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Abstract

Recent developments in multimodal method-001
ologies have marked the beginning of an ex-002
citing era for models adept at processing di-003
verse data types, encompassing text, audio, and004
visual content. Models like GPT-4V, which005
merge computer vision with advanced language006
processing, exhibit extraordinary proficiency in007
handling intricate tasks that require a simul-008
taneous understanding of both textual and vi-009
sual information. Prior research efforts have010
meticulously evaluated the efficacy of these Vi-011
sion Large Language Models (VLLMs) in var-012
ious domains, including object detection, im-013
age captioning, and other related fields. How-014
ever, existing analyses have often suffered015
from limitations, primarily centering on the016
isolated evaluation of each modality’s perfor-017
mance while neglecting to explore their intri-018
cate cross-modal interactions. Specifically, the019
question of whether these models achieve the020
same level of accuracy when confronted with021
identical task instances across different modali-022
ties remains unanswered. In this study, we take023
the initiative to delve into the interaction and024
comparison among these modalities of interest025
by introducing a novel concept termed cross-026
modal consistency. Furthermore, we propose a027
quantitative evaluation framework founded on028
this concept. Our experimental findings, drawn029
from a curated collection of parallel vision-030
language datasets developed by us, unveil a pro-031
nounced inconsistency between the vision and032
language modalities within GPT-4V, despite its033
portrayal as a unified multimodal model. Our034
research yields insights into the appropriate uti-035
lization of such models and hints at potential036
avenues for enhancing their design.037

1 Introduction038

Recent large multimodal models have showcased039

remarkable capabilities in tasks that require the040

integration of multiple modalities and sources of041
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Figure 1: Visualization of the performance gap between
the modality of text and image in seven different tasks.

information (Huang et al., 2023). Among these, 042

the performance of Vision Large Language Models 043

(VLLMs) (Zhang et al., 2023a; Yang et al., 2023) 044

stands out, thanks to the vast amounts of image 045

and text data available for training and the rapid 046

progress in both computer vision and language 047

modeling. However, due to the distinct training 048

methodologies employed by these models, such 049

as contrastive learning (Radford et al., 2021) and 050

embodied image-language modeling (Driess et al., 051

2023), and the varying quality of training data for 052

each modality, these networks often exhibit perfor- 053

mance disparities across different modalities. 054

Previous research has extensively evaluated the 055

performance of individual modalities in multi- 056

modal systems. For instance, Yang et al. (2023) 057

conducted a thorough assessment of GPT-4V’s vi- 058

sion understanding capabilities, and Chen et al. 059

(2023) analyzed model’s decision-making abilities. 060

However, assessing a model’s performance on each 061

individual modality in isolation does not fully eval- 062

uate its true multimodal abilities. It is possible, for 063

example, for a model to excel in numerous vision 064
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tasks but still lag significantly behind in language065

understanding. Moreover, simply testing perfor-066

mance on individual tasks provides no insight into067

whether and how each modality of the model influ-068

ences the others. Unfortunately, the cross-modality069

relationship is frequently overlooked in the afore-070

mentioned research.071

In this study, we go beyond the traditional ap-072

proach of simply evaluating multimodal systems073

through separate downstream tasks and reporting074

their scores. Our focus is primarily on measur-075

ing the inherent differences in capabilities between076

various modalities, with special attention to vision077

and language, given their prominence among other078

modalities. To enable a comprehensive analysis,079

we introduce the concept of cross-modal consis-080

tency, complete with a formal definition and an081

evaluation framework. We consider cross-modal082

consistency to be an essential element in the design083

of complex multimodal systems with neural com-084

ponents, as it guarantees coherence and reliability085

in the system’s performance. This is crucial for086

both interpretability and for fostering user trust.087

We subsequently construct a comprehensive088

vision-language parallel dataset encompassing089

seven tasks, each designed to highlight different090

facets of vision and language capabilities. This091

dataset serves as a tool for evaluating the vision-092

language consistency of VLLMs. Our experi-093

ments with the GPT-4V model on the dataset re-094

veal significant inconsistencies between its vision095

and language capabilities. The results indicate that096

its performance varies considerably depending on097

whether the same task instance is prompted in one098

modality versus the other.099

Our contributions are: (1) We introduce the100

novel concept of cross-modal consistency, along101

with a comprehensive evaluation framework. This102

approach transcends traditional assessment meth-103

ods for multimodal models, which typically evalu-104

ate each modality in isolation. (2) We develop and105

release seven diverse datasets, carefully designed106

for vision-language consistency evaluation, open-107

ing up opportunities to exploit these datasets in108

future research. (3) Our experiments on GPT-4V109

reveal a significant disparity between vision and110

language abilities within such a system, prompting111

the introduction of the Vision-Depicting-Prompting112

(VDP) method as a potential remedy. Our findings113

offer valuable guidance for more effective future114

use of such multimodal models.115

2 Related Work 116

A substantial amount of effort has been dedicated 117

to meticulous evaluation of large multimodal mod- 118

els such as GPT-4V. To assess the capabilities of 119

these models across all their modalities, a wide 120

array of tasks has been tested. E.g., researchers 121

have scrutinized GPT-4V’s aptitude in solving 122

problems within specialized domains, including 123

biomedicine (Liu et al., 2023b), medical appli- 124

cations (Wu et al., 2023), and autonomous driv- 125

ing (Wen et al., 2023), employing intricate image 126

inputs. Beyond these domain-specific evaluations, 127

more general skills like chart image understand- 128

ing (Liu et al., 2023a) and optical character recog- 129

nition (Shi et al., 2023) have also been analyzed. 130

However, these evaluations often focus solely on 131

performance metrics for each test dataset, with lit- 132

tle or no exploration of the relative capability gaps 133

between vision and language. In this study, our pri- 134

mary emphasis lies in uncovering the relative dis- 135

parities in the abilities of multimodal models across 136

their various modalities, rather than merely assess- 137

ing absolute performance within specific tasks. 138

Despite the lack of cross-modal analysis for 139

multimodal models, previous research has delved 140

into examining cross-lingual abilities in Large Lan- 141

guage Models (LLMs). For example, by trans- 142

lating task instances into different languages and 143

analyzing the pairwise results, Zhang et al. (2023b) 144

demonstrated that models like GPT-3.5, primarily 145

trained on English text corpora, exhibit dispari- 146

ties in their performance across various tasks when 147

prompted with different languages. Specifically, 148

these LLMs display a bias toward English. Tak- 149

ing inspiration from such studies, we extend our 150

research to encompass consistency analysis across 151

various modalities, recognizing that different lan- 152

guages can be regarded as distinct modalities as 153

well. Our generalized framework sheds light on the 154

underlying principles governing the consistency of 155

multimodal models when confronted with tasks in 156

diverse modalities, thereby contributing to a deeper 157

understanding of their capabilities and limitations. 158

3 Preliminaries and Key Concepts 159

As “consistency” can carry different interpretations 160

within the specific context we are addressing, a 161

formal definition of the concept of cross-modal 162

consistency for multimodal models is warranted. 163

To that end, we establish an instance of task t, 164

represented as the paired value (da, q). Here, da 165
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represents a data element from the input space166

Da corresponding to modality a, while q ∈ Q167

represents the abstract query, often presented in168

the form of a question pertinent to the task at169

hand. A task set within modality a is then con-170

stituted by combining certain data elements from171

modality a with the queries q, which can be de-172

noted as St,a = {(d(1)a , q), (d
(2)
a , q), (d

(3)
a , q), . . .}.173

When the queries q are held constant, and elements174

db ∈ Db in another modality b are gathered, we ob-175

tain the corresponding task set in another modality,176

denoted as Sq,b. In essence, the task t embodies177

the task-specific queries, encompassing, e.g., activi-178

ties such as solving equations, translation, question179

answering, etc. Meanwhile, the data elements dm180

may take the form of equation instances or question181

descriptions within modality m, which can involve182

the modalities of image, text, or speech.183

We introduce the concept of a ’converter,’ a func-184

tion Ka,b : Da 7→ Db which maps data elements185

from modality a to b. While there exist various186

methods for converting data between modalities187

(e.g., from language to vision through taking a188

picture), we are specifically interested in convert-189

ers that preserve information necessary for solv-190

ing a given task with query q, denoted as Kq
a,b.191

Information-preserving converters are distinctive,192

as the correct answer for a given task instance193

(d, q) depends solely on the information within d194

rather than its modality. Therefore, both (da, q)195

and (Kq
a,b(da), q) are guaranteed to share the same196

gold label. In this work, we assume the existence of197

Kq for every q ∈ Q, but finding such a converter is198

beyond the scope of this paper. Inter-modality con-199

version may be challenging for certain modalities.200

Some tasks may involve aspects of information,201

such as emotions in speech or nuanced visual per-202

ception in images, that cannot be easily preserved203

during conversion. We design our experiments with204

tasks where a Kq clearly exists.205

A multimodal model can be conceptualized as206

a function, denoted M : D × Q 7→ Y , mapping207

data elements and queries to an answer. Here, D208

represents the collective space encompassing all209

the modalities of interest, formally D =
⋃
m
Dm,210

where m spans over all relevant modalities. On the211

other hand, the answer space Y refers to a unified212

and structured representation, which, in the case of213

GPT-4V, assumes the form of text.214

A model M is said to exhibit consistency be-215

Figure 2: Illustration of the concept of cross-modal con-
sistency. A consistent model (right) applies the same
internal reasoning to task instances with identical infor-
mation, regardless of the encoding modality, leading to
consistent outcomes. In contrast, an inconsistent model
displays significant behavioral changes in response to
different input modalities, resulting in varying outcomes
as the modality alters.

tween modalities a and b provided: 216

M(da, q) = M(Kq
a,b(da), q), ∀da ∈ Da, q ∈ Q 217

In other words, M is consistent if its output is 218

invariant under any modality transformation Kq 219

which preserves all essential information necessary 220

for solving the task associated with query q. E.g., 221

consider solving mathematical equations. A model 222

which solves this task is consistent across the text 223

and image modalities if neither transcribing the 224

equation from image to text, nor imaging an equa- 225

tion presented as text, changes the model’s output. 226

In short, a consistent model should remain ag- 227

nostic to the modality of the task instance and yield 228

identical results as long as an equivalent amount of 229

information is provided, reflecting its capacity to 230

handle multimodal data seamlessly. 231

4 Method 232

In this section, we describe our method for testing 233

cross-modal consistency. We establish a quanti- 234

tative evaluation framework, with a focus on the 235

vision-language cross-modality. We provide a de- 236

scription of our methodology and the specific met- 237

rics we propose for evaluation. 238

4.1 WorkFlow 239

For an instance set of a given task t in modality 240

a, denoted as St,a = {(d(1)a , q), (d(2)a , q), (d(3)a , q), 241

· · · }, our first step involves constructing a parallel 242

instance set St,b in modality b using an information- 243

preserving converter Kq
a,b. We do so by apply- 244
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ing Kq
a,b to each data object d

(i)
a to get the ob-245

ject d(i)b := Kq
a,b(da) in modality b. By doing so,246

each paired instance (d
(i)
a , q) and (d

(i)
b , q) shares247

the same gold label since the information in d is248

preserved for the task with query q. In the context249

of analyzing the vision and language modalities,250

our converter is comprised of an optical charac-251

ter recognition (OCR) system combined with hu-252

man verification for converting images to text, and253

screenshot software for converting text into images.254

We carefully select tasks where the information255

required for solving the task can be fully retained256

through the utilization of this converter, as exem-257

plified by mathematical equation solving.258

Next, we independently apply the model M to259

each pair of instances (d(i)a , q) and (d
(i)
b , q) to ob-260

tain pairwise results M(d
(i)
a , q) and M(d

(i)
b , q).261

4.2 Metrics262

We introduce our task consistency score Ct based263

on these pairwise instances:264

Ct =
1

n

n∑
i=1

ciM (1)265

where266

ciM =

{
1, if M(d

(i)
a , q) = M(d

(i)
b , q)

0, otherwise
(2)267

In essence, Ct is the proportion of instances for268

which model M has consistent performance on the269

given task, between modalities a and b.270

5 Experiments271

5.1 Data Construction272

Since there is currently no existing parallel vision-273

language task dataset, we create our own datasets274

for both our experiments and also to facilitate fu-275

ture research endeavors. Following the approach276

outlined in Section 4.1, we meticulously selected277

seven tasks that gauge various facets of Vision-278

Large Language models. For each of these tasks,279

we ensure that data instances can be transformed280

between image and text formats while preserving281

all task-related information, utilizing a straightfor-282

ward converter (e.g., OCR). Recognizing that a283

flawless converter does not exist in practice, we un-284

dertake the manual verification of each converted285

data instance to prevent any potential errors during286

the conversion process. We will make our dataset 287

available for use by the research community in the 288

final version of our paper. 289

5.1.1 Task Description. 290

Math Equation Solving. Mathematical reason- 291

ing stands as a cornerstone of multi-modal mod- 292

els’ capabilities. Mathematical problems typically 293

involve equations presented in a visual format, of- 294

fering a clear depiction of intricate symbols and 295

notations. Given that formulas can be seamlessly 296

converted to text formats like LaTeX without losing 297

any essential information for solving these equa- 298

tions, constructing a parallel dataset for such tasks 299

is a natural fit for analyzing cross-modal consis- 300

tency. For our dataset, we source math questions 301

with equations from two distinct origins, each rep- 302

resenting varying levels of difficulty. For low dif- 303

ficulty levels, we extract 901 high school-level 304

mathematical questions in LaTeX (text) format 305

from MATH dataset (Hendrycks et al., 2021b), 306

rendering each question using a LaTeX compiler 307

to generate corresponding image data. To intro- 308

duce a greater level of complexity, we gathered 50 309

college-level calculus questions, along with their 310

corresponding answers, using the same procedure. 311

Consequently, we paired all the image-based math 312

questions with their corresponding text representa- 313

tions to create our comprehensive equation-solving 314

dataset, encompassing both easy and challenging 315

questions. An illustrative example of this dataset 316

can be found in Figure 3, and detailed data samples 317

are available in Appendix A and Appendix B . 318

Logical Reasoning. To assess the vision-language 319

consistency in logical reasoning abilities for 320

the VLLMs, we employ two distinct datasets: 321

GSM8K (Cobbe et al., 2021) and LogicQA (Liu 322

et al., 2020). GSM8K comprises 8,500 question 323

instances in text format, with each instance repre- 324

senting a problem description in English text paired 325

with a labeled answer. We transform the text into 326

images by capturing screenshots of the rendered 327

text with an appropriate font size and layout. Simi- 328

larly, LogicQA consists of 8,678 more challenging 329

questions presented in text format and each is con- 330

verted into an image by us. Subsequently, we pair 331

these resulting images with the original text files, 332

creating a parallel dataset that enables the explo- 333

ration of this task in both image and text modalities. 334

An illustrative example of this dataset construction 335

can be found in Figure 3, and detailed data samples 336

are available in Appendix F and Appendix C. 337

4



Figure 3: An Overview of the Components of Our Vision-Language Consistency Dataset. Data instances are
presented in pairs, featuring one in the vision modality and another in the text modality. Notably, Math Equation
Solving dataset encompasses two segments, each representing different difficulty levels.

Table Understanding. Tables, commonly en-338

countered in everyday life, are often presented as339

images, and the effective extraction of informa-340

tion from them is vital for various tasks. As well-341

structured table images can be easily converted into342

LaTeX text, they serve as an excellent choice for343

conducting vision-language consistency analysis.344

To facilitate this analysis, we creat 30 distinct ta-345

bles in LaTeX, each featuring multiple rows and346

columns, with numerical values in each cell. Our347

task revolves around accurately summing the num-348

bers within a given row and column. We provide349

parallel task instances in both LaTeX text and ren-350

dered images, as illustrated in Appendix E351

State Machine Reasoning. State machines,352

which can be effectively visualized as graphs or rep-353

resented through text with transition rules, serve as354

an ideal test bed for vision-language consistency in355

simple computational capabilities of VLLMs. Our356

approach involves generating images of state ma-357

chines with varying total numbers of nodes (states).358

Each node in the state machine is assigned a distinct359

color and features precisely one outgoing edge, en-360

suring a unique path and solution. The questions361

we formulate are of the form, "Starting from the362

color grey, after n steps, which color will we end363

up in?" Here, n is a variable that we select. Addi-364

tionally, we generate a text version of these state365

machines by listing out all the transition rules cor-366

responding to the arrows. To prevent any form367

of cheating by looking at the last state in the text,368

we shuffle the order of the rules. We create state369

machines with different numbers of states and ques-370

tions with varying numbers of steps, to introduce 371

varying difficulty levels. The data samples can be 372

seen in Appendix G. 373

Reading Comprehension. To assess the 374

model’s consistency in comprehending lengthy 375

English paragraphs across vision and language 376

modalities, we provide the model with the same 377

text content in two different formats: plain text 378

and images of the text. We employ the test part of 379

the Massive Multitask Language Understanding 380

(Hendrycks et al., 2021a), or MMLU dataset as 381

our source, which includes 1,477 extensive text 382

passages, each accompanied by multiple-choice 383

questions designed to evaluate the comprehension 384

of the text content. For this dataset, we convert 385

each text instance into an image by rendering 386

the text into a PDF before converting it to a JPG 387

image. Detailed data samples can be found in the 388

Appendix D. 389

390

5.2 Experiment Details. 391

We apply our framework and constructed datasets 392

to evaluate the cross-modal consistency of the Ope- 393

nAI GPT-4V model, known for its proficiency in 394

both vision and language modalities. Given the 395

limited daily access to prompt this model, our ex- 396

periments were conducted on a randomly selected 397

subset of 50 samples from each dataset. We se- 398

lect the GPT-4V classical mode, which does not 399

include additional plug-ins and employs a relatively 400

low decoding temperature to minimize variance in 401

its output. To ensure a fair comparison of capa- 402
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Task Modal Acc Consistency

MES(Easy)
Text 0.44

0.72
Image 0.24 ⇓

MES (Hard)
Text 0.62

0.62
Image 0.28 ⇓

LogicQA
Text 0.64

0.64
Image 0.44 ⇓

MMLU
Text 1.00

0.74
Image 0.74 ⇓

TU
Text 0.93

0.10
Image 0.03 ⇓

MR
Text 0.40

0.92
Image 0.36

State Machine
Text 0.34

0.67
Image 0.28

Table 1: Test results for vision-language consistency
datasets. MES stands for Math Equation Solving, TU
stands for Table Understanding and MR stands for math
reasoning. The symbol ⇓ denotes a sizeable decrease in
accuracy (greater than 10%) when input is in the image
format.

bilities between the two modalities, we embedded403

the query questions into the image and exclusively404

used images for prompting. This avoids the in-405

volvement of any text input when testing the vision406

modality. Additionally, to prevent the model from407

performing reasoning steps in text and introducing408

unintended modality conversions, we explicitly in-409

structed the model to output answers without any410

reasoning steps. Our results are manually collected411

for pairwise data instances, and we calculate the412

consistency scores based on the methodology out-413

lined in Section 4.1.414

5.3 Main Results415

The main outcomes of our assessments across416

seven distinct datasets are outlined in Table 1. No-417

tably, even though the input contains an equivalent418

amount of information necessary for task comple-419

tion, substantial disparities emerge between image420

and text input formats. This phenomenon occurs421

even in tasks where images are conventionally con-422

sidered to offer a more vivid and intuitive represen-423

tation from a human perspective.424

We note that consistency, being based on re-425

sponse agreement between modalities, can be high426

or low regardless of per modality accuracy. The427

highest consistency (0.92) is observed for math428

reasoning even though both modalities have a rela-429

tively low accuracy (≤ 0.40). By contrast, the con-430

sistency drops to 0.64 on logical reasoning (Log-431

icQA) on which the individual modalities have432

higher accuracy (≥ 0.44). 433

For tasks that involve intricate reasoning steps, 434

including equation solving, math/logical reasoning, 435

and state machine reasoning, we observe relatively 436

low accuracy even when the input is presented 437

in pure text format. These tasks align with areas 438

where the model generally struggles. When the in- 439

put modality shifts to using images, the proficiency 440

in solving such tasks deteriorates further, result- 441

ing in a noticeable drop in performance, despite 442

the fact that the images contain an equal amount of 443

information. This emphasizes the substantial incon- 444

sistency in task-solving across modalities and high- 445

lights the model’s superior ability in one modality 446

(Language) compared to the other (Vision). 447

On the other hand, for tasks primarily focused 448

on extracting information from provided content 449

and comprehending that information, such as Lan- 450

guage Understanding and Table Understanding, we 451

witness near-perfect performance when the model 452

is prompted with text input. However, a more sig- 453

nificant drop in accuracy (up to 90%) is observed in 454

such tasks when the input modality shifts to images. 455

This indicates that the change in modality signifi- 456

cantly impacts the model’s processing capabilities, 457

providing strong evidence of the inconsistency of 458

the model. 459

In conclusion, in multimodal systems like GPT- 460

4V, the language modality demonstrates a domi- 461

nant advantage over vision modality, when tasks 462

are tackled in text format, despite the presence 463

of the same information in image format. This 464

strongly suggests a non-consistent cross-modal be- 465

havior within the network. While each modality 466

exhibits varying levels of task-solving and reason- 467

ing capabilities, the inconsistency across modalities 468

is observed across tasks regardless of the accuracy 469

level of each modality for the task in hand. 470

5.4 Ablation Study on Content Extraction 471

from Images 472

As solving tasks in image format inevitably re- 473

quires accessing essential information from the im- 474

ages, we conducted additional experiments to inves- 475

tigate whether the performance gap is attributable 476

to the model’s inability to access information. To 477

address this, we conducted one-step Optical Char- 478

acter Recognition (OCR) using the model’s own 479

network on all instances of tasks that exhibited a 480

significant performance gap between image and 481

text. Specifically, for each image input (indicated 482
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Figure 4: Overview of the VDP Method: The left part illustrates the conventional approach to prompting vision
tasks, while the right part demonstrates VDP in comparison.

by the red arrow in Table 1), we prompt the model483

with the instruction ’extract the exact content in the484

image’ and compare the results with the original485

input to determine if they match. This approach486

allows us to eliminate the possibility that the per-487

formance issues in image format are due to the488

model’s inability to correctly recognize the input.489

As shown in Table 2, OCR accuracy approaches490

nearly 100% for all instances of LogicQA, MMLU,491

and Table Understanding tasks. This suggests that492

the model faces no difficulties in accurately extract-493

ing information, such as numbers from each row494

and column in table images. The substantial gap495

(up to 90%) in accuracy (Table 1) between images496

and text can be attributed solely to the model’s in-497

ternal reasoning processes for each modality. This498

underscores the inconsistent internal reasoning em-499

ployed by the model when presented with the same500

content in different modalities.501

In contrast, we observe lower OCR accuracy for502

Math equation-solving inputs, as complex math503

equations pose challenges for accurate recogni-504

tion and extraction. To isolate and distinguish the505

source of inconsistency – inaccurate recognition506

of image data or poor actual internal reasoning,507

we report conditional consistency scores for image508

instances given correct versus incorrect OCR re-509

sults. From Table 3, it becomes evident that there510

is no direct correlation between consistency scores511

and direct OCR accuracy. This further bolsters our512

claim that such models simply exhibit distinct (and513

inconsistent!) internal behaviors under different514

modalities.515

6 Vision-Depicting-Prompting (VDP)516

As shown in Section 5.3, for the same task, VLLMs517

such as GPT-4V perform much better when ques-518

tions are presented in text format, even when the519

information can be completely extracted from the520

DataSet OCR Accuracy
MES (Easy) 0.68
MES (Hard) 0.76

LogicQA 0.98
MMLU 0.98

TU 1.00

Table 2: Result of performing OCR on the all images of
experimented task instances.

DataSet YConsistency NConsistency
MES (Easy) 0.70 0.75
MES (Hard) 0.66 0.58

Table 3: Conditional vision-language consistency score
given the OCR results. The term ’YConsistency’ refers
to the consistency given OCR outputs are correct. Con-
versely, ’NConsistency’ denotes the consistency score
given incorrect OCR outputs.

image instances. Inspired by these findings, we pro- 521

pose a novel method of Vision-depicting-prompting 522

(VDP) for improving model’s reasoning ability 523

through image context. We now explain VDP. 524

6.1 Prompting Details 525

In the case of a task instance presented in image 526

format, VDP diverges from directly soliciting an an- 527

swer solely based on the image input, as illustrated 528

in Figure 4. Instead, we adopt a two-step process: 529

we first prompt the model to extract and articulate 530

the description of the image task using textual lan- 531

guage. This aims to maximize the transformation 532

of the image signal into a text signal, recognizing 533

the inherently stronger reasoning abilities associ- 534

ated with text information, as demonstrated earlier. 535

Subsequently, we prompt the model to provide an 536

answer, taking into account both the text descrip- 537

tion of the task and the original image input, as 538

depicted in Figure 4. 539
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Task Modality Prompt Acc Consistency

MES (Easy)
text naive 0.44 —-

image
naive 0.24 0.72
VDP 0.48 ⇑ 0.72

MES (Hard)
text naive 0.62 —-

image
naive 0.28 0.62
VDP 0.50 ⇑ 0.76 ⇑

LogicQA
text naive 0.64 —-

image
naive 0.44 0.64
VDP 0.56 ⇑ 0.80 ⇑

MMLU
text naive 1.00 —-

image
naive 0.74 0.74
VDP 0.98 ⇑ 0.98 ⇑

TU
text naive 0.93 —-

image
naive 0.03 0.10
VDP 0.93 ⇑ 0.90 ⇑

Table 4: Result of VDP prompting. MES stands for
Math Equation Solving and TU stands for Table Under-
standing. ⇑ represents an improvement of more than
10% using VDP.

Unlike previous research that sought to en-540

hance the reasoning abilities of multimodal models541

by augmenting input images with supplementary542

text (Lin et al., 2022; Hu et al., 2023), VDP does543

not focus on information augmentation. Particu-544

larly in the task instances designed for our study,545

images already contain all the necessary informa-546

tion required to complete the task. Therefore, con-547

verting these images into text format does not pro-548

vide any additional information that aids in solving549

the task. Instead, VDP is rooted in the observation550

that textual signals can significantly stimulate a551

model’s reasoning capability as model has a bias to-552

wards language modality. Instead, VDP is based on553

the observation that textual signals can significantly554

stimulate a model’s reasoning capability, given the555

model’s inherent bias toward the language modality.556

VDP achieves this by explicitly extracting textual557

information from the images, thus directly lever-558

aging the model’s language processing capabilities559

more effectively.560

6.2 Experiment Results for VDP561

We apply VDP to five of the tasks previously exam-562

ined in Section 5, where these tasks demonstrate563

notable performance disparities between image and564

text inputs. We therefore investigate whether VDP565

can effectively bridge the performance gap between566

modalities on such tasks. The outcomes are de-567

tailed in Table 4.568

Remarkably, we observe a substantial improve-569

ment in accuracy exceeding 12% when solving570

problems within the realm of vision modalities571

using VDP, as compared to naive prompting. In 572

tasks requiring reasoning abilities, we note an av- 573

erage accuracy enhancement of 19%. However, 574

the overall performance still lags behind that of 575

text-based prompting. This discrepancy can likely 576

be attributed to the challenges in accurately de- 577

picting and extracting information from objects 578

within images during VDP. In contrast, an impres- 579

sive average increase of 57% in accuracy is ob- 580

served in tasks centered around understanding (TU 581

and MMLU). Particularly, in the case of table un- 582

derstanding, we witness a remarkable 90% boost 583

in accuracy, particularly when the table’s content 584

is extracted before any necessary calculations are 585

applied. For these tasks, we find that performance 586

eventually reaches parity with text-based prompt- 587

ing, underscoring the effectiveness of VDP, partic- 588

ularly in tasks that involve a deeper understanding 589

of the information within the input instances. 590

Furthermore, there is a substantial increase in the 591

consistency score with VDP compared to prompt- 592

ing with plain images (naive prompting), e.g., from 593

0.64 to 0.80 on LogicQA and from 0.10 to 0.90 594

on TU. These results reinforce our hypothesis that 595

models such as GPT-4V exhibit varied and often 596

inconsistent reasoning capabilities across different 597

modalities and underscore the effectiveness of our 598

VDP approach for enhancing consistency. Properly 599

addressing such disparities between modalities as 600

done by our VDP approach can also help to im- 601

prove the performance in solving the tasks. 602

7 Conclusion 603

In this study, we performed a systematic analysis 604

of the consistency across modalities in multimodal 605

systems. Our results demonstrate that models such 606

as GPT-4V maintain a relatively independent in- 607

ternal representation of reasoning between visual 608

and textual signals, as evidenced by results we ob- 609

tained on our datasets which we specially designed 610

for the tasks. Notably, GPT-4V exhibits superior 611

performance in language modeling compared to 612

reasoning within a visual context. These findings 613

offer valuable insights into the potential applica- 614

tions of such multimodal systems and highlight the 615

need for more integrated system designs. Further- 616

more, we introduce a Vision-depicting-Prompting 617

solution to effectively address this inconsistency. 618
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Limitations619

While our method is straightforward and effective620

in revealing inconsistency across modalities, it does621

encounter challenges when applied to certain ex-622

isting tasks. Obtaining an information-preserving623

converter from one modality to another can prove624

difficult for specific tasks, such as detecting emo-625

tions from speech. Consequently, we may not al-626

ways be able to readily convert the modality of627

every given dataset and evaluate the cross-modal628

consistency of these tasks. However, it is important629

to note that this limitation should not undermine630

the value of our approach. Our method provides a631

general framework for assessing cross-modal be-632

havior, and there exist numerous tasks that can be633

easily converted across modalities without any loss634

of information, as demonstrated in our constructed635

datasets. By testing on such tasks, we can gain a636

comprehensive understanding of a model’s cross-637

modal behavior.638

Ethical Consideration639

Our exploration of modality consistency serves as640

a valuable means to enhance the transparency of641

multimodal models and gain a profound compre-642

hension of their behavior. By delving into the align-643

ment of model responses across diverse modali-644

ties, we uncover intricate insights into the decision-645

making processes and rationale behind their actions.646

This comprehensive understanding not only instills647

confidence in the outcomes generated by these648

models but also significantly enhances their over-649

all interpretability. Transparency in this context650

becomes essential not only for establishing trust651

when these models are integral to pivotal decision-652

making processes but also for addressing ethical653

and societal implications. As we unravel the in-654

tricacies of multimodal reasoning, it underscores655

the necessity for continuous ethical contemplation656

and the implementation of proactive measures to657

address potential challenges arising from advanced658

multimodal models.659
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756

A Math Equation Solving (Easy) Dataset 757

Figure 5: Sample 1 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. Find the largest value of $c$ such that $1$ is in the range of $f(x)=x ˆ
2-5x+c$.

Table 5: Sample 1 of Math Equation Solving (Easy) Dataset: Text
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Figure 6: Sample 2 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. What value of x makes the equation below true: $$2x + 4 = |-17 + 3|$$

Table 6: Sample 2 of Math Equation Solving (Easy) Dataset: Text
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B Math Equation Solving (Hard) Dataset 758

Figure 7: Sample 1 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Determine whether the given series diverges, converges conditionally or
converges absolutely:
$$ \sum_{n=0}ˆ {\infty}(-1)ˆ n(0.3)ˆ n$$

Table 7: Sample 1 of Math Equation Solving (Hard) Dataset: Text
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Figure 8: Sample 2 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Calculate the limit, if it exists: $$ \lim_{ x \rightarrow 2 } \left (8-3 x+12
xˆ 2 \right)$$

Table 8: Sample 2 of Math Equation Solving (Hard) Dataset: Text
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C LogicQA Dataset 759

Figure 9: Sample 1 of LogicQA Dataset: Image.

Text: Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice from below.
Which of the followings, if true, can best support the above statement? Given that jupiter is a gas giant
planet and the largest planet in the solar system. Its mass is 2.5 times the total mass of the other seven
planets in the solar system. Observations have found that most of the more than 70 moons surrounding
Jupiter are composed of water ice. Therefore, Jupiter’s atmosphere should contain a considerable amount
of water.
A. After hundreds of millions of years, the satellite may slowly fall onto the planet.
B. Many of the water in interstellar space exists in gaseous form.
C. Uranus is also a gas giant planet, and it has been confirmed that it contains a lot of water ice.
D. The satellite and the planets around it were formed from the same gas and dust at the same time.

Table 9: Sample 1 of LogicQA Dataset: Text
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Figure 10: Sample 2 of LogicQA Dataset: Image.

Text: Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice from below.
Which of the followings can be infered Given that all Anxi people are vegetarians, while all Zhenyuan
people are ascetics. Ascetics and vegetarians are like fire and water, and there is no conflict. Guo Shu is
an ascetic.
A. Guo Shu is from Zhenyuan
B. Guo Shu is not from Zhenyuan
C. Guo Shu is from Anxi
D. Guo Shu is not from Anxi

Table 10: Sample 2 of LogicQA Dataset: Text
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D MMLU Dataset 760

Figure 11: Sample 1 of MMLU Dataset: Image.

Text: Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below. Tom had to fix
some things around the house. He had to fix the door. He had to fix the window. But before he did
anything he had to fix the toilet. Tom called over his best friend Jim to help him. Jim brought with him his
friends Molly and Holly. Tom thought that Jim was going to bring Dolly with him but he didn’t. The four
of them got to work right away. Fixing the toilet was easy. Fixing the door was also easy but fixing the
window was very hard. The window was stuck and could not be opened. They all pushed on the window
really hard until finally it opened. Once the window was fixed the four of them made a delicious dinner
and talked about all of the good work that they had done. Tom was glad that he had such good friends to
help him with his work. What was the hardest thing for Tom and his friends to fix?
A. Door
B. House
C. Window
D. Toilet

Table 11: Sample 1 of MMLU Dataset: Text
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Figure 12: Sample 2 of MMLU Dataset: Image.

Text: Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below. Lisa has a pet cat
named Whiskers. Whiskers is black with a white spot on her chest. Whiskers also has white paws that
look like little white mittens. Whiskers likes to sleep in the sun on her favorite chair. Whiskers also likes
to drink creamy milk. Lisa is excited because on Saturday, Whiskers turns two years old. After school on
Friday, Lisa rushes to the pet store. She wants to buy Whiskers’ birthday presents. Last year, she gave
Whiskers a play mouse and a blue feather. For this birthday, Lisa is going to give Whiskers a red ball
of yarn and a bowl with a picture of a cat on the side. The picture is of a black cat. It looks a lot like
Whiskers. What does Whiskers like to do?
A. Sleep in the sun and drink creamy milk
B. Play
C. Drink
D. Sleep

Table 12: Sample 2 of MMLU Dataset: Text
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E Table Understanding Dataset 761

Figure 13: Sample 1 of Table Understanding Dataset: Image.

Text: Give me only the result number, NO EXPLANATIONS AT ALL! Given the table, x equals the number in
position row 1 column 3 plus the number in position row 1 column 2, what is the value of x?
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|l|l|l|}
\hline
1.179 & 7.610 & 4.722 \\
\hline
3.796 & 2.100 & 4.879 \\
\hline
8.933 & 3.898 & 6.074 \\
\hline
\end{tabular}}
\end{table}

Table 13: Sample 1 of Table Understanding Dataset: Text
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Figure 14: Sample 2 of Table Understanding Dataset: Image.

Text: Give me only the result number, NO EXPLANATIONS AT ALL! Given the table, x equals the number in
position row 5 column 3 plus the number in position row 1 column 4, what is the value of x?
\begin{table}[]
\centering
\resizebox{\textwidth}{!}{%
\begin{tabular}{|l|l|l|l|l|}
\hline
9.875 & 3.149 & 3.765 & 5.892 & 1.333
\\
\hline
6.335 & 3.325 & 3.529 & 9.173 & 6.089
\\
\hline
2.789 & 4.895 & 5.894 & 9.548 & 0.213
\\
\hline
3.692 & 6.280 & 2.986 & 6.015 & 1.774
\\
\hline
1.852 & 7.581 & 8.438 & 2.641 & 7.873
\\
\hline
\end{tabular}}
\end{table}

Table 14: Sample 2 of Table Understanding Dataset: Text
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F Math Reasoning Dataset 762

Figure 15: Sample 1 of Math Reasoning Dataset: Image.

Text: Give only the answer, no steps. Phill had some friends over for pizza. He opens the pizza box and
discovers it hasn’t been sliced. Phill cuts the pizza in half, and then cuts both halves in half, and then cuts
each slice in half again. Phill then passes out 1 slice to 3 of his friends and 2 slices to 2 of his friends.
How many slices of pizza are left for Phill?

Table 15: Sample 1 of Math Reasoning Dataset: Text
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Figure 16: Sample 2 of Math Reasoning Dataset: Image.

Text: Give only the answer, no steps. Brandon sold 86 geckos last year. He sold twice that many the year before.
How many geckos has Brandon sold in the last two years?

Table 16: Sample 2 of Math Reasoning Dataset: Text
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G State Machine Dataset 763

Figure 17: Sample 1 of State Machine Dataset: Image.

Text: Consider a graph with the following directed edges: Yellow leads to Red; Green leads to Yellow; Red
leads to Pink; Blue leads to Green; Gray leads to Green; Pink leads to Blue. Starting from the Gray node,
what color node will we achieve after 6 steps? Only return the correct one from the options below without
explanations: A. Green B. Red C. Blue D. Yellow E. Pink

Table 17: Sample 1 of State Machine Dataset: Text
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Figure 18: Sample 2 of State Machine Dataset: Image.

Text: Consider a graph with the following directed edges: Gray leads to Red; Yellow leads to Blue; Blue leads
to Red; Red leads to Green; Green leads to Yellow. Starting from the Gray node, what color node will we
achieve after 6 steps? Only return the correct one from the options below without explanations: A. Red B.
Yellow C. Green D. Blue

Table 18: Sample 2 of State Machine Dataset: Text
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