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Abstract001

Fine-tuning large language models (LLMs) is002
prohibitively expensive in terms of computa-003
tional and memory costs. Low-rank Adap-004
tation (LoRA), as one of the most popular005
parameter-efficient fine-tuning (PEFT) meth-006
ods, offers a cost-effective alternative by ap-007
proximating the model changes ∆W ∈ Rm×n008
through the product of down-projection ma-009
trix A ∈ Rm×r and head matrix B ∈ Rr×n,010
where r ≪ min(m,n). In real-world scenar-011
ios, LLMs are fine-tuned on data from multiple012
domains to perform tasks across various fields,013
embodying multi-task learning (MTL). LoRA014
often underperforms in such complex scenar-015
ios. To enhance LoRA’s capability in multi-task016
learning, we propose R-LoRA, which incorpo-017
rates Multi-Head Randomization. Multi-Head018
Randomization diversifies the head matrices019
through Multi-Head Random Initialization and020
Multi-Head Dropout, enabling more efficient021
learning of task-specific features while main-022
taining shared knowledge representation. Ex-023
tensive experiments demonstrate that R-LoRA024
is better at capturing task-specific knowledge,025
thereby improving performance in multi-task026
scenarios.027

1 Introduction028

In recent years, large language models (LLMs)029

have manifested unprecedentedly superior per-030

formance in various natural language processing031

(NLP) tasks (Brown, 2020; Zhao et al., 2023;032

Chang et al., 2024). Due to its impressive capa-033

bilities in language understanding and generation,034

LLMs have gained extensive interest from both035

academia and industry. Despite their high general-036

izability, LLMs still require fine-tuning for specific037

domains or updating the knowledge base (Agiza038

et al., 2024; Xin et al., 2024).039

Supervised fine-tuning (SFT) is crucial for align-040

ing large language models (LLMs) with human041

instructions, which trains the model with a small 042

yet high-quality set of labeled data (Hu et al., 2021; 043

Xia et al., 2024). The vast number of parameters 044

in LLMs poses significant challenges regarding 045

computational efficiency and memory consump- 046

tion during full fine-tuning (FT), which updates all 047

parameters. 048

To address the issue of hardware requirements 049

for LLM adaptation, a solution called parameter ef- 050

ficient fine-tuning (PEFT) has been proposed (Han 051

et al., 2024). PEFT methods reduce VRAM us- 052

age of cached optimizer states by only optimiz- 053

ing a fraction of model parameters while keeping 054

the rest frozen. Various PEFT methods, such as 055

prefix-tuning(Li and Liang, 2021), p-tuning(Liu 056

et al., 2024c), IA3(Liu et al., 2022) and Low-rank 057

adaption(LoRA)(Hu et al., 2021), have been widely 058

studied. Among these methods, LoRA has emerged 059

as the mainstream alternative to full parameter fine- 060

tuning. Instead of updating the original parameter 061

matrix directly, LoRA approximates the updated 062

parameters using the product of two smaller matri- 063

ces. During inference, the output obtained from the 064

original parameter matrix is combined with the out- 065

put from the updated parameter matrices. However, 066

LoRA does not perform well in multi-task scenar- 067

ios, particularly in dealing with complex datasets. 068

Recent LoRA variants have improved multi-task 069

learning by employing multiple LoRA adapters, 070

including Multi-LoRA (Wang et al., 2023), LoRA- 071

MoE (Dou et al., 2023), and MoeLoRA (Liu et al., 072

2024a). We refer to this extended framework as 073

the Multi-Adapter LoRA architecture, which con- 074

sists of multiple down-projection matrices (A) and 075

their corresponding head matrices (B), enabling 076

task-specific adaptation through diverse parameter 077

sets. Notably, LoRA-MoE and MoeLoRA further 078

enhance this architecture by introducing a Mix- 079

ture of Experts (MoE) mechanism to aggregate 080

adapter outputs. Tian et al. (2024) observes that 081

in the Multi-Adapter LoRA architecture, the pa- 082
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Figure 1: Training architecture comparison. (a) Full parameter fine-tuning; (b) Vanilla LoRA; (c) Multi-Adapter
architecture; (d) Multi-Head/Asymmetric architecture.

rameters of the down-projection matrices A are083

relatively consistent, while the differences between084

the head matrices B are more pronounced, which085

aids in capturing task-specific knowledge. To lever-086

age this property, HydraLoRA (Tian et al., 2024)087

is proposed to feature an asymmetric architecture088

with one shared down-projection matrix A and mul-089

tiple task-specific head matrices B. Additionally,090

HydraLoRA also employs an MoE mechanism to091

aggregate the outputs of the head matrices. This092

design achieves a good balance between training093

performance and parameter efficiency. The math-094

ematical formalization of HydraLoRA is detailed095

in Section 2.2. In this work, we propose R-LoRA,096

which adopts HydraLoRA’s asymmetric architec-097

ture, explicitly defining it as a Multi-Head struc-098

ture, and introduce Multi-Head randomization to099

improve LLMs’ performance on multi-task learn-100

ing. Figure 1 illustrates the differences among the101

aforementioned structures.102

However, in the Multi-Head architecture, the pa-103

rameter similarity among head matrices remains104

high, hindering task-specific knowledge learning105

and slowing convergence speed. This is due to106

zero initialization of head matrices B, leading to107

similar update directions. To address this, we use108

multi-head randomization in R-LoRA, combining109

random initialization and multi-head dropout to di-110

versify starting points and inputs, thereby improv-111

ing task-specific learning. This approach enables112

LLMs to better learn task-specific knowledge by113

breaking the symmetry of initial parameters and114

diversifying optimization trajectories. Extensive115

experiments demonstrate the effectiveness of our116

proposed method. R-LoRA achieves significant im-117

provements in multi-task scenarios while delivering118

modest gains in single-task contexts, showcasing119

its adaptability across a variety of tasks. 120

2 Related Works 121

2.1 LoRA 122

Current LLMs generally follow a decoder-only 123

structure, characterized by a series of blocks, each 124

comprising two key components with residual con- 125

nections: a multi-head self-attention (MHA) layer 126

and a feed-forward network (FFN) (Vaswani, 2017). 127

These layers involve using dense learnable matri- 128

ces. 129

There is a need to adapt LLMs for specific tasks 130

or domains with limited resources. To achieve this, 131

low-rank adaptation (LoRA) (Hu et al., 2021), in- 132

spired by the concept of low intrinsic dimension- 133

ality in LLMs, decomposes the weight gradient 134

∆W into low-rank matrices, thereby reducing the 135

number of trainable parameters. Specifically, for a 136

dense weight matrix W ∈ Rm×n, LoRA employs 137

two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n, 138

to approximate the accumulated gradient updates 139

∆W. The rank r is chosen to be much smaller than 140

the minimum of d and k, effectively decreasing the 141

number of trainable parameters. Consequently, the 142

resulting weight matrix is expressed as W +BA, 143

and the output h for an input x through this updated 144

weight matrix is formulated as: 145

h = (W +∆W)x = Wx+BAx (1) 146

Normally matrix B is initialized with zeroes and 147

matrix A is initialized with Kaiming Uniform (He 148

et al., 2015) to ensure that the initial outputs are 149

consistent with the pre-trained model, thereby 150

avoiding the introduction of random disturbances. 151

Following LoRA, AdaLoRA (Zhang et al., 2023) 152

dynamically learns the rank size needed for LoRA 153
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Figure 2: Cosine similarity among head matrices. "Overall mean" represents the average similarity across all layers.

Figure 3: T-SNE analysis of head matrices

in each layer of the model. DeltaLoRA (Zi et al.,154

2023) updates the original weights of the model155

using parameters from adapter layers, enhancing156

LoRA’s representational capacity. LoSparse (Li157

et al., 2023a) incorporates LoRA to prevent prun-158

ing from eliminating too many expressive neurons.159

DoRA (Liu et al., 2024b) introduces a magnitude160

component to learn the scale of ∆W while utilizing161

the original AB as a direction component of ∆W .162

PiSSA (Meng et al., 2025) and LoRA-GA (Wang163

et al., 2024) have improved the convergence speed164

and performance of LoRA by refining its initializa-165

tion method. Their approaches focus on optimizing166

the initial parameter settings, which enhances the167

training dynamics and leads to more efficient and168

stable convergence.169

2.2 Multi-Head architecture170

MTL-LoRA (Yang et al., 2024) and Hy-171

draLoRA (Tian et al., 2024) are pioneering meth-172

ods that introduce the multi-head architecture into 173

LoRA. This architecture is characterized by a cen- 174

tral shared down-projection matrix A and multi- 175

ple distinct head matrices B, enabling efficient 176

and flexible adaptation across diverse tasks. As 177

shown in Figure 1, this architecture differentiates 178

task-specific information while effectively captur- 179

ing shared knowledge across various tasks. The 180

Multi-Head architecture can be formulated as: 181

W +∆W = W +

N∑
i=1

ωi ·BiA (2) 182

In HydraLoRA (Tian et al., 2024), the weights 183

wi are computed through the routing matrix Wr 184

and the softmax function. It can be formulated as: 185

ω = Softmax(Wrx) (3) 186

Normal routing matrix is initialized with Kaiming 187

Uniform (He et al., 2015). R-LoRA retains the 188
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same architecture as HydraLoRA, ensuring consis-189

tency in the routing mechanism and weight compu-190

tation.191

2.3 Dropout192

Dropout is a widely used technique to prevent over-193

fitting in deep networks by randomly deactivating194

units during training (Srivastava et al., 2014). This195

process samples from an exponential number of196

thinned networks, reducing unit co-adaptation and197

enhancing noise robustness. At test time, the full198

network is utilized, benefiting from the ensemble199

effect of the thinned networks. In our work, we200

adapt dropout to a novel context within the multi-201

head structure of R-LoRA. Specifically, we employ202

dropout to differentiate the inputs of the head ma-203

trices, ensuring that each head learns distinct and204

complementary representations.205

3 Motivation206

In this section, we analyze the parameter similarity207

between different head matrices in the Multi-Head208

LoRA architecture. To achieve our objectives, we209

focus on HydraLoRA (Tian et al., 2024) and use210

cosine similarity and the T-SNE method to observe211

the parameters of the head matrices. We fine-tune212

Qwen2.5-3B-Base (Qwen Team, 2024) with Hy-213

draLoRA (Tian et al., 2024) on five different tasks:214

Paraphrase Detection (QQP), Natural Language In-215

ference (QNLI) (Wang, 2018), Commonsense Rea-216

soning (SIQA) (Sap et al., 2019), Physical Com-217

monsense Reasoning (PIQA) (Bisk et al., 2020),218

and Math (GSM8K) (Cobbe et al., 2021). First,219

we flatten the head matrices into vectors and then220

calculate the cosine similarity between the vectors221

to obtain a similarity matrix. The average value222

of the matrix is regarded as the similarity of the223

head matrix corresponding to the parameter matrix.224

Additionally, we perform T-SNE analysis on all the225

head matrices.226

As shown in Figure 2 and Figure 3, the aver-227

age similarity between different head matrices still228

reaches around 80%. With such a high similar-229

ity, the knowledge learned between different head230

matrices is also quite similar, which hinders the231

learning of task-specific knowledge. To the best232

of our knowledge, this is due to the zero initial-233

ization of the head matrices and the shared A ma-234

trix. After receiving the outputs from shared down-235

projection matrix A, the outputs of the head matri-236

ces are highly similar in the early stages of training,237

Figure 4: Overview of the R-LoRA.

leading to highly similar update directions during 238

gradient updates. The differences in the updates 239

of the head matrices arise solely from the Kaiming 240

uniform initialization (He et al., 2015) of the router 241

matrix, which is insufficient. 242

Reserach Question 1: Is there a simple yet effec- 243

tive approach to differentiate head matrices such 244

that they capture distinct task-specific knowledge? 245

4 Method 246

In this work, we propose R-LoRA, which leverages 247

multi-head randomization to assist the model in 248

learning distinct knowledge. Multi-head random- 249

ization consists of two components: multi-head 250

dropout and random initialization. An overview of 251

R-LoRA is illustrated in Figure 4 252

Reserach Objective: To exploit randomization to 253

differentiate the head matrices, thereby facilitating 254

the convergence of their parameters to distinct re- 255

gions and enhancing the diversity among the head 256

matrices. 257

4.1 Multi-Head Dropout 258

Multi-Head LoRA architecture is characterized by 259

a shared down-projection matrix A and several 260

distinct head matrices B. In HydraLoRA (Tian 261

et al., 2024), the head matrices receive the same 262

output from the shared matrix A. According to 263

(Hayou et al., 2024) and (Tian et al., 2024), the 264

down-projection matrix A and the head matrix B 265

in LoRA play distinct roles. We hypothesize that 266

the down-projection matrix A is more inclined to 267

learn task-agnostic knowledge, capturing general 268

features applicable across tasks, while the head ma- 269

trices tend to specialize in task-specific knowledge, 270

enabling the model to differentiate and adapt to 271
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Method A Initialization B Initialization
LoRA U

(
−
√

3
din

,
√

3
din

)
0

HydraLoRA U
(
− 1

din
, 1
din

)
0

R-LoRA
4√dout√

γ ·N
(
0, 1

din

)
4√dout√

γ ·N
(
0, 1

dout

)
Table 1: Comparison of initialization.

the unique requirements of individual tasks. This272

division of roles enhances the model’s ability to273

balance generalization and specialization in multi-274

task learning scenarios. We propose employing275

multi-head dropout to differentiate the outputs of276

down-projection matrix A, thereby ensuring that277

the head matrices produce distinct outputs. The278

framework of Multi-Head dropout and R-LoRA is279

shown in Figure 4. Our architecture is similar to280

HydraLoRA (Tian et al., 2024), but it introduces281

multi-head dropout. The input, after being pro-282

cessed by the down-projection matrix A, obtains a283

task-agnostic representation. Multi-head dropout284

diversifies this representation, enabling the model285

to learn task-specific knowledge from multiple per-286

spectives, enhancing both generalization and task287

adaptability.288

4.2 Multi-Head Random Initialization289

The zero initialization of the head matrices results290

in identical starting points for the different head291

matrices during training, causing them to converge292

to similar positions. As shown in Table 1, we uti-293

lize non-zero initialization for the head matrices to294

provide them with distinct starting points during295

training, thereby encouraging them to converge to296

different positions. However, multi-head dropout297

introduces greater variance to the inputs of the head298

matrices. While this variance aids the model in299

learning diverse knowledge, it may also lead to300

scaling instability. Inspired by (He et al., 2015)301

and (Wang et al., 2024), we introduce a coefficient302
4√dout√

γ or
4√din√

γ during initialization to the matrix in303

order to ensure scale stability. The γ is a hyperpa-304

rameter, and we follow the setting of (Wang et al.,305

2024) by setting it to 64. When the head matrices306

are initialized with non-zero values, the ∆W is no307

longer zero. To ensure that the initial outputs are ap-308

proximately consistent with the pre-trained model309

and reduce introducing disturbances, we subtract310

the initial ∆W from the original parameter matrix311

W. It can be formulated as:312

W = W − 1

N

N∑
i=1

·BiA (4) 313

5 Experiment 314

In this section, we validate the superiority of R- 315

LoRA across various models and settings. First, we 316

followed the settings of (Tian et al., 2024) and con- 317

ducted experiments on the LLaMA-2 model (Tou- 318

vron et al., 2023), evaluating both single-task and 319

multi-task scenarios. Subsequently, we tested the 320

performance of R-LoRA under different multi-task 321

settings on the new Qwen2.5 (Qwen Team, 2024). 322

The model sizes range from 0.5B to 13B. Through 323

an extensive ablation study, we demonstrate the 324

effectiveness of the multi-head randomization in 325

R-LoRA. 326

5.1 Experiment Setting 327

Model: In the single-task setting, we use LLaMA2- 328

7B, while in the multi-task setting, we additionally 329

incorporated LLaMA2-13B. In the ablation study, 330

we use Qwen2.5-0.5B and Qwen2.5-3B models. 331

Dataset & Benchmarks: 332

Single-task: 333

• General: We fine-tune the model using the 334

general instruction tuning dataset Databricks- 335

Dolly-15k (Conover et al., 2023), which fo- 336

cuses on generic language capabilities. The 337

performance is then evaluated using the 338

MMLU benchmark (Hendrycks et al., 2020). 339

• Medical: We fine-tune the model using Gen- 340

MedGPT and the Clinic-10k dataset from 341

ChatDoctor (Li et al., 2023b), targeting medi- 342

cal applications. The model’s performance on 343

medical tasks is assessed using MMLU. 344

• Law: Fine-tuning is conducted using 345

two legal instruction datasets, Lawyer- 346

Instruct (Alignment-Lab-AI, 2023) and US- 347

Terms (Chalkidis et al., 2023), and the model 348

is evaluated on legal tasks using MMLU. 349
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Schemes General Medical Law Code Math Avg %Param #A #B
Base* 38.88 35.98 33.51 20.34 10.38 27.82 - - -
Full* 49.91 46.78 46.08 32.93 25.70 40.28 100 - -
Prompt Tuning* 39.91 37.59 35.02 21.55 13.18 29.45 0.001 - -
P-Tuning* 41.11 39.81 36.72 21.13 15.56 30.87 0.193 - -
Prefix Tuning* 41.78 40.28 36.54 22.56 16.89 31.61 0.077 - -
IA3* 40.45 37.12 35.25 23.17 13.98 29.99 0.009 - -
LoRA(r = 8) 43.44 41.18 37.95 22.82 18.72 32.82 0.062 1 1
AdaLoRA*(r = 8) 44.32 42.83 39.36 23.78 19.51 33.96 0.093 1 1
LoRA(r = 16) 45.12 43.22 40.24 25.22 20.14 34.79 0.124 1 1
HydraLoRA(r = 8) 47.12 45.28 43.28 27.43 22.27 37.08 0.124 1 3
R-LoRA(r = 8) 47.79 45.31 43.22 27.27 22.12 37.13 0.124 1 3

Table 2: Comparison of different training schemes on single task. * indicates results from (Tian et al., 2024)

Metrics Base LoRA LoRAHub* LoRA MoE* HydraLoRA R-LoRA
7B 31.6 37.2 39.7 40.3 41.8 42.3
13B 38.4 40.9 41.9 43.7 44.7 45.4
A/B for training - 1/1 48/48 48/48 1/10 1/10
A/B for inference - 1/1 20/20 48/48 1/10 1/10
% Param - 0.062 1.240 2.976 0.341 0.341

Table 3: Comparison of different training schemes on multi task. * indicates results from (Tian et al., 2024)

• Code: We fine-tune the model using the350

CodeAlpaca (Chaudhary, 2023) for code gen-351

eration tasks, and the evaluation is conducted352

using the HumanEval (Chen et al., 2021).353

• Math: The model is fine-tuned on the training354

set of GSM8K (Cobbe et al., 2021) to enhance355

its mathematical reasoning capabilities and is356

evaluated on the corresponding test set357

Multi-task: We fine-tune the model using a subset358

of the Flanv2 dataset (Brown, 2020) that includes359

tasks from both Natural Language Understanding360

(NLU) and Natural Language Generation (NLG),361

grouped into 10 distinct task clusters. The model’s362

performance is evaluated using the Big-Bench Hard363

(BBH) benchmark. More Details of the datasets364

will be provided in the appendix A.365

Baseline: First, we compare R-LoRA against var-366

ious PEFT methods on single datasets: 1) Full367

fine-tuning; 2) Prompt Tuning (Lester et al., 2021);368

3) P-Tuning (Liu et al., 2024c); 4) Prefix Tun-369

ing (Li and Liang, 2021); 5) IA3 (Liu et al.,370

2022); 6) AdaLoRA (Zhang et al., 2023); 7) Hy-371

draLoRA (Tian et al., 2024). Second, we extend372

the comparison by evaluating R-LoRA against373

other weighted averaging methods across multiple374

datasets: 1) Lorahub (Huang et al., 2023), which375

utilizes black-box optimization to learn weights for376

20 randomly selected LoRAs for new tasks, apply- 377

ing weighted averaging without the need for gradi- 378

ent calculations; 2) LoRA MoE (Liu et al., 2024a), 379

which combines lightweight experts (LoRA) with a 380

Mixture of Experts (MoE) architecture for high ef- 381

ficiency, enabling generalization to new tasks with- 382

out prior knowledge; 3) HydraLoRA (Tian et al., 383

2024), which employs Multi-Head structure in con- 384

junction with MoE to achieve a balance between 385

parameter efficiency and training effectiveness. 386

5.2 Performance 387

5.2.1 Performance of R-LoRA on Single Task 388

As shown in Table 2, in the single-task setting, 389

where the knowledge and text format of the data 390

are relatively homogeneous, multi-head random- 391

ization does not yield significant performance im- 392

provements. Nevertheless, R-LoRA achieves per- 393

formance on par with HydraLoRA, demonstrat- 394

ing that the multi-head randomization mechanism 395

preserves learning effectiveness while maintaining 396

stability for single-task scenarios. This highlights 397

R-LoRA’s robustness and adaptability, even in set- 398

tings where its full potential may not be fully uti- 399

lized. 400
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Figure 5: Cosine similarity among head matrices in R-LoRA. "Overall mean" represents the average similarity
across all layers.

Figure 6: Gradient norms of HydraLoRA and R-LoRA.

5.2.2 Performance of R-LoRA on Multi-Tasks401

The evaluation across diverse tasks, as shown in402

Table 3, demonstrates that R-LoRA, building upon403

the foundation of HydraLoRA, consistently out-404

performs all other schemes. By introducing multi-405

head dropout and random initialization for the head406

matrices, R-LoRA further enhances the model’s407

stability and adaptability. The performance gains408

of R-LoRA, rooted in these multi-head randomiza-409

tion techniques, surpass those of both conventional410

PEFT methodologies and HydraLoRA.411

5.3 Parameter Analysis412

Reserach Question2: Does multi-head randomiza-413

tion effectively enhance the acquisition of diverse414

knowledge across the head matrices? 415

In this section, we analyze the parameter differ- 416

ences among the head matrices in R-LoRA. The 417

methodology and experimental setup align with 418

those described in Section 3. As shown in Figure 5, 419

the parameter similarity between head matrices in 420

R-LoRA is reduced to below 70%. This signifi- 421

cant decrease indicates that multi-head randomiza- 422

tion effectively enhances the model’s capacity to 423

learn task-specific knowledge, thereby mitigating 424

redundant learning and increasing the diversity of 425

acquired knowledge across tasks. T-SNE analysis 426

will be shown in appendix C 427

5.4 Training Process 428

Reserach Question3: Does multi-head randomiza- 429

tion impact the stability of the training process? 430

As illustrated in Figure 6, R-LoRA benefits from 431

multi-head randomization, exhibiting significantly 432

larger gradient norms in the early stages of train- 433

ing compared to HydraLoRA. This drives the head 434

matrices to converge to distinct regions, enhancing 435

the model’s ability to capture diverse representa- 436

tions and improving overall performance. Further- 437

more, R-LoRA demonstrates greater training sta- 438

bility than HydraLoRA, as evidenced by its more 439

stable gradient norms throughout the training pro- 440

cess. This stability enables the model to effectively 441

acquire diverse knowledge without compromising 442

training efficiency. 443
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Schemes Task1 2 3 4 5 Avg
HydraLoRA 90.97 80.30 77.20 65.80 49.20 72.69
+MT 91.20 80.80 77.50 66.20 49.40 73.02
+Init 91.40 81.20 77.10 66.10 49.10 72.98
R-LoRA 91.74 81.50 77.60 67.80 49.30 73.59

Table 4: Results of Ablation Studies on Qwen2.5-0.5B with Different Schemes Across Various Tasks. The table
compares the performance of HydraLoRA, +MT (HydraLoRA with Multi-Head Dropout), +Init (Multi-Head
Random Initialization), and R-LoRA across five tasks.

Schemes Task1 2 3 4 5 6 7 8 Avg

Qwen2.5-0.5B

HydraLoRA 87.5 77 73.5 63.5 52.5 52 54.5 52.5 64.13
+MT 88 78.5 74.5 66.5 54.75 53.5 58.5 52.5 66.22
+Init 87.5 79.75 75.75 65.75 53 58 56 55 66.31
R-LoRA 89 82.5 76.5 66.5 55 57 55.5 56.5 67.31

Qwen2.5-3B

HydraLoRA 95.5 84 83.5 83.5 71.25 72 83.5 88 82.66
+MT 96 83.5 83.5 84.5 71.75 72 83.5 88 82.84
+Init 96.5 84 83.5 84.75 71.5 73 85 88.5 83.34
R-LoRA 96.5 83.5 85 86.5 72.75 73.5 86 89 84.09

Table 5: Results of Ablation Studies on Qwen2.5-0.5B and Qwen2.5-3B Models with Different Schemes Across
Various Tasks. The table compares the performance of HydraLoRA, +MT (HydraLoRA with Multi-Head Dropout),
+Init (Multi-Head Random Initialization), and R-LoRA across eight tasks.

5.5 Ablation Study444

In this section, we empirically validate the effective-445

ness of R-LoRA’s multi-head randomization com-446

ponents through extensive experiments. Ablation447

studies were conducted on two models, Qwen2.5-448

0.5B and Qwen2.5-3B, under two task settings:449

5-task and 8-task configurations. For the 5-task set-450

ting, models were fine-tuned on 5 datasets spanning451

two categories (NLU and commonsense reasoning).452

For the 8-task setting, models were trained on 11453

datasets across 8 categories, with all models evalu-454

ated on their respective test sets. The experimental455

results are presented in Table 4 and Table 5. Details456

of the datasets will be provided in the appendix A.3.457

Experimental results demonstrate that the458

two key components of multi-head randomiza-459

tion—random initialization and dropout—are piv-460

otal for enhancing the model’s adaptability across461

tasks. Random initialization assigns unique462

weights to each head matrix, enabling the capture463

of task-specific patterns and reducing the risk of464

head convergence. Dropout diversifies inputs to the465

head matrices, fostering distinct learning pathways466

and reducing redundancy. Together, these compo-467

nents improve task-specific feature capture while 468

ensuring robustness in multi-task learning. 469

6 Conclusion 470

In this work, we first investigated the multi-head 471

structure of LoRA and analyzed the parameters 472

of the head matrices, revealing that they remain 473

highly similar. To address this, we proposed R- 474

LoRA, which introduces multi-head randomiza- 475

tion—a simple yet effective approach—to enable 476

the model to learn knowledge from different tasks, 477

thereby enhancing its performance in multi-task 478

scenarios. This method not only improves the 479

model’s generalization capabilities but also sup- 480

ports its adaptability across diverse tasks. Ex- 481

tensive experiments have validated the superior- 482

ity of R-LoRA. Parameter analysis demonstrates 483

that multi-head randomization effectively differen- 484

tiates the head matrices, enabling them to learn 485

knowledge from distinct tasks. This capability sig- 486

nificantly enhances the model’s performance in 487

multi-task scenarios, confirming the effectiveness 488

of the proposed approach. 489
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7 Limitation490

Despite the promising results of R-LoRA, sev-491

eral limitations should be acknowledged. While492

empirical evidence supports the effectiveness of493

multi-head randomization, a rigorous theoretical494

analysis of its underlying mechanisms remains495

absent. Additionally, multi-head random initial-496

ization does not ensure consistency with the pre-497

trained model’s outputs, potentially introducing498

random disturbances. Future work could explore499

data-driven initialization as a promising approach500

to enhance the learning of task-specific knowledge501

by the head matrices, a direction we intend to pur-502

sue further.503
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3. Law: We fine-tune with two legal instruc-700

tion tuning datasets Lawyer-Instruct and701

US-Terms then evaluate with law tasks in702

MMLU including two related tasks: "profes-703

sional law" and "international law".704

4. Math: We fine-tune with the training split of705

GSM8K for mathematical reasoning and evalu-706

ate with the test set of GSM8K.707

5. Code: We fine-tune with CodeAlpaca708

for code generation and evaluate with709

HumanEval.710

A.2 Multi-task711

For complex mixed multi-task/domain, we select712

a portion of the Flanv2 datasets covering Natural713

Language Understanding (NLU) and Natural Lan-714

guage Generation (NLG), which can be grouped715

into 10 distinct task clusters. Then we evaluate it716

with the Big-Bench Hard (BBH) benchmark.717

We summarize the details of the used datasets as718

follows:719

1. Struct-to-Text Conversion: This task eval-720

uates the capability to generate natural lan-721

guage descriptions from structured data inputs.722

We use the following datasets: (1) Common-723

Gen; (2) DART; (3) E2ENLG; (4) WebNLG724

2. Translation: Translation involves convert-725

ing text from one language to another, main-726

taining the original meaning and nuances.727

We use the following datasets: (1) En-Fr728

from WMT’14; (2) En-De, En-Tr, En-Ru, En-729

Fi, En-Ro from WMT’16; (3) En-Es from730

Paracrawl.731

3. Commonsense Reasoning: This involves as-732

sessing the ability to apply physical or scien-733

tific principles alongside common sense in rea-734

soning tasks. We use the following datasets:735

(1) COPA; (2) HellaSwag; (3) PiQA; (4) Sto-736

ryCloze.737

4. Sentiment Analysis: A fundamental task in738

natural language processing (NLP) that de-739

termines the sentiment polarity (positive or740

negative) of a given text. We use the follow-741

ing datasets: (1) IMDB; (2) Sentiment140; (3)742

SST-2; (4) Yelp.743

5. Paraphrase Detection: This task requires744

models to ascertain whether two sentences745

convey the same meaning, indicating seman- 746

tic equivalence. We use the following datasets: 747

(1) MRPC; (2) QQP; (3) Paws Wiki. 748

6. Coreference Resolution: Involves identify- 749

ing instances within a text that refer to the 750

same entity, demonstrating an understanding 751

of textual context. We use the following 752

datasets: (1) DPR; (2) WSC273. 753

7. Reading Comprehension: Assesses the ca- 754

pability to derive answers to questions from 755

a provided text containing relevant informa- 756

tion. We use the following datasets: (1) 757

BoolQ; (2) DROP; (3) MultiRC; (4) OBQA; 758

(5) SQuADv1; (6) SQuADv2. 759

8. Reading Comprehension with Common- 760

sense: Merges traditional reading compre- 761

hension skills with commonsense reasoning, 762

requiring understanding beyond the explicit 763

text. We use the following datasets: (1) Cos- 764

mosQA; (2) ReCoRD. 765

9. Natural Language Inference: Focuses on 766

deducing the relationship between two sen- 767

tences, determining if the second sentence 768

logically follows from, contradicts, or is unre- 769

lated to the first sentence. We use the follow- 770

ing datasets: (1) ANLI; (2) CB; (3) MNLI; (4) 771

QNLI; (5) SNLI; (6) WNLI; (7) RTE. 772

10. Closed-Book Question Answering: This 773

task challenges models to answer questions 774

about general knowledge without direct ac- 775

cess to external information sources. We use 776

the following datasets: (1) ARC; (2) NQ; (3) 777

TriviaQA. 778

A.3 Ablation Study 779

Due to limited computational resources, we se- 780

lected a subset of the dataset for training and testing. 781

Five tasks: 782

• Task 1: Sentiment Analysis (SST2) 783

• Task 2: Paraphrase Detection (QQP) 784

• Task 3: Natural Language Inference (QNLI) 785

• Task 4: Physical Commonsense Reasoning 786

(PiQA) 787

• Task 5: Commonsense Reasoning (SiQA) 788

Eight tasks: 789
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• Task 1: Sentiment Analysis (SST2)790

• Task 2: Paraphrase Detection (QQP)791

• Task 3: Natural Language Inference (MNLI +792

QNLI)793

• Task 4: Reading Comprehension (BoolQ +794

OBQA)795

• Task 5: Commonsense Reasoning (PiQA +796

SiQA)797

• Task 6: Reading Comprehension with Com-798

monsense (CosmosQA)799

• Task 7: Coreference Resolution (SiQA)800

• Task 8: Closed-Book Question Answering801

(ARC)802

B Baselines803

1. Prompt Tuning: This method adds task-804

specific prompts to the input. These prompt805

parameters are updated independently while806

the pretrained model parameters remain807

frozen.808

2. P-Tuning: This method incorporates trainable809

prompt embeddings into the input, optimized810

by a prompt encoder to automatically discover811

effective prompts, removing the need for man-812

ual design. Prompt tokens can be placed any-813

where in the input sequence, and anchor to-814

kens are introduced to enhance performance.815

3. Prefix Tuning: This method prefixes a series816

of task-specific vectors to the input sequence.817

These prefix parameters can be learned while818

keeping the pretrained model frozen. The pre-819

fix parameters are inserted into all layers of820

the model.821

4. IA3: This method enhances efficiency by in-822

fusing learned vectors into transformer archi-823

tectures, drastically reducing the number of824

trainable parameters.825

5. AdaLoRA: Unlike LoRA, which distributes826

parameters evenly across all modules,827

AdaLoRA optimizes the number of trainable828

parameters assigned to weight matrices and829

layers. More parameters are allocated to830

important weight matrices and layers, while831

less important ones receive fewer parameters.832

6. LoraHub randomly aggregates 20 LoRAs for 833

new downstream tasks. It employs a black- 834

box optimization technique to determine the 835

weight of each LoRA, eliminating the need for 836

gradient calculations of the large model. This 837

involves parameter-level weighted averaging. 838

7. LoRA MoE. A collection of n parameter- 839

ized experts, denoted as E1, . . . , En, is or- 840

chestrated by a router network R. Ei = BiAi. 841

Router network features a dense layer with 842

adjustable weights WR from Rdm×n. A soft- 843

max function then processes an intermediate 844

token representation x, yielding gating scores 845

s1, . . . , sn that determine the weighted contri- 846

bution of each expert’s output: 847

si = R(x)i = softmax(Top(W T
Rx,K))

(5) 848

Subsequently, the overall output y is synthe- 849

sized by aggregating the Top-K experts’ out- 850

puts, each modulated by its respective gating 851

score: 852

y =
n∑

i=1

si · Ei(x) (MoE) (6) 853

This results in a dynamic allocation of the 854

model’s capacity, enabling specialized pro- 855

cessing by experts as directed by the router’s 856

gating mechanism. 857

8. HydraLoRA uses a shared matrix A and mul- 858

tiple matrices B1, . . . , Bn. The shared matrix 859

A is used to project the input vector x into a 860

lower-dimensional space, while each matrix 861

Bi is used to modulate the output of the cor- 862

responding expert Ei. The overall output y is 863

synthesized by aggregating the experts’ out- 864

puts, each modulated by its respective gating 865

score: 866

y =

n∑
i=1

si · (Bi ·A · x) (7) 867

This approach allows for efficient parameteri- 868

zation and specialization of the model’s capac- 869

ity, leveraging the shared matrix A for com- 870

mon transformations and the individual matri- 871

ces Bi for task-specific adjustments. 872

C More Results 873

The T-SNE analysis of R-LoRA has been shown in 874

Figure 7, 8, 9 875
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Figure 7: T-SNE analysis of head matrices(down_proj)
in R-LoRA.

Figure 8: T-SNE analysis of head matrices(up_proj) in
R-LoRA.

Figure 9: T-SNE analysis of head matrices(gate_proj)
in R-LoRA.

Figure 10: Training loss curves of HydraLoRA and R-
LoRA. The loss of M-LoRA remains lower throughout
the entire training process..
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