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Abstract

Recent developments in multimodal method-
ologies have marked the beginning of an ex-
citing era for models adept at processing di-
verse data types, encompassing text, audio, and
visual content. Models like GPT-4V, which
merge computer vision with advanced language
processing, exhibit extraordinary proficiency in
handling intricate tasks that require a simul-
taneous understanding of both textual and vi-
sual information. Prior research efforts have
meticulously evaluated the efficacy of these Vi-
sion Large Language Models (VLLMs) in var-
ious domains, including object detection, im-
age captioning, and other related fields. How-
ever, existing analyses have often suffered
from limitations, primarily centering on the
isolated evaluation of each modality’s perfor-
mance while neglecting to explore their intri-
cate cross-modal interactions. Specifically, the
question of whether these models achieve the
same level of accuracy when confronted with
identical task instances across different modali-
ties remains unanswered. In this study, we take
the initiative to delve into the interaction and
comparison among these modalities of interest
by introducing a novel concept termed cross-
modal consistency. Furthermore, we propose a
quantitative evaluation framework founded on
this concept. Our experimental findings, drawn
from a curated collection of parallel vision-
language datasets developed by us, unveil a pro-
nounced inconsistency between the vision and
language modalities within GPT-4V, despite its
portrayal as a unified multimodal model. Our
research yields insights into the appropriate uti-
lization of such models and hints at potential
avenues for enhancing their design.

1 Introduction

Recent large multimodal models have showcased
remarkable capabilities in tasks that require the
integration of multiple modalities and sources of
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Figure 1: Visualization of the performance gap between
the modality of text and image in seven different tasks.

information (Huang et al., 2023). Among these,
the performance of Vision Large Language Models
(VLLMs) (Zhang et al., 2023a; Yang et al., 2023)
stands out, thanks to the vast amounts of image
and text data available for training and the rapid
progress in both computer vision and language
modeling. However, due to the distinct training
methodologies employed by these models, such
as contrastive learning (Radford et al., 2021) and
embodied image-language modeling (Driess et al.,
2023), and the varying quality of training data for
each modality, these networks often exhibit perfor-
mance disparities across different modalities.

Previous research has extensively evaluated the
performance of individual modalities in multi-
modal systems. For instance, Yang et al. (2023)
conducted a thorough assessment of GPT-4V’s vi-
sion understanding capabilities, and Chen et al.
(2023) analyzed model’s decision-making abilities.
However, assessing a model’s performance on each
individual modality in isolation does not fully eval-
uate its true multimodal abilities. It is possible, for
example, for a model to excel in numerous vision



tasks but still lag significantly behind in language
understanding. Moreover, simply testing perfor-
mance on individual tasks provides no insight into
whether and how each modality of the model influ-
ences the others. Unfortunately, the cross-modality
relationship is frequently overlooked in the afore-
mentioned research.

In this study, we go beyond the traditional ap-
proach of simply evaluating multimodal systems
through separate downstream tasks and reporting
their scores. Our focus is primarily on measur-
ing the inherent differences in capabilities between
various modalities, with special attention to vision
and language, given their prominence among other
modalities. To enable a comprehensive analysis,
we introduce the concept of cross-modal consis-
tency, complete with a formal definition and an
evaluation framework. We consider cross-modal
consistency to be an essential element in the design
of complex multimodal systems with neural com-
ponents, as it guarantees coherence and reliability
in the system’s performance. This is crucial for
both interpretability and for fostering user trust.

We subsequently construct a comprehensive
vision-language parallel dataset encompassing
seven tasks, each designed to highlight different
facets of vision and language capabilities. This
dataset serves as a tool for evaluating the vision-
language consistency of VLLMs. Our experi-
ments with the GPT-4V model on the dataset re-
veal significant inconsistencies between its vision
and language capabilities. The results indicate that
its performance varies considerably depending on
whether the same task instance is prompted in one
modality versus the other.

Our contributions are: (1) We introduce the
novel concept of cross-modal consistency, along
with a comprehensive evaluation framework. This
approach transcends traditional assessment meth-
ods for multimodal models, which typically evalu-
ate each modality in isolation. (2) We develop and
release seven diverse datasets, carefully designed
for vision-language consistency evaluation, open-
ing up opportunities to exploit these datasets in
future research. (3) Our experiments on GPT-4V
reveal a significant disparity between vision and
language abilities within such a system, prompting
the introduction of the Vision-Depicting-Prompting
(VDP) method as a potential remedy. Our findings
offer valuable guidance for more effective future
use of such multimodal models.

2 Related Work

A substantial amount of effort has been dedicated
to meticulous evaluation of large multimodal mod-
els such as GPT-4V. To assess the capabilities of
these models across all their modalities, a wide
array of tasks has been tested. E.g., researchers
have scrutinized GPT-4V’s aptitude in solving
problems within specialized domains, including
biomedicine (Liu et al., 2023b), medical appli-
cations (Wu et al., 2023), and autonomous driv-
ing (Wen et al., 2023), employing intricate image
inputs. Beyond these domain-specific evaluations,
more general skills like chart image understand-
ing (Liu et al., 2023a) and optical character recog-
nition (Shi et al., 2023) have also been analyzed.
However, these evaluations often focus solely on
performance metrics for each test dataset, with lit-
tle or no exploration of the relative capability gaps
between vision and language. In this study, our pri-
mary emphasis lies in uncovering the relative dis-
parities in the abilities of multimodal models across
their various modalities, rather than merely assess-
ing absolute performance within specific tasks.
Despite the lack of cross-modal analysis for
multimodal models, previous research has delved
into examining cross-lingual abilities in Large Lan-
guage Models (LLMs). For example, by trans-
lating task instances into different languages and
analyzing the pairwise results, Zhang et al. (2023b)
demonstrated that models like GPT-3.5, primarily
trained on English text corpora, exhibit dispari-
ties in their performance across various tasks when
prompted with different languages. Specifically,
these LLMs display a bias toward English. Tak-
ing inspiration from such studies, we extend our
research to encompass consistency analysis across
various modalities, recognizing that different lan-
guages can be regarded as distinct modalities as
well. Our generalized framework sheds light on the
underlying principles governing the consistency of
multimodal models when confronted with tasks in
diverse modalities, thereby contributing to a deeper
understanding of their capabilities and limitations.

3 Preliminaries and Key Concepts

As “consistency” can carry different interpretations
within the specific context we are addressing, a
formal definition of the concept of cross-modal
consistency for multimodal models is warranted.
To that end, we establish an instance of task ¢,
represented as the paired value (d,, q). Here, d,



represents a data element from the input space
D, corresponding to modality a, while ¢ € Q
represents the abstract query, often presented in
the form of a question pertinent to the task at
hand. A task set within modality a is then con-
stituted by combining certain data elements from
modality a with the queries g, which can be de-
noted as Sy, = {(dgl), q), (dﬁf), q), (dg’), q),...}
When the queries ¢ are held constant, and elements
dy € Dy in another modality b are gathered, we ob-
tain the corresponding task set in another modality,
denoted as S, ;. In essence, the task ¢t embodies
the task-specific queries, encompassing, e.g., activi-
ties such as solving equations, translation, question
answering, etc. Meanwhile, the data elements d,,
may take the form of equation instances or question
descriptions within modality m, which can involve
the modalities of image, text, or speech.

We introduce the concept of a ’converter,” a func-
tion K, : Dy — Dy, which maps data elements
from modality a to b. While there exist various
methods for converting data between modalities
(e.g., from language to vision through taking a
picture), we are specifically interested in convert-
ers that preserve information necessary for solv-
ing a given task with query ¢, denoted as Kg’b.
Information-preserving converters are distinctive,
as the correct answer for a given task instance
(d, q) depends solely on the information within d
rather than its modality. Therefore, both (d,, q)
and (K?,(d,), q) are guaranteed to share the same
gold label. In this work, we assume the existence of
K1 for every g € Q, but finding such a converter is
beyond the scope of this paper. Inter-modality con-
version may be challenging for certain modalities.
Some tasks may involve aspects of information,
such as emotions in speech or nuanced visual per-
ception in images, that cannot be easily preserved
during conversion. We design our experiments with
tasks where a K7 clearly exists.

A multimodal model can be conceptualized as
a function, denoted M : D x Q +— ), mapping
data elements and queries to an answer. Here, D
represents the collective space encompassing all
the modalities of interest, formally D = |J Dy,

where m spans over all relevant modalities. 8n the
other hand, the answer space ) refers to a unified
and structured representation, which, in the case of
GPT-4V, assumes the form of text.

A model M is said to exhibit consistency be-
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Figure 2: Illustration of the concept of cross-modal con-
sistency. A consistent model (right) applies the same
internal reasoning to task instances with identical infor-
mation, regardless of the encoding modality, leading to
consistent outcomes. In contrast, an inconsistent model
displays significant behavioral changes in response to
different input modalities, resulting in varying outcomes
as the modality alters.

tween modalities a and b provided:
M<da7 q) - M(Kgb(da)? Q)7Vda G Da7 q E Q

In other words, M is consistent if its output is
invariant under any modality transformation K9
which preserves all essential information necessary
for solving the task associated with query q. E.g.,
consider solving mathematical equations. A model
which solves this task is consistent across the text
and image modalities if neither transcribing the
equation from image to text, nor imaging an equa-
tion presented as text, changes the model’s output.

In short, a consistent model should remain ag-
nostic to the modality of the task instance and yield
identical results as long as an equivalent amount of
information is provided, reflecting its capacity to
handle multimodal data seamlessly.

4 Method

In this section, we describe our method for testing
cross-modal consistency. We establish a quanti-
tative evaluation framework, with a focus on the
vision-language cross-modality. We provide a de-
scription of our methodology and the specific met-
rics we propose for evaluation.

4.1 WorkFlow

For an instance set of a given task ¢ in modality
1 2 3

a, denoted as S, = {(dfl ), q), (dt(l )7 q), (dz(z ),Q),

-+ - }, our first step involves constructing a parallel

instance set S; ;, in modality b using an information-

preserving converter Kg - We do so by apply-



ing Kg,b to each data object d((f) to get the ob-

ject dl(f) = K ,(d,) in modality b. By doing so,
each paired instance (d((f), q) and (dl(f),q) shares
the same gold label since the information in d is
preserved for the task with query ¢. In the context
of analyzing the vision and language modalities,
our converter is comprised of an optical charac-
ter recognition (OCR) system combined with hu-
man verification for converting images to text, and
screenshot software for converting text into images.
We carefully select tasks where the information
required for solving the task can be fully retained
through the utilization of this converter, as exem-
plified by mathematical equation solving.

Next, we independently apply the model M to

each pair of instances (dﬁf), q) and (dl(f), q) to ob-

tain pairwise results M (d,(f) ,q) and M (dl(f), q).

4.2 Metrics

We introduce our task consistency score C based
on these pairwise instances:

1
Cy = n;cM (1)

where

' 1, it M(dY,q) = M(d?,
Ch:{ @q) =M@ a)

0, otherwise

In essence, C} is the proportion of instances for
which model M has consistent performance on the
given task, between modalities a and b.

S Experiments

5.1 Data Construction

Since there is currently no existing parallel vision-
language task dataset, we create our own datasets
for both our experiments and also to facilitate fu-
ture research endeavors. Following the approach
outlined in Section 4.1, we meticulously selected
seven tasks that gauge various facets of Vision-
Large Language models. For each of these tasks,
we ensure that data instances can be transformed
between image and text formats while preserving
all task-related information, utilizing a straightfor-
ward converter (e.g., OCR). Recognizing that a
flawless converter does not exist in practice, we un-
dertake the manual verification of each converted
data instance to prevent any potential errors during

the conversion process. We will make our dataset
available for use by the research community in the
final version of our paper.

5.1.1 Task Description.

Math Equation Solving. Mathematical reason-
ing stands as a cornerstone of multi-modal mod-
els’ capabilities. Mathematical problems typically
involve equations presented in a visual format, of-
fering a clear depiction of intricate symbols and
notations. Given that formulas can be seamlessly
converted to text formats like LaTeX without losing
any essential information for solving these equa-
tions, constructing a parallel dataset for such tasks
is a natural fit for analyzing cross-modal consis-
tency. For our dataset, we source math questions
with equations from two distinct origins, each rep-
resenting varying levels of difficulty. For low dif-
ficulty levels, we extract 901 high school-level
mathematical questions in LaTeX (text) format
from MATH dataset (Hendrycks et al., 2021b),
rendering each question using a LaTeX compiler
to generate corresponding image data. To intro-
duce a greater level of complexity, we gathered 50
college-level calculus questions, along with their
corresponding answers, using the same procedure.
Consequently, we paired all the image-based math
questions with their corresponding text representa-
tions to create our comprehensive equation-solving
dataset, encompassing both easy and challenging
questions. An illustrative example of this dataset
can be found in Figure 3, and detailed data samples
are available in Appendix A and Appendix B .
Logical Reasoning. To assess the vision-language
consistency in logical reasoning abilities for
the VLLMs, we employ two distinct datasets:
GSMBSK (Cobbe et al., 2021) and LogicQA (Liu
et al., 2020). GSM8K comprises 8,500 question
instances in text format, with each instance repre-
senting a problem description in English text paired
with a labeled answer. We transform the text into
images by capturing screenshots of the rendered
text with an appropriate font size and layout. Simi-
larly, LogicQA consists of 8,678 more challenging
questions presented in text format and each is con-
verted into an image by us. Subsequently, we pair
these resulting images with the original text files,
creating a parallel dataset that enables the explo-
ration of this task in both image and text modalities.
An illustrative example of this dataset construction
can be found in Figure 3, and detailed data samples
are available in Appendix F and Appendix C.
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Figure 3: An Overview of the Components of Our Vision-Language Consistency Dataset. Data instances are
presented in pairs, featuring one in the vision modality and another in the text modality. Notably, Math Equation
Solving dataset encompasses two segments, each representing different difficulty levels.

Table Understanding. Tables, commonly en-
countered in everyday life, are often presented as
images, and the effective extraction of informa-
tion from them is vital for various tasks. As well-
structured table images can be easily converted into
LaTeX text, they serve as an excellent choice for
conducting vision-language consistency analysis.
To facilitate this analysis, we creat 30 distinct ta-
bles in LaTeX, each featuring multiple rows and
columns, with numerical values in each cell. Our
task revolves around accurately summing the num-
bers within a given row and column. We provide
parallel task instances in both LaTeX text and ren-
dered images, as illustrated in Appendix E

State Machine Reasoning. State machines,
which can be effectively visualized as graphs or rep-
resented through text with transition rules, serve as
an ideal test bed for vision-language consistency in
simple computational capabilities of VLLMs. Our
approach involves generating images of state ma-
chines with varying total numbers of nodes (states).
Each node in the state machine is assigned a distinct
color and features precisely one outgoing edge, en-
suring a unique path and solution. The questions
we formulate are of the form, "Starting from the
color grey, after n steps, which color will we end
up in?" Here, n is a variable that we select. Addi-
tionally, we generate a text version of these state
machines by listing out all the transition rules cor-
responding to the arrows. To prevent any form
of cheating by looking at the last state in the text,
we shuffle the order of the rules. We create state
machines with different numbers of states and ques-

tions with varying numbers of steps, to introduce
varying difficulty levels. The data samples can be
seen in Appendix G.

Reading Comprehension. To assess the
model’s consistency in comprehending lengthy
English paragraphs across vision and language
modalities, we provide the model with the same
text content in two different formats: plain text
and images of the text. We employ the test part of
the Massive Multitask Language Understanding
(Hendrycks et al., 2021a), or MMLU dataset as
our source, which includes 1,477 extensive text
passages, each accompanied by multiple-choice
questions designed to evaluate the comprehension
of the text content. For this dataset, we convert
each text instance into an image by rendering
the text into a PDF before converting it to a JPG
image. Detailed data samples can be found in the
Appendix D.

5.2 Experiment Details.

We apply our framework and constructed datasets
to evaluate the cross-modal consistency of the Ope-
nAl GPT-4V model, known for its proficiency in
both vision and language modalities. Given the
limited daily access to prompt this model, our ex-
periments were conducted on a randomly selected
subset of 50 samples from each dataset. We se-
lect the GPT-4V classical mode, which does not
include additional plug-ins and employs a relatively
low decoding temperature to minimize variance in
its output. To ensure a fair comparison of capa-
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Table 1: Test results for vision-language consistency
datasets. MES stands for Math Equation Solving, TU
stands for Table Understanding and MR stands for math
reasoning. The symbol |} denotes a sizeable decrease in
accuracy (greater than 10%) when input is in the image
format.

bilities between the two modalities, we embedded
the query questions into the image and exclusively
used images for prompting. This avoids the in-
volvement of any text input when testing the vision
modality. Additionally, to prevent the model from
performing reasoning steps in text and introducing
unintended modality conversions, we explicitly in-
structed the model to output answers without any
reasoning steps. Our results are manually collected
for pairwise data instances, and we calculate the
consistency scores based on the methodology out-
lined in Section 4.1.

5.3 Main Results

The main outcomes of our assessments across
seven distinct datasets are outlined in Table 1. No-
tably, even though the input contains an equivalent
amount of information necessary for task comple-
tion, substantial disparities emerge between image
and text input formats. This phenomenon occurs
even in tasks where images are conventionally con-
sidered to offer a more vivid and intuitive represen-
tation from a human perspective.

We note that consistency, being based on re-
sponse agreement between modalities, can be high
or low regardless of per modality accuracy. The
highest consistency (0.92) is observed for math
reasoning even though both modalities have a rela-
tively low accuracy (< 0.40). By contrast, the con-
sistency drops to 0.64 on logical reasoning (Log-
icQA) on which the individual modalities have

higher accuracy (> 0.44).

For tasks that involve intricate reasoning steps,
including equation solving, math/logical reasoning,
and state machine reasoning, we observe relatively
low accuracy even when the input is presented
in pure text format. These tasks align with areas
where the model generally struggles. When the in-
put modality shifts to using images, the proficiency
in solving such tasks deteriorates further, result-
ing in a noticeable drop in performance, despite
the fact that the images contain an equal amount of
information. This emphasizes the substantial incon-
sistency in task-solving across modalities and high-
lights the model’s superior ability in one modality
(Language) compared to the other (Vision).

On the other hand, for tasks primarily focused
on extracting information from provided content
and comprehending that information, such as Lan-
guage Understanding and Table Understanding, we
witness near-perfect performance when the model
is prompted with text input. However, a more sig-
nificant drop in accuracy (up to 90%) is observed in
such tasks when the input modality shifts to images.
This indicates that the change in modality signifi-
cantly impacts the model’s processing capabilities,
providing strong evidence of the inconsistency of
the model.

In conclusion, in multimodal systems like GPT-
4V, the language modality demonstrates a domi-
nant advantage over vision modality, when tasks
are tackled in text format, despite the presence
of the same information in image format. This
strongly suggests a non-consistent cross-modal be-
havior within the network. While each modality
exhibits varying levels of task-solving and reason-
ing capabilities, the inconsistency across modalities
is observed across tasks regardless of the accuracy
level of each modality for the task in hand.

5.4 Ablation Study on Content Extraction
from Images

As solving tasks in image format inevitably re-
quires accessing essential information from the im-
ages, we conducted additional experiments to inves-
tigate whether the performance gap is attributable
to the model’s inability to access information. To
address this, we conducted one-step Optical Char-
acter Recognition (OCR) using the model’s own
network on all instances of tasks that exhibited a
significant performance gap between image and
text. Specifically, for each image input (indicated
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by the red arrow in Table 1), we prompt the model
with the instruction ’extract the exact content in the
image’ and compare the results with the original
input to determine if they match. This approach
allows us to eliminate the possibility that the per-
formance issues in image format are due to the
model’s inability to correctly recognize the input.

As shown in Table 2, OCR accuracy approaches
nearly 100% for all instances of LogicQA, MMLU,
and Table Understanding tasks. This suggests that
the model faces no difficulties in accurately extract-
ing information, such as numbers from each row
and column in table images. The substantial gap
(up to 90%) in accuracy (Table 1) between images
and text can be attributed solely to the model’s in-
ternal reasoning processes for each modality. This
underscores the inconsistent internal reasoning em-
ployed by the model when presented with the same
content in different modalities.

In contrast, we observe lower OCR accuracy for
Math equation-solving inputs, as complex math
equations pose challenges for accurate recogni-
tion and extraction. To isolate and distinguish the
source of inconsistency — inaccurate recognition
of image data or poor actual internal reasoning,
we report conditional consistency scores for image
instances given correct versus incorrect OCR re-
sults. From Table 3, it becomes evident that there
is no direct correlation between consistency scores
and direct OCR accuracy. This further bolsters our
claim that such models simply exhibit distinct (and
inconsistent!) internal behaviors under different
modalities.

6 Vision-Depicting-Prompting (VDP)

As shown in Section 5.3, for the same task, VLLMs
such as GPT-4V perform much better when ques-
tions are presented in text format, even when the
information can be completely extracted from the

DataSet | OCR Accuracy
MES (Easy) 0.68
MES (Hard) 0.76
LogicQA 0.98
MMLU 0.98
TU 1.00

Table 2: Result of performing OCR on the all images of
experimented task instances.

DataSet ‘ YConsistency NConsistency
MES (Easy) 0.70 0.75
MES (Hard) 0.66 0.58

Table 3: Conditional vision-language consistency score
given the OCR results. The term *YConsistency’ refers
to the consistency given OCR outputs are correct. Con-
versely, ’NConsistency’ denotes the consistency score
given incorrect OCR outputs.

image instances. Inspired by these findings, we pro-
pose a novel method of Vision-depicting-prompting
(VDP) for improving model’s reasoning ability
through image context. We now explain VDP.

6.1 Prompting Details

In the case of a task instance presented in image
format, VDP diverges from directly soliciting an an-
swer solely based on the image input, as illustrated
in Figure 4. Instead, we adopt a two-step process:
we first prompt the model to extract and articulate
the description of the image task using textual lan-
guage. This aims to maximize the transformation
of the image signal into a text signal, recognizing
the inherently stronger reasoning abilities associ-
ated with text information, as demonstrated earlier.
Subsequently, we prompt the model to provide an
answer, taking into account both the text descrip-
tion of the task and the original image input, as
depicted in Figure 4.



Task ‘ Modality Prompt Acc Consistency

text naive 0.44 —

MES (Easy) image naive 0.24 0.72

VDP 0.48 1 0.72

text naive 0.62 —_—

MES (Hard) image naive 0.28 0.62
VDP 0.50 1 0.76 1

text naive 0.64 —

LogicQA image naive 0.44 0.64
VDP 0.56 1 0.80 1

text naive 1.00 —

MMLU image naive 0.74 0.74
VDP 0.98 1 0.98 1

text naive 0.93 —

TU image naive 0.03 0.10
VDP 0.93 1 0.90 1

Table 4: Result of VDP prompting. MES stands for
Math Equation Solving and TU stands for Table Under-
standing. 1} represents an improvement of more than
10% using VDP.

Unlike previous research that sought to en-
hance the reasoning abilities of multimodal models
by augmenting input images with supplementary
text (Lin et al., 2022; Hu et al., 2023), VDP does
not focus on information augmentation. Particu-
larly in the task instances designed for our study,
images already contain all the necessary informa-
tion required to complete the task. Therefore, con-
verting these images into text format does not pro-
vide any additional information that aids in solving
the task. Instead, VDP is rooted in the observation
that textual signals can significantly stimulate a
model’s reasoning capability as model has a bias to-
wards language modality. Instead, VDP is based on
the observation that textual signals can significantly
stimulate a model’s reasoning capability, given the
model’s inherent bias toward the language modality.
VDP achieves this by explicitly extracting textual
information from the images, thus directly lever-
aging the model’s language processing capabilities
more effectively.

6.2 Experiment Results for VDP

We apply VDP to five of the tasks previously exam-
ined in Section 5, where these tasks demonstrate
notable performance disparities between image and
text inputs. We therefore investigate whether VDP
can effectively bridge the performance gap between
modalities on such tasks. The outcomes are de-
tailed in Table 4.

Remarkably, we observe a substantial improve-
ment in accuracy exceeding 12% when solving
problems within the realm of vision modalities

using VDP, as compared to naive prompting. In
tasks requiring reasoning abilities, we note an av-
erage accuracy enhancement of 19%. However,
the overall performance still lags behind that of
text-based prompting. This discrepancy can likely
be attributed to the challenges in accurately de-
picting and extracting information from objects
within images during VDP. In contrast, an impres-
sive average increase of 57% in accuracy is ob-
served in tasks centered around understanding (TU
and MMLU). Particularly, in the case of table un-
derstanding, we witness a remarkable 90% boost
in accuracy, particularly when the table’s content
is extracted before any necessary calculations are
applied. For these tasks, we find that performance
eventually reaches parity with text-based prompt-
ing, underscoring the effectiveness of VDP, partic-
ularly in tasks that involve a deeper understanding
of the information within the input instances.

Furthermore, there is a substantial increase in the
consistency score with VDP compared to prompt-
ing with plain images (naive prompting), e.g., from
0.64 to 0.80 on LogicQA and from 0.10 to 0.90
on TU. These results reinforce our hypothesis that
models such as GPT-4V exhibit varied and often
inconsistent reasoning capabilities across different
modalities and underscore the effectiveness of our
VDP approach for enhancing consistency. Properly
addressing such disparities between modalities as
done by our VDP approach can also help to im-
prove the performance in solving the tasks.

7 Conclusion

In this study, we performed a systematic analysis
of the consistency across modalities in multimodal
systems. Our results demonstrate that models such
as GPT-4V maintain a relatively independent in-
ternal representation of reasoning between visual
and textual signals, as evidenced by results we ob-
tained on our datasets which we specially designed
for the tasks. Notably, GPT-4V exhibits superior
performance in language modeling compared to
reasoning within a visual context. These findings
offer valuable insights into the potential applica-
tions of such multimodal systems and highlight the
need for more integrated system designs. Further-
more, we introduce a Vision-depicting-Prompting
solution to effectively address this inconsistency.



Limitations

While our method is straightforward and effective
in revealing inconsistency across modalities, it does
encounter challenges when applied to certain ex-
isting tasks. Obtaining an information-preserving
converter from one modality to another can prove
difficult for specific tasks, such as detecting emo-
tions from speech. Consequently, we may not al-
ways be able to readily convert the modality of
every given dataset and evaluate the cross-modal
consistency of these tasks. However, it is important
to note that this limitation should not undermine
the value of our approach. Our method provides a
general framework for assessing cross-modal be-
havior, and there exist numerous tasks that can be
easily converted across modalities without any loss
of information, as demonstrated in our constructed
datasets. By testing on such tasks, we can gain a
comprehensive understanding of a model’s cross-
modal behavior.

Ethical Consideration

Our exploration of modality consistency serves as
a valuable means to enhance the transparency of
multimodal models and gain a profound compre-
hension of their behavior. By delving into the align-
ment of model responses across diverse modali-
ties, we uncover intricate insights into the decision-
making processes and rationale behind their actions.
This comprehensive understanding not only instills
confidence in the outcomes generated by these
models but also significantly enhances their over-
all interpretability. Transparency in this context
becomes essential not only for establishing trust
when these models are integral to pivotal decision-
making processes but also for addressing ethical
and societal implications. As we unravel the in-
tricacies of multimodal reasoning, it underscores
the necessity for continuous ethical contemplation
and the implementation of proactive measures to
address potential challenges arising from advanced
multimodal models.
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A Math Equation Solving (Easy) Dataset

Give only the answer, no steps. There are 3 complex
numbers a + bi, c+di. and e + fi. If b=1, e = —a —c.
and the sum of the numbers is —¢, find d + f.

Figure 5: Sample 1 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. Find the largest value of $c$ such that $1$ is in the range of $f(x)=x "
2-5x+c$.

Table 5: Sample 1 of Math Equation Solving (Easy) Dataset: Text
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Give only the answer, no steps. What value of = makes
the equation below true:

2 +4=|-17+3

Figure 6: Sample 2 of Math Equation Solving (Easy) Dataset: Image.

Text: Give only the answer, no steps. What value of x makes the equation below true: $$2x + 4 =1-17 + 31$$ ‘

Table 6: Sample 2 of Math Equation Solving (Easy) Dataset: Text
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B Math Equation Solving (Hard) Dataset

Give only the answer, no steps. Determine whether
the given series diverges, converges conditionally or con-
verges absolutely:

Figure 7: Sample 1 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Determine whether the given series diverges, converges conditionally or
converges absolutely:
$$ \sum_{n=0}" {\infty }(-1)" n(0.3)" n$$

Table 7: Sample 1 of Math Equation Solving (Hard) Dataset: Text
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Give only the answer, no steps. Calculate the limit, if
1t exists:
lim (8 — 3z + 12.’1;2)
T—2

Figure 8: Sample 2 of Math Equation Solving (Hard) Dataset: Image.

Text: Give only the answer, no steps. Calculate the limit, if it exists: $$ \lim_{ x \rightarrow 2 } \left (8-3 x+12
X" 2 \right)$$

Table 8: Sample 2 of Math Equation Solving (Hard) Dataset: Text
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C LogicQA Dataset

Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one
choice from below. Which of the followings, if true, can best support the above
statement? Given that jupiter is a gas giant planet and the largest planet in the
solar system. Its mass is 2.5 times the total mass of the other seven planets in
the solar system. Observations have found that most of the more than 70 moons
surrounding Jupiter are composed of water ice. Therefore, Jupiter’s atmosphere
should contain a considerable amount of water.

A. After hundreds of millions of years, the satellite may slowly fall onto the
planet.

B. Many of the water in interstellar space exists in gaseous form.

C. Uranus is also a gas giant planet, and it has been confirmed that it contains
a lot of water ice.

D. The satellite and the planets around it were formed from the same gas
and dust at the same time.

Figure 9: Sample 1 of LogicQA Dataset: Image.

Text:

Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice from below.
Which of the followings, if true, can best support the above statement? Given that jupiter is a gas giant
planet and the largest planet in the solar system. Its mass is 2.5 times the total mass of the other seven
planets in the solar system. Observations have found that most of the more than 70 moons surrounding
Jupiter are composed of water ice. Therefore, Jupiter’s atmosphere should contain a considerable amount
of water.

A. After hundreds of millions of years, the satellite may slowly fall onto the planet.

B. Many of the water in interstellar space exists in gaseous form.

C. Uranus is also a gas giant planet, and it has been confirmed that it contains a lot of water ice.

D. The satellite and the planets around it were formed from the same gas and dust at the same time.

Table 9: Sample 1 of LogicQA Dataset: Text
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Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only
one choice from below. Which of the followings can be infered Given that all
Anxi people are vegetarians, while all Zhenyuan people are ascetics. Ascetics
and vegetarians are like fire and water, and there is no conflict. Guo Shu is an
ascetic.

A. Guo Shu is from Zhenyuan
B. Guo Shu is not from Zhenyuan
C. Guo Shu is from Anxi

D. Guo Shu is not from Anxi

Figure 10: Sample 2 of LogicQA Dataset: Image.

Text: Give me only a single choice, NO EXPLANATIONS AT ALL! Choose only one choice from below.
Which of the followings can be infered Given that all Anxi people are vegetarians, while all Zhenyuan
people are ascetics. Ascetics and vegetarians are like fire and water, and there is no conflict. Guo Shu is
an ascetic.

A. Guo Shu is from Zhenyuan

B. Guo Shu is not from Zhenyuan
C. Guo Shu is from Anxi

D. Guo Shu is not from Anxi

Table 10: Sample 2 of LogicQA Dataset: Text
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D MMLU Dataset

Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one
from below. Tom had to fix some things around the house. He had to fix the
door. He had to fix the window. But before he did anything he had to fix the
toilet. Tom called over his best friend Jim to help him. Jim brought with him
his friends Molly and Holly. Tom thought that Jim was going to bring Dolly
with him but he didn’t. The four of them got to work right away. Fixing the
toilet was easy. Fixing the door was also easy but fixing the window was very
hard. The window was stuck and could not be opened. They all pushed on the
window really hard until finally it opened. Once the window was fixed the four
of them made a delicious dinner and talked about all of the good work that they
had done. Tom was glad that he had such good friends to help him with his
work. What was the hardest thing for Tom and his friends to fix?

A, Door
B. House
C. Window
D

. Toilet

Figure 11: Sample 1 of MMLU Dataset: Image.

Text:

Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below. Tom had to fix
some things around the house. He had to fix the door. He had to fix the window. But before he did
anything he had to fix the toilet. Tom called over his best friend Jim to help him. Jim brought with him his
friends Molly and Holly. Tom thought that Jim was going to bring Dolly with him but he didn’t. The four
of them got to work right away. Fixing the toilet was easy. Fixing the door was also easy but fixing the
window was very hard. The window was stuck and could not be opened. They all pushed on the window
really hard until finally it opened. Once the window was fixed the four of them made a delicious dinner
and talked about all of the good work that they had done. Tom was glad that he had such good friends to
help him with his work. What was the hardest thing for Tom and his friends to fix?

A. Door

B. House

C. Window

D. Toilet

Table 11: Sample 1 of MMLU Dataset: Text
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Give me only a single letter, NO EXPLANATIONS AT ALL! Choose onc
from below. Lisa has a pet cat named Whiskers. Whiskers is black with a
white spot on her chest. Whiskers also has white paws that look like little white
mittens. Whiskers likes to sleep in the sun on her favorite chair. Whiskers also
likes to drink ereamy milk. Lisa is excited because on Saturday, Whiskers turns
two years old. After school on Friday, Lisa rushes to the pet store. She wants
to buy Whiskers' birthday presents. Last year, she gave Whiskers a play mouse
and a blue feather. For this birthday, Lisa is going to give Whiskers a red ball
of yarn and a bowl with a picture of a cat on the side. The picture is of a black
cat. It looks a lot like Whiskers. What does Whiskers like to do?

A. Sleep in the sun and drink creamy milk
B. Play

C. Drink

. Sleep

jw

Figure 12: Sample 2 of MMLU Dataset: Image.

Text:

Give me only a single letter, NO EXPLANATIONS AT ALL! Choose one from below. Lisa has a pet cat
named Whiskers. Whiskers is black with a white spot on her chest. Whiskers also has white paws that
look like little white mittens. Whiskers likes to sleep in the sun on her favorite chair. Whiskers also likes
to drink creamy milk. Lisa is excited because on Saturday, Whiskers turns two years old. After school on
Friday, Lisa rushes to the pet store. She wants to buy Whiskers’ birthday presents. Last year, she gave
Whiskers a play mouse and a blue feather. For this birthday, Lisa is going to give Whiskers a red ball
of yarn and a bowl with a picture of a cat on the side. The picture is of a black cat. It looks a lot like
Whiskers. What does Whiskers like to do?

A. Sleep in the sun and drink creamy milk

B. Play

C. Drink

D. Sleep

Table 12: Sample 2 of MMLU Dataset: Text
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E Table Understanding Dataset

1.179 | 7.610 | 4.722
3.796 | 2.100 | 4.879
8.933 | 3.898 | 6.074

Give me only the result number, NO EXPLANATIONS
AT ALL! Given the table, x equals the number in posi-
tion row 1 column 3 plus the number in position row 1

column 2, what is the value of x7

Figure 13: Sample 1 of Table Understanding Dataset: Image.

Text:

Give me only the result number, NO EXPLANATIONS AT ALL! Given the table, x equals the number in
position row 1 column 3 plus the number in position row 1 column 2, what is the value of x?
\begin{table}[]

\centering

\resizebox {\textwidth}{!}{%

\begin{tabular} {I1I1I1I}

\hline

1.179 & 7.610 & 4.722\\

\hline

3.796 & 2.100 & 4.879 \\

\hline

8.933 & 3.898 & 6.074 \\

\hline

\end{tabular} }

\end{table}

Table 13: Sample 1 of Table Understanding Dataset: Text
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9.875 | 3.149 | 3.765 | 5.892 | 1.333
6.335 | 3.325 | 3.529 | 9.173 | 6.089
2.789 | 4.895 | 5.894 | 9.548 | 0.213
3.692 | 6.280 | 2.986 | 6.015 | 1.774
1.852 | 7.581 | 8.438 | 2.641 | 7.873

Give me only the result number, NO EXPLANATIONS
AT ALL! Given the table, x equals the number in posi-
tion row 5 column 3 plus the number in position row 1
column 4, what is the value of x7

Figure 14: Sample 2 of Table Understanding Dataset: Image.

Text:

Give me only the result number, NO EXPLANATIONS AT ALL! Given the table, x equals the number in
position row 5 column 3 plus the number in position row 1 column 4, what is the value of x?
\begin{table}[]

\centering

\resizebox {\textwidth}{!}{%
\begin{tabular} {11111}

\hline

9.875 & 3.149 & 3.765 & 5.892 & 1.333
\

\hline

6.335 & 3.325 & 3.529 & 9.173 & 6.089
\

\hline

2.789 & 4.895 & 5.894 & 9.548 & 0.213
\

\hline

3.692 & 6.280 & 2.986 & 6.015 & 1.774
\

\hline

1.852 & 7.581 & 8.438 & 2.641 & 7.873
\

\hline

\end{tabular}}

\end{table}

Table 14: Sample 2 of Table Understanding Dataset: Text
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F Math Reasoning Dataset

Give only the answer, no steps. Phill had some friends
over for pizza. He opens the pizza box and discovers it
hasn’t been sliced. Phill cuts the pizza in half, and then
cuts both halves in half, and then cuts each slice in half
again. Phill then passes out 1 slice to 3 of his friends and
2 slices to 2 of his friends. How many slices of pizza are
left for Phill?

Figure 15: Sample 1 of Math Reasoning Dataset: Image.

Text: Give only the answer, no steps. Phill had some friends over for pizza. He opens the pizza box and
discovers it hasn’t been sliced. Phill cuts the pizza in half, and then cuts both halves in half, and then cuts
each slice in half again. Phill then passes out 1 slice to 3 of his friends and 2 slices to 2 of his friends.
How many slices of pizza are left for Phill?

Table 15: Sample 1 of Math Reasoning Dataset: Text
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Give only the answer, no steps. Brandon sold 86
geckos last year. He sold twice that many the year be-
fore. How many geckos has Brandon sold in the last two
years?

Figure 16: Sample 2 of Math Reasoning Dataset: Image.

Text:

Give only the answer, no steps. Brandon sold 86 geckos last year. He sold twice that many the year before.
How many geckos has Brandon sold in the last two years?

Table 16: Sample 2 of Math Reasoning Dataset: Text
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G State Machine Dataset

Starting from the Gray node, what color node will we achieve after 6 steps?
Only return the correct one from the options below without explanations:
A. Green

B. Red

C. Blue

D. Yellow

E. Pink

78 \l

Figure 17: Sample 1 of State Machine Dataset: Image.

Text: Consider a graph with the following directed edges: Yellow leads to Red; Green leads to Yellow; Red
leads to Pink; Blue leads to Green; Gray leads to Green; Pink leads to Blue. Starting from the Gray node,
what color node will we achieve after 6 steps? Only return the correct one from the options below without
explanations: A. Green B. Red C. Blue D. Yellow E. Pink

Table 17: Sample 1 of State Machine Dataset: Text
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Starting from the Gray node, what color node will we achieve after 6 steps?
Only return the correct one from the options below without explanations:
A. Red

B. Yellow

C. Green

D. Blue

Figure 18: Sample 2 of State Machine Dataset: Image.

Text:

Consider a graph with the following directed edges: Gray leads to Red; Yellow leads to Blue; Blue leads
to Red; Red leads to Green; Green leads to Yellow. Starting from the Gray node, what color node will we
achieve after 6 steps? Only return the correct one from the options below without explanations: A. Red B.
Yellow C. Green D. Blue

Table 18: Sample 2 of State Machine Dataset: Text
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