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Abstract

Despite the rapid growth in access to digital de-
vices, the new users of the devices, especially
in developing countries like India, are not able
to access information on their rights and enti-
tlements, jobs and livelihood, healthcare, edu-
cation, etc. as the information is in the form
of very long, complex sentences and heavy in
legal parlance. Open information extraction
techniques can be used to convert unstructured
legal text into triples of the form (subject,
relation, object) in a domain-independent
manner. However, the legal text is long and
complex which calls for extracting structure be-
yond triples, also called complex information
extraction. This paper proposes a generative
approach to perform complex information ex-
traction from legal statements. We achieve this
by encoding legal statements as trees to capture
their complex structure and semantics. This
end-to-end modelling reduces the propagation
of errors across complicated pipelines. We ex-
perimented with multiple generative architec-
tures to conclude that our proposed approach
reports up to 14.7 % gain on an Indian Legal
benchmark and is competitive on open infor-
mation extraction benchmarks.

1 Introduction

The proliferation of smartphones and computing
devices is evident, with a reported 71% smartphone
penetration in 2023 (Sun, 2023; Gupta et al., 2022).
Despite this, the Next Billion Users, new adopters
of digital technology, struggle to utilize these de-
vices effectively for accessing critical information
such as rights, employment opportunities, health,
and education (Google, 2023). This is partly due to
the predominantly textual nature of available infor-
mation, particularly in legal contexts, characterized
by intricate and lengthy sentence structures (Ab-
dallah et al., 2023). Processing and acting upon
such information impose significant cognitive bur-
dens on these users, who often lack the necessary
education and skills to comprehend it (Joshi, 2013).

NLP techniques can assist in structuring and or-
ganizing legal data to enable automatic search and

retrieval (Dale, 2019; Zhong et al., 2020). Open
information extraction (OIE) techniques (Kolluru
et al., 2020; Stanovsky et al., 2018; Etzioni et al.,
2011) can be used to extract structured informa-
tion such as triples of the form (subject, relation,
object) from a sentence in a domain-independent
manner. However, legal text poses unique chal-
lenges - Legal sentences and documents are lengthy
with complex inter-clausal relationships between
them (Chalkidis et al., 2020). Existing OIE tech-
niques are unable to return the best results on legal
sentences. For instance, the output of OpenlE6
(Kolluru et al., 2020) on If over 50 percent of a
company’s workers take concerted casual leave, it
will be treated as a strike are 2 triples - 7) (it, will
be treated, as a strike), i7) (over 50 percent of a
company’s workers, take concerted, casual leave>.
The model fails to identify that a condition connects
the two extractions. Apart from condition, clauses
can have relations such as contrast or disjunction,
etc (Table 1) among them. Identifying such rela-
tions is important to design systems that empower
users interpret complex legal information.

The problem of extracting structure beyond
triples is handled by a relatively new area of re-
search known as complex information extraction
(Mahouachi and Suchanek, 2020). However, most
of these techniques (Niklaus et al., 2019; Prasojo
et al., 2018) involve multiple-step pipelines for
identifying clauses and relationships between them
that propagate errors. They also lack language un-
derstanding and generalization capabilities. There
are numerous applications for complex informa-
tion extraction, including 7)generating awareness
among the general population, particularly those
with limited comprehension of legal language, es-
pecially following the repercussions of COVID-19
in India. This extraction could be helpful in var-
ious downstream tasks like Question Answering
System with voice support. i) Could also be used
by legal professionals for court judgment predic-
tion explanation if the legal information is stored
in a knowledge base in the form of discourse trees.

This paper proposes LeGen, an end-to-end gen-



Sentence Clauses

Relations | Relations among Clauses

If balance amount 1) Balance amount

in the account in the account
of a deceased
is higher than
150,000 then

2) The nominee

of a deceased

is higher than
150,000 then the
nominee or legal
heir has to prove
the identity to
claim the amount

has to prove the
identity to claim
the amount

3) Legal heir

has to prove the
identity to claim

the amount

CONDITION,

Rcon Balance
prsuncrIoy | Heonpirion(

amount in the
account of a
deceased is higher
than 150,000 then
Rprssuncrion(The
nominee has to
prove the identity
to claim the
amount, Legal heir
has to prove the
identity to claim
the amount))

Table 1: Examples of clauses and relations CAUSE, CONDITION, CONTRAST, and DISJUNCTION among clauses

erative approach for complex information extrac-
tion from legal sentences. Generative architectures,
such as TS5 (Raffel et al., 2020), BART (Lewis et al.,
2019), or GPT (Radford et al., 2018) have been
very successful in understanding text and general-
ization. We have used T5 and BART to understand
Legal text rather than advanced large language
models like Open Al and Llama as they are com-
putationally extensive and proprietary-owned. So,
we trained on smaller models, which are privacy-
friendly. By encoding legal sentences as a dis-
course tree (Niklaus et al., 2019), (Section 4.1),
BART and T5 architectures capture both the struc-
ture and semantics of a complex sentence more
accurately. Such end-to-end modelling reduces the
propagation of errors across multiple steps. Our
salient contributions are:

1. We employ open-domain information extrac-
tion techniques on Indian legal sentences to en-
hance their accessibility to the general public. We
propose utilizing techniques for extracting complex
information from legal statements.

2. We propose LeGen, an end-to-end generative
approach that learns accurate tree-based represen-
tations to encode complex structure of any legal
statement

3. We release a new benchmark for legal informa-
tion extraction, curated from Indian Law statements

4. We report substantial gain over Graphene
(Niklaus et al., 2019), a state-of-the-art complex in-
formation extraction technique on the Indian Legal
benchmark.

5. We show LeGen’s flexibility by training it as
an OIE task, and conclude that it is competitive on
an OIE benchmark.

Our paper is organized as follows. In Section 2,
we discuss work related to legal, complex, and open

information extraction. We formally describe the
problem in Section 3 and introduce LeGen in Sec-
tion 4. We discuss our experiments and results in
Section 5 and 6 and discuss future work in Section
7. The limitations of our approach are described in
Section 8. Additional details and experiments are
listed in the Appendix (Section A).

2 Related Work

2.1 Legal Information Extraction

Legal Information Extraction has evolved rapidly,
requiring NLP techniques to aid legal profession-
als (Chalkidis et al., 2017; Leivaditi et al., 2020;
Cardellino et al., 2017). In (Zadgaonkar and
Agrawal, 2021), authors review open information
techniques to extract structured triples from le-
gal statements. This still suffers from the issues
pointed out in Section 1. In (Mistica et al., 2020),
authors classify sentences into three labels: facts,
reasoning, and conclusion while we focus on ex-
tracting information (discourse trees) from individ-
ual legal sentences.

Numerous systems, including Eunomos (Boella
et al.,, 2016; Abood and Feltenberger, 2018;
Nguyen et al., 2018), have been developed to sim-
plify and streamline legal tasks, employing a vari-
ety of machine learning techniques and recurrent
neural network architectures. Examples of tasks
covered in legal information extraction include
named entity recognition, document summariza-
tion, document structure extraction, or judgement
prediction and explanation. Dozzier pioneered le-
gal NER using rule-based methods (Dozier et al.,
2010). (Cardellino et al., 2017) enhanced NER task
with a legal ontology mapped to YAGO. Recent ad-
vancements, like pre-trained language models and
prompt-based learning, outperformed rule-based
systems for NER (Liu et al., 2023).

In court judgment prediction, systems like



HYPO (Rissland and Ashley, 1987) and CATO
(Aleven and Ashley, 1995) provided arguments
without definitive evaluations. Rule-based systems,
as discussed by (Sergot et al., 1986), offered out-
comes and reasoning. IBP (Bruninghaus and Ash-
ley, 2003) integrated CATO-like techniques for out-
come prediction. Early ML approaches, like those
by (Pannu, 1995), utilized neural networks and ge-
netic algorithms. (Aletras et al., 2016) achieved
79% accuracy on ECHR decisions with SVMs.
Subsequent studies explored ML in this domain
(Medvedeva et al., 2020; Chalkidis et al., 2019a;
SAYS and Judgement, 2020; Kaur and Bozic, 2019;
Medvedeva et al., 2023). (Branting et al., 2021)
introduced semi-supervised case annotation to ex-
plain Al-predicted judgments.

Pre-training models for legal domain adaptation
has also been a popular direction of research. Re-
searchers introduced LegalBERT (Chalkidis et al.,
2020), which is BERT (Kenton and Toutanova,
2019) pre-trained on 12 GB of diverse English legal
text from legislation, court cases and contracts. It
was evaluated on three legal datasets (EURLEXS57,
ECHR Cases, and CONTRACTS NER). Several
datasets are made available in various languages
for various legal NLP tasks (Chalkidis et al., 2021,
2019b,a; Yao et al., 2022; Zheng et al., 2021).

In the Indian context, Paul et al (Paul et al.,
2023) retrain two existing legal pre-trained Lan-
guage Models, namely Legal BERT and CaseLaw-
Bert (BASELINE), on Indian Legal data, renam-
ing them InLegalBert and InCaseLLawBert evalu-
ating their model on both Indian and Non-Indian
datasets using the perplexity score metric. (Malik
et al., 2021) introduce a large corpus, named ILDC,
which consists of 35k Indian Supreme Court cases
in the English language annotated with original
court decisions. The SemEval task (Modi et al.,
2023) introduced three problems to be tackled on
the ILDC corpus (Malik et al., 2021). — i) legal
named entity recognition (Kalamkar et al., 2022a)
performs named entity recognition on the ILDC
corpus, 1) rhetorical role prediction structures le-
gal transcripts into rhetorical roles (Kalamkar et al.,
2022b) and iii) court case judgment prediction
proposes using Al-based techniques to automate
course case judgments. Based on ILDC, Malik et
al., propose the task of Court Judgement Predic-
tion and Explanation, where an automated system
predicts and explains the outcomes of legal cases
(Malik et al., 2021).

Kapoor et al. (Kapoor et al., 2022) present the
Hindi Legal Documents Corpus (HLDC), contain-
ing over 900k Hindi legal documents, for down-
stream applications. They demonstrate a bail pre-

diction use case, experimenting with Doc2Vec,
IndicBert, and a Multi-Task Learning (MTL) ap-
proach. Kalamkar et al. (Kalamkar et al., 2021), in
their research work, highlight the need for an NLP
benchmark on Indian Legal text as it is entirely
different from other countries’ legal text. Cui et al.
(Cui et al., 2023), survey LJP tasks, evaluating 31
datasets and SOTA models over multiple tasks.

2.2 Open Information Extraction

Open Information Extraction uses an independent
paradigm to extract the information as a triple,
(subject, relation, object). (Yates et al., 2007)
introduced the concept of Open Information Ex-
traction and proposed Text Runner. Following this,
many rule-based systems were developed like RE-
VERB (Etzioni et al., 2011) and OpenlES5 (Saha
et al., 2018). Moving from rule-based system, we
have RNNOIE (Stanovsky et al., 2018) which uses
a neural-based approach to open information ex-
traction and is trained by the data extracted from
non-neural systems.

The state-of-the-art in Open Information Extrac-
tion, OpenlE6 (Kolluru et al., 2020) uses iterative
grid labeling with BERT architecture to generate
triples from input sentences. It combines the results
from the three models (coordination model, OIE
model, and Allennlp models) to generate triples
from input sentences.

2.3 Complex Information Extraction

Many OIE systems have been developed which
cater to identifying triples in a complex sentence
(Mahouachi and Suchanek, 2020) like OLLIE
(Schmitz et al., 2012), MinlE (Gashteovski et al.,
2017), ClauslE (Del Corro and Gemulla, 2013),
StuffIE (Prasojo et al., 2018) and Graphene (Cetto
et al., 2018).

ClauslE, MinlE, and OLLIE use a linguistic-
based approach to information extraction. OLLIE
open information system uses a set of pre-defined
templates and rules to identify the relation present
in the sentence. MinlE also uses a linguistic ap-
proach to extract information with a difference that
enhances the output by adding other semantic in-
formation like polarity, modality, attribution, and
quantities. StuffIE (Prasojo et al., 2018), another
open information system that aims to extract com-
plex information which is referred to as facets in
this work, uses syntactical dependency to tag facets
or relations in the sentence. Graphene (Niklaus
et al., 2019) uses 39 handcrafted rules to construct
a discourse tree and then obtain the triples from
the sub-sentences of the input sentences. These
techniques are either rule-based or use a pipeline



of techniques to extract the structure of a complex
sentence. To the best of our knowledge, ours is the
first attempt at using generative neural architectures
to model complex information extraction.

3 Problem Definition

We denote the sentences (example in Table 1) by
S. Our goal is to identify from S:

1. Aset C of all clauses in S. A clause refers to
an indivisible, atomic sentence in S. C' = {"Balance
amount in the account of a deceased is higher
than 150,000 then", "
identity to claim the amount", "Legal heir has to
prove the identity to claim the amount"} for the

example in Table 1.

The nominee has to prove the

2. A set COMP of complex sentences that are
obtained either by ¢) combining N clauses which
are subsets of clauses, C, using an N-ary relation,
or, ii) by combining subsets of C' and COM P
using N-ary relation.

3. A set R of N-ary relations that relate N
clauses or complex sentences and generate a
new complex sentence. In other words, R, :
{C U COMP}Y — COMP, where R,, €
R. For 89 R = {Rcondition7Rdisjunction}~
The output of Rcongition(''Balance amount in the
150,000
then", Raisjunction(''The nominee has to prove the

account of a deceased is higher than
identity to claim the amount","Legal heir has to
prove the identity to claim the amount"))is S

Three properties that should be satisfied by C,
COMP and R are:

Correct :Everyce C,d € COMPandr € R
should convey the same meaning as expressed in S

Non-redundant : C, R, and COM P should not
contain repeated information

Complete : All information conveyed in the sen-
tence should be expressed by C, R, and COM P

4 LeGen

We propose LeGen, an end-to-end generative
model to perform complex information extraction
from legal sentences. LeGen is based on the idea
of discourse trees which are defined in the next
subsection. We model it as a generation task, that
outputs discourse trees for a sentence.

4.1 Discourse Tree

The Discourse Tree (Cetto et al., 2018; Niklaus
et al., 2019) originates from Rhetorical Structure

Theory (RST) (Mann and Thompson, 1988), which
identifies hierarchical text structures and rhetorical
relations between text parts. These relations are
categorized as coordinations and subordinations.

Coordinating sentences join independent clauses
with coordinating conjunctions like *and’, *or’, and
’but’, enhancing sentence complexity. Subordi-
nation sentences combine main clauses with de-
pendent clauses, providing additional information
or context using subordinating conjunctions like
"while’, “because’, ’if’, etc.

The Discourse Tree follows a top-down ap-
proach, breaking text into smaller parts, unlike the
bottom-up approach of RST. Simplified sentences
can vary and may require adjustments based on
specific structures. Figure 1 (left) illustrates a Dis-
course Tree example, with leaf nodes representing
clauses and non-leaf nodes representing complex
sentences formed by combining clauses using re-
lation labels. Relations in a discourse tree fall into
co-ordinations and sub-ordinations categories.

4.2 Generating Discourse Trees

Any existing rule-based approach can be used to
generate the discourse trees for sentences. Cur-
rently, Graphene (Niklaus et al., 2019) generates
discourse trees with good precision and recall.
Graphene uses a set of 39 hand-crafted rules to
identify 19 relations (Cetto et al., 2018). However,
on analyzing these rules, we observed redundancies
and inconsistencies. 7) For instance, it is very diffi-
cult to distinguish between BACKGROUND, ELABORATION,
or EXPLANATION relations. i) the rules proposed
for identifying TEMPORAL_BEFORE and TEMPORAL_AFTER
relations from the text are not accurate. i)
Does not identify the date and named entities cor-
rectly. To address ) and ¢3), we merged BACKGROUND,
ELABORATION, and EXPLANATION into ELABORATION. We
converted TEMPORAL_BEFORE and TEMPORAL_AFTER into
a single TEMPORAL relation. We didn’t address i),
but we show in Section 6 that LeGen is robust to
these issues. The final list of relations that were
kept is in the Appendix (Section A).

4.3 Encoding of Discourse Tree

Figure 1 demonstrates the conversion of a discourse
tree into a sequence encoding, simplifying com-
plex information extraction. We treat this process
as a language translation task, where the output
language is the tree encoding. Teacher forcing, em-
ployed during training, influences the generated
text based on input pairs from two languages. The
encoder processes text in one language, while the
decoder predicts the next token for each position
in the other language. Our method converts origi-



If balance amount in the account of a deceased is higher than ¥150,000 then the nominee or legal heir has
to prove the identity to claim the amount.

SUB/CONDITION

NSMCTIW

The nominee has to
prove the identity
to claim the amount

Balance amount in the
account of a deceased
is higher than

150,000 then Legal heir has to

prove the identity
to claim the amount

SUB/CONDITION ('Balance amount in the
account of a deceased is higher than
150,000 then .', CO/DISJUNCTION ('The
nominee has to prove the identity to
claim the amount .',6 'Legal heir has to
prove the identity to claim the amount

-'))

Figure 1: Discourse tree for an example law sentence (on the left). Corresponding linear encoding of the Discourse
tree (on the right). SUB and CO refer to subordination and coordination, respectively.

nal input sentences, including clauses and relation-
ships, into explicit discourse trees. We encode the
discourse tree by doing a pre-order traversal of the
tree. Algorithm 1 discusses our steps.

4.4 Custom Loss Function for Handling
Hallucinations

Any generative model is prone to hallucinations (Ji
etal.,2023). Handling them is crucial in the context
of generating trees for an accurate understanding of
legal sentences. A common form of hallucination
observed is repetition, i.e. more than 1 leaf node
in the tree contains the same sentence. This form
of hallucination is difficult to be penalized using
regular cross entropy loss function since in most
of the cases, all leaf node sentences only differ
by a few words, so when the model generates the
same sentences for multiple leaf nodes, regular loss
would still be low. So, we propose a custom loss
function to punish the model for this kind of output.

Custom Loss = Regular Loss x (1 + A (1 - @>)

n(T)
where T denotes the discourse tree, Reg Loss
refers to regular cross entropy loss, n(7") denotes
number of leaf nodes in 7", u(7") denotes number
of unique leaf nodes, and X is a hyperparameter
which can take any real value greater than zero.
If n(t) = w(T), Reg Loss = Custom Loss.
The loss increases linearly parameterized by A as
u(t) << n(t).

5 Experiments

5.1 Datasets

5.1.1 Training

We trained LeGen using 17k sentences from Penn
Tree Bank (Marcus et al., 1993) dataset. We per-
form our experiments on 32x2 cores AMD EPYC
7532, 1 TB of memory, and 8x A100 SXM4 80GB
GPU systems. We train the models using BART-
base (139 M), BART-small (70.5 M), T5-base (246

M), and T5-small (77M) architectures. BART
trained faster (2 hours on small and 2.5 hours on
base). TS took considerably longer time (3 hours
for small and 4 hours for base). We train it sepa-
rately for 2 tasks. For both of them, we also trained
the model with custom loss function, setting A = 1.

Task 1: Identifying Sub-ordinations and Co-
ordinations. We encoded every sentence into a
discourse tree structure as described in Section 4.
We trained BART (Lewis et al., 2019) and TS5 (Ab-
dallah et al., 2023) models for 30 epochs using
cross-entropy loss with a learning rate of e~ 5. Re-
sults are averaged over 3 seeds (Section 6).

Task 2: Identifying Co-ordinations. In order to
test LeGen’s flexibility, we also separately trained
it as a coordinate boundary detection task (Saha
et al., 2018). The purpose of this study was to test
the competency of generative models in splitting
sentences over state-of-the-art non-generative tech-
niques like OpenlE6. We converted the OpenlE6
coordinate boundary labels into a discourse tree.
The non-leaf nodes in this tree represented only
the coordination relation. We kept the same hy-
perparameters that we used for the subordination
task and obtained the best results for batch size 3.
Results are averaged over 3 seeds (Section 6).

5.1.2 Test

1) ILDC Dataset (Used for Task 1). ILDCisa
Indian Legal Dataset (Malik et al., 2021) compris-
ing the transcripts of 35k Indian Supreme Court
Cases. We sampled 50 sentences from this corpus.
The dataset is fairly noisy with multiple spelling
and structural inconsistencies.

2) Indian Legal Dataset (Used for Task 1).
ILDC corpus is noisy, so we looked for cleaner
legal sentences to test our model. We constructed a
new dataset of 107 sentences from Wiki on Labour
Law '. We used the Petscan tool to collect sen-
tences belonging to ‘Labour Law’ category from

"https://en.wikipedia.org/wiki/Indian_labour_law



Wiki. These sentences contained multiple refer-
ences, requiring pre-processing to remove men-
tions of other articles. The sentences were also
presented as itemized lists which had to be merged
into single sentences. To understand the data, two
authors of the paper spent time constructing the dis-
course tree structure for each sentence from scratch.
We observed that there were multiple correct tree
representations for one sentence, as evident from
the example in Section A.4. The problem becomes
more complex for trees with greater height.

3) Penn Tree Bank (Used for Task 2). Penn Tree
Bank (Marcus et al., 1993) consists of sentences
from articles in the Wall Street Journal. It is anno-
tated with coordinate boundaries (‘and’, ‘or’, ‘but’,
comma-separated list) and the text spans it con-
nects. This test set containing 985 sentences was
used to evaluate LeGen’s flexibility in identifying
co-ordinations.

5.2 Metrics
5.2.1 Metrics for Task 1

While discourse trees have been used to improve
downstream tasks such as text classification (Fer-
racane et al., 2019) or open information extraction
(Niklaus et al., 2019), we are unaware of any metric
used to evaluate them directly. It was noted that
a single sentence could have multiple correct tree
representations, particularly evident for taller trees
as illustrated in Section A.4 (Appendix). So, we
used human judgment to evaluate the trees based
on: ¢) structure of the tree and 7i) content of the
tree, i.e. the relation labels. We used 2 annotators
to compute these metrics.

Tree Structure Evaluation (TSE). We em-
ployed a strict evaluation technique, i.e. it was
marked as correct only if all the 3 requirements
cited in Section 3 were satisfied — i) Every node
in the tree was correctly split. i) Tree does not
contain multiple nodes with the same information,
i7i) All information in the sentence was conveyed
in the tree. TSE reports the percentage of sentences
that generated correct trees.

Tree Content Evaluation (TCE). To assess tree
content, annotators were tasked with labeling each
relation as correct or incorrect, informed about the
relations present in the test set. A relation was
marked incorrect if it was expressed differently or
if it connected incorrect clauses. Inaccuracies in
relations resulted in penalties applied to the entire
tree structure post-clause verification.

Usability Evaluation. We conducted user eval-
uations with 8 PhD scholars to determine whether

hierarchically separating sentences helps them un-
derstand legal text better than simply reading the
legal sentence. 5 out of 8 students were from Com-
puter Science (CS) and 3 were from non-CS back-
grounds. We built a user interface using Flutter
and a custom wrapper to visualize the tree. Users
could enter the sentence and it would return its tree
representation (screenshot shown in Figure 3 in
Appendix (Section A.7)). We presented to them 8-
10 sentences of reasonable complexity (from both
the datasets) and their discourse trees. They were
asked questions related to the ease and time needed
to interpret legal sentence with/without the tree vi-
sualization. More details about the questions asked
are in Appendix (Section A.7 of A).

5.2.2 Metrics for Task 2

We employed a mapping-based approach pro-
posed in CalmlIE (Saha et al., 2018) to compare the
clauses generated by our technique with the gold
set. For every conjunctive sentence, we evaluated
it by matching its collection of system-generated
clauses with the reference set. This involved es-
tablishing the most optimal one-to-one correspon-
dence between the clauses in both sets. Subse-
quently, precision was determined for each map-
ping by calculating the ratio of shared words to the
total words in the generated sentence, while recall
was calculated as the ratio of shared words to the
total words in the reference sentence.

Let G = {G1,G2,G3...} be gold/reference
clauses each represented as a bag of words model,
ie. G; = {G¥,G%,G% ...} where each G’
denotes a token in a clause. Similarly let 7' =
{T1,T,Ts ...} be clauses generated by a model
where T; = {T#, 722 T*...}. CalmlIE per-
forms matching in a greedy fashion, however, this
type of matching is not optimal and might change
based on the order in which greedy matching is
performed. So, we performed matching to get
the global maximum. This problem of finding the
global optimum from a distance or similarity matrix
can be treated as a linear sum assignment problem
(Crouse, 2016). We matched clauses from Gold Set
G and Predicted Set 7' to maximise the F1 score.
The F1 score was computed using precision and
recall metrics. All equations are presented in the
Appendix in Section A.3 of appendix A.

5.3 Baselines

Graphene Default. We used the default
Graphene (Niklaus et al., 2019) as the competing
technique for Task 1. We observed that although it
can split long complex sentences, it is unable to
identify the relations correctly.



Graphene. We used modified Graphene as the
competing technique for Task 1.

OpenlE6. We used the Coordination Boundary
Detection Model released with OpenlE6 as our
baseline for Task 2.

6 Results

6.1 Task1

Table 2 shows the TSE, TCE, and the number of
clauses and relations generated in the discourse
trees by each of these 3 techniques. It is clear
that the generative approach for discourse tree cre-
ation outperforms Graphene. T5-Base performs
the best and beats Graphene by 9 pts with a TSE
score of 71%. BART-Base hallucinates more and
the reason for its underperformance is the genera-
tion of terms not present in the original sentence.
Graphene Default performs worse than modified
Graphene. While it splits clauses correctly, it’s
TCE is much lower because of our observations
reported in Section 4.2. Graphene also underper-
forms on sentences where domain-specific named
entities such as statutes, laws, or case names are
present, e.g. Shops and Establishment Act 1960 or
The Factories Act 1948 (Table 3). Graphene also
cannot identify nondistributive coordination like
‘between’ and splits sentences on them. All these
issues are handled very well by generative mod-
els even though they were trained on Graphene’s
output. While evaluating for TCE, we took into
consideration the fact that there could be multiple
ways of representing sentences with different re-
lations. There are situations, where models can
split the sentences but are unable to identify the
relations and BART has made spelling mistakes in
identifying the relation. Although such scenarios
were rare in T5, we came across them in Graphene
and BART. The results in Table 2 indicate that TS
outperforms Graphene, suggesting LeGen’s poten-
tial for enhanced understanding of laws and legal
transcripts.

Inter-annotator Agreement. We sampled 50%
of the sentences annotated by Annotator 1 and
asked Annotator 2 to evaluate them. We obtained
a Cohen’s Kappa agreement value of 0.73 for TSE
and 0.71 for TCE, indicating substantial agreement
(Blackman and Koval, 2000).

Results of User Study. 6 out of § users reported
it was not easy to read legal text without a hierar-
chical representation. When it came to using the
visualization tool, 7 out of 8 users felt it easier to
use the visualization rather than reading the predic-
tions produced. 6 out of 8 users felt the hierarchical

Dataset Models TSE | TCE | #(Relations, Clauses)
Graphene Default 0.54 | 0.74 | (174,125)
Graphene 0.54 |0.77 | (174,125)
TS 0.56 1 (137,88)
ILDbC TS5 Custom Loss 0.56 1 (137,88)
BART 048 | 1 (111,62
BART Custom Loss | 048 | 0.83 | (127,76)
Graphene Default 0.62 | 0.54 | (247, 347)
Graphene 0.62 | 0.92 | (247,347)
. TS5 071 [0.96 | (191,349)
Indian Legal Datasel s yiiomToss 1056 [ 1| (404.239)
BART 0.70 | 0.92 | (183,281)
BART Custom Loss | 0.61 0.95 | (289,185)

Table 2: TSE and TCE results of Graphene, TS5, and
BART with regular and custom loss function on 2
datasets averaged over 3 seeds. The best values are
in bold. The second best is underlined.

representation helped them simplify long complex
sentences and reduce interpretation time while the
remaining did not report any substantial gain in un-
derstanding through the tool. 7 out of 8 users stated
they would highly recommend new users to check
the hierarchical representation rather than reading
the encoding to understand the legal text. From this
study, we can conclude that our tree based repre-
sentation of legal sentences is useful towards their
interpretation by non-legal professionals.

Input

Clauses generated by
Graphene

Clauses generated by T5
BASE

The Factories Act 1948
and the Shops and
Establishment Act 1960
mandate 15 working days
of fully paid vacation
leave each year to

each employee with an
additional 7 fully paid
sick days.

1) This was with an
additional 7 fully paid
2) This was to each
employee

3) The Factories leave
each year sick days

4) Act 1948 mandate

15 working days of
fully paid vacation The
Factories

5) The Shops and
Establishment Act 1960
mandate 15 working days

1) This was to each
employee with an
additional 7 fully paid
sick days

2) The Factories Act 1948
mandate 15 working days
of fully paid vacation
leave each year

3) The Shops and
Establishment Act 1960
mandate 15 working days
of fully paid vacation
leave each year.

of fully paid vacation
The Factories

Table 3: Examples showing the superiority of genera-
tive architectures in identifying correct clauses. Their
strength also lies in the accurate detection of named
entities.

6.2 Task2

Table 4 shows our results. We obtained competent
results from the T5-base against OpenlE6. The
slight drop in the performance of T5-Base could
be attributed to ambiguous labels in the Penn Tree
Bank dataset. For instance, one split in the gold
for "He retired as senior vice president, finance
and administration, and chief financial officer of
the company Oct. 1" is "He retired as senior vice
president, finance Oct. 1", while TS generates "He
retired as senior vice president, finance, of the com-
pany Oct. 1". T5 generates a better split but it gets
penalised because this is not captured in gold.
BART did not perform well as it hallucinated
while generating the output where it used words



Model OpenlE T5 Small TS base BART Small BART Base
Loss Function | Regular | Custom | Regular | Custom | Regular | Custom | Regular | Custom | Regular
Mapping based | Precision 0.9803 | 0.9671 | 0.9647 | 0.9756 | 0.9747 | 0.8273 | 0.8215 | 0.8418 | 0.8369
approach Recall 0.9845 | 0.9538 | 0.9544 | 0.974 0.973 | 0.7334 | 0.7391 | 0.7613 | 0.7574
F1-score 0.9816 | 0.9578 | 0.9571 | 0.9739 | 0.9726 | 0.7672 | 0.7682 | 0.7903 | 0.7859

Table 4: Mapping-based approach is used to calculate precision, recall and f1 score using cross-entropy loss function

and custom loss function

that are not in the input. BART was also unable
to split all elements of comma-separated lists. The
same problem was observed for T5-small which
improved with T5-base.

6.3 Effect of Custom Loss Function

On Task 2, using the custom loss function improved
the results for T5-small, T5-Base, and BART-Base
(Table 4, example in Appendix , Figure 2). BART
hallucinates by inventing new relations in the dis-
course tree which is not handled by our custom
loss function. This could be the reason for low
performance of BART-small with custom loss.

On Task 1, using the custom loss function gave
mixed results. Results are shown in Table 2. On the
ILDC corpus, it didn’t lead to any improvement for
TSE while TCE reduced for BART. This is similar
to the what we observed for BART on Task 2. On
the Indian Legal Dataset, enforcing custom loss
made the model split a sentence into more number
of clauses, however, this does not necessarily mean
it is a correct splitting. This led to a reduction in
the TSE scores. The total number of relations gen-
erated by both BART and T5 reduced which may
have led to an increase in TCE scores. Overall, we
can conclude that subordination is a more complex
task than coordination which needs more nuanced
handling of hallucinations.

6.4 Ablation study
6.4.1 Models trained with a subset of data

To understand the effect of sentences with varying
heights of discourse trees in the training set, we
trained models with different partitions of training
set. We denote Level_n as the group of sentences
with height n. We then created 3 partitions — P1, P2,
and P3. P1 consisted of 50% of Level_o sentences
(selected randomly) and all Level_1 sentences, P2
consisted of the remaining 50% of Level_o and
Level_2 and above sentences, and P3 consisted of
all Level_o and Level_1 sentences. We trained the
models with these 3 partitions. The results of this
experiment are presented in Table 5. We observed
that the models were not able to generalize with P1
or P2 but the performance improved substantially
with p3. This indicates that even in the absence of
trees with greater height (Level_2 and above) in the

training set, the model can generalize well.

6.4.2 Models trained with different types of
fine tuning

We fine-tuned our models T5 and BART base by
freezing the decoder, freezing the encoder and stan-
dard fine-tuning where both encoder and decoder
are fine-tuned. All the models are fine-tuned for
30 epochs and batch size 3. The results of this ex-
periment are in the Table 5. The model performs
the best with both the decoder and encoder. We
also observed that the time taken to fine-tune did
not reduce with fine-tuning either encoder and de-
coder and to obtain competitive results with just
encoder and decoder is computationally intensive
and time-consuming.

Task Mapping Based | Metric | T5 Base | BART Base

Precision | 0.5897 0.5953

P1 Recall 0.4414 0.4467

F1 Score | 0.4931 0.4984

. Precision | 0.5512 0.5363

Partitioned Dataset P2 Recall | 04437 | 04352

F1 Score | 0.4814 0.4706

Precision | 0.9551 0.8494

P3 Recall 0.9642 0.7648

F1 Score | 0.9567 0.7946

Frecze Precision | 0.9658 0.9041

Decoder Recall 0.9574 0.6769

F1 Score | 0.959 0.7522

Type of Freeze Precision | 0.9447 0.7179

Fine tunning Encoder Recall 0.9306 0.6279
F1 Score | 0.9343 0.66

Standard Precision | 0.9733 0.8324

Fine Tunine Recall 0.9795 0.7655

© F1 score | 0.9762 0.7899

Table 5: Ablation study: Mapping based on scores on
T5 and BART over two subsets of data and different
types of fine-tuning

7 Conclusion

We proposed an end-to-end generative legal infor-
mation extraction technique modelled as complex
information extraction that can improve the under-
standing of long and complex legal sentences.We
learned sentence discourse trees using TS5 and
BART models. We outperformed Graphene, a state-
of-the-art complex information extraction tech-
nique on an Indian Legal Benchmark, and achieved
competitive results on the task of the coordinate
boundary detection technique. We plan to extend
the generative-based complex information extrac-
tion for rhetorical role prediction and extend sup-
port for Indian languages.



8 Limitations

¢ Our dataset could be biased as it does not con-
tain an equal distribution of training instances
for each kind of relation.

* Additionally, our study’s limitation lies in the
varying numbers of clauses and relations gen-
erated for the same input sentence.

* Generative models are prone to hallucinations

* Due to the presence of multiple correct dis-
course trees for subordination task, it is dif-
ficult to create a benchmark to automatically
evaluate the models. They require expensive
human annotations.
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A Appendix

A.1 Graphene Relations used for LeGen
training
1. SPATIAL: This relation is used to denote the
place of occurrence of an event .

Eg: The Interstate Migrant Workmen Act ’s
purpose was to protect workers whose ser-
vices are requisitioned outside their native
states in India .

SUB/ELABORATION(’The
Workmen Act ’s purpose was to protect workers
.’, SUB/SPATIAL(’This is in India
’s services are requisitioned outside their

)]

Inter-state Migrant
.7, ’Workers

native states
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2. ATTRIBUTION: This relation is used when

a statement is being made by some person or
institution.

Eg: But some militant SCI TV junk-holders
say that ’s not enough .

SUB/ATTRIBUTION(’This is what some
militant SCI TV junk-holders say

’ ”

.7,”s not enough .”)

. CONTRAST: This relation is indicated by
the words “although” , “but”, “but now”, “de-
spite” , “even though” , “even when”, “except
when” , “however”, “instead” , “rather”, “still”
, “though” , “thus”, “until recently”, “while”

and “yet".

Eg: This can have its purposes at times , but
there ’s no reason to cloud the importance and
allure of Western concepts of freedom and
justice .

CO/CONTRAST (SUB/ELABORATION(’This is
at times .’,’This can have its
purposes .’ ), ’'There ’s no reason
to cloud the importance and allure
of Western concepts of freedom and
justice .7)

Eg2: No one has worked out the players * av-
erage age , but most appear to be in their late
30s .

CO/CONTRAST(’No one has worked out
the players ’ average age .’,’ most
appear to be in their late 30s . ’)

. LIST : This is used to indicate conjunctions (
and’ or comma seperated words) between the
sentences

Eg: He believes in what he plays , and he
plays superbly .
CO/LIST(‘He believes in what he plays

’

.7, ‘He plays superbly .’)

. DISJUNCTION: This is used to show the
presence of ’OR’ in the sentences.

Eg: The carpet division had 1988 sales of $
368.3 million , or almost 14 % of Armstrong
’s $ 2.68 billion total revenue .

CO/DISJUNCTION(’The carpet division
had 1988 sales of $ 368.3 million
.7,’The carpet division had 1988
sales of almost 14 % of Armstrong ’s
$ 2.68 billion total revenue .’)
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6. CAUSE: Indicates the presence of the word -

‘because’ or ‘since’.

Eg: Jaguar ’s own defenses against a hostile
bid are weakened , analysts add , because
fewer than 3 % of its shares are owned by
employees and management .

SUB/CAUSE(’Jaguar ’s own defenses
against a hostile bid are weakened
, analysts add .’,’Fewer than 3 % of
its shares are owned by employees and
management .’)

. CONDITION: When multiple sentences are

connected by phrase ’if” ‘in case’,‘unless’ and
‘until’, CONDITION relationship phrase is
used to denote the connection between the
sentences.

Eg: Unless he closes the gap , Republicans
risk losing not only the governorship but also
the assembly next month .

SUB/CONDITION(’He closes the gap
.”,’Republicans risk losing not
only the governorship but also the
assembly next month .’)

. ELABORATION: Identified by the presence

"

of words such as “more provocatively",“even
n"n < "oo<e no <

before" ,* for example",“recently” ,“ so" ,“so
n (13

far" ,*“ where" ,“whereby" and “whether" .

REGEX:
“since (\\W(C *2\\W) ?) now”

Eg: Not one thing in the house is where it is
supposed to be , but the structure is fine .

CO/CONTRAST (SUB/ELABORATION(’Not one
thing in the house is .’,’It is
supposed to be .’ ), ’'The structure
is fine .’)

. TEMPORAL : Denotes the time or date of

occurrence of the event.

Eg: These days he hustles to house-painting
jobs in his Chevy pickup before and after train-
ing with the Tropics .

SUB/TEMPORAL (’ These days he hustles
to house-painting jobs in his Chevy
pickup before and after .’,’These
days he is training with the Tropics

)



10. PURPOSE: This kind of relation is identified
by the presence f words such as “for" or “to".

Eg: But we can think of many reasons to stay
out for the foreseeable future and well beyond

SUB/PURPOSE (’But we can think of many

reasons .’,’This is to stay out
for the foreseeable future and well
beyond .’)

A.2 Algorithm to linearize discourse tree into
an encoding

Algorithm 1 Generating encoding £ for a Dis-
course Tree 7.
Input: Discourse Tree 7 with root root
Output: Encoding, £
Append ‘root.label(’ to £
foreach child of root in T do
if child is a leaf then
| Append ‘child.label, to £
end
else
Generate encoding £’ of Discourse Sub-
Tree with child as root
Append &' to £

end

end
Append ‘)’ to £
return £

A.3 Precision, Recall, and F1 score

computation
r = recall(G, ;) = 1G0T )
|Gl
f1(Gs, Ty) = 2pr 3
VY ptr

Let m(.) be matching function such that G;
matches with 7;,,(;y and conversely G,,,(;) matches
with T};. If |G|# |T'], then only k = min(|G|, |T'|)
matches are possible.  Thus in such cases,
m(i) will not return valid value for all ¢ and
precision(Gi, Tr,y) and recall(Gi, Try () will
be zero.

Dezample = precision(G,T)
|T|

“
=17 Zprecision(Gm(i) 1)
i—1

Tezample = Tecall(G,T)
|G|

Tel Zprecision(Gi7Tm(,¢))
i=1

®
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2pezam leT
pleTexample
flezampla - (G, T) -

Pexample + Texample

6

Please note that (4) to (6) represent scores for only
one example in the test set.

A4

Eg: The Code on Wages Bill was introduced in the
Lok Sabha on 10 August 2017 by the Minister of
State for Labour and Employment ( Independent
Charge), Santosh Gangwar.

Treel: SUB/ELABORATION(This was by the Minister
of State for Labour and Employment ( Independent
Charge ), Santosh Gangwar’, SUB/TEMPORAL(’The Code
on Wages Bill was introduced in the Lok Sabha’,
’This was on 10th August 2017))

Tree2: SUB/TEMPORAL( ’This was on 10th August
20177, SUB/ELABORATION(‘This was by the Minister
of State for Labour and Employment ( Independent

Multiple correct trees for same sentence

Charge ), Santosh Gangwar’, ’The Code on Wages
Bill was introduced in the Lok Sabha’,

on 10th August 2017))

"This was

A.5 Level-wise scores

We also evaluated the performance of our model
against sentences with different levels of complex-
ity. Conjunctive sentences are likely to have mul-
tiple conjunctions and thus produce complicated
coordination tree structures with greater height. We
evaluated models for sentences with different co-
ordination tree heights in the gold set (Table 6).
The model will generate NONE as output for these
sentences. We see a similar trend with OpenlE6
slightly outperforming the generative approach.
One reason for this is the presence of ambiguous
labels in the test set for hierarchies with multiple
levels. On such sentences, even though TS5 gen-
erates a better split, it is still penalised. BART
does well in identifying sentences that should not
be split, however, it hallucinates when sentences
become more complex.

A.6 Error Analysis

We manually analyzed the outcomes of subordina-
tion as predicted by the TS5 Base and BART Base
models. The primary causes of errors are identified
as follows:

1. Clauses not correctly identified by model:
We observed that the TS model failed to cor-
rectly identify clauses 16% of the time, and
the BART model, experiencing similar chal-
lenges, had a 17% failure rate. Moreover,
BART occasionally not only failed to recog-
nize clauses but also exhibited hallucinations
during these instances.



Level | MappingBased | o o | 15 hase | TS-small | BART-base | BART-small Count
Approach (Train, Test)
Precision 0.9796 | 09632 | 00182 0.9755 0.9714

Level 0 [Recall 0.9816 | 09632 | 09182 0.9755 0.9714 (2426,163)
FI Score 0.9816 | 09632 | 00182 0.9755 0.9714
Precision 0.9856 | 0.9800 | 0.9789 0.8240 0.8126

Level | [Recall 0.9866 | 09773 | 0.9669 0.7418 0.7287 (12958,716)
F1 Score 0.9856 | 09781 | 00717 0.7720 0.7580
Precision 0.9465 | 09518 | 0.9428 0.7287 0.6789

Level 2 [Recall 0.9737 | 09685 | 0.348 0.5790 0.4900 (1716,98)
FT Score 0.9564 | 09567 | 0.9365 0.6321 0.5611
Precision 0.9354 | 0.9607 | 09144 0.5454 0.6330

Level 3 [ Recall 0.9914 | 0.8823 | 08178 03574 03227 (153 ,6)
F1 Score 0.9606 | 09168 | 0.8536 0.4252 0.4155
Precision 07975 | 0.9100 | 0.8848 0.7666 0.6772

Level 4 [ Recall 1.0000 | 0.8950 | 0.8183 0.3480 03216 (26.2)
FI Score 0.8814 | 0.9008 | 0.8416 0.4432 0.4334

Table 6: Level-wise scores aggregated across 3 seeds. The best values are in bold. The second best is underlined.

323 Prediction: COORDINATION(" Under terms of the plan , in

dependent generators would be able to compete for 15 %
." COORDINATION(" Under terms o
f the plan , independent generators would be able to co
mpete for another 10 % between 1994 and 1998 . , " Und
er terms of the plan , independent generators would be
able to compete for another 18 % between 1994 and 1998
'@

of customers until 1994

323 Prediction: COORDINATION(™ Under terms of the plan , in
dependent generators would be able to compete for 15 %
of customers until 1994 ." , " Under terms of the plan

, independent generators would be able to compete for a

nother 10 % between 1994 and 1998 ." )

Figure 2: An example showing betterment of clauses on coordination dataset. Left one shows T5 with regular loss

and right shows T5 prediction with custom loss

2. Wrong Relation or relation not identified at all:
We observed that the TS model fails to identify
the correct relation, defaulting to ELABORA-
TION, 0.018% of the time. We found one
example in TS where the model exhibited hal-
lucination as well as generated wrong clauses.
Similarly, BART also struggles to identify the
relation in 0.04% of cases and tends to exhibit
more instances of hallucination compared to
the TS model.

3. Both Clauses and Relation are wrong: TS en-
countered challenges in identifying both rela-
tions and clauses in 0.018% of cases, whereas
BART faced failures 0.03% of the time and
demonstrated a higher frequency of hallucina-
tions.

4. Not split the sentences: TS and BART experi-
enced difficulty in sentence splitting in 0.07%
of instances.

5. Model repeats the original input sentence in
the split and Hallucination: T5 encountered
challenges in both sentence splitting and hal-
lucination 0.06% times, whereas BART exhib-
ited a higher rate of hallucination and failed
to split 0.14% of the time.

6. Grammatical error: We found minimal gram-
matical errors in the hierarchical sentence
structure, such as bracket mismatches and mis-
spellings. TS5 made a grammatical mistake

14

only once, while BART made two grammati-
cal errors.

In summary, we noticed that BART exhibited a
higher frequency of hallucinations compared to T5.
This occurred particularly when BART struggled to
identify both clauses and relations within the input
sentence.

A.7 User Evaluation

To ascertain if hierarchical representation aids in
simplifying legal text and reducing interpretation
time, we conducted structured interviews with
Ph.D. scholars from diverse departments. We e-
mailed a Google Form along with a link to a visu-
alization tool designed to create hierarchical repre-
sentations visually. We had a total of five questions
with varying options, similar to a Likert scale.

Here we provide a list of questions asked during
a structured interview.

1. Please rate the interpretability of legal sen-
tences without tree structure.
(a) Very easy to understand
(b) Easy to understand,
(¢) Neutral,
(d) Difficult to understand
(e) Very difficult to understand

2. Please rate the usability of the visualization.

(a) Very easy to use



Prediction Text

{If balance amount in the account of a deceased is higher than 150,000 then the nominee or legal heir has to prove the identity to claim the amount

Generate Tree

SUB/CONDITION -
CO/DISJUNCTION -
Balance amount in the
account of a deceased is / \
higher than 150,000 then . The nominee has to prove the  Legal heir has to prove the
identity to claim the amount identity to claim the amount.

Figure 3: Visualization of Discourse Tree Structure generated through our tool.

(b) Easy to use

(c) Neutral

(d) Difficult to use

(e) Very difficult to use

3. Does the tree structure of long and complex
legal statements simplify understanding?

(a) Strongly Disagree
(b) Disagree
(c) Neutral

(d) Agree TS5 BASE
(e) Strongly Agree ACCURACY
Relation Count OF
4. Does the tree structure of long and complex RELATION
legal statements reduce interpretation time? PREDICTION
(a) Strongly Disagree SPATIAL 10 |02
(b) Disagree ATTRIBUTION | 18 | 0.44
(c) Neutral ELABORATION | 446 | 0.18
(d) Agree TEMPORAL 3| 0.67
(e) Strongly Agree COI;I}S}EFAST 12132 829
5. How likely would you advise a new person DISJUNCTION 26 | 0.15
to check visualisation first instead of a linear CAUSE 5 0.08
tree? CONDITION 18 0.72
(a) Very Unlikely PURPOSE 18 0.27
(b) Unlikely Table 7: Relation distribution in Indian Legal Test data
(c) Neutral
(d) Likely

(e) Very Likely
A.8 Relation count in Indian Legal Dataset

Table 7 shows relation distribution in the test
dataset and the accuracy of prediction by T5.

A.9 Improved result with custom loss

Figure 2 shows an instance where applying custom
loss function improves prediction by T5.
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