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Abstract

Due to the exponential growth of agent interactions and the curse of dimensionality,
learning efficient coordination from scratch is inherently challenging in large-scale
multi-agent systems. While agents’ learning is data-driven, sampling from millions
of steps, human learning processes are quite different. Inspired by the concept of
Human-on-the-Loop and the daily human hierarchical control, we propose a novel
knowledge-guided multi-agent reinforcement learning framework (hhk-MARL),
which combines human abstract knowledge with hierarchical reinforcement learn-
ing to address the learning difficulties among a large number of agents. In this
work, fuzzy logic is applied to represent human suboptimal knowledge, and agents
are allowed to freely decide how to leverage the proposed prior knowledge. Addi-
tionally, a graph-based group controller is built to enhance agent coordination. The
proposed framework is end-to-end and compatible with various existing algorithms.
We conduct experiments in challenging domains of the StarCraft Multi-agent Chal-
lenge combined with three famous algorithms: IQL, QMIX, and Qatten. The results
show that our approach can greatly accelerate the training process and improve the
final performance, even based on low-performance human prior knowledge.

1 Introduction

As an essential attribute of multi-agent reinforcement learning (MARL), scalability deserves more
attention since it contributes to autonomous collective learning behaviors among agents. In many
engineering and scientific disciplines, algorithms must possess sufficient scalability to cooperate
properly [1, 2, 3]. Unfortunately, training a large number of agents presents inherent challenges. The
joint action-state space increases exponentially with the number of agents, resulting in the curse of
dimensionality [4, 5]. Agents, suffering from sparse rewards and sample inefficiency [6, 7], encounter
’start-up’ problems [8] and often get trapped in local optima, to the extent that learning becomes
impossible in the worst cases [9, 10].

To alleviate the exploration burden and overcome the curse of dimensionality, knowledge transfer
methods have attracted significant research interest in dealing with large-scale multi-agent systems
(MAS) [11, 12, 13]. As the most intuitive and common source, transferring prior knowledge from
humans has received considerable attention [14, 15]. An important line of research involves extracting
prior knowledge from expert trajectories through imitation learning to address sequential decision-
making problems [16, 17]. However, despite the emphasis on Human-on-the-Loop [18], most research
still focuses on step-by-step action demonstrations, which require high-quality and comprehensive
prior knowledge [11, 14, 17]. The deployment of this type of human knowledge becomes increasingly
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difficult in complex tasks, necessitating overwhelming human effort. Additionally, creating human-
guided state-action pairs for each scenario is so time-consuming that even human experts struggle to
anticipate actions in these highly challenging tasks.

Fortunately, human guidance is not limited to step-by-step action demonstrations, and other high-level
knowledge exists to reduce the human effort involved [14]. Human prior knowledge can be abstracted
and transferred to agents through abstract rules or heuristics [19, 20, 21]. Although the provided
knowledge is suboptimal, it can greatly reduce the computational burden and improve algorithm
performance. However, current discussions are still limited to single- or two-player scenarios.
Unfortunately, utilizing human prior knowledge properly is significantly more challenging in MAS.
Due to non-stationarity and multiple Nash equilibria, most single-agent methods are unsuitable
for multi-agent scenarios. Additionally, human knowledge is usually applied indiscriminately, and
mapping knowledge from humans to agents is still in its early stages [15].

Figure 1: Human daily hierarchical control.

To better transfer knowledge from humans, it’s essential
to understand the nature of human knowledge. Despite
accomplishing many complex tasks in daily life, human
activities do not require much active attention (Figure
1). When deciding to get up and walk, the brain uses
the prefrontal cortex to generate commands, but the
intricate coordination of sensory inputs and muscles
that follows does not require any conscious attention.
Instead, it’s mostly executed by a lower nerve network
in the spinal cord, sometimes called central pattern gen-
erators (CPG) [22]. Indeed, humans are naturally adept
at abstracting and providing high-level knowledge, and
asking them to provide detailed step-by-step action guides is overly demanding. It may be preferable
to have humans deliver abstract knowledge at the top level, while agents spontaneously decide on the
utilization of the proposed knowledge based on their ’CPG’.

Inspired by the hierarchical control of human daily activity, we propose a novel knowledge-guided
MARL framework to integrate abstract human knowledge into MARL algorithms in an end-to-end
manner. As several works have demonstrated, a hierarchical structure [23] and graphical models [1]
can greatly benefit large-scale MAS. We believe our approach, the hierarchical human knowledge
multi-agent reinforcement learning framework (hhk-MARL), can alleviate learning difficulties among
a large number of agents. In our framework, trainable fuzzy logic rules are applied to represent human
knowledge. Since the prior knowledge is suboptimal, our framework allows agents to adjust the
utilization of proposed knowledge through hyper-network based knowledge integration. Additionally,
to enhance agent coordination, we construct a graph to determine the importance of agents and
simplify their relationships. By applying human knowledge at the top level while maintaining agents’
ability to develop self-policies at the bottom level, our hierarchical method helps ’warm-start’ the
training process and overcomes the learning difficulties of large-scale MAS. Experimental results
from challenging tasks in the StarCraft Multi-agent Challenge (SMAC) [24] demonstrate that our
approach can be easily combined with various MARL algorithms, significantly improving their
learning efficiency.

2 Preliminaries

2.1 Partially observable Markov game

We view our problem as a cooperative multi-agent task. This task can be modeled as a decentralized
partially observable Markov decision process (Dec-POMDP) [25], given by a tuple G:

G = ⟨S,U, P, r, Z,O, n, γ⟩ (1)

where s ∈ S defines the global environment state. The observations of each agent i ∈ N ≡
{1, . . . , n} are partially observable oi ∈ Oi, which are determined by the observation function
Z(s, i) : S ×N → p(O). Based on its local observation oi, each agent i selects its action ui ∈ Ui at
each time step according to its stochastic policy πi : Oi×Ui → [0, 1]. Then, based on the state transi-
tion function P : S×U1×· · ·×Un → S, the joint action of all agents u⃗ ∈ U⃗ changes the environment
into a new state. All agents share the same reward function r(s, u⃗) : S×U⃗ → R, and aim to learn poli-
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cies to maximize action-value functions Q(st, u⃗t) = Eu⃗t+1∼π⃗,st+1∼P [
∑Th−t

l=0 γlrt+l(st, u⃗t)|st, u⃗t]
where γ is the discount factor and Th is the time horizon.

2.2 Fuzzy logic

Since human knowledge is highly abstract and uncertain, it is inappropriate to represent knowledge
with hard rules [26]. On the contrary, fuzzy logic can tackle issues of uncertainty and lexical
vagueness, pacing its way to depict human imprecise knowledge [20]. A fuzzy logic rule is usually in
the form of ’IF X is A and Y is B THEN Z is C’ with a membership function µ for each fuzzy set
used to calculate the truth value T of each precondition:

TA = µA(x0) : X → [0, 1], TB = µB(y0) : Y → [0, 1] (2)

where x0 and y0 are the observation values for X and Y , respectively. To derive the conclusion of
this fuzzy rule, both preconditions must be satisfied:

µA∩B(x0, y0) = min(µA(x0), µB(y0)) (3)

Finally, the conclusion’s strength, ω, is obtained as follows:

ω = min(TA, TB) = min(µA(x0), µB(y0)) (4)

Therefore, a fuzzy logic rule takes the observation values as inputs and outputs the value of the
conclusion to illustrate how likely it is to operate the designed actions under the current observations.

2.3 Knowledge representation and integration

Although human knowledge is highly instructive, such prior knowledge is suboptimal and covers
only a small part of the state space. Applying it indiscriminately can hinder the training process.
To avoid negative knowledge transfer, agents should have the freedom to decide the utilization of
transferred knowledge. For better intuition, a teacher (human) and student (agent) model could be
considered. To guide student research, the mentor might give the doctoral student some comments.
For example, a comment for literature review could be: ’Read paper with high citation score’, which
can be expressed in the fuzzy logic rule as ’IF O is high, THEN action is read’. Here, O is the
observation of the citation score, and high is a fuzzy set M whose membership function could simply
be, µhigh(o) : clip[0.05o, 0, 1]. Therefore, the higher the score, the stronger the action read will
be. Apparently, such knowledge is abstract and proposed for a specific state in the research process.
Indeed, it is unrealistic to require the mentor to design a comprehensive checklist, and uncertainty and
lexical vagueness are inevitable. The student is expected to autonomously decide when to follow the
mentor’s advice and when to trust their own judgment. Inspired by the CPG of human hierarchical
control (Figure 1), to integrate abstract human knowledge into the agent learning process, we design
a knowledge ’CPG’ for the agent to freely decide how to leverage the suboptimal knowledge.

3 Human knowledge guided hierarchical framework

In this section, we will illustrate a novel human knowledge-guided MARL hierarchical framework
(hhk-MARL) that integrates abstract human knowledge into MARL in an end-to-end manner to
enhance agents’ learning efficiency. The overall architecture is shown in Figure 2, which is divided
into three levels, mimicking the human hierarchical control (Figure 1). Inspired by the CPG of
humans, a hyper-network based knowledge integration is built to allow agents elegantly leverage the
proposed human prior knowledge. The details of each module will be elaborated in the following
sections, and the meanings of symbols can be found in Appendix A.3.

3.1 Knowledge controller

Since requiring humans to provide comprehensive step-by-step demonstrations for large-scale MAS
is unrealistic, we focus on abstract and suboptimal human knowledge to reduce the human effort
involved. As introduced in Section 2.2, fuzzy logic is applied to capture human imprecise knowledge.
Compared to other knowledge representation methods, fuzzy logic is closer to the structure of
human knowledge, making it more interpretable. Furthermore, it has been proven that fuzzy logic
is more suitable for training large-scale multi-agent systems with the advantage of generalization
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Figure 2: The overall framework of the human knowledge guided hierarchical MARL. The general
architecture is proposed in the middle which is separated into three levels. Agents can develop
their own policies with traditional MARL algorithm shown at bottom left. The graph-based group
controller is depicted at top right to enhance agents’ coordination. The knowledge controller is
comprised with fuzzy logic rules to represent human knowledge which is demonstrated at bottom
right. The hyper-networks of knowledge integration is illustrated at top left to allow agents freely
decide the use of proposed human knowledge.

[27]. Inspired by previous works on knowledge representation with fuzzy logic [20, 27], we leverage
fuzzy logic to abstract human prior knowledge in this work. The general form of each rule can be
represented as:

• Rule L: IF O1 is ML1 AND O2 is ML2 AND . . . AND Oz is MLz , THEN Action is ukk

Here, Oi
z are variables about the system extracted from agent i’s observations, and M i

Lz
are fuzzy sets

for the corresponding variables Oi
z . The strength of Rule L on corresponding actions is obtained:

ωL = min[µL1
(o1), µL2

(o2), . . . , µLz
(oz)] (5)

where oiz are observation values for Oi
z and µi

L are membership functions for the fuzzy sets M i
L. An

example of fuzzy logic rule design is illustrated in Section 2.3 for clarity. For fairness, humans are
only allowed to propose guidance based on agent’s local observations.

As the transferred human knowledge is very rough, inspired by [20], we add trainable weights β
to adapt proposed knowledge to current tasks. With these trainable weights, the knowledge can be
optimized similarly to a neural network. For each rule, there are z + 1 corresponding weights: the
first z weights adjust the causal degree of each precondition, and the last weight βz+1 indicates the
confidence in the proposed knowledge. Therefore, the human preference vector QFL

for fuzzy rule L
on each action can be represented as (an example of human preference vector is in Appendix A.6):

QFL
(u1, . . . , uk) = βLz+1min[βL1 · µL1(o1), βL2 · µL2(o2), . . . , βLz · µLz (oz)] (6)

These trainable weights are initialized at 1 to avoid disturbing the prior knowledge, and then adjusted
through the reinforcement learning based on the reward signal. However, it is worth mentioning that
a fuzzy rule can be initialized with a higher weight when there is high confidence in it.

We refer to this knowledge representation module as the knowledge controller, shown in Figure 2
bottom right. To maintain the merit of scalability, this knowledge controller is shared among all
agents. Specifically, for agent i, the knowledge controller takes the agent i’s observation oi as input
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Algorithm 1 Human knowledge guided hierarchical MARL
Input: MARL algorithm, Knowledge controller, Group controller, Knowledge integration
Output: Human knowledge guided MARL model

1: Initialize the parameters of MARL algorithm, knowledge controller, group controller, knowledge
integration

2: for episode = 1 to max-episode do
3: for t = 1 to max-episode-length do
4: for agent i = 1 to N do
5: Calculate Qi

LOC based on MARL algorithm
6: Use fuzzy rules for Qi

F =
{
Qi

F1
, . . . , Qi

FL

}
7: Input

{
Qi

LOC , Q
i
F

}
into knowledge integration for knowledge guided vector Qi

8: Sample action ui from Qi with ϵ-greedy policy
9: end for

10: Execute (u1, . . . , uN ) to obtain reward r and new observation o
′

from environment
11: Store (o, u, r, o

′
) in replay buffer D, and set o← o

′

12: Sample a random minibatch of G samples (og, ug, rg, o′g)
13: Obtain

{
λ1, . . . , λN

}
, set Qtot, and update the Q-network by minimizing the loss: Ltot

14: end for
15: end for

and outputs L number of human preference vectors based on built-in fuzzy logic rules:

Qi
F =

{
Qi

F1
, Qi

F2
, . . . , Qi

FL

}
(7)

3.2 Knowledge integration

Although trainable weights are added to the knowledge controller to mitigate the knowledge mismatch
problem, the proposed knowledge is still quite rough, covering only a small portion of the state
space. Since humans and agents have different perceptions and knowledge structures, it is more
appropriate to allow agents to determine the utilization of prior knowledge. To not distort human
knowledge and avoid negative knowledge transfer, we propose a hyper-networks based knowledge
integration to integrate human prior knowledge into agents’ policies. Similar to human CPG (Figure
1), this approach allows humans to design abstract knowledge from a high-level, while agents can
autonomously decide whether to accept the proposed knowledge and how to leverage it.

Although applying a concatenated neural network as the knowledge integration is straightforward,
it is difficult to capture the dynamic knowledge requirements in different states. To allow agents to
automatically adapt to human guidance, motivated by previous research [20], we propose a hyper-
networks based knowledge integration that allows agents to refine the proposed prior knowledge
based on the local observation. As shown in Figure 2 (top left), the knowledge integration consists
of two networks that take the human preference vectors Qi

F and the agent preference vector Qi
LOC

as input, and output the knowledge-guided action preference vector Qi based on the agent i’s local
observation. Formally, the first network takes the observation oi of agent i as input and generates
weights for the second network, which combines the agent’s policy with human knowledge:

Qi = kθ(Q
i
F , Q

i
LOC) (8)

where:
θ = hα(o

i) (9)

Here, hα(·) is the hyper-network that generates the weights θ for the integration kθ(·). To encourage
agents to frequently explore human knowledge at the start, a hyperparameter Ω is considered:

θ = max(hα,Ω) (10)

This hyperparameter is initialized to 1 and quickly decreases to zero to not impair the agents’
autonomy in knowledge adjustment. Similar to the knowledge controller, the knowledge integration
is also trained based on the reinforcement learning process and this module is also shared among all
agents.
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3.3 Group controller

Besides the ’start-up’ problem from the curse of dimensionality, another difficulty in large-scale
MAS is the intricate interactions among agents, which intensify as the number of agents increases.
To enhance agent coordination and further improve scalability, motivated by the graph’s ability to
simplify relationships [1, 28], a simple neural network is applied to generate a cooperation graph
among agents (Figure 2 top right). This group controller uses local observation to output cooperation
tendency among agents. Specifically, based on oi, agent i can propose the allies it wants to cooperate
with, following the tendency strength λi,j :

λi = {λi,1, . . . , λi,N} (11)
where λi,j is the cooperation tendency of agent i toward agent j. After agents deliver their tendencies,
this will form a relationship graph (an example is shown in Figure 9):

{λ1, . . . , λN} (12)
Here, an agent’s importance is considered based on other allies’ cooperation tendencies toward it:{

λ1, . . . , λN
}
= softmax(sum({λ1, . . . , λN} , dim = −2)) (13)

where λi is the importance weight of agent i and will be used to weight the agent’s selected action.
The group controller is also shared among all agents. Additionally, to not violate the principle of
centralized training with decentralized execution (CTDE), this module will only be applied during
the training process.

3.4 Knowledge guided hierarchical MARL

To transfer knowledge from humans, we integrate abstract human knowledge into the agent learning
process by mimicking the hierarchical control of human daily activities. As demonstrated in Figure
2, human can easily propose abstract knowledge at a high-level, while agents autonomously form
specific action-state strategies based on the MARL algorithm. This learning framework is end-to-end
and can be combined with various MARL algorithms. To clarify this process, QMIX [29] algorithm
is applied as an example here. Initially, the agent i’s preference vector Qi

LOC(τ
i, ·) is calculated

based on its local Q network. Then, the human preference vectors Qi
F (o

i) are generated from the
knowledge controller, mentioned in Section 3.1. Next, following Equation 8, the human knowledge
is integrated into agent i’s policy, forming the knowledge-guided action preference vector Qi. This
vector Qi is used to sample the action ui of agent i based on the ϵ-policy with the Q value Qi(o

i, ui).
To imply the importance of agents in the group, the importance weight λi is obtained from Equation
13 to weight Qi(o

i, ui) and form the weighted Q value Qi(oi, ui). Finally, the weighted Q values
from all agents are aggregated to derive the global value Qtot using the QMIX mixing network:

Qtot(o, u) = MixingNetwork(λ1 ·Q1(o
1, u1), · · · , λN ·QN (oN , uN )) (14)

Subsequently, Qtot is trained to minimize:

Ltot = E{oit,oit+1,u
i
t,u

i
t+1}Ni=1

[Qtot(
{
oit, u

i
t

}N

i=1
)− yt]

2 (15)

where yt is calculated as follows, and rt is the reward at time step t:

yt = rt + γ · [ ̂MixingNetwork(Q̂1(o1t+1, u
1
t+1), · · · , Q̂N (oNt+1, u

N
t+1))] (16)

To comply with the CTDE, the group controller and mixing network are only applied during the
training process, while the local Q network, knowledge controller and knowledge integration are
applied at both stages. The pseudo-code of our method is provided in Algorithm 1.

4 Experiments and analysis

In our experiments, we aim to answer the following questions: (1) Can the proposed framework
improve the scalability of MARL algorithms? (2) What’s the function of each module in our
framework? (3) Is using suboptimal human knowledge justified, and how does its quality influence
the learning process? To answer these questions, we conduct our experiments on challenging scenarios
of the StarCraft Multi-Agent Challenge (SMAC) [24] with an increasing number of agents involved.

4.1 Experimental setting
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(a) 5m Vs 6m (b) 10m Vs 11m (c) 18m Vs 20m

(d) 27m Vs 30m (e) 35m Vs 40m

Figure 4: Experimental results for our approaches and their corresponding baselines in five scenarios.
The shaded region denotes standard deviation of average evaluation over 3 trials.

Figure 3: Membership function: ’e_d is small’.
X-axis denotes the observation value for vari-
able e_d and Y-axis denotes the truth value.

Focusing on micromanagement control, SMAC has
been proposed as a common benchmark for MARL
methods. In the following experiments, we test
our framework on challenging scenarios in SMAC
from the ’Hard’ and ’Super Hard’ categories, set-
ting the game AI difficulty to ’Very Hard’. To
demonstrate the impact of the agent number on
algorithm performance, we add two self-designed
scenarios with more agents involved. To verify the
effect of our end-to-end framework, we combine
our method with three famous MARL algorithms:
IQL [30], QMIX [29], and Qatten [31], naming
the corresponding approaches hhkIQL, hhkQMIX,
and hhkQatten, respectively. In this study, each
algorithm and its corresponding approach are con-
figured with the same hyperparameters and neural
network structures. Furthermore, all experimental results are derived across three separate trials with
different random seeds, with 32 test episodes in each trial. The shaded region in Figure 4 and 7,
and the error bar in Figure 5 denote standard deviation in this work. Details of the hyperparameter
settings are in Appendix A.5.

Instead of requiring high-quality expert demonstrations, this work aims to transfer suboptimal
knowledge from humans, considering eight pieces of knowledge for challenging tasks in SMAC. Due
to space limitations, we use the human prior knowledge: ’Attack the closest enemy’ as an example.
As illustrated in Section 3.1, this abstract knowledge can be represented with a fuzzy logic rule:

• IF e_d is small, THEN action is attackEnemyId.

Here, e_d represents the agent’s observation of the distance between itself and enemies. The
corresponding membership function for the fuzzy set small is elaborated in Figure 3 and is defined as
a simple linear function. More details about the applied human suboptimal knowledge can be found
in Appendix A.6. As demonstrated, these fuzzy logic rules are abstract, suboptimal, and designed
for specific states (e.g., attack actions are not always available), resulting in a win rate of 0% when
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agents are solely manipulated by the proposed knowledge. Nonetheless, these rules are interpretable
and easy to design and understand from the human aspect. All rules are designed based on the agent’s
local observation. Furthermore, it is worth mentioning that the proposed human prior knowledge is
not well-crafted and is highly subjective, with no strict requirement for its appropriateness. Anyone
can develop their fuzzy logic rules based on their own experience.

4.2 Result and evaluation

To answer the first question, we deploy the approaches in scenarios with an increasing number of
agents. The learning curves for all approaches across all tasks are illustrated in Figure 4, and the
performance comparison based on the number of agents is elaborated in Figure 5. In conclusion, the
experimental results indicate that even based on highly abstract and low-performance human prior
knowledge, our knowledge-guided approaches not only significantly accelerate the training process
but also enhance the final performance across scenarios with various numbers of agents.

As the number of agents increases, the joint action-state space expands exponentially, making it
exceedingly challenging for agents to learn from scratch. Despite these challenges, our approaches
still manage to overcome the ’start-up’ issue (Figure 4). By alleviating learning difficulties, while
baseline algorithms fail in tasks with many agents (IQL in Figure 4(d), IQL and QMIX in Figure
4(e)), our approaches help agents overcome the initial learning challenges, improving scalability.
Furthermore, as demonstrated by the win rate curves in Figure 4(a), our approaches greatly accelerate
the training process, benefiting the initial stages of agent learning. Notably, our method (hhkIQL),
even combined with the least effective baseline algorithm (IQL), achieves performance comparable
to the best baseline algorithm (QMIX).

Figure 5: Performance comparison between baselines and
our methods under the number of agents increase. The error
bar is based on standard deviation

To better visualize our method in
scenarios with different numbers of
agents, we summarize the algorithms’
performance in Figure 5. By lever-
aging human prior knowledge, our
end-to-end method consistently helps
MARL algorithms improve their per-
formance across various numbers of
agents. Additionally, it is worth men-
tioning the improvement our method
brings to the IQL algorithm, shown in
the first image of Figure 5. As one of
the oldest fully decentralized MARL
algorithms, IQL inherently struggles
to handle coordination in large-scale
MAS, displaying low performance in
all scenarios. By contrast, benefiting from the integration of human knowledge and the relationship
graph to mitigate ’start-up’ issues and enhance cooperation, our approach significantly improves the
scalability of the IQL algorithm.

4.3 Ablation study

To answer the following two questions, we design two ablation experiments: one to identify the
function of each module and another to assess the influence of human suboptimal knowledge.
Considering our improvement on the IQL algorithm, we use it as the basis in the ’10m vs 11m’
scenario to provide a clear comparison. The ablation results are detailed in Figure 7.

4.3.1 Module function

The experiment results on module functions are depicted in Figure 7(a), where ’hhkIQL-graphOnly’
represents our method with only the group controller, ’hhkIQL-humanOnly’ indicates our method
integrating solely human knowledge, and ’hhkIQL-fixedKnow’ denotes our method without trainable
parameters in fuzzy logic rules.
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(a) Effect of different modules (b) Effect of human knowledge applied

Figure 7: Ablation studies under ’10m vs 11m’ scenario. (a) ablation study on the function of each
module in our method; (b) ablation study on the influence of various suboptimal human knowledge.

Figure 6: After the training of hhkIQL in ’10m vs
11m’ scenario, the change of each agent’s λ during
a battle episode. The nodes are agents and the edges
are agents’ tendency to cooperate with others. t is
time step. The died agents are not shown in the
graph (full details are in Appendix A.7).

Effect of group controller: To elaborate on
the role of the group controller, we first present
agents’ cooperation graph in Figure 6. The re-
lationship graph reveals that the cooperation
demand changes over time. With the group
controller, agents can independently choose al-
lies to collaborate with, and important agents
are emphasized. As depicted in Figure 7(a), the
group controller enhances cooperation among
agents and accelerates the training process, evi-
denced by a higher convergence rate compared
to that of the IQL algorithm.

Effect of human knowledge: Although the
transferred knowledge is suboptimal, human
prior knowledge can significantly improve per-
formance. The knowledge integration, functioning as a ’CPG’, allows human to effortlessly provide
abstract knowledge from a high-level perspective. As a result in Figure 7(a), the knowledge-guided
algorithm achieves overall better performance than the baseline algorithm. However, it is worth
noting that this ablation algorithm can be further improved with the group controller installed, as
evidenced by comparing it to the hhkIQL approach.

Trainable knowledge: The benefits of trainable knowledge are demonstrated in Figure 7(a). Although
both approaches achieve similar performance, the approach with trainable fuzzy logic rules realizes a
faster convergence rate than its ablation counterpart. With the trainable knowledge controller, the
prior knowledge is constantly optimized during training, enhancing the adaptation of the provided
knowledge to the current task. As a result, agents can make better use of proposed knowledge and
learn faster.

4.3.2 Human suboptimal knowledge influence

In this section, we explore the impact of suboptimal human knowledge and how our approach
addresses inappropriate knowledge. The ablation results are described in Figure 7(b). To assess
the effect of knowledge quality, we consider human knowledge with more fuzzy logic rules to
be more comprehensive. For fairness, these rules are inherited among ablation approaches. For
example, ’hhkIQL (8 rules)’ will include the 5 rules used in ’hhkIQL (5 rules)’, and so forth. Since
knowledge from humans is highly subjective, it is hard to judge whether the transferred knowledge is
inappropriate. To identify how our approach deals with inappropriate knowledge, we substitute the
values in human preference vectors Qi

F with random value to represent inappropriate knowledge,
which is denoted as ’hhkIQL (random)’ in Figure 7(b).
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As demonstrated in Figure 7(b), more comprehensive human knowledge can help agents achieve
better performance. Although ’hhkIQL (1 rules)’ can achieve faster learning speed than ’hhkIQL
(3 rules)’ and ’hhkIQL (5 rules)’, it results in lower final performance. We guess that with fewer
rules applied, there is a reduced learning burden on knowledge utilization, but this also leads to
lower final outcomes. Notably, even though more comprehensive human knowledge is beneficial, the
performance of these approaches remains similar. Furthermore, as the learning curve of ’hhkIQL
(random)’ indicates, the knowledge integration module can efficiently filter out negative knowledge.
While it takes agents more time to learn how to utilize the proposed knowledge, ’hhkIQL (random)’
can still outperform the baseline algorithm, highlighting the importance of the knowledge integration
module. In conclusion, our approach does not rely on high-quality human knowledge, and the
knowledge integration module can successfully mitigate the negative knowledge transfer problem,
allowing humans to propose any knowledge they consider useful for agents.

5 Conclusion and future work

In this study, we introduce a novel hierarchical learning framework for enhancing coordination in
large-scale MAS by leveraging suboptimal human knowledge. This framework consists of the group
controller, the knowledge controller, and the knowledge integration, allowing humans to provide
knowledge at the top level while agents develop their own policies at the bottom. Evaluated in SMAC
with three famous algorithms, our end-to-end methods surpass corresponding baselines in learning
speed and final performance, even with low-performance human knowledge integrated. Furthermore,
this framework successfully improves the scalability of algorithm, handling scenarios with numerous
agents where standard MARL algorithms fail. In the future, we will apply our approach in domains
with even more agents involved, and explore its application to heterogeneous agents.
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A Appendix / supplemental material

A.1 Fuzzy logic

Since human knowledge is highly abstract and uncertain, it is inappropriate to use hard rules to
represent such prior knowledge [26]. Different from crisp sets, fuzzy logic, based on fuzzy set theory,
can apply partial membership functions to represent fuzzy knowledge [32]. For a fuzzy set F , the x
in it can be described by a membership function µF (x) with range from 0 to 1, allowing the element
partially belong to it:

µF : X −→ [0, 1]
where X refers to the universal set in a specific problem.

The fuzzy logic rule is usually in the form of ’IF X is A and Y is B THEN Z is C’. Here, ’X is A’
and ’Y is B’ are called preconditions of the fuzzy rule, and ’Z is C’ is the conclusion. The X , Y
and Z are variables. And the A, B and C are fuzzy sets, also known as linguistic values. For each
fuzzy set, it has a membership function µF to calculate the truth value T of each precondition:

TA = µA(x0) : X → [0, 1], TB = µB(y0) : Y → [0, 1]

where x0 and y0 are observation values for X and Y , and TA and TB are truth values for preconditions
’X is A’ and ’Y is B’. To get the conclusion of this fuzzy rule, it needs to satisfy both preconditions
and the conjunction operator is applied:

µA∩B(x0, y0) = min(µA(x0), µB(y0))

Finally, we will get the conclusion’s strength ω, sometimes seen as the satisfaction level of the rule:
ω = min(TA, TB) = min(µA(x0), µB(y0))

Summarizing, to abstract human prior knowledge with fuzzy logic rules, we need first to design the
rules in the form of ’IF . . . THEN . . . ’ sentence. Then membership functions µF should be built for
each preconditions to calculate their truth value T . Finally, the conjunction operator min is applied
to satisfy all the preconditions and get conclusion’s strength ω. Therefore, a fuzzy rule takes the
observation values as input and outputs the value of conclusion to illustrate how likely to operate
designed actions under current observation.

A.2 Related work

Due to the expensive exploration, knowledge transfer has become an indispensable approach to en-
hance the scalability of MARL [11, 12]. On the one hand, the most straightforward implementation is
to repurpose solutions from previous tasks obtained by agents [13]. On the other hand, various studies
also emphasize the reuse of knowledge from auxiliary sources, such as human expert demonstrations
[33].

As the "black box" approach is unsuitable for critical applications, the transfer method should be
interpretable, prompting an increasing concern on Human-on-the-Loop [15]. By personally executing
tasks, humans provide demonstrations for agents to record in state-action pairs which agents can
mimic based on imitation learning [33, 34], inverse reinforcement learning [35, 36], and other human-
focused methods [11, 37]. Unfortunately, these mainstream researches require step-by-step action
demonstrations, heavily relying on high-quality and comprehensive expert demonstrations [16, 17].

While some efforts have aimed to mitigate the human burden, these solutions are generally limited
to single- or two-player scenarios [20, 21, 38]. Fuzzy logic has been applied in previous work for
knowledge representation [20], while their focus is on single-agent scenarios and the agent does not
have self-policy development ability. As far as we know, the most successful work is from [27], who
handle large-scale MAS with fuzzy agents. However, the use of human knowledge is not within their
scope and their approach is more akin to agent knowledge transfer. Compared to previous works, our
method, which can easily combine with various MARL algorithms, features a hierarchical learning
scheme that human suboptimal knowledge is applied at top-level to enhance learning process of
large-scale MAS. Based on the hyper-networks in knowledge integration, we are able to combine
human preference with agent preference to empower agents with more knowledge selection freedom.

Our work also shares some similarities with the hierarchical RL methods [19, 23, 38, 39]. However,
in contrast to these existing studies that pay more attention to decomposing challenging long-horizon
tasks into simpler subtasks, our focus here is to connect humans and agents under a hierarchical
structure for leveraging human knowledge and achieving more efficient learning in large-scale MAS.
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A.3 Symbol meaning

The meanings of symbols in this work is illustrated in Table 1

Table 1: Symbol meaning

Symbol Meaning
s global state
r reward
D replay buffer
i agent i
{a1, . . . , aN} all agents
L fuzzy logic rule L
M fuzzy set
{u1, . . . , uk} agent action space
{o1, . . . , om} agent observation space
{o1, . . . , oz} observation values for fuzzy logic rule
T truth value of precondition
µ membership function
ω conclusion strength of fuzzy logic rule
β trainable weight of knowledge controller
QF human preference action value
QLOC agent preference action value
Qi knowledge guided action value of agent i
λi,j cooperation tendency of agent i toward agent j
λi agent i cooperation tendency toward other agents
λi importance of agent i in the group
Qi λ weighted action value of agent i
α parameter of knowledge integration hyper-network
θ weight of integration module generated by integration hyper-network
Ω hyperparameter of integration module
Qtot global value from mixing network
Ltot loss
γ discount factor
h history for RNN
τ action observation history
ϵ exploration rate
ˆ target network

A.4 Computational resource

In this work, we run our experiments in a computer with a CPU (13th Gen Intel Core i7-13700F 2.10
GHz), GPU (NVIDIA GeForce RTX 4080), and RAM (128GB). It takes us more than 550 GPU
hours to finish all the experiments. It’s worth mentioning that the ’35m vs 40m’ scenario is the most
time-consuming experiment where a single run requires beyond 9 hours on average.

A.5 Experiment hyperparameter

The hyperparameters for our experiments are shown in Table 2

A.6 Suboptimal human knowledge applied in experiment

For challenging tasks in SMAC, the following 8 pieces of human knowledge are considered:

• Attack the closest enemy.
• Attack the enemy with the lowest HP.
• Get close to the closest enemy.
• Get close to the enemy with the lowest HP.
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Table 2: Hyperparameters of experiment

Parameter name Value
Total timesteps 2050000
Number of environments 8
Number of test episodes 32
Test interval 5000
Update interval 200 episodes
Optimizer Adam
γ 0.99
β initialization 1.0
Batch size 128
Buffer size 3000
Learning rate 0.001
RNN layer hidden size 64
Group controller RNN hidden size 64
ϵ 1.0→ 0.05
Anneal time of ϵ 50000
QMIX mixing embed size 32
QMIX hypernet embed size 64
Qatten query embed size of layer 1 64
Qatten query embed size of layer 2 32
Qatten key embed size 32
Qatten head embed size of layer 1 64
Qatten head embed size of layer 2 4
Qatten attention head 4
Qatten number of constraint value 32
Knowledge integration hypernet size 64
Knowledge Ω 1.0→ 0.0
Anneal time of knowledge Ω 1000

• Disperse when many agents are crowded together.
• Gather when there are few agents and they are far away.
• Get close to the ally who is attacking.
• Attack properly to avoid over-attacking.

The abstract knowledge can be represented with fuzzy logic rules as follows:

• IF e_d is small, THEN action is attackEnemyId.
• IF e_hp is small, THEN action is attackEnemyId.
• IF e_clo_x is PO, THEN action is east; IF e_clo_x is NE, THEN action is west; IF
e_clo_y is PO, THEN action is north; IF e_clo_y is NE, THEN action is south.

• IF e_Lhp_x is PO, THEN action is east; IF e_Lhp_x is NE, THEN action is west; IF
e_Lhp_y is PO, THEN action is north; IF e_Lhp_y is NE, THEN action is south.

• IF n_ally is large AND g_ally_d is small AND ally_x is PO, THEN action is west; IF
. . . AND ally_x is NE, THEN action is east; IF . . . AND ally_y is PO, THEN action
is south; IF . . . AND ally_y is NE, THEN action is north.

• IF n_ally is small AND g_ally_d is large AND ally_x is PO, THEN action is east; IF
. . . AND ally_x is NE, THEN action is west; IF . . . AND ally_y is PO, THEN action
is north; IF . . . AND ally_y is NE, THEN action is south.

• IF ally_attacking_x is PO, THEN action is east; IF ally_attacking_x is NE, THEN
action is west; IF ally_attacking_y is PO, THEN action is north; IF ally_attacking_y
is NE, THEN action is south.

• IF n_potential is large AND n_attack is proper, THEN action is attackEnemyId.

The membership functions for the fuzzy sets in each rule are elaborated in Figure 8.
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(a) e_d is small (b) e_hp is small (c) x or y is PO (d) x or y is NE

(e) n_ally is large (f) g_ally_d is small (g) n_ally is small (h) g_ally_d is large

(i) n_potential is large (j) n_attack is proper

Figure 8: Membership functions used in SMAC.

A.7 Dynamic graph

The full image of the dynamic graph based on group controller is elaborated in Figure 9.

A.8 Limitations and broader impact

In this section, we will discuss the potential limitations of this work, which we aim to address
in future research. First, as the proposed modules are shared among agents, we assume that the
agents are homogeneous to alleviate the difficulty of knowledge design and computation complexity.
However, exploring our approach with heterogeneous agents, which may require different kinds of
knowledge, is an interesting direction. Second, even though fuzzy logic is a promising technique
for knowledge abstraction, it is relatively primitive, and a better representation method is required
to further improve performance, which is a consideration for future work. Third, in this work, we
consider integrating suboptimal human knowledge to improve the performance of MARL algorithm
and propose a hyper-network to avoid negative knowledge transfer. However, as illustrated in our
ablation studies, more comprehensive knowledge should be beneficial. Therefore, discussing what
kinds of knowledge are more appropriate and how to design effective knowledge is an interesting
topic for future exploration. Finally, due to computational limitations, we only verify our approach in
SMAC. Although we have applied ablation studies to enhance convincingness, it would be helpful to
conduct experiments in other domains with more agents involved, which we plan for future work.

This work aims to contribute to the development of MARL algorithms. As with any field in machine
learning, it is possible that improving the capabilities of these algorithms could lead to unethical
uses. However, there are also many potential benefits to better cooperative AI, such as applications
in disaster rescue robots among others. We believe that the potential benefits of developing more
capable and cooperative AI outweigh the potential risks.
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Figure 9: The cooperation graph from hhkIQL during one battle episode based on the change of each
agent’s λi under ’10m vs 11m’ scenario.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the limitations of this work are discussed. More details can be found in
the appendix (Section A.8).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: From our perspective, this paper does not include theoretical results. The
primary contribution of this work is not theoretical study. Instead, we base our method on
well-verified theories from other works.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the information and experiment details have been fully disclosed. More
details can be found in the method part (Section 3), experiment setting part (Section 4.1),
and appendix (Section A.3, A.5, and A.6).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As our other work is related to this one, we prefer not to disclose the code
currently before publishing further related research. However, for the reviewers, we pro-
vide access to the code in the supplemental material (instructions can be found in the
’README.txt’ file).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all experiment details have been specified. More details can be found in
experiment setting part (Section 4.1), and appendix (Section A.5 and A.6).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, error bars and other appropriate information have been reported suitably
and correctly. More details can be found in the experiment part (Section 4) and corresponding
figures (Figure 4, 5, and 7).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, the sufficient information on the computer resources has been provided.
More details can be found in appendix (Section A.4).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this work follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we have attempted to discuss both potential positive societal impacts and
negative societal impacts. More details can be found in appendix (Section A.8).
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: From our perspective, this paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all existing assets are open access and the original papers have been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

22



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: For our best knowledge, this paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: As far as we know, this paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As far as we know, this paper does not involve crowdsourcing nor research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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