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Abstract
Foundation large language models (LLMs) can001
be instruction-tuned to perform open-domain002
question answering, facilitating applications003
such as AI assistants. While such efforts are004
often carried out in a single language, we empir-005
ically analyze cost-efficient approaches to mul-006
tilingual tuning. Our study employs the Alpaca007
dataset and machine translations of it to form008
multilingual training data, which is then used009
to tune LLMs through low-rank adaptation and010
full-parameter training. Under a fixed budget,011
comparisons show that multilingual tuning is012
on par or better than separately tuning a model013
for each language. Further, multilingual tuning014
with downsampled data can be as powerful and015
more robust. Our findings serve as a guide for016
expanding language support through instruc-017
tion tuning with constrained computational re-018
sources.019

1 Introduction020

In natural language processing with large language021

models (LLMs), language capacity has attracted022

much attention (Conneau et al., 2020). Some pi-023

oneering works like BERT (Devlin et al., 2019)024

focused on a single language, while recent research025

usually adopts multilingual datasets, e.g. BLOOM026

(Scao et al., 2022). Models pre-trained with texts027

in many languages seem attractive when the down-028

stream tasks require multilingual capabilities, be-029

cause these reduce operational costs such as storage030

and enable zero-shot language transfer (Artetxe and031

Schwenk, 2019).032

With autoregressive LLMs trained to complete033

inputs, instruction tuning makes them follow and034

respond to inputs (Sanh et al., 2022; Wei et al.,035

2022). Building on research that turns an LLM into036

a chat model in an inexpensive way (Alpaca, Taori037

et al., 2023), this work extends it to multilingualism.038

Unlike prior works on multilingual multitask tun-039

ing (Mishra et al., 2022; Muennighoff et al., 2023),040

we focus on open-ended question answering.041

Our data setting combines two low-cost prac- 042

tices: self-instruct, which distils data from a power- 043

ful LLM (Wang et al., 2023) and the idea of lever- 044

aging machine translation to create multilingual 045

datasets (Muennighoff et al., 2023). We fine-tune 046

several LLMs with both full-parameter fine-tuning 047

(FFT) and low-rank adaptation (LoRA, Hu et al., 048

2022), using different language combinations. Our 049

experiments use a fixed budget to offer practical 050

insights. It is shown that multilingual tuning is 051

preferred to monolingual tuning for each language 052

under LoRA, but the results are mixed under FFT. 053

We also propose a budget-aware multilingual tun- 054

ing scheme that is demonstrated to be more robust. 055

Finally, we examine our conclusions by general- 056

izing to unseen languages and various LLMs of 057

roughly the same size. 058

2 Methodology 059

2.1 Instruction data 060

We follow the work of Alpaca by tuning base LLMs 061

with instruction-response data. We use the publicly 062

available cleaned version with 52K instances, and 063

machine-translated it into eight languages: Bul- 064

garian, Czech, Chinese, German, Finnish, French, 065

Russian, and Spanish, using open-source systems.1 066

2.2 Budget-constrained instruction tuning 067

For monolingual tuning, we tune an LLM on each 068

language data separately, whereas, for multilingual 069

tuning, we combine and shuffle the data in all lan- 070

guages. This enables a resource-constrained com- 071

parison between monolingual and multilingual tun- 072

ing, where a fixed computational budget is given 073

to support all languages of interest. Experimental 074

resource usage is described as follows: 075

(1) Let Calpaca denote the cost of monolingual 076

Alpaca fine-tuning for a single language, then 077

1Data and trained models will be disclosed and released.
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it costs N×Calpaca to tune individual models078

to support N languages of interest.079

(2) Multilingual instruction-tuning will cost080

N×Calpaca too, as it trains on data available in081

all N languages in one go.082

We can fairly compare the performance of an LLM083

tested on any language trained via (1) and (2). In084

addition, we propose to benchmark two budget-085

saving options:086

(3) As a baseline, we use an English-tuned model087

to respond to other languages. It has the same088

cost Calpaca as a single monolingual Alpaca.089

(4) Downsampled multilingual: we downsample090

the multilingual dataset in (2) to the size of a091

single monolingual dataset, with training cost092

Calpaca too.093

Our study covers two training paradigms: low-094

rank adaptation and full-parameter fine-tuning.095

Both continue-train an LLM with the causal lan-096

guage modelling objective using the instruction-097

response data, with hyperparameters listed in Ap-098

pendix A.1. Five LLMs are involved: Baichuan-099

2 (Yang et al., 2023), BLOOM (Scao et al., 2022),100

LLaMA (Touvron et al., 2023), OpenLLaMA101

(Geng and Liu, 2023), and Pythia (Biderman et al.,102

2023), aiming to test with different language cover-103

age in the base LLMs. Pythia, LLaMA, and OpenL-104

LaMA are predominantly English, while Baichuan-105

2 and BLOOM are more versatile in languages. We106

attach a detailed LLM description in Appendix A.2.107

2.3 Evaluation setup108

Test data Our instruction-tuned LLMs are bench-109

marked on languages both seen and unseen during110

tuning. We employ native speakers to manually111

translate 50 prompts sampled from OpenAssistant112

(Köpf et al., 2023) into eight languages: six seen113

during training and two unseen. The seen cate-114

gory includes English, French, Spanish, Bulgarian,115

Russian, and Chinese. Among the six, English is116

the highest-resourced, and French and Spanish are117

high-resource and share the same script as English.118

Bulgarian and Russian are European languages but119

use a writing system distinct from English. Finally,120

Chinese is a high-resource distant language in a dif-121

ferent script. For unseen tests, we pick Bengali and122

Norwegian. Bengali is distant and uses a different123

script, whereas Norwegian is under-resourced but124

overlaps with English writing script to some extent.125

LLM evaluation To avoid expensive evaluation126

costs, we adopt LLM-as-a-judge (Zheng et al.,127

2023) to score instruction-response pairs from 1 128

to 3, and the final score is obtained by summing 129

up a model’s scores across all test samples. We 130

use GPT-3.5 (gpt-3.5-turbo-0613) as the judge; 131

it is queried with a question-model response pair 132

each time without model information or request 133

history. We make modifications to Zheng et al. 134

(2023)’s prompt to ask the LLM to consider that 135

a question and a response should be in the same 136

language. The exact wording is listed in Figure 5 137

in Appendix B.1. 138

Language consistency Our early manual inspec- 139

tion suggests that GPT-3.5 does not always obey 140

the language requirement imposed. We show an 141

example in Appendix B.2 Table 2, where the LLM 142

response is in a language different from the query 143

but scored highly. Hence, we run language identi- 144

fication and force-set a score to 0 if the response 145

language is incorrect. We use the fastText frame- 146

work (Joulin et al., 2017) with a recent checkpoint 147

(Burchell et al., 2023). The final score of a re- 148

sponse can be represented as a product of GPT’s 149

quality score and a binary language identification 150

score = eval_score × language_id. The total 151

score thus ranges between 0 and 150. 152

LLM-human agreement Finally, we confirm 153

strong LLM-human agreement in evaluation. We 154

pick a total of 600 outputs from 12 models to cover 155

multilingual and monolingual systems and invite 156

human evaluators to score each sample with an in- 157

struction similar to the LLM-as-a-judge prompt, 158

with details in Appendix B.3 and Table 3. Four lan- 159

guages, English, Spanish, Bulgarian, and Chinese, 160

are human-evaluated. We obtain very high system- 161

level Pearson correlation coefficients of 0.9225, 162

0.9683, 0.9205, and 0.8685, respectively, between 163

GPT-3.5 and human evaluation scores. This indi- 164

cates the reliability of LLM-as-a-judge in our study 165

to draw meaningful conclusions. 166

3 Performance and Discussions 167

3.1 Model sizes 168

Results from LoRA fine-tuning of BLOOM at dif- 169

ferent sizes are shown in Figure 1. At smaller 170

sizes, multilingual ( ) and monolingual ( ) 171

instruction-tuning attain similar performance, and 172

at larger sizes, multilingual models are generally 173

better except for English. We observe similar 174

trends for Pythia, placed in Appendix C.1 Fig- 175

ure 7 due to space constraints. Moving on to full- 176
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Figure 1: LoRA with BLOOM at different sizes. Caption:
language; y-axis: evaluation score; x-axis: model size (B).

parameter fine-tuning of BLOOM in Figure 2, we177

discover that at relatively small (<1.7B) or large178

sizes (7B), monolingual models are generally better179

than multilingual models for individual languages.180

These observations suggest that multilingualism181

works well with LoRA, but separate monolin-182

gual tuning might be better with FFT. Overall,183

the LLMs’ performance is correlated with sizes184

regardless of the tuning technique as anticipated.185

3.2 Budget-efficient tuning186

To aid our exploration of resource-constrained in-187

struction tuning, in the aforementioned Figures 1,188

2, and 7 (in appendix C.1), we add the comparison189

plots of two budget data conditions: using English-190

tuned models to respond to instructions in other191

languages ( ), as well as instruction-tuning with192

downsampled multilingual data ( ).193

When using a single English model for all lan-194

guages, its efficacy depends on the intended lan-195

guage/script’s closeness to English: Spanish and196

French can maintain reasonable scores, but Bul-197

garian, Russian, and Chinese record very low per-198

formance. The only exception is BLOOM FFT in199

Figure 2, where the model is not too behind when200

operating in Chinese. Interestingly, BLOOM with201

LoRA sees a performance spike at 1.1B for non-202
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Figure 2: FFT with BLOOM at different sizes. Caption:
language; y-axis: evaluation score; x-axis: model size (B).
Same legend as Figure 1.

English tests but does not stand out in the English 203

test. At this specific size, it learned to follow multi- 204

lingual instructions despite being tuned in English, 205

without losing much multilingual transfer ability 206

from pre-training, 207

In contrast, using the same computational bud- 208

get, downsampled multilingual tuning is signifi- 209

cantly more robust across all test languages. They 210

sometimes achieve on-par performance with mono- 211

lingual tuning in individual languages. This means 212

that to support several languages with limited 213

resources, the best practice is to train on small 214

multilingual data even created with machine 215

translation instead of the full English data. 216

Nonetheless, if the budget permits, training with 217

the full multilingual data is still slightly better. 218

3.3 Unseen languages 219

Further in Figure 3, we look at BLOOM models 220

which underwent LoRA or FFT, but were subse- 221

quently used to respond in unseen languages at 222

inference time. English-tuned LLMs behave differ- 223

ently for LoRA and FFT. With the former, they are 224

nowhere near multilingual tuned models, but with 225

the latter, we see close or even better performance. 226

It thus implies that full-parameter tuning can even 227

lift performance for languages not present in the 228

instruction dataset. However, FFT results on Nor- 229
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Figure 3: LoRA and FFT with BLOOM at different sizes
and tested on unseen languages. Caption: tuning method and
language; y-axis: evaluation score; x-axis: model size (B).

wegian could be an outlier given its comparably low230

scores. Considering multilingual instruction tuning,231

we notice a pattern opposed to that on languages232

seen during training—learning on the downsam-233

pled data is superior to ingesting the full mixed234

data. We conclude that it is important to not over-235

fit to instruction languages if unseen languages236

are expected in downstream tasks.237

3.4 Language robustness238

We review each model and data recipe’s scores be-239

fore and after adding the language identification to240

isolate the impact of an LLM’s language robustness241

from its responses’ inherent “quality” (regardless242

of the language). We compute the differences in243

GPT evaluation scores before and after applying the244

language identification module. A (big) difference245

means that the model produces reasonable answers246

in an undesired language. We report the average of247

the score differences across all six test languages248

seen during tuning, displayed in Figure 4.249

English-only models are the least robust, as250

their score differences are greatly above other251

techniques. With LoRA, full multilingual tuning252

records the smallest performance drop; with FFT,253

monolingual tuning is favoured. The insights on254

language robustness are corroborated by our early255

findings on overall performance in Section 3.1: su-256

perior results are obtained when using multilin-257

gual tuning with LoRA and monolingual tuning258

with full-parameter tuning. Nonetheless, mono-259

lingual and multilingual tuning are not too far apart;260

specifically for BLOOM with LoRA, language ro-261

bustness does not improve as the model gets larger.262
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monolingual
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Figure 4: Evaluation score change before and after language
identification, averaged over six seen test languages, at dif-
ferent LLM sizes. Caption: tuning method and base model;
y-axis: evaluation score difference; x-axis: model size (B).

3.5 Model families 263

Finally, we experiment with base LLMs from dif- 264

ferent families with sizes of around 7 billion. In 265

Appendix C.2 Figure 8, we plot the evaluation 266

scores for multilingual, downsampled multilingual, 267

and monolingual LoRA tuning on six languages. 268

Generally, LLaMA and OpenLLaMA have better 269

performance than BLOOM and Pythia potentially 270

because they have pre-training data that is an or- 271

der of magnitude larger. Also Bulgarian, Russian, 272

and Chinese see lower scores than English, again 273

presumably due to the language distribution in the 274

pre-training data. 275

Delving into the comparison between monolin- 276

gual and multilingual instruction tuning, we find 277

that out of 30 cases across six languages and five 278

LLMs, monolingual tuning is ahead in merely two 279

cases: LLaMA tested in Russian and Chinese. 280

The cost-efficient multilingual downsampled tun- 281

ing leads in four cases: two in French and two in 282

Russian. In other situations, multilingual training 283

is on par if not better. The outcome of tuning LLMs 284

from several families confirms that multilingual 285

fine-tuning performs better with LoRA. 286

4 Conclusion 287

This paper presents a study of instruction tuning of 288

large language models in different language con- 289

texts. Our study in a resource-controlled setting 290

suggests that multilingual tuning offers more ben- 291

efits compared to monolingual tuning. We find 292

that multilingual tuning on a downsampled dataset 293

achieves better robustness on unseen languages. 294
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Limitations295

We mostly compared LLMs with around 7B param-296

eters due to the limitation of computing resources.297

The best checkpoint for each fine-tuning condition298

is selected based on cross-entropy, but there is no299

guarantee that this leads to the best model perfor-300

mance on the downstream task.301

To manage the budget for human translation and302

evaluation, we consider eight languages (six seen303

and two unseen languages during instruction tun-304

ing) to translate and sample 50 instances for evalu-305

ation. The training data for non-English languages306

are obtained via machine translation, which intro-307

duces errors, affects response fluency, and might308

alter the nature of some tasks such as grammatical309

error correction and code generation.310

Ethics Statement311

The dataset we translated and generated does not312

contain private or sensitive information. Similar to313

other research on large language models, there is314

no definitive way for us to prevent the instruction-315

tuned models from generating inappropriate con-316

tent. However, we see minimal such risks associ-317

ated with our project, as neither our models nor gen-318

erated contents are intended for public consump-319

tion. Human evaluators did not report inappropriate320

content generated by the models.321
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman402
Castagné, Alexandra Sasha Luccioni, François Yvon,403
Matthias Gallé, et al. 2022. BLOOM: A 176B-404
parameter open-access multilingual language model.405
arXiv preprint.406

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann407
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,408
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:409
An instruction-following LLaMA model. GitHub.410

Together Computer. 2023. RedPajama: An open source411
recipe to reproduce LLaMA training dataset. GitHub.412

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier413
Martinet, Marie-Anne Lachaux, Timothée Lacroix,414
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal415
Azhar, et al. 2023. LLaMA: Open and efficient foun-416
dation language models. arXiv preprint.417

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa418
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh419
Hajishirzi. 2023. Self-instruct: Aligning language420
models with self-generated instructions. In ACL.421

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin422
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-423
drew M Dai, and Quoc V Le. 2022. Finetuned lan-424
guage models are zero-shot learners. In Proceedings425
of ICLR.426

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,427
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and428
Colin Raffel. 2021. mT5: A massively multilingual429
pre-trained text-to-text transformer. In Proceedings430
of NAACL.431

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,432
Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong433
Yan, Fan Yang, et al. 2023. Baichuan 2: Open large-434
scale language models. arXiv preprint.435

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan436
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,437
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.438
Judging LLM-as-a-judge with MT-Bench and Chat-439
bot Arena. arXiv preprint.440

A Experimental Setup Details 441

A.1 Hyperparameters 442

Table 1 shows the hyperparameter configurations 443

of LoRA and full-parameter fine-tuning. LoRA is 444

a parameter-efficient training method where, for 445

a big matrix, only low-rank matrices are trained 446

and patched to it. In our case, we apply it to the 447

attention matrices (key, query, value), and use rank 448

8, dropout 0.05, and scaling factor 16 throughout. 449

We use a batch size of 128, set a fixed training 450

budget of 5 epochs with a learning rate of 3e-4, 451

and select the best checkpoint based on validation 452

cross-entropy. For full-parameter fine-tuning, we 453

follow the configurations of Alpaca by training for 454

3 epochs with a learning rate of 2e-5, a warm-up 455

ratio of 0.03, and a batch size of 256. 456

Since we use a range of models of different sizes, 457

we estimate computation time based on 7-billion 458

parameter models which are the second largest we 459

fine-tuned. LoRA tuning takes around 15 hours on 460

4 GeForce RTX 3090 GPUs, using CPU memory 461

offloading and distributed training. Full-parameter 462

fine-tuning is performed on 4 AMD MI250x GPUs 463

(regarded as 8 GPUs with 64G memory each at 464

runtime) with model parallelism, and it requires 465

around 24 hours to finish. Given the high computa- 466

tional cost of model fine-tuning, we conducted all 467

fine-tuning experiments once. 468

Method Hyperparameter Value

LoRA

LoRA modules query, key, value
rank 8
scaling factor 16
dropout 0.05

learning rate 3e−4

global batch size 128
epochs 5

Full-parameter
learning rate 2e−5

global batch size 256
epochs 3

Table 1: Hyperparameter configurations of LoRA and full-
parameter fine-tuning

A.2 Description of LLMs 469

Due to the space constraint, we place a detailed 470

description of LLMs used in our research here. All 471

the models used in this paper are publicly available 472

and free for academic purposes. 473

Baichuan-2 It is a multilingual LLM trained on 474

2.6 trillion tokens. While its data composition does 475

not outline the languages included, the LLM per- 476
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forms strongly on tasks in English and Chinese.477

We use its 7B checkpoint.478

BLOOM It is trained on the ROOTS dataset479

(Laurençon et al., 2022) containing 350 billion to-480

kens in 46 natural languages spanning 9 language481

families and 12 programming languages. The LLM482

has English, Chinese, French, and Spanish as the483

major components. We use the checkpoints from484

560M to 7.1B for experiments.485

LLaMA It has been trained on data mainly in486

English with some in European languages in Latin487

and Cyrillic scripts. It could also support other488

languages with byte-BPE tokenization. We use its489

7B model which has seen 1 trillion tokens.490

OpenLLaMA This is an open-source reproduc-491

tion of LLaMA, trained on the RedPajama dataset492

(Together Computer, 2023), which is close to493

LLaMA’s data composition. Similarly, we use the494

7B version.495

Pythia It is trained on the Pile (Gao et al., 2020)496

which has nearly 300 billion tokens, and is intended497

to be English-dominant. We experiment with the498

full range from 70M to 12B.499

B Evaluation Details500

B.1 Prompt template for LLM-as-a-judge501

Please act as an impartial judge and evaluate
the quality of the response provided by an AI
assistant to the user instruction displayed
below. Your evaluation should consider factors
such as helpfulness, relevance, accuracy, depth,
creativity, and level of detail. It is also
required that the response is in the same language
as the instruction. Begin your evaluation with a
short explanation. Be as objective as possible.
After providing your explanation, please rate
the response on a scale of 1 to 3 by strictly
following this format:“[[rating]]”, for example:
“Rating: [[2]]”.

[User instruction]
${instruction}

[AI assistant’s response]
${response}

Figure 5: Prompt template for requesting a response evaluation
from GPT-3.5, where ${instruction} and ${response} are
replaced with questions and model responses.

B.2 A case of language inconsistency502

Table 2 demonstrates an example, where the re-503

sponse from an instruction-tuned model does not504

match the language of the query. In this case, the 505

judge, GPT-3.5 does not penalize this language 506

inconsistency despite being asked to do so in the 507

evaluation prompt. This makes extra language iden- 508

tification essential. 509

Instruction: 你好！你能帮我计划婚礼吗？ (English:
Hello! Can you help me plan my wedding?)

Response: Sure, I would be happy to help you plan your
wedding. Can you tell me a little bit more about your wedding
plans and what you are looking for in a wedding planner?

GPT-3.5 explanation: The AI assistant’s response shows a
good understanding of the user’s request and offers assistance.
It asks the user for more information about their wedding
plans, which shows that it is trying to gather relevant details to
provide appropriate help. The response is polite and friendly,
which contributes to a positive user experience.

GPT-3.5 score: 3

Table 2: An example of instruction-response language incon-
sistency, where the question is in Chinese but the response is
in English, which GPT-3.5 fails to account for in its evalua-
tion.

B.3 Human evaluation details 510

We invited human evaluators who are fluent or 511

native in the language of the instructions and re- 512

sponses to score in total outputs from 12 models 513

fine-tuned with LoRA. We attach the instruction 514

given to human evaluators in Figure 6. The sys- 515

tems’ responses for the same instruction are shuf- 516

fled but grouped together to provide a context of 517

the overall quality. The human evaluators are asked 518

to assign each response a score. We list the model 519

details, as well as their aggregated GPT and human 520

evaluation scores in Table 3. 521

Please evaluate the quality of the responses
provided by AI assistants to the questions in your
respective tab. Most questions are open-ended,
meaning there is no strictly correct or best
answer. Please make a judgment based on your
perspective of quality. You could consider
factors such as helpfulness, relevance, accuracy,
depth, creativity, and level of detail. It
is also required that the response is in the
same language as the question unless otherwise
specified by the instruction itself. Please rate
the response on a scale of 0 to 3. If you feel
indecisive, you can use an increment of 0.5. You
can give a score of 0 for “incorrect language, not
readable, content cannot be understood”; give a
score of 1 for “a relatively bad response”; give
a score of 2 for “a medium response”; give a
score of 3 for “a relatively good response”.

Figure 6: Instructions for human evaluators.
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LLM Size
(B)

English Spanish Bulgarian Chinese

GPT-3.5 human GPT-3.5 human GPT-3.5 human GPT-3.5 human

Multi-
lingual

BLOOM 1.1 95.5 93.0 102.0 98.0 58.5 54.5 89.5 97.5
BLOOM 3 115.5 105.0 110.0 103.5 83.0 59.0 104.0 102.0
BLOOM 7.1 113.0 119.5 122.0 116.5 90.5 67.0 119.5 117.5
LLaMA 7 138.0 131.5 140.5 123.0 119.5 112.0 95.0 89.0

OpenLLaMA 7 133.0 130.0 122.0 112.5 110.0 89.0 80.0 67.5
Pythia 6.9 120.5 117.0 119.0 107.5 99.5 75.0 98.5 87.5

Mono-
lingual

BLOOM 1.1 89.0 81.0 92.5 86.0 53.0 49.0 82.0 75.5
BLOOM 3 112.5 103.5 106.0 99.5 71.0 64.0 111.5 96.0
BLOOM 7.1 122.0 111.5 116.5 111.5 79.5 73.5 105.0 106.0
LLaMA 7 133.5 121.0 127.0 115.0 120.5 117.5 118.5 96.5

OpenLLaMA 7 122.0 124.0 113.5 108.0 105.5 87.0 79.5 66.5
Pythia 6.9 115.0 116.0 100.5 97.5 87.0 72.5 80.0 72.0

Pearson correlation coefficient 0.9225 0.9683 0.9205 0.8685

Table 3: Human evaluation scores and correlation with GPT-3.5 scores at the system level. Models are fine-tuned with LoRA.

C Result Details522

C.1 Experiments on LoRA with Pythia523

Apart from LoRA fine-tuning on BLOOM models,524

we conduct the same investigation on Pythia at525

different sizes. We observe the same pattern as we526

find on BLOOM models explained in Section 3.1.527

The plots for the six languages are included as528

Figure 7.529
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Figure 7: LoRA fine-tuning on Pythia. Caption: language
generated; y-axis: evaluation score; x-axis: model size (B) on
a logarithmic scale.

C.2 Experiments LLM families 530

In Figure 8 we attach the bar plots of LoRA fine- 531

tuning with LLMs at 7B from different families. 532
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Figure 8: LoRA fine-tuning on 7B LLMs from different families. Caption: language generated; y-axis: evaluation score; x-axis:
model family.

D Related Work533

Recent years have witnessed rapid development in534

large language models, for example, the renowned535

closed-source GPT family (Brown et al., 2020)536

as well as open-source models like LLaMA (Tou-537

vron et al., 2023) and OpenLLaMA (Geng and538

Liu, 2023). In addition to English-centric models,539

multilingual language models have also been de-540

signed such that multiple languages can be dealt541

with by a single LLM, reducing operational costs.542

These models such as mT5 (Xue et al., 2021)543

and BLOOM (Scao et al., 2022) have effectively544

demonstrated multilingual understanding ability.545

While foundational LLMs are trained to com-546

plete input texts, a new paradigm named instruc-547

tion tuning can adjust such models to respond in548

a question-answering style (Wei et al., 2022; Sanh549

et al., 2022). It continually trains an LLM by for-550

matting a specific task as a natural language query551

and the task output as a text response. Longpre552

et al. (2023) investigated the factors of effective553

instruction tuning such as tasks and methods. Com-554

bining the capabilities of multilingual models with555

instruction fine-tuning opens up new opportuni-556

ties for instruction following and content gener-557

ation in multilingual scenarios. Li et al. (2023)558

showcased that multilingual instruction fine-tuning 559

with translation instructions can improve the perfor- 560

mance of machine translation. Muennighoff et al. 561

(2023) found multilingual instruction fine-tuning 562

gained better performance on natural language 563

tasks than English-only fine-tuning. They also 564

found that using low-cost machine translations is 565

superior to tuning with human-written non-English 566

prompts on multitask natural language understand- 567

ing. Our study takes one step further by utilizing 568

machine translation to produce parallel instruction 569

data. This enables controlled settings for empiri- 570

cal analysis of monolingual language-specific and 571

multilingual instruction tuning of LLMs. 572
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