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Abstract

Blind image deblurring (BID) has been extensively studied in computer vision1

and adjacent fields. Modern methods for BID can be grouped into two categories:2

single-instance methods that deal with individual instances using statistical infer-3

ence and numerical optimization, and data-driven methods that train deep-learning4

models to deblur future instances directly. Data-driven methods can be free from5

the difficulty in deriving accurate blur models, but are fundamentally limited by6

the diversity and quality of the training data—collecting sufficiently expressive7

and realistic training data is a standing challenge. In this paper, we focus on8

single-instance methods that remain competitive and indispensable, and address the9

challenging setting unknown kernel size and substantial noise, failing state-of-10

the-art (SOTA) methods. We propose a practical BID method that is stable against11

both, the first of its kind. Also, we show that our method, a non-data-driven12

method, can perform on par with SOTA data-driven methods on similar data the13

latter are trained on, and can perform consistently better on novel data. This is an14

extended abstract based on a recently published journal article; we will point to our15

full article with all the details in the camera version.16

1 Introduction17

Image blur is mostly caused by optical blur and motion blur [10–17]. It is often coupled with18

noticeable sensory noise, e.g. when one images fast-moving objects in low-light environments. Thus,19

in the simplest form, image blur is often modeled as y = k ∗ x+ n, where y is the observed blurry20

and noisy image, and k, x, n are the blur kernel, clean image, and additive sensory noise, respectively.21

The notation ∗ here is linear convolution, which encodes the assumption that the blur effect is uniform22

over the spatial domain. Given y and k, estimating x is called (non-blind) deconvolution, a linear23

inverse problem that is relatively easy to solve. However, in practice, k—including its size and24

numerical value—is often unavailable. This leads to blind deconvolution (BD), where k and x are25

estimated together from y. Over the past decades, a rich set of ideas have been developed to tackle26

BID and BD, evolving from single-instance methods that rely on analytical processing or statistical27

inference and numerical optimization to solve one instance each time, to modern data-driven methods28

that aim to train deep learning (DL) models to solve all future instances. The sequence of landmark29

review articles [11, 13–16, 18] chronicle these developments.30

In this paper, we focus on single-instance methods for BID. Although recent data-driven methods31

have shown great promise, as statistical learning methods, their generalizability is intrinsically limited32

by the availability and diversity of training data [16, 18]. Therefore, single-instance methods will33

likely be a mainstay alongside data-driven methods for practical BID.34

Prior single-instance methods for BID seem vague on three critical issues toward practicality (see35

Fig. 1 also): (1) unknown kernel (k) size: Except for methods that directly estimate x only (e.g.,36
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Figure 1: Deblurring results of several SOTA single-instance and data-driven BID methods on a
real-world blurry image taken from [1]. The 6 single-instance methods are: Sun13 [2], Pan16 [3],
Xu13 [4], Dong17 [5], SelfDeblur [6], and our method proposed in this paper; 3 data-driven methods
are: SRN [7], DeblurGAN-v2 [8], Zhang20 [9], for which we directly take their pretrained models.

the inverse filtering approach to BD [19–21, 17]), a nearly-optimal estimate of the kernel size is37

needed [22]. But it is practically unclear how such an accurate estimate can be reliably obtained,38

and how sensitive the existing methods are to kernel-size misspecification; (2) substantial noise39

(n): Sensory noise after convolution may still be substantial, while most previous methods assume40

noise-free or low-noise settings in their evaluations [23–25, 5, 26, 27]; and (3) model stability: The41

image may be blurry only, noisy only, or both. Whatever the case, in practice, an ideal BID method42

should work seamlessly across the different regimes. To quickly confirm these practicality issues,43

we pick 6 state-of-the-art (SOTA) single-instance BID methods (plus 3 representative data-driven44

methods by taking their pretrained models), and test them on a real-world image taken in a low-light45

setting, with unknown kernel size and unknown noise type/level. We specify a kernel size that is half46

of the image size in each dimension to provide a loose upper bound. Fig. 1 shows how miserably47

these single-instance methods can fail.48

This paper aims to address these practicality issues. We follow the major modeling ideas in the49

statistical inference and optimization approach to BID, but parametrize both the kernel and the image50

using trainable structured deep neural networks (DNNs). This idea has recently been independently51

introduced to BID by [28], [6] (SelfDeblur), and [29], inspired by the remarkable success of deep52

image prior (DIP) [30] and its variants [31, 32] in solving a variety of inverse problems in computer53

vision and imaging [33, 34, 32, 35, 36] and beyond [37, 38]. Our key contributions include (1)54

identifying three practicality issues of SOTA single-instance BID methods, including SelfDeblur.55

As far as we are aware, this is the first time these three practicality issues have been discussed and56

addressed together in the BID literature. BID with these three issues is a more difficult but practical57

version than what SelfDeblur and most classical BID methods target. This is also the first time58

both classical and SOTA data-driven BID methods are systematically evaluated in the simultaneous59

presence of the three issues; (2) revamping SelfDeblur with six crucial modifications to address the60

three issues. In Section 2, we sketch our modifications, as well as the rationale and intuitions behind61

them. Figuring out these modifications and their right combination is a highly nontrivial task, making62

our algorithm pipeline sufficiently different from SelfDeblur. (3) systematic evaluation of our63

method against SOTA single-instance BID methods on synthetic SOTA datasets, and against64

SOTA data-driven BID methods on real world datasets, confirming the superior effectiveness and65

practicality of our method.66

2 Our method to address the three practicality issues67

SelfDeblur Deep image prior (DIP) hypothesizes that natural images, or, in general, natural visual68

objects, can be parameterized as the output of trainable DNNs [30]. Specifically, any visual object of69

interest, O, is written as O = Gθ(z): Gθ is a structured DNN (often convolutional DNN to have a70
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bias toward natural visual structures) that can be thought of as a generator, and z is the seed (i.e., input)71

to Gθ. Often, Gθ is trainable and z is randomly initialized and then fixed. So, when solving visual72

inverse problems using the typical regularized data-fitting formulation: minO ℓ(y, f(O)) + λR(O),73

we can plug in the DIP parametrization in place of O: minθ ℓ(y, f ◦Gθ(z)) + λR ◦ Gθ(z),74

where the regularizer R that encodes other priors is sometimes omitted. This simple idea has75

fueled surprisingly competitive methods for solving numerous computational vision and imaging76

tasks [30, 31, 39, 28, 29, 34, 32, 35, 40, 41, 33, 42–46, 36]. When applying the DIP idea to BID, due77

to the asymmetric roles played by the kernel k and the image x, it is natural to parameterize them78

separately following the Double-DIP idea [34] to obtain: minθk,θx ℓ(y, Gθk
(zk) ∗Gθx(zx)) +79

λkRk ◦Gθk
(zk)+λxRx ◦Gθx(zx). This is the exact recipe followed by two previous works [28, 6].80

SelfDeblur [6] takes the form81

min
θk,θx

∥y −Gθk
(zk) ∗Gθx(zx)∥

2
2 + λx∥∇xGθx(zx)∥1 (1)

where Gθk
is a 2-layer MLP with a softmax final activation, and Gθx is a convolutional. U-Net82

with sigmoid final activation. SelfDeblur works well only when y is blurry only and the kernel83

size is exactly specified. When there is considerable noise or the kernel-size is overspecified,84

SelfDeblur breaks down abruptly.85

Algorithm 1 BID with unknown kernel size and substantial noise (uniform kernel)
Input: blurry and noisy image y, kernel size nk × mk (default: ⌈ny/2⌉ × ⌈my/2⌉), random

seed zx for x, randomly initialized network weights θ
(0)
k and θ

(0)
x , optimal image estimate

x∗ = G
θ
(0)
x

(zx), regularization parameter λx, iteration index i = 1, WMV-ES window size
W = 100, WMV-ES patience number P = 200 (high noise) and P = 500 (low noise), WMV-ES
empty queue Q, WMV-ES VARmin =∞ (VAR: variance)

Output: estimated image x̂
1: while not stopped do
2: take an ADAM step to optimize Eq. (2) and obtain θ

(i)
k , θ(i)

x , and x(i) = G
θ
(i)
x
(zx)

3: push x(i) to Q, pop Q if |Q| > W
4: if |Q| = W then
5: compute VAR of elements inside Q
6: if VAR < VARmin then
7: VARmin ← VAR, x∗ ← x(i)

8: end if
9: end if

10: if VARmin does not decrease over P iterations then
11: exit and return x∗

12: end if
13: i = i+ 1
14: end while
15: extract x̂ of size ny ×my from x∗ using the sliding-window method

Six crucial modifications Given the blurry and noisy image y ∈ Rny×my , we perform the86

following six steps: (1) we specify the kernel size as nk × mk = ⌈ny/2⌉ × ⌈my/2⌉ by default87

when the kernel size is unknown—surprisingly this aggressive over-specification does not hurt DIP88

and allows us to deal with the issue of unknown kernel size, and as given values when an estimate89

is available; (2) according to the property of linear convolution, we set the size of the image x90

as (ny + nk − 1) × (my +mk − 1); (3) we choose ℓ as the Huber loss (with δ = 0.05) and the91

scale-invariant ℓ1/ℓ2 regularizer to promote sparsity in the gradient domain. Both are shown to92

promote robustness to unknown noise type/level and reduce the sensitivity of λx to the noise level; (4)93

we choose the DIP model for the image, and the SIREN model [35] for the kernel—SIREN learns the94

typical high frequencies in the kernel better than DIP itself; (5) we employ the WMV-ES method [47]95

to resolve the overfitting issue due to the potential substantial noise—SelfDeblur does not consider96

this as they are evaluated only with very low noise; (6) we implement a sliding-window-based97

detection method to locate the estimated x over the over-specified image region—SelfDeblur does a98

simple central cropping. The size overspecification causes a shift symmetry between the kernel and99

the image, and the true image is not necessarily centered on the image region. Our complete BID100

pipeline is summarized in Algorithm 1; our double-DIP formulation reads101

min
θk,θx

ℓHuber(y, (D ◦Kθk
) ∗Gθx(zx)) + λx∥∇xGθx(zx)∥1/∥∇xGθx(zx)∥2, (2)
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where Kθk
is a 2-layer MLP with 2 coordinate inputs and sigmoid output activation, D is a discretiza-102

tion operator that creates a discrete image out of a continuous one, and Gθx is a convolutional U-Net103

with sigmoid final activation.104

3 Experiments105

We focus our comparison with SelfDeblur, and 3 SOTA data-driven methods, SRN [7], DeblurGAN-106

v2 [8], and ZHANG20 [9], on SOTA NTIRE2020 and RealBlur BID datasets. Note that these107

data-driven methods directly predict sharp images from blurry images and hence bypass the problems108

caused by unknown kernel size and even inaccurate blur modeling [16]. Both NTIRE2020 and

Table 1: Quantitative comparison of deblurring results on the 125 selected real-world images. For
PSNR, SSIM, and VIF, higher the better. For LPIPS, lower the better. We report in the form of “mean
(standard deviation)" (over the 125 images) for each method/metric combination. For each line, the
first and second best numbers (according to the means) are marked in RED and GREEN, respectively.

SRN DeblurGAN-v2 ZHANG20 SelfDeblur Ours

S1 PSNR 30.1 (1.159) 31.0 (1.149) 25.2 (1.188) 28.2 (1.198) 30.8 (1.168)
SSIM 0.871 (0.0679) 0.883 (0.0609) 0.793 (0.0724) 0.832 (0.0734) 0.873(0.0618)
VIF 0.784 (0.0686) 0.801 (0.0647) 0.705 (0.0705) 0.725 (0.0727) 0.796 (0.0651)

LPIPS 0.972 (0.0966) 0.827 (0.08869) 1.025 (0.104) 0.987 (0.101) 0.821 (0.0879)

S2 PSNR 27.1 (1.256) 27.4 (1.352) 23.4 (1.449) 25.9 (1.471) 28.7 (1.236)
SSIM 0.851 (0.0744) 0.859 (0.0695) 0.789 (0.0753) 0.821 (0.0758) 0.870 (0.0681)
VIF 0.772 (0.0778) 0.783 (0.0758) 0.699 (0.0787) 0.713 (0.0777) 0.781 (0.0767)

LPIPS 1.021 (0.116) 0.901 (0.0985) 1.076 (0.108) 1.001 (0.111) 0.811 (0.0947)

S3 PSNR 28.3 (1.197) 28.7 (1.139) 25.2 (1.236) 26.2 (1.227) 29.4 (1.144)
SSIM 0.866 (0.0647) 0.867 (0.0608) 0.803 (0.0658) 0.827 (0.0637) 0.872 (0.0589)
VIF 0.761 (0.0772) 0.787 (0.0727) 0.701 (0.0766) 0.731 (0.0776) 0.780 (0.0679)

LPIPS 1.008 (0.0985) 0.869 (0.0936) 1.076 (0.107) 0.985 (0.110) 0.839 (0.0911)

S4 PSNR 26.7 (1.014) 27.1 (0.985) 23.3 (1.043) 25.8 (1.055) 28.5 (0.947)
SSIM 0.849 (0.0542) 0.851 (0.0498) 0.780 (0.0567) 0.812 (0.0578) 0.861 (0.0481)
VIF 0.756 (0.0621) 0.767 (0.0592) 0.687 (0.0663) 0.721 (0.0674) 0.776 (0.0574)

LPIPS 1.015 (0.0941) 0.925 (0.0862) 1.050 (0.0927) 0.996 (0.0674) 0.893 (0.0848)

S5 PSNR 28.6 (1.352) 28.7 (1.314) 24.7 (1.410) 26.4 (1.400) 29.2 (1.284)
SSIM 0.846 (0.0754) 0.855 (0.0694) 0.781 (0.0762) 0.818 (0.0771) 0.867 (0.0674)
VIF 0.756 (0.0756) 0.771 (0.0754) 0.692 (0.0784) 0.710 (0.0793) 0.776 (0.0761)

LPIPS 1.012 (0.1093) 0.874 (0.1085) 1.065 (0.1141) 0.992 (0.1149) 0.856 (0.0945)

109
RealBlur have their own strengths and limitations: images in NTIRE2020 may contain multiple110

motions, but are captured in well-lit environments; RealBlur covers many dark scenes, but the111

scenes are static and relative motions are caused only by camera shakes. We select 125 representative,112

visually challenging images from the two datasets: for NTIRE 2020, we choose the most blurry113

frame from each folder that contains a sequence of consecutive frames; similarly, for RealBlur,114

we pick the most blurry from images about the same scene. The 125 images are grouped into 5115

scenarios—25 images each: (S1) bright scene with high depth contrast; (S2) dark scene with high116

depth contrast; (S3) bright scene with low depth contrast; (S4) dark scene with low depth contrast;117

(S5) scene with high depth contrast and high brightness contrast.118

Table 1 summarizes the quantitative results over the 125 selected images using the metrics: PSNR,119

SSIM, VIF, and LPIPS. Our method wins in most cases, followed by GAN-based DeblurGAN-v2. In120

fact, they are the top two in all cases. DeblurGAN-v2 leads our method on S1 by all metrics except for121

LPIPS, and on S2 and S3 only by VIF. This is likely because S1 is sampled entirely from NTIRE2020122

that consists of bright scenes only, similar to the GoPro dataset that DeblurGAN-v2 is trained on;123

only 10 out of 25 images from S3 are from NTIRE2020. On S2, S4, and S5 where each image consists124

of part of dark scenes, our method is a clear winner. This can be explained by the emphasis of the125

RealBlur dataset on dark scenes that have different distributions than GoPro that only includes126

bright scenes. It is remarkable that our method, a non-data-driven method, can performs on127

par with SOTA data-driven methods on similar data the latter are trained on, and can perform128

consistently better on novel data. The performance discrepancy of DeblurGAN-v2 on different129

scenarios again underscores how data-driven methods can be limited by training data, although overall130

DeblurGAN-v2 indeed shows reasonable generalizability to the novel dataset RealDeblur.131

Numerous other details, comparisons, and analyses can be found in the full-length version of the132

paper, which we will link to in the camera-ready version.133
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