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Abstract

Large Language models (LLMs) have demonstrated supreme capabilities in tex-
tual understanding and generation, but cannot be directly applied to cross-modal
tasks without fine-tuning. This paper proposes a cross-modal in-context learn-
ing approach, empowering the frozen LLMs to achieve multiple audio tasks in
a few-shot style without any parameter update. Specifically, we propose a novel
LLM-driven audio codec model, LLM-Codec, which transfers the audio modality
into textual space by representing audio tokens with words or sub-words from the
LLM vocabulary, while maintaining high audio reconstruction quality. The key
idea is to reduce the modality heterogeneity between text and audio by compressing
the audio modality into the well-trained textual space of LLMs. Thus, the audio
representation can be viewed as a new foreign language, and LLMs can learn the
new foreign language with several demonstrations. In experiments, we investigate
the performance of the proposed approach across multiple audio understanding and
generation tasks, e.g. speech emotion classification, audio classification, text-to-
speech generation, speech enhancement, etc. Experimental results show that LLMs
equipped with the LLM-Codec, named as UniAudio 1.5, prompted by only a few
examples, can perform effectively in simple scenarios, validating our cross-modal
in-context learning approach. To facilitate research on few-shot audio task learning
and multi-modal LLMs, we have open-sourced the LLM-Codec model. 1

1 Introduction

Large language models (LLMs) (e.g., GPT-4 [2], LLAMA [36]) have become increasingly versatile
and effective in handling diverse and complex Natural Language Processing (NLP) tasks as they
scale in model size and training data. It is worth noting that the in-context learning ability of LLMs
can be used to solve unseen tasks, e.g., we can provide instructions along with a few demonstrations,
enabling LLMs to learn and solve new tasks. The success of LLMs inspires the development of
multi-modal LLMs, naturally leading to the idea of empowering their auditory capabilities to tackle
audio-related tasks. There have been notable advancements in extending the capabilities of LLMs to
tackle audio understanding tasks by combining the pre-trained audio encoder (e.g. Whisper encoder
[31]) and LLMs. For instance, models like WavLLM [15], SALMONN [35], and Qwen-audio [8]
propose training multi-modal LLMs by integrating a pre-trained audio encoder, a trainable adaptor,
and pre-trained LLMs. They try to align the audio and text modalities by updating the adaptor or
fine-tuning the LLMs with LORA [14]. However, previous works have limitations: (1) they primarily
focus on expanding LLMs to solve specific audio tasks without leveraging in-context learning for
unseen audio tasks; (2) they do not support audio generation tasks, which limits their applicability;
(3) they require large-scale audio data for aligning audio and text modalities, increasing the burden of
model training and data collection.

1https://github.com/yangdongchao/LLM-Codec
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Figure 1: This figure illustrates the framework of the proposed approach (UniAudio 1.5) for per-
forming speech emotion classification and simple text-to-speech generation tasks. For each task, we
prepare the instruction, demonstrations (e.g., {x1, y1, x2, y2}), and the query xq. The LLAMA 2
model is then asked to predict the corresponding result yq . Here, yq can be either text or audio.

In this study, we propose a cross-modal in-context learning approach, empowering the frozen LLMs
to solve any user-defined audio tasks based on a few demonstrations without any parameter update.
To achieve this, we introduce a vector quantization audio codec model, named LLM-Codec, that
maps the audio modality to the token space of frozen LLMs (e.g., LLAMA 2 [36]). Our motivation
is to reduce modality heterogeneity between audio and text by compressing audio data into the
token space of LLMs. Given that the compressed audio and text modalities share a vocabulary, the
compressed audio sequence can be treated as a new foreign language, which LLMs can learn from
a few demonstration samples. Moreover, since LLMs are pre-trained on large-scale data and have
discovered numerous token sequence patterns, they are well-positioned to generalize to this new
foreign language. Figure 1 illustrates the integration of the proposed LLM-Codec with LLAMA 2
models for performing various audio tasks.

The proposed LLM-Codec aims to compress audio data into a lexical word sequence. A desired
LLM-Codec should exhibit the following properties: (1) Completeness [12]: it should recover
compressed audio with minimal loss. (2) Compactness: it should encode the audio into fewer-token
sequences. (3) Semantic richness: it should encode audio into semantically rich token sequences,
making them easier for pre-trained LLMs to recognize. Thus, we propose a semantic-guided
multi-scale residual vector quantization (RVQ) based codec. Specifically, the codec model consists
of three residual VQ layers: the first layer encodes semantic information, the second encodes
coarse-grained acoustic information, and the third encodes residual acoustic information. Unlike
previous works [9, 52], which encode audio data into the same granularity in each layer, we propose
a multi-scale approach that encodes audio data at different granularities across layers. We are
motivated by the observation that semantic-level information can be preserved with fewer tokens,
while acoustic-level information requires more tokens This multi-scale approach not only shortens the
token sequence length but also offers flexibility for various tasks; for instance, audio understanding
tasks may only require the semantic-level VQ layer. Additionally, we design a novel semantic loss
and consistency loss to enhance the training of the LLM-Codec model.
We conduct experiments to validate the effectiveness of LLM-Codec in an in-context learning setting.
Using the pre-trained LLAMA 2 7B model without parameter updates, we evaluate LLM-Codec
on various audio understanding and generation tasks, such as speech emotion classification, audio
classification, simple text-to-speech, and speech denoising. The main contributions of this work are
summarized as follows:

• We propose a novel LLMs-driven audio codec model, LLM-Codec, which effectively bridges
the text and audio modalities. To the best of our knowledge, this is the first work to quantize
the audio data into the representation space of LLMs.

• We demonstrate the feasibility and potential of using the in-context learning ability of LLMs
to solve unseen audio tasks, including audio understanding and generation tasks. Extensive
experiments and ablation studies further validate the effectiveness of our method.

2



2 Related works

Audio Codec Models Audio codec models have been widely used in the audio generation domain
[50, 48, 5, 49, 46]. Historical investigations into low-bitrate parametric audio codecs began with
earlier studies [21, 4]. However, the quality of these codecs typically faced limitations. Recently,
advancements in neural network-based audio codecs have led to several promising developments
[52, 9, 47, 25, 20]. These systems typically involve an encoder that extracts deep features from a latent
space, which are then quantized and transmitted to a decoder for reconstruction. Particularly relevant
to our work are the FACodec [20] and SpeechTokenizer [54] models, which explicitly model different
properties of audio in different vector quantization layers. In contrast, our proposed LLM-Codec
encodes audio data into a lexical word sequence, differing from these approaches.

Multimodal Large Language Models Recently, there has been tremendous progress in the area of
multimodal LLMs. These models use pre-trained LLMs as the base and incorporate additional input
modalities, such as vision [55, 28, 51, 56, 27, 37] and audio [7, 23, 15, 53, 35, 19, 40]. In general,
multimodal LLMs consist of a pre-trained LLM, a pre-trained vision/audio encoder, and a modality
adaptor. These systems often require the construction of extensive multimodal datasets to fine-tune
the models. In the audio modality, most previous works focus on solving speech understanding [15]
or general audio understanding [35, 19], but these models are not applicable to audio generation tasks.
SpeechGPT addresses some audio understanding and generation tasks by fine-tuning all parameters
and expanding the speech token vocabulary based on LLAMA. However, the speech tokens in
SpeechGPT contain only semantic-level information, limiting its application to broader audio tasks,
such as text-to-audio generation. Additionally, SpeechGPT does not explore the in-context learning
ability to handle unseen tasks.

In-context Learning In-context learning, a form of few-shot learning, allows a large language
model (LLM) to quickly adapt to a specific task during inference by reviewing just a few examples
provided in the prompt [6]. This approach has proven successful in both natural language [45] and
visual-language tasks [3, 51, 56, 28]. In the audio domain, several advanced methods have been
proposed to leverage in-context learning for solving unseen audio tasks. SALM [7] introduces speech-
augmented language models using in-context learning to address speech recognition and translation
tasks, demonstrating that the SALM model can also handle keyword boosting. ICL-GSLM [13]
employs warmup training and prompt tuning strategies to enhance the in-context learning abilities of
pre-trained speech language models [26] for unseen tasks. However, ICL-GSLM primarily focuses
on audio understanding tasks and overlooks audio generation tasks. Dynamic-superb [16] employs
instruction-tuning for audio understanding tasks. Similarly, [42] and [41] investigate in-context
learning within the speech understanding domain. Building on the success of in-context learning
in NLP [45] and vision-language tasks [51, 56, 28], our study focuses on harnessing the in-context
capabilities of frozen LLMs to address a broad range of audio understanding and generation tasks.

3 LLM-Codec

3.1 Overview

Previous audio codec models [9, 52, 47] use a VQ-VAE [38] framework, where the audio signal is
first encoded into a discrete latent space and then decoded back into audio. Because audio codec
models map the audio signal into discrete token sequences, many studies [17, 48, 5] have proposed
training auto-regressive (AR) language models to generate these sequences, inspired by the success
of LLMs in natural language processing. However, there is modal heterogeneity between the discrete
audio tokens produced by the codec models and the text tokens used in LLMs. For example, the
codebooks in audio codecs and the vocabularies of LLMs are typically unconnected, making it
difficult to extend well-trained LLMs to audio modalities. Although previous works [53, 34] have
demonstrated the effectiveness of expanding the vocabulary of LLMs to audio tokens and updating
all of the parameters of LLMs, it will cost a lot of computing resources and forget the knowledge of
the text. In this part, we present a large language models-driven audio codec model (LLM-Codec),
which effectively bridges the gap between audio and text modalities. LLM-Codec is built on the
VQ-VAE framework, but it differs from previous work in several key ways: (1) LLM-Codec is forced
to quantize the audio signal into the token space of LLMs; (2) LLM-Codec adopts a multi-scale
residual vector quantization strategy to balance the completeness and compactness of codec model;
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Figure 2: This figure provides a high-level overview of LLM-Codec, including an encoder, a
decoder, a multi-scale discriminator, and multi-scale residual VQ layers. Here, ‘sub’ denotes feature
subtraction. Note that the modules marked with a snowflake are frozen during training.

(3) LLM-Codec explicitly encodes different level information in different VQ layers. The following
sections provide detailed insights into LLM-Codec, with Figure 2 offering a visual depiction.

3.2 Encoder and Decoder

For any audio x, the encoder first encodes it into latent presentations ET,d, where T denotes the
number of frames, d denotes the dimension of each vector. We set 4 down-sampling layers with
S = [3, 4, 5, 8] in the encoder, which results in 480 times down-sampling for audio. Then, each frame
e ∈ E is passed through the quantizer, which assigns it to the closest entry in a codebook, resulting
in the quantized embedding ê. Finally, the quantized feature Ê inputs into the decoder to reconstruct
x̂. Note that we add several Transformer layers in both Encoder and Decoder part to maintain a good
reconstruction performance. Refer to Appendix B to find more model structure details.

3.3 Multi-scale residual vector quantization with the vocabulary of frozen LLM

We use three residual VQ layers to maintain the balance between completeness and compactness.
Furthermore, we propose to set different quantization granularity in different VQ layers: we expect
the first VQ layer can encode the semantic information, and such information can be saved with
fewer tokens, thus an interpolation function is used to down-sample the encoder features ET,d into

E
T/k1,d
1 , then E

T/k1,d
1 is passed through the first VQ layer to obtain Ê

T/k1,d

1 . For the second VQ
layer, we expect it can encode coarse-grained acoustic information, thus we pass the residual of the

first VQ layer into the next VQ layer. Before that, we first up-sampling Ê
T/k1,d

1 into Ê
T,d

1 , then
obtain the residual features by

ET,d
2 = ET,d − Ê

T,d

1 . (1)

Similarly, we also apply a down-sampling operation to ET,d
2 , we set the down-sampling step as k2.

The features become as E
T/k2,d
2 . Then we pass it into the second VQ layer and obtain Ê

T/k2,d

2 .
Lastly, we expect the last VQ layer can preserve all of the residual acoustic information. We first
obtain the residual features based on the quantized features of the first two VQ layers

ET,d
3 = ET,d − Ê

T,d

1 − Ê
T,d

2 . (2)

Considering the residual acoustic information is more complex and diverse, we directly apply the
VQ operation to each frame without any down-sampling. By using a large down-sampling step in
the encoder of codec, and applying a multi-scale VQ strategy, we can effectively reduce the number
of quantized audio token sequences. In our setting, 1-second audio with a 16k sampling rate will
be quantized into 57 tokens. To ensure that the first VQ layers encode semantic information, we
propose incorporating a semantic loss during the training process. Furthermore, to maintain the
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Table 1: Performance comparison between open-sourced audio codec models, baselines, and the
proposed LLM-Codec. * means the reproduced results by ourselves.

Model Down-sampling Tokens per second PESQ STOI SFTF loss

Encodec_24k (3 Vanilla RVQ) [9] 320 225 2.18 0.79 1.21
DAC_16k (3 Vanilla RVQ) [25] 320 150 1.76 0.78 1.43

Baseline* (3 Vanilla RVQ) 480 99 2.64 0.83 1.09
Baseline* (2 Multi-scale RVQ) 480 41 2.22 0.79 1.23
Baseline* (1 Vanilla VQ) 480 33 2.01 0.76 1.26
LLM-Codec (Ours) 480 57 2.55 0.82 1.15

training stability, we propose a consistency loss. The details will be introduced in Section 3.4.
The initialization of VQ layers To generate lexical tokens, we utilize a pre-trained LLAMA 2
codebook to initialize the VQ layers. Considering that the first layer, the VQ layer, is designed to
encode the semantic information, we do not directly use the full LLAMA codebook. Instead, we
define a new codebook based on Oxford 5000 Words, these words are commonly used to make
up any meaningful sentence. We choose these words that only consist of one or two sub-words in
the LLAMA codebook. If a word includes two sub-words, we use the mean representation of two
sub-words in the LLAMA codebook as the final representation. Lastly, the codebook size of the first
VQ layer is 3248. We directly use the LLAMA codebook to initialize the second and third VQ layers.
The codebook size is 32000. Furthermore, the LLAMA codebook embedding dimension is 4096,
which is too large for codec training. Thus, we apply a linear mapping to 512. In the training process,
the parameters of codebooks are fixed.

3.4 Training loss

Our approach is based on a GAN objective, in which we optimize both the generator(it consists of
encoder, quantizer, and decoder) and the discriminators. For the generator, its training loss consists
of three parts: (1) reconstruction loss term; (2) adversarial loss term (via discriminators); and (3)
semantic and consistency losses. In the following, we give the details of proposed semantic loss and
consistency loss. Refer to Appendix B.2 to find the details of reconstruction loss and adversarial loss.

Semantic loss To enhance the semantic representation ability in the first layer, we introduce a
semantic loss for the first VQ layer. We expect it can encode semantic information, for example, if
the input audio includes a sound event, the first layer should encode which semantic information
of the sound event. Similarly, if the input audio is speech, the first layer should encode the content
of the speech. To realize this target, we use a pre-trained T5-base model [32] to extract a global
representation vector g for the input audio content. We use Whisper to obtain its transcriptions if the
input audio is speech. If the input audio is sound, we use its audio caption label:

Ls = L1(mean(Ê
T,d

1 ), g) (3)
Consistency loss In our early experiments, we found the training of LLM-Codec is not stable, and
the model is easy to collapse. One of the reasons is that we designed a significant down-sampling
rate and the codebooks are fixed in the training, which increases the training difficulty. To solve this
issue, we propose a consistency loss to maintain the training stability. Specifically, we propose using
a pre-trained Whisper encoder [31] to extract frame-level features w, then using these features as
prior knowledge to guide the second VQ layer.

Lc = L1(Ê
T/2,d

2 , inp(w)) (4)
where inp denotes the interpolation function to align the feature dimension between the quantized
features and whisper features. We chose the Whisper encoder because it is trained not only on speech
data but also on non-speech data. Furthermore, we do not apply this loss on the third VQ layer,
because we expect the third VQ layer to encode the residual information.

4 UniAudio 1.5

By combining the pre-trained LLMs and the proposed LLM-Codec models, we can solve many audio
tasks in a few-shot style, as Figure 1 shows. We named the system UniAudio 1.5 for the reason that
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Table 2: Audio understanding task evaluation results. Task induction denotes the explanatory text
that precedes the sequence of audio and text. It is intended to describe the task to the model in natural
language, for example: Please answer the question. Accuracy (%) is used as the metric. For the
Random guess, we calculate the average based 5 times evaluation. K shots refers to the number of
distinct samples for each category, and Repeats refer to how many times we copy the prompt samples.

Task Induction ✓ ✓ ✓ ✓
Method # Layers K Shots 1 1 3 1 1

Repeats 0 0 0 2 3

2-way speech emotion classification
Random None 44
BLSP [40] Whisper encoder 9 29 50 33 19
LLM-Codec semantic layer 25 53 59 53 54
LLM-Codec semantic + acoustic layers 45 49 53 55 54
2-way sound event classification.
Random None 45
BLSP [40] Whisper encoder 44 47 54 15 17
LLM-Codec semantic layer 48 60 57 57 73
LLM-Codec semantic+acoustic layers 41 48 55 54 62

3-way sound event classification.
Random None 30
BLSP [40] Whisper encoder 23 26 36 24 16
LLM-Codec semantic layer 38 41 39 43 42
LLM-Codec semantic+acoustic layers 25 37 35 44 50

the system can be viewed as a universal audio task solver.
Connection to UniAudio UniAudio 1.5 is an advanced edition of the UniAudio Series [48]. Com-
pared to its previous version UniAudio [48], UniAudio 1.5 has the following connections and
distinctions. First, goal. While both UniAudio 1 and UniAudio 1.5 aim at building a universal
audio foundation model for all audio tasks, their focuses are different. UniAudio focuses on audio
generation tasks, such as text-to-speech, text-to-music, singing voice generation, and so on. UniAudio
1.5 focuses on audio understanding and generation tasks by exploring the few-shot ability based
on large language models. Second, architecture. UniAudio 1.5 keeps the basic components in
UniAudio, such as an audio codec used to transfer the audio modality into discrete representations,
and a decoder-only transformer backbone is used. However, UniAudio 1.5 leverages 1) a pre-trained
LLMs to solve the audio understanding and generation tasks by in-context learning, 2) an LLM-driven
audio codec to quantize the audio data into the token space of LLMs. Building a multi-modal audio
foundation model that is capable of handling any audio task is the ultimate goal of the UniAudio
series. In UniAudio 1.0, we show the possibility of building a universal model for different types of
audio generation tasks, but it (1) cannot effectively solve audio understanding tasks and (2) cannot
solve unseen audio tasks in the training or fine-tuning stages. UniAudio 1.5 shows the possibility of
using pre-trained LLMs for both audio understanding and generation tasks. We believe the proposed
LLM-Codec in UniAudio 1.5 builds a foundation for more advanced editions of the UniAudio Series
in the future.

5 Experimental Results

5.1 Experimental Settings

5.1.1 LLM-Codec training and reconstruction performance evaluation

Training data LLM-Codec is a universal audio codec model, trained on both speech and sound
datasets. For speech data, we use a portion of the MLS dataset [30], and for sound data, we use the
AudioCaps dataset [22]. In total, we utilized 2k hours of audio data to train the LLM-Codec model.
Model setting The details of the LLM-Codec model configuration can be found in Appendix B. For
the proposed multi-scale RVQ, we set three scales, with down-sampling rates of k1 = 4, k2 = 2, and
k3 = 1 for each layer. We initialize the VQ layers using the vocabulary of the LLAMA 2 7B model.
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Table 3: Evaluation on dynamic-superb benchmark tasks. Accuracy (%) is used as the metric.

Task ImageBind-LLM [16] Whisper-LLM [16] ASR-ChatGPT [16] Ours

Accent Classification 19 4 7 24
Bird Sound Detection 28 14 15 50
Chord Classification 44 58 3 55
Language Identification 26 13 96 25

The VQ layers are fixed during the training stage.
Evaluation metrics To verify the reconstruction performance, we use Perceptual Evaluation of
Speech Quality (PESQ), Short-Time Objective Intelligibility (STOI), and Mel reconstruction loss.
Evaluation data We conduct evaluation on speech and sound datasets, for speech data, we choose
200 utterances from VCTK [39], and for sound data, we choose 200 utterances from ESC 50 dataset.
Baselines We compare our model with publicly available audio codec models, including Encodec [9]
and DAC [25]. Additionally, we compare it with our reproduced audio codec models, which were
trained on the same dataset as LLM-Codec.

5.1.2 LLMs equipped with the proposed LLM-Codec for downstream audio tasks

Evaluation dataset We choose commonly used test datasets for each task and construct N-way-K-
shot test pairs. More details about constructing evaluation samples can be found in Appendix C.1.
Baselines Given the limited number of works focusing on few-shot learning for unseen audio tasks,
we choose BLSP [40] as one of the baselines for audio understanding tasks. Since BLSP is fine-tuned
on a continuation writing task and does not explicitly address audio classification, these tasks are
considered unseen for the BLSP model. Additionally, we compare our approach with instruction-
tuning-based models as described in dynamic-superb [16]. For audio generation tasks, we did not
find directly related works, so we report the performance of state-of-the-art specialized models.

5.2 Main results

We first present the reconstruction performance comparison. Then we apply the LLM-Codec and
LLAMA 2 7B model for audio understanding and audio generation tasks, to verify the ability of the
proposed method. Lastly, we give the visualization of LLM-Codec to explain why it can work. We
leave more experiments on Appendix D.
Reconstruction performance We compare the audio reconstruction quality with previous works
Encodec [9], DAC-Codec [25], and our baseline model. We report Perceptual Evaluation of
Speech Quality (PESQ) and Short-Time Objective Intelligibility (STOI). Table 1 shows the re-
sults. Compared to previous methods, the LLM-Codec achieves better reconstruction performance
while utilizing fewer tokens. More specifically, the LLM-Codec model can compress 1-second
audio data into a sequence that only includes 57 tokens, which significantly reduces the sequence
length. Compared to the RVQ baseline model, the LLM-Codec significantly reduces the com-
pressed tokens, and its reconstruction performance does not significantly decline. In Section 5.3,
we will show the importance of compressing audio into fewer tokens. We also conduct experi-
ments to validate whether we can use a few VQ layers, such as 1 VQ layer or 2 VQ layer, we
can see that the reconstruction performance will significantly drop. To maintain the balance be-
tween completeness and compactness, we choose a multi-scale 3 VQ layer as the default setting.

Table 4: Text-to-speech generation performance.

Model ACC DNSMOS

GT - 2.91
FastSpeech 2 - 3.42

LLM-Codec (Ours) 70 2.92

Speech Emotion Classification The speech
emotion classification task [10] aims to predict
the emotion label of the speech. We conduct 2-
way K-shot experiments on the ESD [1] dataset.
Experimental results are shown in Table 2. We
have the following findings: (1) Task induction
is important to maintain the stability of perfor-
mance, we can see that without task induction,
the classification accuracy will dramatically de-
cline. (2) The semantic layer effectively extracts
the global semantics of audio, which can be easily understood by the LLAMA model. (3) Using more
demonstration samples (e.g. 3 shots), the performance will be better. (4) Repeating the demonstration
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samples can also bring improvement. (5) Compared to the BLSP, our method performs better in any
setting. Furthermore, we also note that the performance of BLSP will drop when repeat operation
is used. One possible reason is that BLSP only learns the translation relationship between text and
speech, repeating samples cannot bring new cues for LLMs to solve the new task. Instead, our
LLM-Codec learns to map the audio data into the latent space of LLMs, increasing the number of
demonstration samples can help LLMs to find special patterns to solve this new task.

Sound Event Classification Sound event classification aims to recognize the sound event in the audio.
In general, an audio may include multiple events. To simplify the recognition difficulty, we assume
each audio only includes one event. We conduct experiments on the ESC50 dataset [29], which
includes 50 different types of events. We construct 2-way-K-shot and 3-way-K-shot evaluations
based on the ESC50 test set. Compared with the BLSP model, our proposed method gets better
performance. Based on the experimental results from two audio understanding tasks, we can see that
the semantic VQ layer is very important for understanding tasks.
Dynamic-SUPERB Benchmark We also conduct experiments on Dynamic-SUPERB Benchmark
tasks [16]. In [16], authors propose an instruction-tuning strategy for multi-modal LLMs. They
first construct a lot of audio tasks as training data, then validate some unseen audio tasks in a zero-
shot way. To make a fair comparison, we use the same test set with them, and choose the first N
samples as the demonstration to construct a N-way-1-shot evaluation. As Table 3 shows 4 selected
audio understanding tasks, our proposed method obtains better or compared performance than these
baselines in [16]. Especially, for the bird sound detection task, our proposed method obtained great
improvement over previous methods. We also note that our method performs worse on language
identification, the possible reason is that our codec model is only trained on English speech data. In
the following, we will show that LLM-Codec also can be used to conduct audio generation tasks.

Simple text-to-speech generation We conduct text-to-speech generation on the Free Spoken Digit
Dataset (FSDD) dataset [11], which includes 3 speakers and 1,500 recordings. Unlike the traditional
TTS model, which generates any speech content, this task generates digit speech. Our current
model to generate complex speech content is still challenging. We use accuracy (ACC) to assess the
content of the generated sample whether following the instructions. DNSMOS is used to assess the
speech quality of generated samples. We construct 20 different query questions, including addition,
subtraction, multiplication, division, and reasoning (finding more details from Appendix C.2). From
Table 4, we can see that our proposed model can accurately understand the query in most cases
(the accuracy is 70 %) and generate good-quality speech samples. Figure 3 gives a visualization
of generating speech based on the query. The frozen LLAMA model learns about 4 digits (0-3),
each audio digit includes 5 samples. We add the context for each audio: "an audio of k" before
inputting the audio’s discrete representations into LLAMA, as Figure 1 (b) shows. After that, we let
the LLAMA 2 model generate corresponding speech digits based on the instruction. We also note that
the generated audio appears different from all context audio samples, demonstrating the cross-modal
reasoning capability of LLMs when using the LLM-Codec as the connector for text and audio.

Table 5: Speech denosing evaluation.

Model PESQ STOI

SGMSE+ [33] 3.53 0.79

LLM-Codec (Ours) 2.17 0.57

Simple speech denoising To verify whether the pro-
posed method can conduct speech-denoising tasks, we
simulate noisy speech based on the VCTK dataset and
NoiseX-92 dataset, we set the SNR ranges from -20
to 20. For each clean speech, we choose 5 different
noises to simulate noisy speech. The first 4 noisy and
clean audio pairs are used as demonstrations, and the
model learns to denoise the last noisy one. To improve
in-context learning ability, we repeat the demonstration
samples 4 times. The experimental results as Table 5 shows, we can see that the proposed method
can also learn to denoise without any training. Furthermore, we also note that the performance has a
large room to improve compared to special models.
Token Visualization We visualize the tokens produced by the first VQ layer of LLM-Codec for
different types of sound in Figure 4. We have the following findings: (1) Although the two audios
include the same sound event, the quantized sequence is not exactly the same. (2) The quantized
sequence of two same types of audio has a similar pattern, e.g. their token sequences have similar
repeating patterns or the same word. Such patterns may help the LLMs recognize the type of audio.
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Figure 3: Examples of simple text-to-speech generation using LLM-Codec and LLAMA2 model.

5.3 Ablation study

The influence of multi-scale RVQ We first conduct experiments to see the effectiveness of multi-
scale RVQ. As Table 6 shows, compared with vanilla RVQ, the proposed multi-scale RVQ does not
bring a significant reconstruction performance drop, which validates our assumption that semantic
information does not need too much token to encode. Secondly, we find the multi-scale RVQ sig-
nificantly reduces the length of the token sequence and brings benefits for downstream tasks (the
audio classification accuracy is better than the baseline). One potential explanation is that LLMs can
better identify the unique pattern in a brief sequence. Intuitively, the semantic information included
in a 1-second audio is limited. It is unnecessary to use very long sequences to represent limited
information.
The influence of down-sampling times We can see that using a smaller down-sampling rate (320)
can improve the reconstruction performance, but it also increases the length of the token sequence.
We can see that the classification accuracy will decrease when the sequence length increases.
The influence of semantic loss Without semantic loss, the performance of the audio understanding
task will drop. Furthermore, we also find that adding semantic loss does not influence the reconstruc-
tion performance. In summary, the proposed semantic loss is very useful.
The influence of consistency loss We find that consistency loss is important to maintain training
stability. Without it, we can see the model fails to reconstruct the audio. We conjecture that frozen
codebooks and large compression rates significantly improve the difficulty of training. The consis-
tency loss forces the second VQ layer to produce features similar to those of the Whisper encoder,
which provides guidance for vector quantization and prevents the model from collapsing in the early
stage.
The influence of word-level codebooks We also conduct experiments to show the effectiveness of
using word-level codebooks to initialize the first VQ layer. Compared with using sub-word vocabulary
for the first VQ layer, we can see that using the proposed word-level codebook can improve the
reconstruction performance and classification accuracy.
The importance of frozen codebooks LLM-Codec compresses the audio data into the token space
of LLMs by initializing the codebooks with the LLMs’ vocabulary and fixing it during the training
stage. Table 6 also presents the results of updating codebooks: it can improve the reconstruction
performance, but the accuracy is a significant drop. The result is consistent with our hypothesis:
updating the codebooks parameter will decrease the codec training difficulty, but the learned codebook
space is different from the LLM’s token space, resulting in the downstream task performance declines.
Different setting of k1 and k2 in multi-scale RVQ We validate a new setting for multi-scale RVQ
with k1 = 3 and k2 = 5. We can see that the reconstruction performance will decline. We think
one of the reasons is that the second VQ layer should not apply a large down-sampling step, which
significantly influences the reconstruction.
Codebook usage Previous works [18, 52, 25] suggest that using a large-scale codebook may result
in codebook collapse ((where a fraction of the codes are unused). We calculate the codebook usage
for each VQ layer in LLM-Codec. The used codes are 3246 (3248), 31911 (32000), 31941 (32000)
for each VQ layer, which shows that most of codes are used.
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Table 6: Ablation studies on training loss, multi-scale RVQ setting, initialization of VQ layer. The
classification accuracy (%) is evaluated under the sound event classification task 2-way 1-shot setup.

Model Down-sampling Tokens per second PESQ STOI ACC

Baseline (3 Vanilla RVQ) 480 99 2.64 0.83 55
LLM-Codec (3 Multi-scale RVQ) 480 57 2.55 0.82 60
LLM-Codec (3 Multi-scale RVQ) 320 87 2.60 0.83 57

w/o semantic loss 480 57 2.54 0.82 58
w/o consistency loss 480 57 1.19 0.53 48
w/o word-level codebook 480 57 2.46 0.81 59
updating codebooks 480 57 2.63 0.83 55
seting k1 = 3 and k2 = 5 480 50 2.35 0.79 58

therefore therefore nobody threaten 

therefore concerning nobody nobody 

disk finally

therefore therefore nobody nobody switch 

threaten concerning concerning therefore 

finally

Semantic

Layer

Mel

spectrogram

yesterday yesterday yesterday 

yesterday yesterday whatever 

whatever newspaper Sunday finally

before before before  phrase phrase 

phrase after phrase alarm finally

Figure 4: The token visualization of the semantic layer of LLM-Codec is shown. We present two
groups of samples, each containing two audio recordings with the same sound event label. In each
group, we use the same color to highlight potentially similar patterns in the two audio recordings,
such as identical token sub-sequences or token repeating frequencies. We speculate that these patterns
can be easily recognized by LLMs, allowing them to learn new sound events quickly with just a few
demonstrations.

6 Conclusion

In this study, we explore a cross-modal in-context learning approach to solve unseen audio tasks in
a few-shot style. Specifically, we propose to train a LLMs-driven audio codec (LLM-Codec) that
compresses the audio signal into the token space of LLMs. The LLM-Codec effectively reduces the
modal heterogeneity between text and audio. With the help of LLM-Codec, pre-trained LLMs can be
applied to solve multiple audio understanding and generation tasks. We demonstrate that LLM-Codec
has good reconstruction performance, and the compressed token sequence is suitable for LLMs to
understand and generate. Experiments show that the LLMs equipped with the proposed LLM-Codec,
named as UniAudio 1.5, prompted by only a few examples, are capable of achieving the expected
functions in many scenarios.

7 Limitations

Although we show the possibility of using the in-context learning ability of LLMs for unseen audio
tasks without any parameter update, the performance of these tasks is still poorer than these special
models in the audio domain. The capability to learn within an in-context framework is significantly
limited for a modality that was not exposed during the training process. Due to the LLM’s context
length limitation, we cannot add more demonstration samples to help improve the performance.
We think it is worth exploring using more demonstrations to improve its in-context learning ability.
Moreover, we only explore the use of the LLAMA 2 7B model as the backbone; more advanced open-
sourced LLMs are worth exploring. Considering we have open-sourced the LLM-Codec, readers can
conduct experiments on their favorite LLMs. Furthermore, there are fewer theoretical connections to
justify the meaning of the lexical representation of the "trainable new (pseudo) language" of speech,
which can be improved. In future work, we will explore to train multi-modal LLMs by fine-tuning
LLMs on text-audio datasets with the help of LLM-Codec, and build more theoretical analysis.
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Appendices

A Appendix Overview

These Appendices provide additional details to support our main manuscript, including (1) the training
detail and model structure of LLM-Codec. (2) The details of the evaluation dataset. (3) More audio
task evaluation results. (4) Limitations.

B More details of LLM-Codec

B.1 Model structure

Table 7 gives the details of LLM-Codec configuration, which results in 160M parameters. To
facilitate research on cross-modal in-context learning and multi-modal LLMs, we have open-sourced
the LLM-Codec models.

LLM-Codec

Input shape (1, 1, T)
Encoder (input dimension) 32

Down-sampling rate [3, 4, 5, 8]
latent dimension 512

Codebook dimension 4096
Transformer layer dimension 512
Number of Transformer heads 8

Decoder dimension 1536
Up-sampling rate [8, 5, 4, 3]

VQ strides [5, 3, 1]

Table 7: LLM-Codec model backbone configurations

Encoder and Decoder Considering a single-channel audio signal x ∈ Rt×sr, where t and sr denote
the audio duration and the sample rate. The overall architecture is similar to previous audio codec
models, such as Encodec [9], DAC [25], and HiFi-Codec [47], which includes four main parts:
encoder, quantizer, decoder, and discriminators. Figure 2 provides a visual depiction of the proposed
method. For any input x, the encoder first encodes it into latent presentations ET,d, where T denotes
the number of frames, d denotes the dimension of each vector. Due to the encoder includes some
down-sampling layers, resulting in T << t × sr. Then each frame e ∈ E is passed through the
quantizer, which assigns it to the closest entry in a codebook, resulting in the quantized embedding
ê. Finally, the quantized feature Ê inputs into the decoder to reconstruct x̂. The encoder and
decoder architecture follows previous works Encodec [9] and DAC-Codec [25], which includes
several convolution layers and transformer layers. Specifically, the encoder model comprises a 1D
convolution with C channels and a kernel size of 7, leading into B convolution blocks. Each block
contains a residual unit followed by a down-sampling layer, which employs a convolution with a
kernel size K that is twice the stride S. The residual unit itself comprises two convolutions, each
with a kernel size of 3, linked by a skip connection. The transformer block is used for sequence
modeling, and concludes with a final 1D convolution layer featuring a kernel size of 7. In this study,
we set S = [3, 4, 5, 8], which results in 480 times down-sampling for audio. The decoder mirrors the
encoder’s architecture, substituting stride convolutions with transposed convolutions and reversing
the stride order.

Discriminators For the discriminators, we follow previous work [48], which combines the
mel-spectrogram and log-mel-spectrogram features and then input them into a network consisting of
several convolutional layers. In our experiments, we use 6 different discriminators with different
configurations. Specifically, we set the hidden dimension as {64, 128, 256, 512, 512, 512} and the
hop length as {32, 64, 128, 256, 512, 1024}.
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B.2 Reconstruction loss and adversarial loss for LLM-Codec

The reconstruction loss is calculated between x and x̂. We design the loss from two aspects: the time
domain and the frequency domain. For the time domain, we directly calculate the L1 loss between x
and x̂. For the frequency domain, we calculate the L1 loss between the STFT spectrogram of x and
x̂. Note that a sub-band split strategy [43] is used to split the spectrogram into several parts, and then
we calculate the loss between these sub-bands. The adversarial loss is used to improve the perceptual
quality of generated audio. A multi-scale Mel-spectrogram discriminators [48] is used. To train the
discriminator, we can optimize the following objective function:

Ld =
1

K

K∑
i=1

max (0, 1−Dk(x)) +max (0, 1 +Dk(x̂)) (5)

where K denotes the number of discriminators. In the training stage, the adversarial loss for the
generator is calculated as a hinge loss over the logits of these discriminators:

Ladv =
1

K

K∑
i=1

max (0, 1−Dk(x̂)) (6)

We also compute the feature loss by taking the average absolute difference between the discriminator’s
internal layer outputs for the generated audio and those for the corresponding real audio.

B.3 Training details

The AdamW optimizer is used in the training. We set the learn rate as 1e− 4. We train the model
with 100k steps. For the training loss, we combine all of the loss terms without a special loss design.
In the training stage, we use the pre-trained T5-base model and Whisper-base model for the reason
that their latent dimension is both 512. We conduct all of the experiments with 2 NVIDIA A100-80G
GPUs.

C Evaluation dataset

In this part, we show how to construct an evaluation dataset for the N-way-k-shot test.

C.1 N-way-k-shot test samples

Speech emotion classification with LLAMA 2. We give an example of 2-way 1-shot classification
tasks. Firstly, we get the emotion class set from the ESD dataset: [’Angry’, ’Happy’, ’Neutral’, ’Sad’,
’Surprise’]. Then we randomly choose two emotions as targets, and get the corresponding audios.
For example, assuming that we get Happy and Sad the prompt can be

For each of the following input-output pairs, the output is
one of [‘Happy’ or ‘Sad’]
###
Input: <token sequence from a happy emotion of audio>
Output: happy
###
Input: <token sequence from a sad emotion of audio>
Output: sad
###
Input: <token sequence from the query audio>
Output:

We use greedy decoding to get a maximum of 16 tokens from LLAMA 2 7B.

Sound event classification with LLAMA 2. We give an example of 3-way 1-shot classification
tasks. Firstly, we get the sound event class set from the ESC50 dataset. Then we randomly choose
three sound events as targets, and get the corresponding audio. For example, assuming that we get
dog, speaking, and mouse click we set the prompt as
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For each of the following input output pairs,
output is one of [‘dog’ or ‘speaking’ or ’mouse_click’]
###
Input: <token sequence from a dog event of audio>
Output: dog
###
Input: <token sequence from a speaking event of audio>
Output: speaking
###
Input: <token sequence from a mouse click event of audio>
Output: mouse click
###
Input: <token sequence from the query audio>
Output:

C.2 Audio generation

Text-to-speech generation with LLAMA 2

Instruction: Learn a foreign language for different digits,
then generate the corresponding number using
foreign language based on instruction
###
Input: <an audio of 1>
Output: <token sequence of audio 1>
###
Input: <an audio of 2>
Output: <token sequence of audio 2>
###
Input: <an audio of 3>
Output: <token sequence of audio 3>
###
Input: <an audio of 1+1>
Output:

To simplify to generation process, we set each audio has the same duration.

Text-to-speech question design we designed 20 different questions for text-to-speech, which
include addition, subtraction, multiplication, division, and reasoning.

###
Input: <an audio of (1+1)>
###
Input: <an audio of (1+2)>
###
Input: <an audio of (2+2)>
###
Input: <an audio of (5-1)>
###
Input: <an audio of (5-2)>
###
Input: <an audio of (1-1)>
###
Input: <an audio of (0*2)>
###
Input: <an audio of (2*2)>
###
Input: <an audio of (1/1)>
###
Input: <an audio of (2/1)>
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###
Input: <an audio of (4/2)>
###
Input: <an audio of (the square root of 4)>
###
Input: <an audio of (the square root of 1)>
###
Input: <an audio of (the last digit of 110)>
###
Input: <an audio of (the first digit of 110)>
###
Input: <an audio of (the sum of 1+1+1)>
###
Input: <an audio of (the next digit of 4)>
###
Input: <an audio of (sequence 0,1,2,3 what is next?)>
###
Input: <an audio of (sequence 4,3,2,1 what is next?)>
###
Input: <an audio of (how many days in a week)>

D More audio tasks evaluation experiments with the proposed method

In the following, we show the results of speech command recognition and text-to-sound generation.

D.1 Speech Command Recognition

Table 8: Speech command recognition evaluation results on Speech Command dataset. Accuracy (%)
is used as the metric. For the Random guess, we run 5 times then calculate the average.

Task Induction ✓ ✓ ✓ ✓
Method # Layers K Shots 1 1 3 1 1

Repeats 0 0 0 1 3

LLM-Codec semantic layer 50 53 59 54 56
LLM-Codec semantic+acoustic layers 25 53 58 49 52

BLSP [40] Whisper encoder 29 65 84 69 59
Random None 44

Speech command recognition refers to the recognition and interpretation of short phrases or keywords
that are typically used to control devices or applications. In this part, we choose audio samples from
the Speech Command dataset [44]. We choose four types of commands, including down, go, left, and
right. For each command, we randomly choose 20 utterances, then we use these data to construct a
2-way-K-shot evaluation. Experimental results are shown in Table 8, we can see that only using the
semantic VQ layer brings the best performance. Instead, if the tokens from the acoustic layer are used,
the performance will decline. One possible reason is that for the speech command recognition task, it
only needs to understand the content, and the content information has been saved in the semantic
layer, the additional acoustic information may disturb the LLMs’s prediction.

D.2 Simple text-to-sound generation

Similarly, we can also use the same setting as text-to-speech to conduct text-to-sound generation
tasks. We choose a test set from the ESC50 dataset [29], and let the model learn to generate sound
events based on the text label. For example, we can set several different sound types in the prompt,
and then ask the LLAMA model to generate a new audio. However, we also find that it is hard to ask
LLM to generate new types of sound.
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Prompt

Query: an audio of (dog bark) Query: an audio of (mouse click)

Figure 5: Examples of simple text-to-sound generation on FSDD dataset using LLM-Codec with a
frozen LLAMA2 7B model.
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Figure 6: The token visualization of three VQ layers with LLM-Codec. The audio samples are from
the ESC50 dataset.

D.3 Token visualization

Figure 6 shows the details of three VQ layers token visualization. We have the following findings: (1)
The few tokens in the first layers seem to more easily understand the audio’s pattern. For example,
we can easily find two audios with the same sound event that can be quantized into very similar
sequences. Because we force the first VQ layer to encode the semantic level information. Instead, the
second and third VQ layers aim to encode the acoustic information, but these audios have obvious
differences in acoustic condition (we can observe it from its mel-spectrogram). Second, it is worth
noting that all of the training data is English-related, but we can see that the encoded sequence also
includes other languages, such as Chinese.
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E Additional experiments in the rebuttal period

E.1 Is there any scaling effects of the backbone LM selection?

Inspired by the reviewer’s suggestion, we added an experiment to explore the influence of scaling
effects of the backbone LM. Specifically, we compare the performance of different LM selections:
LLAMA2 7B and LLAMA 2 13B. We conduct experiments on N-way-1-shot sound event classifica-
tion, The performance comparison as Table 9 shows. We can see that scaling the backbone LM can
also bring improvement for audio tasks.

Table 9: The influence of scaling effects of the backbone LM.

Model / task 2-way-1-shot 3-way-1-shot 4-way-1shot 5-way-1-shot 6-way-1-shot
LLAMA 7B 60 41 36 33 17
LLAMA 13B 62 0.42 41 43 31

BLSP 47 26 15 12 10

E.2 The performance comapred to other text-to-audio models.

We add a text-to-audio evaluation. Specifically, we choose previous SOTA AudioGen [24] as one
of the baselines, because AudioGen is also an autoregression model based on audio codec models.
Furthermore, we also choose some diffusion-based audio generation models, including AudioLDM
and Tango, as the other baselines. For AudioLDM and Tango, we use their official checkpoints, and
we set 200 diffusion steps for the inference. We conduct experiments on the ESC 50 [29] validation
set. AudioGen, AudioLDM, Tango, and our model do not see the ESC 50 dataset in the training
stage. We use the event label to construct the text description, e.g. if the event label is ’clapping’, we
will construct the caption as ’this is the sound of clapping.’. For the evaluation metrics, we follow
previous works to use FAD and KL as the metrics. The results are shown in the table 10.

Table 10: The text-to-audio evaluation.

model FAD KL
AudioGen 20.4 1.94

AudioLDM 15.6 3.52
Tango 12.7 3.01
Ours 17.16 3.05

E.3 The reconstruction performance comparison ESC 50 dataset

Table 11: The reconstruction performance comparison. We compared with previous SOTA model,
such as DAC-Codec and Encodec.

Model PESQ STOI STFT loss
DAC (3 RVQ) 1.88 0.52 1.55

Encodec (3 RVQ) 2.01 0.54 1.39
ours 2.09 0.52 1.38

F Potential Negative Societal Impacts

This paper aims to build a multi-modal LLM for audio understanding and generation tasks in a
few-shot style without any parameter update for LLMs, which will ease the effort to develop different
special models for different tasks. A negative impact is the risk of misinformation. To alleviate it,
we can train an additional classifier to discriminate the fakes. We believe the benefits outweigh the
downsides. The proposed method lowers the requirements for designing many special models, which
may cause unemployment for people with related occupations, such as audio engineers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the claims made, including the contributions made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section ?? in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section B in Appendix with data, and model configurations information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section B in Appendix with data and model configurations information.
We also report hyper-parameters of LLM-Codec.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean value for experiments to run 5 times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section B in Appendix for information on compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section F in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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