ERNIE-Layout: Layout-Knowledge Enhanced Multi-modal Pre-training
for Document Understanding

Anonymous ACL submission

Abstract

We propose ERNIE-Layout, a knowledge en-
hanced pre-training approach for visual docu-
ment understanding, which incorporates layout-
knowledge into the pre-training of visual docu-
ment understanding to learn a better joint multi-
modal representation of text, layout and im-
age. Previous works directly model serialized
tokens from documents according to a raster-
scan order, neglecting the importance of the
reading order of documents, leading to sub-
optimal performance. We incorporate layout-
knowledge from Document-Parser into docu-
ment pre-training, which is used to rearrange
the tokens following an order more consistent
with human reading habits. And we propose
the Reading Order Prediction (ROP) task to en-
hance the interactions within segments and cor-
relation between segments and a fine-grained
cross-modal alignment pre-training task named
Replaced Regions Prediction (RRP). ERNIE-
Layout attempts to fuse textual and visual fea-
tures in a unified Transformer model, which
is based on our newly proposed spatial-aware
disentangled attention mechanism. ERNIE-
Layout achieves superior performance on vari-
ous document understanding tasks, setting new
SOTA for four tasks, including information
extraction, document classification, document
question answering.

1 Introduction

Visual Document Understanding (VDU) is an
important research field that aims to understand
various types of digital-born or scanned documents
(letter, memo, email, form, invoice, advertisement,
etc.) and has attracted great attention from both
the industry and the academia due to its various
applications. The diversity and the complexity of
the formats and layouts in the documents make
VDU a more challenging task than the plain-text
understanding task.

The early works for VDU (Cheng et al., 2020;
Sage et al., 2020; Yang et al., 2016; Katti et al.,
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Figure 1: The effect of the knowledge enhanced seri-
alization compared with raster-scan serialization on an
example document. Serialized by Document-Parser, the
PPL score on the document with complex layout will
be significantly reduced. More details are introduced in
Section 3.1.

2018; Yang et al., 2017; Sarkhel and Nandi, 2019;
Palm et al., 2019; Wang et al., 2021) mainly adopt
single-modal or shallow multi-modal fusion ap-
proaches, which are task-specific and require mas-
sive data annotations. Recently, inspired by the
development of pre-training techniques in NLP and
CV areas, many document pre-training approaches
(Xu et al., 2020b,a; Li et al., 2021a,b; Garncarek
et al., 2021; Powalski et al., 2021; Appalaraju et al.,
2021) have been proposed and shown great im-
provements for various VDU tasks. As a pioneer-
ing work, LayoutLM (Xu et al., 2020b) proposes a
document pre-training model which jointly lever-
ages text and layout information, while the visual
features from the document image are only uti-
lized during the fine-tuning stage. StructuralLM (Li
et al., 2021a) further exploits the segment-level lay-
out instead of the word-level layout. LayoutLMv2
(Xu et al., 2020a) attempts to use the image features
during the pre-training stage and adopts a spatial-
aware self-attention mechanism and seems to be an
improved version of LayoutLM.

However, as an important preprocessing step for
all document pre-training methods, the serializing
is performed on the OCR results according to a
raster-scan order. The raster-scan serialization ar-



ranges the tokens by top-left to bottom-right order,
which may be inconsistent with human reading
habits for documents with complex layouts (multi-
column papers, tables, forms, etc.) and leads to
sub-optimal performances for the understanding
tasks.

Inspired by the pioneering knowledge enhanced
pre-training method ERNIE (Sun et al., 2019), in
this paper, we present ERNIE-Layout, a layout-
knowledge enhanced pre-training approach to im-
prove the performances for document understand-
ing tasks. ERNIE-Layout utilizes serialized in-
put token sequences, which are rearranged by
Document-Parser, which is a commercial docu-
ment layout parser for document analysis. The
parser actually provides layout-knowledge, which
is the layout analysis of the document. According
to this knowledge, the serialized tokens can be re-
arranged in a more consistent manner with human
reading habits. The effect of knowledge enhanced
serialization is shown in Figure 1.

We propose the pre-training task Reading Or-
der Prediction (ROP) to enhance the interaction
within segments and the correlation between seg-
ments, which aims to predict the position of the
next token and Replaced Regions Prediction (RRP)
to build the fine-grained semantic correspondence
between the visual and textual modalities. Further-
more, we integrate a spatial-aware disentangled
attention mechanism, inspired by DeBERTa (He
et al., 2020), into the encoder-only Transformer,
where the attention weights among tokens are com-
puted using disentangled matrices based on their
contents, 1D and 2D relative positions.

We conduct experiments on various Visual Doc-
ument Understanding tasks and find that ERNIE-
Layout outperforms previous best approaches on
most downstream tasks, proving the effectiveness
of our method.

The contributions of this paper are summarized
as follows:

* To the best of our knowledge, ERNIE-Layout
is the first work that incorporates layout-
knowledge to enhance the pre-training for doc-
ument understanding.

* ERNIE-Layout constructs Reading Order Pre-
diction to enhance the interaction within seg-
ments and correlation between segments, and
Replaced Regions Prediction to strengthen
the alignment between different modalities.

ERNIE-Layout adopts our newly proposed
spatial-aware disentangled attention mecha-
nism in the Transformer encoder to improve
the interaction between semantic features and
spatial features.

* ERNIE-Layout achieves state-of-the-art re-
sults on various downstream document un-
derstanding tasks, including Information Ex-
traction and Document Question Answering.

2 Related Work

Inspired by the success of pre-training tech-
niques in NLP and CV areas, researchers attempt to
utilize the pre-training and fine-tuning paradigm for
document understanding tasks. Existing visual doc-
ument pre-training methods contribute their efforts
in two aspects: model architecture and pre-training
task.

Model Architecture Previous document pre-
training models mainly adopt an encoder-only
structure (Xu et al., 2020b; Li et al., 2021a; Xu
et al., 2020a; Appalaraju et al., 2021; Li et al.,
2021b; Garncarek et al., 2021; Powalski et al.,
2021), using a Transformer to fuse text, image
and layout information. LayoutLM (Xu et al.,
2020b) models the interaction between text and
layout, while only using image information for
downstream tasks. Based on LayoutLM, Struc-
tralLM (Li et al., 2021a) leverages segment-level
layout instead of word-level. LayoutLMv2 (Xu
et al., 2020a) proposes to add image features dur-
ing the pre-training stage and uses spatial-aware
attention, which is an improved version of Lay-
outLM. DocFormer (Appalaraju et al., 2021) de-
signs a multi-modal attention layer capable of fus-
ing text, vision and spatial features in a document.
More recently, TILT (Powalski et al., 2021) pro-
poses an encoder-decoder structure model to gener-
ate values not included in the input text explicitly.

Pre-Training Task During the pre-training stage,
various types of tasks are proposed to learn the
correlation of text, image and layout information.
The single-modal pre-training tasks aim to learn
text, image or layout representation under multi-
modal context. LayoutLM (Xu et al., 2020b) and
LayoutLMv2 (Xu et al., 2020a) use the Masked
Visual-Language Modeling task to reconstruct the
entire sequence with the masked sequence as in-
put, which can make the model learn better text
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Figure 2: Conceptual overview of ERNIE-Layout. The pre-training tasks consist of: (a) ROP: Reading Order
Prediction; (b) RRP: Replaced Regions Prediction; (c) MVLM: Masked Visual-Language Modeling; (d) TIA:

Text-Image Alignment.

representation with multi-modal features. Learn to
Reconstruct (Appalaraju et al., 2021) aims to re-
construct the image using a shallow decoder in the
presence of image and text features. StructuralLM
(Li et al., 2021a) proposes the Cell Position Clas-
sification task, which predicts where the cells are
in documents. The cross-modal pre-training tasks
aim to learn the correlation of multi-modalities.
Text-Image Matching (Xu et al., 2020a) and Text-
Image Alignment (Xu et al., 2020a) are text-image
alignment tasks, which focus on coarse-grained
and fine-grained alignment, respectively.

However, the above methods rely on raster-scan
serialization and may perform sub-optimally. Be-
sides, with the conventional attention mechanism,
the text, image and layout can not be fully inter-
acted.

3 Approach

The conceptual overview of ERNIE-Layout is
shown in Figure 2. Given a document image, incor-
porating the layout-knowledge of the document ex-
tracted from the Document Parser, ERNIE-Layout
rearranges the segment (token) sequence in the or-
der which is more consistent with human reading
habits. We extract visual embeddings from Vi-
sual Encoder. We combine the textual embeddings
and the layout embeddings into the textual fea-
ture through a linear projection, and similar oper-
ations are conducted for the visual feature. The
textual and visual features are concatenated and

fed into the Transformer layers, which utilize our
new spatial-aware disentangled attention mecha-
nism. For pre-training, ERNIE-Layout adopts 4
pre-training tasks, consisting of our newly pro-
posed Reading Order Prediction, Replaced Re-
gion Prediction, and the traditional Masked Visual-
Language Modeling, Text-Image Alignment.

In this section, we first introduce the Document-
Parser module. Next, we describe how to get the
input representation. Then, the multi-modal Trans-
former based on spatial-aware disentangled atten-
tion is described. Finally, we introduce the pre-
training tasks used in ERNIE-Layout.

3.1 Document-Parser

The OCR is a commonly used module for VDU.
Through OCR, we can obtain the textual words and
their position coordinates in the document. The
conventional methods arrange these words directly
in the raster-scan order as the preprocessing step.

This method can’t handle documents with com-
plex layout properly, although it is easy to imple-
ment. As the example shown in figure 1, for infor-
mation extraction from a given table, the expected
value is a cell across multiple lines. Following the
raster-scan order, the value to be extracted will con-
tain lines of other cells, resulting in an incorrect
prediction. This situation is more common in the
cases with complex layout, such as multi-column
paper, magazine, bill and report. Therefore, we
use the Document-Parser, which can rearrange the



textual words according to the layout-knowledge,
and benefits the following multi-modal modeling.

The Document-Parser is a commercial layout
analysis toolkit!. It can parse the document into
different parts with their layouts according to the
spatial distribution of words, pictures and tables,
with a case in point is illustrated in Figure 2.

To evaluate the benefits of Document-Parser, we
use PPL as the evaluation metric, which is widely
used for evaluating the performance of language
models. We calculate PPL by GPT-2 (Radford
et al., 2019) to evaluate the quality of the process
of token sequence. We find the token sequences
serialized by Document-Parser obtain a lower PPL
compared with those in the raster-scan order, and
it tends to more significant for the document with
complex layout. More implementation details and
cases are shown in Appendix A.1.

3.2 Input Representation

The input features of ERNIE-Layout include tex-
tual feature and visual feature. The feature of each
modality is the combination of its embeddings and
the corresponding layout embeddings.

Text Embedding: The document tokens pro-
cessed by Document-Parser module are used as
the text sequence. To get the text embeddings,
following BERT (Devlin et al., 2018), the special
tokens [C'LS| and [SEP] are concatenated at the
beginning and end of the text sequence, respec-
tively. Besides, a series of the [P AD] tokens are
appended after the last [SE P] to ensure each token
sequence length is the same length. In this way, the
text embeddings 1" can be expressed as:

T= Etoken(T*) + Epos (T*) + Etype (T*)7

where T is the padded text sequence, Fyokern r€p-
resents the text embedding layer, I,,s denotes the
1D position embedding layer, and Ey. is the token
type embedding layer. The length of text embed-
dings is L.

Visual Embedding: The document image is re-
sized to 224 x 224. We use the Faster-RCNN (Ren
et al., 2015) as the backbone and take the feature
map of the second block. And then, we use an
adaptive pooling layer to resize the feature map to
RE*HXW the typical values in our experiment are
C = 256,H =7,W = 7. We flatten the feature
map into a sequence, and use a linear projection
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layer to map the visual sequence to the same di-
mension as the text embeddings. Similar to the
method of processing text, image sequence is also
fused with its 1D position and token type embed-
dings. Therefore, the visual embeddings V' can be
represented as:

V = FO(V") + Epos(V") + Epype(V),

where V'* is the flattened visual sequence. And the
length of visual embeddings is H x W

Layout Embedding: For the textual sequence,
following LayoutLM (Xu et al., 2020b), the to-
ken 2D position (zg, yo, T2, y2, w, h) output by
OCR are used as the layout information, where the
(x0,yo) is the coordinates of the upper left corner,
the (2, y2) is the coordinates of the bottom right
corner, and w = x9 — g, h = y2 — ¥, all the po-
sition values are normalized in the range [0, 1000].
The spatial information of special tokens [C'LS],
[SEP], [PAD)] are defined as (0,0,0,0,0,0). For
visual sequence, similar spatial coordinates can
also be obtained. We use separate embedding lay-
ers to get the layout vectors in the horizontal and
vertical directions respectively, and the layout em-
beddings can be expressed as:

L = E,([T* V*]) + E, ([T V*)),

where the F; is the x-axis embedding layer, the £,
denotes the y-axis embedding layer. The length of
layout embeddings is L + HW

To obtain the final input features S’ for ERNIE-
Layout, the text embeddings and visual embed-
dings are fused with their corresponding layout
embeddings, and are concatenated together, which
can be represented as

S=[W;V]|+L
3.3 Multi-Modal Transformer

We use an encoder-only Transformer to model
the concatenated sequence S of the textual and
visual features for a joint representation. To calcu-
late the attention weights between tokens with re-
spect to embeddings and their spatial information,
we propose spatial-aware disentangled attention,
which utilizing 1D and 2D relative position simul-
taneously. The 1D relative distance between token
¢ and j is calculated by function ¢, as follows:

0 for 1 —j7 < —k
2k —1 for i—j>k
i — 7+ k others,

Op(i, ) =



where k is the maximum relative distance and the
defined distance above can also be used for the 2D.
P, X", Y" € R** represent relative position
embedding layers, where d is the hidden size of
Transformer. The projection matrices W* € R%*¢
is used to generate the projected vectors Q*, K*
and V* of content and relative position respec-
tively, which can be obtained by the following ex-
pression:

Qc — S/ch K¢ = S/ch Ve = S/ch
Q' = P"WP KP =P W,
Q — Xqu:r’Km — )(7"‘)‘116_%7
Q'=Y"W¥ KY=Y "Wk,

where S’ is the input vectors of the Transformer
layer.
Besides the content attention matrix Afjc =

QfI(Jc T we also calculate the attention bias be-
tween the content and relative position which can
be expressed as:

ACP Qc KP i) + Kc QP T

op(4s)
A = QiKG ) + KSQ5 i)

Acy o QC T

5 y(i,9) 5 y(4:4)

Finally, all these attention scores are summed up
to get A. We apply a scaling factor of 1/3 on
A, which is important for stabilizing training. So,
the output of spatial-aware disentangled attention
module is:

—I—KC

A
—)V
V3d
Compared to previous methods, it avoids prema-
ture fusion of different types of relative position
information.

H, = Softmax(

3.4 Pre-training Tasks

Reading Order Prediction: The OCR results
consist of several segments, which contain the
tokens together with the corresponding layouts
within them. However, there is no explicit bound-
ary between segments in the sequence which is
processed by Transformer. To enhance the token in-
teractions within segments and correlation between
segments, we propose Reading Order Prediction.
We use vanilla self-attention to calculate token-
level attention matrix, where the attention score

represents the probability of the target token being
the next token of the source token. The golden
label of target token is the real next token. While
the last token in segment points to itself, the other
tokens point to the next token along the reading
order. The loss of this task is:

Lrop = —ZZA 1og(A7°),

i€l jeL

where golden matrix A9 contains the one-hot
ground truth labels, and the prediction matrix AP™®
contains the calculated probabilities.

Replaced Regions Prediction: Since the textual
content is highly aligned with the image content in
VDU task, the conventional image-text matching
task modeling the alignment following the whole
image-text level. The completely irrelevant image
and text tend to be too simple for the model to
classify. So, we propose Replaced Regions Predic-
tion, which is a fine-grained multi-modal matching
task. First of all, the original image will be defined
into H x W patches, where the H, W are consis-
tent with the corresponding values of the pooling
layer after Visual Encoder. And we replace each
patch with random region from another image with
a probability of 10%. Then, the processed image
will be encoded by the visual encoder and input
into the Transformer. Finally, the [C'LS] vector out-
put by Transformer will be used to predict which
patches were replaced. So the loss of this task can
be expressed as:

Lppp == Y [[Plog(I7)+(1—I¢")log(1-17)],
i€eHW

where 9! is the golden label of replaced patches,
I? indicates the normalized probability of predict
logit.

Moreover, the conventional Masked Visual-
Language Modeling and Text-Image Alignment
pre-training tasks are also implemented in ERNIE-
Layout, the final pre-training loss is represented
as:

L=Lrop+ Lrrr + Lrvim + Lr1a

4 Experiments

4.1 Pre-training Details

For the pre-training dataset, similar to Lay-
outLM, we crawl the homologous data of the IIT-
CDIP Test Collection (Lewis et al., 2006) from



Dataset Key Number Train Dev Test
FUNSD 4 149 0 50

CORD 30 800 100 100
SROIE 4 626 0 347
Kleister-NDA 4 254 83 203
RVL-CDIP 16 320K 40K 40K

DocVQA - 39K 5K 5K

Table 1: Statistics of datasets for downstream tasks

Tabacco website 2, which contains over 30 million
scanned document pages. For a fair comparison
with previous works, we randomly select 10 mil-
lion pages as the pre-training dataset, and extract
texts, layouts and word-level bounding boxes with
Document-Parser.

For the Transformer architecture, we use 24
Transformer layers with 1024 hidden units and 16
heads. The maximum sequence length of text to-
kens and image block tokens are 512 and 49 re-
spectively. The Transformer is initialized from
RoBERTa (Liu et al., 2019) and Visual Encoder use
the backbone of Faster-RCNN (Ren et al., 2015)
as the initialized model. The rest parameters are
randomly initialized.

We use Adam (Kingma and Ba, 2014) as the
optimizer, with a learning rate of 1e-4 and a weight
decay of 0.01. The learning rate is linearly warmed
up over the first 10% steps then linearly decayed to
0. ERNIE-Layout is trained on 24 A100 GPUs for
20 epochs with a batch size of 576.

4.2 Downstream Tasks

We carry out experiments for Information Extrac-
tion tasks on FUNSD (Jaume et al., 2019), CORD
(Park et al., 2019), SROIE (Biten et al., 2019),
Kleister-NDA (Gralinski et al., 2020), Document
Question Answering task (DocVQA (Mathew et al.,
2021)) and Document Classification task on RVL-
CDIP (Harley et al., 2015). Table 1 shows the brief
statistics of these fine-tuning datasets and more
details about them are shown in Appendix A.2.

We solve Information Extraction tasks (FUNSD,
CORD, SROIE, Kleister-NDA) in a sequence la-
beling manner and use a token-level classification
layer to predict the BIO labels. For the Document
Question Answering task (DocVQA), we use an
extractive question-answering paradigm and build
a token-level classifier after the ERNIE-Layout out-
put representation to predict the start and end posi-
tion of the answer. For the Document Classification

Zhttps://www.industrydocuments.ucsf.edu/tobacco/

Dataset Epoch Weight Decay Batch
FUNSD 100 0 2
CORD 30 0.05 16
SROIE 100 0.05 16
Kleister-NDA 30 0.05 16
RVL-CDIP 20 0.05 16
DocVQA 6 0.05 16

Table 2: Hyper-parameters for downstream tasks

task (RVL-CDIP), the representation of [C'LS] is
processed by a fully-connected network to predict
the document label.

For all the downstream tasks, we fine-tune
ERNIE-Layout using Adam optimizer, with a learn-
ing rate of 2e-5, weight decay of 0.01. The learn-
ing rate is linearly warmed up and then linearly
decayed. Other hyper-parameters are shown in Ta-
ble 2. All the experiments are conducted on A100
GPUs.

4.3 Experimental Results

Table 3 shows the results for Information Ex-
traction task on all the four datasets, which we use
entity level F1 score to evaluate the abilities of
the models. ERNIE-Layout achieves SOTA results
on FUNSD, CORD, Kleister-NDA datasets. Es-
pecially in the FUNSD, ERNIE-Layout obtains
a great improvement of 7.98% compared with
the previous best results. ERNIE-Layout also
achieves an improvement of 1.20%, 2.90% on
CORD, Kleister-NDA respectively. The above re-
sults show that our model is superior to the existing
multi-modal methods for Information Extraction
task.

Table 4 shows the Average Normalized Leven-
shtein Similarity (ANLS) scores on the DocVQA
dataset. Compared with the text-only base-
lines and previous best performing multi-modal
models, our method achieves comparable result.
While TILT, StructralLM don’t clearly describe
Fine-tuning set, we conduct thorough compar-
isons with LayoutLMv2. The results #2 and
#3 show that, UniLMv2jy,e is 7.57% higher
than RoBERTayge. Since UniLMV?2 155 doesn’t
expose model’s code and parameters, we use
RoBERTa,. as the initialization parameter. The
results of AANLS in #7b and #8b show that
ERNIE-Layoutjyrge (AANLS:0.1534) is more sig-
nificant than LayoutLMv2j,ee(AANLS:0.0820).
The improvement shows the effectiveness of our
model. Finally, we achieve top-1 on the DocVQA



Method FUNSD CORD SROIE Kleister-NDA
F1 F1 F1
BERTyge (Liu et al., 2019) 0.6563  0.9025 0.9200 0.7910
RoBERTay,g (Liu et al., 2019) 0.7072 - 0.9280 -
UniLMV2j,ee (Bao et al., 2020) 0.7257 0.9205 0.9488 0.8180
LayoutLMjyge (Xu et al., 2020b) 0.7895 0.9493 0.9524 0.8340
TILT aree (Powalski et al., 2021) 0.9633 0.9810 -
LayoutLMv2j,, (Xu et al.,, 2020a)  0.8420  0.9601  0.9781 0.8520
Structral LM, (Li et al., 2021a) 0.8514 - - -
ERNIE-Layoutjyree 09312 0.9721 0.9755 0.8810

Table 3: Results of ERNIE-Layout compared with previous methods for Information Extraction task

#  Method Fine-tuning set ANLS AANLS
I BERTjyye (Liu et al., 2019) train 0.6768
2 RoBERTay,g (Liu et al., 2019) train 0.6952
3 UniLMv2jyeet (Bao et al., 2020) train 0.7709
4 LayoutLMjye (Xu et al., 2020b) train 0.7808
5 TILTjage (Powalski et al., 2021) - 0.8705
6  StructralLMye (Li et al., 2021a) - 0.8349
7a LayoutLMleargeJr (Xu et al., 2020a) train 0.8348
7b  LayoutLMv2jye train + dev 0.8529  0.0820
8a  ERNIE-Layoutjyge train 0.8321
8b ERNIE-Layoutjyge train+dev 0.8486  0.1534
9  ERNIE-Layoutjyge(leaderboard) train+dev 0.8841

Table 4: Results of ERNIE-Layout compared with previous methods for Document Question Answering task. "-"
means Fine-tuning set not clearly described in origin paper. AANLS means ANLS difference between text-only
model and multi-modal model initialized from the corresponding text-only model, where ERNIE-Layout is based

on RoBERTa and LayoutL.Mv2 is based on UniLMv2.

leaderboard by ensembling.

4.4 Ablation Study

Serialization Module FUNSD CORD

F1 F1
w. serialization in the raster-scan order  0.9128  0.9658
w. serialization by Document-Parser 0.9171  0.9678

Table 5: Ablation study on the FUNSD and CORD
datasets of different serialization modules. Serializa-
tion in the raster-scan order means serialization by con-
ventional OCR, and serialization by Document-Parser
means rearranging the tokens with layout-knowledge.

We conduct ablation experiments to fully study
the benefits of incorporating layout-knowledge, the
proposed pre-training tasks and the spatial-aware
disentangled attention mechanism. We use the
same hyper-parameters settings for all the experi-
ments and pre-train the models for 5 epochs. We
use FUNSD and CORD datasets for the perfor-

mance evaluation.

Effectiveness of incorporating layout-
knowledge: We serialize the document into
tokens following the raster-scan order and layout-
knowledge enhanced order, respectively. This
is the only difference for the pre-training. As
the results shown in Table 5, serialization by
Document-Parser is better than serialization in
the raster-scan order with an improvement of
0.5% on FUNSD, which prove the effectiveness of
incorporating layout-knowledge.

Effectiveness of the proposed pre-training
tasks: We implement the baselines with the pre-
training tasks MVLM and TIA from LayoutLMv2.
Based on the baselines, we additionally adopt our
newly proposed RRP and ROP. The experimen-
tal results are shown in Table 6. The RRP brings
an improvement of 0.95% and 0.10% on FUNSD
and CORD respectively, which shows the benefit
of the fine-grained text-image alignment. Further



# SADAM SASAM MVLM TIA RRP ROP FU;SD C(;m
1 v 08712 09513
2 v v 0.8753  0.9555
3 v VY 0.8848  0.9565
4 v v v v 08978 0.9603
5 v v v VvV 09128 009658
6 v v VvV 09241 09673

Table 6: Ablation study on the FUNSD and CORD datasets. "SADAM" means the spatial-aware disentangled
attention mechanism. "SASAM" means the spatial-aware self-attention mechanism. "MVLM", "TTA" are proposed
pre-training tasks by LayoutLMv2. "RRP" and "ROP" are the two preposed pre-training tasks by our model.

Method Accuracy
BERT ,ge (Liu et al., 2019) 89.92%
RoBERTay,ge (Liu et al., 2019) 90.11%
UniLMv2j,ge (Bao et al., 2020) 90.20%
LayoutLMi,ee (Xu et al., 2020b) 94.43%
TILT orge (Powalski et al., 2021) 95.52%
LayoutLMv2j,,e (Xu et al., 2020a)  95.64%
StructralLM,rge (Li et al., 2021a) 96.08%
ERNIE-Layoutj,ge 95.41%

Table 7: Results of ERNIE-Layout compared with pre-
vious methods for Document Classification task.

utilizing of ROP, brings a great improvement of
1.3% on FUNSD (#3 vs #4). We consider that ROP
forces the model to build the joint representation
containing more segment-level information.

Effectiveness of the spatial-aware disentan-
gled attention mechanism: While the SADAM
is an improved version of SASAM, we conduct
experiments to study the benefit. From the results
shown in Table 6, compared with SASAM, the
model with SADAM achieves an improvement of
1.13% on FUNSD (#6 vs #5), which indicates that,
our newly proposed attention mechanism helps to
build better interaction between text-image feature
and spatial feature.

4.5 Discussion

We get superior performance on Information
Extraction and Question Answering tasks, which
shows the effectiveness of our proposed method.
For document classification, ERNIE-Layout also
achieves comparable results and an improvement
of 0.98% compared with LayoutLLM, as shown in
Table 7. But there is still a performance gap be-
tween ERNIE-Layout and the best model for this

task. We consider the reasons are two folds. We
use RoBERTa as our initialization model, which
is less competitive compared with UniLMv2 used
in LayoutLMv2 and T5 (Raffel et al., 2019) used
in TILT. On the other hand, our pre-training tasks
are designed for fine-grained document understand-
ing and cross-modal alignment, which plays a less
crucial role for Document Understanding.

5 Conclusion

In this work, we present ERNIE-Layout, the
first layout-knowledge enhanced document pre-
training approach to improve the performance of
pre-training model in document understanding.
ERNIE-Layout attempts to rearrange the parsed
tokens from the document according to the layout-
knowledge from Document Parser, and obtain a
considerable improvement over the conventional
raster-scan order. We propose the Reading Order
Prediction task to force the model to build the joint
representation containing more segment-level in-
formation. Furthermore, we propose a fine-grained
text-image alignment task, Replace Region Pre-
diction. We design a new attention mechanism
to help to build better interaction between text-
image feature and spatial feature. The extensive
experiments demonstrate the effectiveness of our
proposed method. While ERNIE-Layout hasn’t
achieved the best result for Document Classifi-
cation, for future work, we will attempt to en-
hance the document level modeling during the pre-
training process.
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A Appendix
A.1 The Effects of Document-Parser

The Document-Parser assembles multiple mod-
ules such as document-specific OCR, Layout
Parser, and Table Parser. The Layout Parser and Ta-
ble Parser module play a crucial role for the incor-
poration of layout-knowledge in ERNIE-Layout.

An important preprocessing step for the doc-
ument understanding is serializing the extracted
document tokens. The popular method for this
serialization is performed directly on the output
results of OCR in raster-scan order and is sub-
optimal though simple to implement. With the
Layout Parser and Table Parser of the Document
Parser toolkit, the order of the tokens will be fur-
ther rearranged according to the layout-knowledge.
During the parsing processing, the tables and fig-
ures will be detected as spatial layouts, and the free
texts will be processed by paragraph analysis which
combines heuristics and detection models to get the
paragraph layout information and the upper-lower
boundary relationship.

.sk
Room: ACM15 1.008

Room: ACM15 1.001
Session Chair:
Tuula Hakkarainen

Room: FKJ 12 0.06
Session Chair:

Session Chair:
Frank Markert

Figure 3: The example used to show the difference be-
tween serialization method. The serialization by the
raster-scan order is "... Session Chair: Session Chair:
Session Chair: Tuula Hakkarainen ...". And the serial-
ization by Document-Parser is "... Session Chair: Tuula
Hakkarainen Session Chair: Frank Markert ...", which
is more consistent with human reading habits.

An example is shown in Figure 3, which is ex-
tracted from the third image in table 8 is used to
show the sequence serialized by the raster-scan
order and Document-Parser, respectively.

To validate the effectiveness of our method, we
use an open-sourced language model GPT-2 (Wolf


https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

et al., 2020), to calculate the PPL of the serial-
ized token sequence by the raster-scan order and
Document-Parser respectively. Since documents
with complex layouts only account for a small pro-
portion of the total documents, in a test of 10,000
documents, the average PPL only drops about 1
point, but on documents with complex layouts, as
shown in 8, Document-Parser shows great advan-
tages.

A.2 Details of Fine-tuning Datasets

FUNSD (Jaume et al., 2019) is a dataset for
form understanding on noisy scanned documents
that aims at extracting values from forms. FUNSD
comprises 199 real, fully annotated, scanned forms.
The training set contains 149 samples, and the
test set contains 50 samples. We use the official
OCR annotations. Following previous methods,
we adopt the entity-level F1 score as the evaluation
metric. Similar to StructralLM (Li et al., 2021a),
we use the cell-level layout information when per-
forming the fine-tuning.

CORD (Park et al., 2019) is a consolidated
dataset for receipt parsing as the first step towards
post-OCR parsing tasks. CORD consists of thou-
sands of Indonesian receipts, which contain images
and box/text annotations for OCR, and multi-level
semantic labels for parsing. The training set, vali-
dation set, and test set contain 800, 100, and 100
receipts respectively. We use the official OCR an-
notations and the entity-level F1 score as the evalu-
ation metric.

SROIE (Huang et al., 2019) is a scanned receipts
OCR and key information extraction dataset, which
covers important aspects related to the automated
analysis of scanned receipts. The training set and
test set contain 626 and 347 samples respectively.
This task requires the model to extract values from
each receipt of four predefined keys: company,
date, address, and total. We use the official OCR
annotations and the entity-level F1 score as the
evaluation metric.

Kleister-NDA (Gralifiski et al., 2020) is pro-
vided for key information extraction task, which
involves a mix of scanned and born-digital long
formal documents. The training set, valid set, and
test set contain 254, 83, 203 samples respectively.
Due to that the test set is not publicly available, we
report the entity-level F1 score on the validation set,
which is computed by the official evaluation tools>.

3https://gitlab.com/filipg/geval
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Document Page RSO DP
100.39 | 67.98
98.99 | 42.02
146.66 | 76.87
70.12 | 25.61
‘Tar.‘ Blocker ‘
219.47 | 170.54

Table 8: The PPL results of serialized token sequence
according to different methods. RSO denotes the raster-
scan order and DP indicates the Document-Parser



The task aims to extract values of four predefined
keys: date, jurisdiction, party, and term.
RVL-CDIP (Harley et al., 2015) is a document
classification dataset consisting of grayscale docu-
ment images. The training set, validation set, and
test set contain 320000, 40000, and 40000 docu-
ment images respectively. The document images
are categorized into 16 classes, with 25000 images
per class. We use Microsoft OCR tools to extract
text and layout information from document images,
and the evaluation metric is classification accuracy.
DocVQA (Mathew et al., 2021) is a dataset for
Visual Question Answering (VQA) on document
images. The dataset consists of 50000 questions
defined on 12767 document images. The document
images are split into the training set, validation
set, and test set with the ratio of 8:1:1. We use
the Microsoft OCR tools to extract the texts and
layouts from document images. The task aims to
predict the start and end position of the answer span.
ANLS (average normalized Levenshtein similarity)
(Biten et al., 2019) is used as the evaluation metric.
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