen languages at
inference time. English-tuned LLMs behave differ-
ently for LoORA and FFT. With the former, they are
nowhere near multilingual tuned models, but with
the latter, we see close or even better performance.
It thus implies that full-parameter tuning can even
lift performance for languages not present in the
instruction dataset. However, FFT results on Nor-
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Figure 3: LoRA and FFT with BLOOM at different sizes
and tested on unseen languages. Caption: tuning method and
language; y-axis: evaluation score; x-axis: model size (B).
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wegian could be an outlier given its comparably low
scores. Considering multilingual instruction tuning,
we notice a pattern opposed to that on languages
seen during training—learning on the downsam-
pled data is superior to ingesting the full mixed
data. We conclude that it is important to not over-
fit to instruction languages if unseen languages
are expected in downstream tasks.

3.4 Language robustness

We review each model and data recipe’s scores be-
fore and after adding the language identification to
isolate the impact of an LLM’s language robustness
from its responses’ inherent “quality” (regardless
of the language). We compute the differences in
GPT evaluation scores before and after applying the
language identification module. A (big) difference
means that the model produces reasonable answers
in an undesired language. We report the average of
the score differences across all six test languages
seen during tuning, displayed in Figure 4.

English-only models are the least robust, as
their score differences are greatly above other
techniques. With LoRA, full multilingual tuning
records the smallest performance drop; with FFT,
monolingual tuning is favoured. The insights on
language robustness are corroborated by our early
findings on overall performance in Section 3.1: su-
perior results are obtained when using multilin-
gual tuning with LoRA and monolingual tuning
with full-parameter tuning. Nonetheless, mono-
lingual and multilingual tuning are not too far apart;
specifically for BLOOM with LoRA, language ro-
bustness does not improve as the model gets larger.
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Figure 4: Evaluation score change before and after language
identification, averaged over six seen test languages, at dif-
ferent LLM sizes. Caption: tuning method and base model;
y-axis: evaluation score difference; x-axis: model size (B).

3.5 Model families

Finally, we experiment with base LLMs from dif-
ferent families with sizes of around 7 billion. In
Appendix C.2 Figure 8, we plot the evaluation
scores for multilingual, downsampled multilingual,
and monolingual LoRA tuning on six languages.
Generally, LLaMA and OpenLLaMA have better
performance than BLOOM and Pythia potentially
because they have pre-training data that is an or-
der of magnitude larger. Also Bulgarian, Russian,
and Chinese see lower scores than English, again
presumably due to the language distribution in the
pre-training data.

Delving into the comparison between monolin-
gual and multilingual instruction tuning, we find
that out of 30 cases across six languages and five
LLMs, monolingual tuning is ahead in merely two
cases: LLaMA tested in Russian and Chinese.
The cost-efficient multilingual downsampled tun-
ing leads in four cases: two in French and two in
Russian. In other situations, multilingual training
is on par if not better. The outcome of tuning LLMs
from several families confirms that multilingual
fine-tuning performs better with LoRA.

4 Conclusion

This paper presents a study of instruction tuning of
large language models in different language con-
texts. Our study in a resource-controlled setting
suggests that multilingual tuning offers more ben-
efits compared to monolingual tuning. We find
that multilingual tuning on a downsampled dataset
achieves better robustness on unseen languages.



Limitations

We mostly compared LLMs with around 7B param-
eters due to the limitation of computing resources.
The best checkpoint for each fine-tuning condition
is selected based on cross-entropy, but there is no
guarantee that this leads to the best model perfor-
mance on the downstream task.

To manage the budget for human translation and
evaluation, we consider eight languages (six seen
and two unseen languages during instruction tun-
ing) to translate and sample 50 instances for evalu-
ation. The training data for non-English languages
are obtained via machine translation, which intro-
duces errors, affects response fluency, and might
alter the nature of some tasks such as grammatical
error correction and code generation.

Ethics Statement

The dataset we translated and generated does not
contain private or sensitive information. Similar to
other research on large language models, there is
no definitive way for us to prevent the instruction-
tuned models from generating inappropriate con-
tent. However, we see minimal such risks associ-
ated with our project, as neither our models nor gen-
erated contents are intended for public consump-
tion. Human evaluators did not report inappropriate
content generated by the models.
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A Experimental Setup Details

A.1 Hyperparameters

Table 1 shows the hyperparameter configurations
of LoRA and full-parameter fine-tuning. LoRA is
a parameter-efficient training method where, for
a big matrix, only low-rank matrices are trained
and patched to it. In our case, we apply it to the
attention matrices (key, query, value), and use rank
8, dropout 0.05, and scaling factor 16 throughout.
We use a batch size of 128, set a fixed training
budget of 5 epochs with a learning rate of 3¢,
and select the best checkpoint based on validation
cross-entropy. For full-parameter fine-tuning, we
follow the configurations of Alpaca by training for
3 epochs with a learning rate of 2e™, a warm-up
ratio of 0.03, and a batch size of 256.

Since we use a range of models of different sizes,
we estimate computation time based on 7-billion
parameter models which are the second largest we
fine-tuned. LoRA tuning takes around 15 hours on
4 GeForce RTX 3090 GPUs, using CPU memory
offloading and distributed training. Full-parameter
fine-tuning is performed on 4 AMD MI250x GPUs
(regarded as 8 GPUs with 64G memory each at
runtime) with model parallelism, and it requires
around 24 hours to finish. Given the high computa-
tional cost of model fine-tuning, we conducted all
fine-tuning experiments once.

Method Hyperparameter Value
LoRA modules query, key, value
rank 8
scaling factor 16
LoRA dropout 0.05
learning rate 3e™?
global batch size 128
epochs 5
learning rate 2e°
Full-parameter global batch size 256
epochs 3

Table 1: Hyperparameter configurations of LoRA and full-
parameter fine-tuning

A.2 Description of LL.Ms

Due to the space constraint, we place a detailed
description of LLMs used in our research here. All
the models used in this paper are publicly available
and free for academic purposes.

Baichuan-2 It is a multilingual LLM trained on
2.6 trillion tokens. While its data composition does
not outline the languages included, the LLLM per-
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forms strongly on tasks in English and Chinese.
We use its 7B checkpoint.

BLOOM It is trained on the ROOTS dataset
(Laurengon et al., 2022) containing 350 billion to-
kens in 46 natural languages spanning 9 language
families and 12 programming languages. The LLM
has English, Chinese, French, and Spanish as the
major components. We use the checkpoints from
560M to 7.1B for experiments.

LLaMA It has been trained on data mainly in
English with some in European languages in Latin
and Cyrillic scripts. It could also support other
languages with byte-BPE tokenization. We use its
7B model which has seen 1 trillion tokens.

OpenLLLaMA This is an open-source reproduc-
tion of LLaMA, trained on the RedPajama dataset
(Together Computer, 2023), which is close to
LLaMA’s data composition. Similarly, we use the
7B version.

Pythia It is trained on the Pile (Gao et al., 2020)
which has nearly 300 billion tokens, and is intended
to be English-dominant. We experiment with the
full range from 70M to 12B.

B Evaluation Details

B.1 Prompt template for LLM-as-a-judge

Please act as an impartial judge and evaluate
the quality of the response provided by an AI
assistant to the wuser instruction displayed
below. Your evaluation should consider factors
such as helpfulness, relevance, accuracy, depth,
creativity, and level of detail. It is also
required that the response is in the same language
as the instruction. Begin your evaluation with a
short explanation. Be as objective as possible.
After providing your explanation, please rate
the response on a scale of 1 to 3 by strictly
following this format:“[[rating]]”, for example:
“Rating: [[2]1]”.

[User instruction]
${instruction?}

[AI assistant’s response]
${response}

Figure 5: Prompt template for requesting a response evaluation
from GPT-3.5, where ${instruction?} and ${response} are
replaced with questions and model responses.

B.2 A case of language inconsistency

Table 2 demonstrates an example, where the re-
sponse from an instruction-tuned model does not

match the language of the query. In this case, the
judge, GPT-3.5 does not penalize this language
inconsistency despite being asked to do so in the
evaluation prompt. This makes extra language iden-
tification essential.

Instruction: R4F ! {REEF FATRIEALIS?  (English:
Hello! Can you help me plan my wedding?)

Response: Sure, I would be happy to help you plan your
wedding. Can you tell me a little bit more about your wedding
plans and what you are looking for in a wedding planner?

GPT-3.5 explanation: The Al assistant’s response shows a
good understanding of the user’s request and offers assistance.
It asks the user for more information about their wedding
plans, which shows that it is trying to gather relevant details to
provide appropriate help. The response is polite and friendly,
which contributes to a positive user experience.

GPT-3.5 score: 3

Table 2: An example of instruction-response language incon-
sistency, where the question is in Chinese but the response is
in English, which GPT-3.5 fails to account for in its evalua-
tion.

B.3 Human evaluation details

We invited human evaluators who are fluent or
native in the language of the instructions and re-
sponses to score in total outputs from 12 models
fine-tuned with LoRA. We attach the instruction
given to human evaluators in Figure 6. The sys-
tems’ responses for the same instruction are shuf-
fled but grouped together to provide a context of
the overall quality. The human evaluators are asked
to assign each response a score. We list the model
details, as well as their aggregated GPT and human
evaluation scores in Table 3.

Please evaluate the quality of the responses
provided by AI assistants to the questions in your
respective tab. Most questions are open-ended,
meaning there is no strictly correct or best
answer. Please make a judgment based on your
perspective of quality. You could consider
factors such as helpfulness, relevance, accuracy,
depth, creativity, and level of detail. It
is also required that the response is in the
same language as the question unless otherwise
specified by the instruction itself. Please rate
the response on a scale of @ to 3. If you feel
indecisive, you can use an increment of 0.5. You
can give a score of @ for “incorrect language, not
readable, content cannot be understood”; give a
score of 1 for “a relatively bad response”; give
a score of 2 for “a medium response”; give a
score of 3 for “a relatively good response”.

Figure 6: Instructions for human evaluators.



Size English Spanish Bulgarian Chinese
(B) GPT-3.5 human GPT-3.5 human GPT-3.5 human GPT-3.5 human
BLOOM 1.1 95.5 93.0 102.0 98.0 58.5 54.5 89.5 97.5

LLM

BLOOM 3 115.5 105.0 110.0 103.5 83.0 59.0 104.0 102.0
Multi- BLOOM 7.1 113.0 119.5 122.0 116.5 90.5 67.0 119.5 117.5
lingual LLaMA 7 138.0 131.5 140.5 123.0 119.5 112.0 95.0 89.0
OpenLLaMA 7 133.0 130.0 122.0 112.5 110.0 89.0 80.0 67.5
Pythia 6.9 120.5 117.0 119.0 107.5 99.5 75.0 98.5 87.5
I BLOOM 1.1 ~ 890  81.0 925 8.0 530 490 = 820 755

BLOOM 3 112.5 103.5 106.0 99.5 71.0 64.0 111.5 96.0
Mono- BLOOM 7.1 122.0 111.5 116.5 111.5 79.5 73.5 105.0 106.0
lingual LLaMA 7 133.5 121.0 127.0 115.0 120.5 117.5 118.5 96.5
OpenLLaMA 7 122.0 124.0 113.5 108.0 105.5 87.0 79.5 66.5
Pythia 6.9 115.0 116.0 100.5 97.5 87.0 72.5 80.0 72.0

Pearson correlation coefficient 0.9225 0.9683 0.9205 0.8685

Table 3: Human evaluation scores and correlation with GPT-3.5 scores at the system level. Models are fine-tuned with LoRA.

C Result Details C.2 Experiments LLM families

C.1 Experiments on LoRA with Pythia In Figure 8 we attach the bar plots of LoRA fine-

tuning with LLMs at 7B from different families.
Apart from LoRA fine-tuning on BLOOM models,

we conduct the same investigation on Pythia at
different sizes. We observe the same pattern as we
find on BLOOM models explained in Section 3.1.
The plots for the six languages are included as

Figure 7.
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Figure 7: LoRA fine-tuning on Pythia. Caption: language
generated; y-axis: evaluation score; x-axis: model size (B) on
a logarithmic scale.
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model family.

D Related Work

Recent years have witnessed rapid development in
large language models, for example, the renowned
closed-source GPT family (Brown et al., 2020)
as well as open-source models like LLaMA (Tou-
vron et al., 2023) and OpenLLaMA (Geng and
Liu, 2023). In addition to English-centric models,
multilingual language models have also been de-
signed such that multiple languages can be dealt
with by a single LLM, reducing operational costs.
These models such as mT5 (Xue et al., 2021)
and BLOOM (Scao et al., 2022) have effectively
demonstrated multilingual understanding ability.

While foundational LL.Ms are trained to com-
plete input texts, a new paradigm named instruc-
tion tuning can adjust such models to respond in
a question-answering style (Wei et al., 2022; Sanh
et al., 2022). It continually trains an LLLM by for-
matting a specific task as a natural language query
and the task output as a text response. Longpre
et al. (2023) investigated the factors of effective
instruction tuning such as tasks and methods. Com-
bining the capabilities of multilingual models with
instruction fine-tuning opens up new opportuni-
ties for instruction following and content gener-
ation in multilingual scenarios. Li et al. (2023)

showcased that multilingual instruction fine-tuning
with translation instructions can improve the perfor-
mance of machine translation. Muennighoff et al.
(2023) found multilingual instruction fine-tuning
gained better performance on natural language
tasks than English-only fine-tuning. They also
found that using low-cost machine translations is
superior to tuning with human-written non-English
prompts on multitask natural language understand-
ing. Our study takes one step further by utilizing
machine translation to produce parallel instruction
data. This enables controlled settings for empiri-
cal analysis of monolingual language-specific and
multilingual instruction tuning of LLMs.
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