
Concept Algebra for Score-based Conditional Model

Zihao Wang 1 Lin Gui 1 Jeffrey Negrea 2 Victor Vietch 1 2 3

Abstract

This paper concerns the structure of learned rep-

resentations in text-guided generative models, fo-

cusing on score-based models. A key property of

such models is that they can compose disparate

concepts in a ‘disentangled’ manner. This sug-

gests these models have internal representations

that encode concepts in a ‘disentangled’ man-

ner. Here, we focus on the idea that concepts

are encoded as subspaces of some representation

space. We formalize this, show there’s a natu-

ral choice for the representation, and develop a

simple method for identifying the part of the rep-

resentation corresponding to a given concept. In

particular, this allows us to manipulate the con-

cepts expressed by the model through algebraic

manipulation of the representation. We demon-

strate it with examples using Stable Diffusion.

1. Introduction

Large-scale text-controlled generative models are now domi-

nant in many parts of modern machine learning and artificial

intelligence (e.g., Brown et al., 2020; Radford et al., 2021;

Bommasani et al., 2021; Kojima et al., 2022). In these mod-

els, the user provides a prompt in natural language and the

model generates samples based on this prompt—e.g., in

large language models the sample is a natural language re-

sponse, and in text-to-image models the sample is an image.

These models have a remarkable ability to compose dis-

parate concepts to generate coherent samples that were not

seen during training.This suggests that these models have

some internal representation of high-level concepts that can

be manipulated in a ‘disentangled’ manner. Broadly, the

goal of this paper is to shed light on how this concept repre-

sentation works, and how it can be manipulated. We focus

on text-to-image diffusion models, though many of the ideas
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are generally applicable.

Our starting point is the following commonly observed struc-

ture of representations:

1. Each data point x is mapped to some representation

vector Rep(x) ∈ R
p.

2. High-level concepts correspond to subspaces (direc-

tions) of the representation space.

Perhaps the best known example of this structure

is in word embeddings, where semantic relationships

such as Rep(“king”)−Rep(“queen”) ≈ Rep(“man”)−
Rep(“woman”) suggest that high-level concepts (here,

sex) are encoded as directions in the representation space

(Mikolov et al., 2013a). This kind of encoding of concepts

has been argued to occur in many contexts, including in

the latent space of variational autoencoders (Zhou & Wei,

2020; Khemakhem et al., 2020; Mita et al., 2021) and in

the latent space of language models (Bolukbasi et al., 2016;

Gonen & Goldberg, 2019; Radford et al., 2021; Elhage et al.,

2022). We’ll call representations of this kind arithmetically

composable, because composition corresponds to arithmetic

operations on the representation vectors. The goal of this pa-

per is to develop arithmetically composable representations

of text for score-based text to image models.

There are two main motivations. First, understanding the

structure of the representation space is important for foun-

dational progress on understanding the emergent behavior

of text-controlled generative models. It is particularly in-

teresting to study this question in the text-to-image setting

because the multi-modality of the data makes it straightfor-

ward to distinguish concepts from inputs, and because it is

not clear a priori that the models themselves build in any

inductive bias towards arithmetic structure. The secondary

motivation is that having such a representation would al-

low us to manipulate the concepts expressed by the model

through linear-algebraic manipulations of representation of

the input text; Figure 1 illustrates this idea.

The development of the paper is as follows: first, we de-

velop a mathematical formalism for describing the con-

nection between representation structures and concepts for

text-controlled generative models. Then, using this formal-

ism, we show that the Stein score of the text-conditional

distribution is an arithmetically composable representation

of the input text. Finally, we develop concept algebra as



(a) Rep[“a portrait of mathematician”]

(b) (I−projsex) Rep[“a portrait of a mathematician”]+
projsex Rep[“a person”]

(c) (I−projstyle) Rep[“a portrait of a mathematician”]+

projstyle Rep[“in Fauvism style”]

Figure 1. We show that high-level concepts such as sex and

artistic style are encoded as subspaces of some represen-

tation space. This allows us to manipulate the concepts expressed

by a prompt through algebraic operations on the representation of

that prompt. Namely, we edit the representation projected on to

the subspace corresponding to a concept. Note images are paired

by random seed.

a method for manipulating the concepts expressed by the

model through algebraic manipulation of this representa-

tion. We provide theoretical justifications (Appendix A) for

this approach, and illustrate it with examples (Appendix B)

manipulating a variety of concepts.

2. A Mathematical Framework for Concepts

as Subspaces

Our first task involves creating a precise mathematical

framework bridging representations and high-level concepts.

It’s vital to comprehend their feasibility, construction meth-

ods, and possible failures. We must accurately define a

concept, its relation to inputs x, and its representation pro-

cess.

Concepts The real-world process that generated the train-

ing data has the following structure. First, images Y are

generated according to some real-world, physical process.

Then, some human looks at each image and writes a caption

describing it. Inverting this process, each text x induces

some probability density p(y | x) over images Y based on

how compatible they are with x as a caption. The (implicit)

goal of the generative model is to learn this distribution.

To write the caption, the human first maps the image to a

set of high-level variables summarizing the image’s content,

then uses these latent variables to generate the text X . Let C

be the latent variable that captures all the information about

the image that is relevant for a human writing a caption. So,

p(y | X = x) =

∫

p(y | C = c)p(C = c | X = x)dc.

The random variable C captures the information that is

jointly relevant for both the image and caption. Variables

in C include attributes such as has mathematician or

is man, but not pixel 14 is red. We define concepts

in terms of the latent C.

Definition 2.1. A concept variable Z is a C-measurable

random variable. The concept Z associated to Z is the

sample space of Z.

Now, the full set of all possible concepts is unwieldy. Gen-

erally, we are concerned only with the concepts elicited by

a particular prompt x.

Definition 2.2. A set of concepts Z1, . . . ,Zk is sufficient

for x if p(c | X = x, Z1:k = z1:k) = p(c | Z1:k = z1:k) for

all z1, . . . , zk ∈ Z1×· · ·×Zk.

For example, the concept profession would be sufficient

for the prompt “A nurse”. This prompt induces a distribu-

tion on many concepts (e.g., background is likely to be a

hospital) but these other concepts are independent of the

caption given profession = nurse. Then,

p(y | x) =
∑

z1:k

p(y | z1:k)p(z1:k | x). (1)

Concept Distributions Following Equation (1), we can

view each text x as specifying a distribution p(z1:k | x) over

latent concepts Z1, . . . ,Zk. This observation lets us make

the relationship between text and concepts precise.

Definition 2.3. A concept distribution Q is a distribution

over concepts. Each text x specifies a concept distribution

as Qx = p(z1:k | x).

That is, we move from viewing text as expressing

specific concept values (is mathematician = 1)

to expressing probability distributions over concepts

(Qx(is mathematician = 1) = 0.99). The probabilis-

tic view is more general—deterministically expressed con-

cepts can be represented as degenerate distributions. This

extra generality is necessary: e.g., the prompt “a person”

induces a non-degenerate distribution over the sex concept.

Concept Representations A text-controlled generative

model takes in prompt text x and produces a random output

Y . Implicitly, such models are maps from text strings x to

the space of probability densities over Y . We’ll define a

representation Rep(x) ∈ R of x as any function of x that

suffices to specify the output distribution. We define fr(·)
as the density defined by r ∈ R, and assume that the model

learn’s the true data distribution of Y |X = x:

fRep(x)(y) = p(y | x). (2)

The key idea for connecting representations and concepts

is to move from considering representations of prompts to

representations of concept distributions.



Definition 2.4. A concept representation Rep is a func-

tion that maps a concept distribution Q to a representation

Rep(Q) ∈ R, where R is a vector space. The representa-

tion of a prompt x is the representation of the associated

concept distribution, Rep(x) := Rep(Qx).

There are two reasons why this view is desirable. First,

defining the representation in terms of the concept distribu-

tion makes the role of concepts explicit—this will allow us

to explain how representation structure relates to concept

structure. Second, it allows us to reason about representa-

tions that don’t correspond to any prompt. Every prompt

defines a concept distribution, but not the other way around.

This matters because we ultimately want to reason about

the conceptual meaning of representation vectors created by

algebraic operations on representations of prompts. Such

vectors need not correspond to any prompt.

Arithmetic Compositionality We now have the tools to

define what it means for a representation to be arithmetically

composable. We define composability for a pair of concepts

Z andW . In the subsequent development, our aim will be

to manipulate Z while leavingW fixed.

Definition 2.5. A representation Rep is arithmetically com-

posable with respect to concepts Z,W if there are vector

spacesRZ andRW such that for all concept distributions

of the form Q(z, w) = QZ(z)QW (w),

Rep(QZQW ) = RepZ(QZ)+RepW (QW ),

where RepZ(QZ) ∈ RZ and RepW (QW ) ∈ RW .

In words: we restrict to product distributions to capture the

requirement that the concepts Z andW can be manipulated

freely of each other (the typical case is that one or both

of QZ and QW are degenerate, putting all their mass on a

single point). Then, the definition requires that there are

fixed subspaces corresponding to each concept in the sense

that, e.g., changing only QZ induces a change only inRZ .

3. The Score Representation

We now have an abstract definition of arithmetically com-

posable representation. The next step is to find a specific

representation function that satisfies the definition.

We will study the following choice.

Definition 3.1. The score representation s[Q] of a concept

distribution Q is defined by:

s[Q](y) := ∇y log

∫

p(y | z, w)Q(z, w)dzdw.

The centered score representation s̄[Q] is defined by

s̄[Q] := s[Q]−s[Q0].

Here, s[Q] is itself a function of y and the representation

spaceR is a vector space of functions. This is a departure

from the typical view of representations as elements of Rp.

The score representation can be thought of as a kind of

non-parametric representation vector. The centered score

representation just subtracts off the representation of some

baseline distribution Q0.1

The main motivation for studying the score representation

is that

s[x](y) := s[Qx](y) = ∇y log p(y | x).

The importance of this observation is that ∇y log p(y | x)
is learnable from data. In fact, this score function is ulti-

mately the basis of many controlled generation models (e.g.,

Ho et al., 2020; Ramesh et al., 2022; Saharia et al., 2022),

because it characterizes the conditional while avoiding the

need to compute the normalizing constant (Hyvärinen &

Dayan, 2005; Song & Ermon, 2019). Accordingly, we can

readily compute the score representation of prompts in many

generative models, without any extra model training.

Causal Separability The score representation does not

have arithmetically composable structure with respect to

every pair of concepts. The crux of the issue is that concepts

are reflected in the representation based on their effect on Y .

If the way they affect Y depends fundamentally on some

interaction between two concepts, the representation cannot

hope to disentangle them. Thus, we must rule out this case.

Definition 3.2. We say that Y is causally separable with re-

spect to Z,W if there exist unique Y -measurable variables

YZ , YW , and ξ such that

1. Y = g(YZ , YW , ξ) for some invertible and differen-

tiable function g, and

2. p(yZ , yW , ξ | z, w) = p(ξ)p(yZ | z)p(yW | w)

Informally, the requirement is that we can separately gen-

erate YZ and YW as the part of the output affected by Z
and W(and ξ as the part of the image unrelated to Z and

W ), then combine these parts to form the final image. That

is, generating the visual features associated to a concept

W can’t require us to know the value of another concept

Z . As an example where causal separability fails, consider

the concepts of speciesW = {deer,human} and sex

Z = {male,female}. It seems reasonable that there is

a Y -measurable YW that is the species part of the image—

e.g., the presence of fur vs skin, snouts vs noses, and so

forth. However, there is no part of Y that corresponds to a

sex concept in a manner that’s free of species. The reason

is that the visual characteristics of sex are fundamentally

1The representation spaceR is the same for all Q0; the choice
is arbitrary. We define s̄ to ensure 0 is an element of R. This is
for theoretical convenience; we will see that only s is required in
practice.



different across species—e.g., male deer have antlers, but

humans usually do not. In Figure 5 we test this example,

finding that concept algebra fails in the absence of causal

separability.

It turns out it suffices to rule out this case (all proofs in

appendix):

Proposition 3.1. If Y is causally separable with respect to

W and Z , then the centered score representation is arith-

metically composable with respect toW and Z .

That is: the (centered) score representation is structured such

that concepts correspond to subspaces of the representation

space.

4. Concept Algebra

We have established that concepts correspond to subspaces

of the representation space. We now consider how to manip-

ulate concepts through algebraic operations on representa-

tions.

To modify a particular concept Z we want to modify the

representation only on the subspace RZ corresponding to

Z . For example, consider changing the style concept to

Fauvism. Intuitively, we want an operation of the form:

sedit ←(I−projstyle)s[“a portrait of mathematician”]

+projstyles[“Fauvism style”],

where projstyle is the projection onto the subspace corre-

sponding to the style concept. The idea is that the repre-

sentation of the original prompt xorig is unchanged except

on the style subspace. On the style subspace, the repre-

sentation takes on the value elicited by the new prompt

xnew = “Fauvism style”.

There are two main challenges for putting this intuition into

practice. First, because we are working with an infinite

dimensional representation, it is unclear how to do the pro-

jection. Second, although we know that some RZ exists,

we still need a way to determine it explicitly.

4.1. Concept Manipulation through Projection

Following Proposition 3.1, we have that

s̄[QZ×QW ] = s̄Z [QZ ]+s̄W [QW ], (3)

for some representation functions s̄Z and s̄W with range

in RZ and RW respectively. We have that the Z-

representation space is

RZ = span({s̄Z [QZ ] : QZ a distribution}). (4)

Our goal is to find a projection ontoRZ .

The first obstacle is that RZ is a function space, making

algebraic operations difficult to define. The resolution is

straightforward. In practice, score-based models generate

samples by running a discretized (stochastic) differential

equation forward in time. These algorithms only require

the score function evaluated at the finite set of points. At

each y, we have that s̄(y) ∈ R
m. Accordingly, by restricting

attention to a single value of y at a time, we can use ordinary

linear algebra to define the manipulations:

Definition 4.1. The Z subspace at y is

RZ(y) := span({s̄Z [QZ ](y) : QZ a distribution}) (5)

and the Z-projection at y, denoted projZ(y) is the projection

onto this subspace.

If we can compute projZ(y) then we can just edit the repre-

sentation at each point y. That is, we transform the score

function at each point:

s̄edit(y)← (I−proj
Z
(y))s̄[xorig](y)+proj

Z
(y)s̄[xnew](y). (6)

We then draw samples from the stochastic differential equa-

tion defined by s̄edit.

4.2. Concept Algebra

Now the challenge is to identifyRZ(y). The idea is to find

a basis for the subspace using prompts x0, . . . xk that elicit

distributions of the form Qxj
= Q

j
ZQW . For example, to

identify the sex concept we use the prompts x0 = “a man”

and x1 = “a woman”, with the idea that

Qx0
= δmale×QW , Qx1

= δfemale×QW ,

with the same marginal distribution QW . We then use the

prompts to define the estimated subspace as

R̂Z(y) := span({s[xi](y)−s[x0](y) : i = 1, . . . , k}).

Summarizing, our approach to algebraically manipulating

concepts is:

1. Find prompts x0, . . . , xk such that each elicits a differ-

ent distribution on Z, but the same distribution on W .

That is, Qxj
= Q

j
ZQW for each j.

2. Construct the estimated representation space R̂Z(y)
following Section 4.2, and define projZ(y) as the pro-

jection onto this space.
3. Sample from the discretized SDE defined by the ma-

nipulated score representation2

sedit(y) � (I−projZ(y))s[xorig](y)+projZ(y)s[xnew](y). (7)

Appendix A provides theoretical justification for Equa-

tion (7), and Appendix C describes how to implement it.

2We can view this as first editing the centered representation s̄:
s̄edit(y) ← (I−proj

Z
(y))s̄[x0](y)+proj

Z
(y)s̄[x̃](y). Then add

the same baseline on both sides.



5. Discussion and Related Work

We have introduced a mathematical framework to make

precise the notion that concepts correspond to subspaces of

a representation space. Using this framework, we proved

that the score representation has this structure, and derived

a method for determining the subspace corresponding to a

given concept (Appendix A). Finally, we showed how to use

this structure to manipulate expressed concepts in the score

representation of a diffusion model.

Concepts as Subspaces There has been significant in-

terest in whether and how neural representations encode

high-level concepts. There is a substantial body of work

around the idea that concepts correspond to subspaces of a

representation space (e.g., Mikolov et al., 2013a;b; Penning-

ton et al., 2014; Goldberg & Levy, 2014; Arora et al., 2015;

Gittens et al., 2017; Allen & Hospedales, 2019). Usually,

this work focuses on a particular representation learning

approach, and is either primarily empirical or offers a the-

oretical analysis closely tied to the particular domain of

application. For example, in the context of word embed-

dings, theoretical explanations of the observed structure rely

on the special structure of words and language (e.g., Arora

et al., 2015; Allen & Hospedales, 2019). By contrast, the

mathematical development in this paper is quite general—

we only require that the data have two views separated by

an underlying semantically meaningful space. We find that

the concepts-as-subspaces structure is a general emergent

phenomenon following from the structure of probability the-

ory. It is not tied to any particular architecture or learning

algorithm.

Our development also relates to a line of work that assumes

the training data is generated by a particular latent vari-

able model, and then shows that the learned representations

(partially) recover the latent variables (e.g., Hyvarinen &

Morioka, 2016; 2017; Hyvarinen et al., 2019; Khemakhem

et al., 2020; Von Kügelgen et al., 2021; Eastwood et al.,

2022; Higgins et al., 2018; Zimmermann et al., 2021). Of-

ten, a goal of this literature is to find representations that

are “disentangled” in the sense that each dimension of the

latent space corresponds to a single latent factor. In contrast,

we do not assume a priori that there’s a finite set of latent

factors that generate the data. And, we view representations

as defining probability distributions over latent concepts,

rather than recovering the latent concepts themselves. As

we have seen, this non-determinism is necessary in general.

Controlling Diffusion Models To demonstrate the

concept-as-subspace structure, we developed a method for

identifying the subspace corresponding to a given concept

and showed how to manipulate concepts in the score rep-

resentation of a diffusion model. We emphasize that our

contribution here is not the manipulation procedure itself,

but rather the mathematical framework that makes this pro-

cedure possible. In particular, the requirement to manipulate

entire score functions is somewhat burdensome computa-

tionally. However, the ability to precisely manipulate indi-

vidual concepts is clearly a useful tool, and it is an intriguing

direction for future work to develop more efficient proce-

dures for doing so. We conclude by surveying connections

to existing work on controlling diffusion models.

One idea has been to take the bottleneck layer of UNet as a

representation space and control the model by manipulating

this space (Kwon et al., 2022; Haas et al., 2023; Park et al.,

2023). This work does not consider text controlled models.

It would be intriguing to understand the connection to the

score-representation view, as moving from manipulation of

the score to manipulation of the bottleneck layer would be a

large computational saving.

Concept algebra can be seen as providing a unifying mathe-

matical view on several methods that manipulate the score

function (e.g., Du et al., 2021; Liu et al., 2021; Nair et al.,

2022; Anonymous, 2023). Du et al. (2020); Liu et al. (2022)

manipulate concepts via adding and subtracting scores. Neg-

ative prompting is a widely-used engineering trick that ‘sub-

tracts off’ a prompt expressing unwanted concepts. Coua-

iron et al. (2022) use score differences to identify objects’

locations in images; this inspired our approach in Appen-

dices B and E.1. In each case, we have seen that this kind

of manipulation may be viewed as editing the subspace

corresponding to some concept.
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A. Identifying Concept Subspace and its

validity

A.1. Identifying the Concept Subspace

We estimate the concept space with Section 4.2. The justifi-

cation for this procedure is based on the following proposi-

tion.

Proposition A.1. Let QW be any fixed distribution over the

W concept and Q0
Z be any reference distribution over Z.

Then, assuming causal separability for Z,W ,

RZ(y) =span({s[QZQW ](y)−s[Q0
ZQW ](y) :

QZ a distribution}).
(8)

The importance of this expression is that it does not re-

quire the unknown sZ . We can obtain elements of RZ(y)
with carefully chosen prompts such that x0, . . . xk that elicit

distributions of the form Qxj
= Q

j
ZQW .

A.2. Validity

The procedure described above relies on finding spanning

prompts x0, . . . , xk for the target concept subspace. These

prompts must satisfy Qxj
= Q

j
ZQW for some common

QW , and we must have sufficient prompts to span the sub-

space. The first condition is a question of prompt design,

and is often not too hard in practice. However, it is natural

to wonder when it’s possible to actually recoverRZ using

only a practical number of prompts. We give some results

showing that the dimension of RZ(y) is often small, and

thus can be spanned with a small number of prompts. Note

that these results rely on the special structure of the score

representation, and may not hold for other representations.

First, the case where Z is categorical with few categories:

Proposition A.2. Assuming causal separability holds for

Z,W . If Z is categorical with L possible values (L ≥ 2),

then dim(RZ(y)) ≤ L−1.

This result covers concepts such as sex, which can be

spanned with only two prompts.

The next result extends this to certain categorical concepts

with large cardinality, such as style. The idea is that if a

concept is composed of finer grained categorical concepts,

each with small cardinality, then the representation space of

the concept is also low-dimensional. For example, style

may be composed of lower-level concepts such as color,

stroke, textures, etc.

Proposition A.3. Suppose Z is composed of categorical

concepts {Zk}
K
k=1 each with the number of categories Lk,

in the sense that Z = Z1×. . .Zk. Assume Y satisfies

causal separability with respect to Z,W , with YZ the cor-

responding Y-measurable variable for Z . Further assume

that there exists YZ -measurable variables YZk
such that

p(yZ | z) = ΠK
k=1p(yZk

| zk). Then

dim(RZ(y)) ≤
K
∑

k=1

(Lk−1) (9)

Following this result, we might take the spanning prompts

for style to be x0 = “a mathematician in Art Deco style”,

x1 = “a mathematician in Impressionist style”, etc. Each

of these prompts elicit a fixed distribution QW over the

content, but varies the distribution QZ over style. If style is

composed of finer-grained attributes, a relatively small set

of such of prompts will suffice.

B. Examples

We have formalized what it means for concepts to corre-

spond to subspaces of the representation space, and derived

a procedure for identifying and editing the subspaces corre-

sponding to particular concepts in the score representation.

We now work through some examples testing if this sub-

space structure does indeed exist, and whether it enables

manipulation of concepts.

Concepts We consider three concepts for our main exper-

iments. First, the binary concepts medium = {cartoon,

photorealistic}, concept sex = {male, female}.
Following Proposition A.2, we need two prompts to elicit

each of these spaces. Our choices are xsex
0 = “a man”

and xsex
1 = “a woman” and xmedium

0 = “cartoon” and

xmedium
1 = “photorealistic”. Each of these prompts elic-

its a different distribution on the target concept, but a similar

distribution on other concepts.

Next, we consider (artistic) style as a more complex con-

cept. In this case, it is not practical to enumerate all possible

styles. However, following Proposition A.3, we can hope to

elicit the subspace with only a finite number of prompts.

There is an additional challenge here: in general, a prompt

eliciting a particular style will also elicit other concepts. For

example, adding the text “renaissance style” to a caption will

tend to make any human subjects in the image be dressed in

renaissance period clothing; see Figure 3c. That is, prompts

x0 = “renaissance style”, x1 = “postmodern style”, x3 =
“impressionist style”, . . . don’t meet the identification re-

quirements of Proposition A.1. The reason is that the cor-

responding concept distributions are Qxj
= Q

j
ZQ

j
W with

Q
j
W different for each j (e.g., the distribution over clothing

styles is different for each style of art).

To overcome this, we choose prompts that are all forced to

share the same QW distribution. Specifically, if we want to

modify the prompt x we take our style prompts to be x0 =
x+“minimalist style”, x1 = x+“Japanese Ukiyo-e style”,



(a) s[“a portrait of a nurse”]

(b) (I−projsex)s[“a portrait of a nurse”]+projsex(
1

2
s[“a female nurse”]+

1

2
s[“a male nurse”])

Figure 2. Elements of the representation subspace may not corre-

spond to any prompt.

x3 = x+“Impressionist style”, . . . In practice, we use Chat-

GPT to generate a list of 28 styles and use these.

Editing Concept Subspaces Given prompts defining each

concept subspace, we construct the projection operation

onto the subspace, and use this to produced edited represen-

tations. We use Stable Diffusion to sample from the distri-

bution defined by the edited representations. We compare

samples generated according to the original and edited rep-

resentation, matching the random seed used for generation

so that off-target concepts should match between samples.

See Figures 1, 2 and 3 for results. In each case, we see

that modifying the representation on the concept subspace

leads to isolated modifications of the samples on the target

concept.

Editing Concepts When Prompting Is Hard One inter-

esting test is to see if we can edit a concept algebraically in

situations where it is hard to modify that concept in isola-

tion by prompting. Figure 3 shows examples of such cases.

Here, modifying the style attribute with an English phrase

(“photorealistic” or “in renaissance style”) elicits off-target

behavior (e.g., changing the position of the frog, changing

the background and clothing of the shoppers). However, the

algebraic approach succeeds. This suggests that the inter-

nal representation can be readily manipulated, even when

English prompting does not readily succeed.

Promptless Concepts Another natural question is

whether we can elicit concept values that cannot be achieved

by direct prompting. In Figure 1b, we sample from

sedit ← (I−projsex)s[x]+projsexs[“person”], (10)

and observe that we eliminate the bias towards male

elicited by the term “mathematician”. That is, we can gen-

erally elicit non-degenerate distributions on concepts. It is

not possible to specify such behavior by direct prompting

(because English doesn’t describe distributional aspects.) In

Figure 2, we sample from

sedit ← (I−projsex)s[x]

+projsex

(

1

2
s[“a male nurse”]+

1

2
s[“a female nurse”]

)

.

(11)

The representation vector 1
2s[“a male nurse”]+

1
2s[“a female nurse”] does not correspond to any En-

glish prompt. We observe that modifications on the

subspace still affect just the sex concept though—the

samples are androgynous figures!

(a) Prompting “a frog playing the piano, anthropomorphic, photore-

alistic” does not generate the intended content

(b) (I−projmedium)s[“a frog playing the piano, anthropomorphic, cartoon”]+
projmediums[“photorealistic”]

(c) s[“a 1990s supermarket packed ..., in renaissance style”]
doesn’t generate the intended content (full caption in

Appendix E)

(d) (I−projstyle)s[“[content], in photorealistic style”]+

(projstyle)(s[“[content], in renaissance-style painting”], with

content = “a 1990s supermarket packed ...” (full caption in

Appendix E)

Figure 3. Concept algebra can edit concepts in a disentangled fash-

ion, even when direct prompting elicits off-target concepts

Mask as a Concept Finally, we consider a more abstract

kind of concept motivated by the following problem. Sup-

pose we have several photographs of a particular toy, and

we want to generate an image of this toy in front of the

Eiffel Tower. In principle, we can do this by fine-tuning

the model (e.g., with dreambooth) to associate a new token

(e.g., “sks toy”) with the toy. Then, we can generate the

image by conditioning on the prompt “a sks toy in front of

the Eiffel Tower”. In practice, however, this can be difficult

because the fine-tuning ends up conflating the toy with the

background in the demonstration images. E.g., the prompt

“a sks toy in front of the Eiffel Tower” tends to generate

images featuring carpet; see Figure 4b.

Intuitively, we might hope to fix this problem by finding

a concept subspace that excludes background information.

Given such a “subject subspace”, we could mask the subject



(a) s[“a toy in front of the Eiffel Tower”]

(b) sdreambooth[“a sks toy in front of the Eiffel Tower”]

(c) (I−projsubject)s[“a toy in front of the Eiffel Tower”]

+projsubjectsdreambooth[“a sks toy in front of the Eiffel Tower”]

Figure 4. We can manipulate abstract concepts such as ‘subject’ of

the image

out of the image, generate the background, and then edit

the subject back in. In Appendix E.1 we explain how to

construct such a subspace using the prompts x0 = “a toy”

and x1 = “a soccer ball”. Figure 4 shows the sampled

output.

C. Concept Algebra Algorithms in Diffusion

Model

Text-to-image Diffusion Models use score representations

in their generation. More specifically, suppose the target

is to sample Y = Y0 ∼ P ∗, with the corresponding score

function denoted as s0. The key ingredients for generation

are the score function for Yt (denoted as st), which is Y

noised at different levels, (e.g. Yt = (1−αt)Y+αtǫt for

standard independent Gaussian noise ǫ), for t = 0, ..., T .

See (Luo, 2022) for more details. To apply our results, we

require causal separability with respect toZ,W holds for all

Yt, t = 0, ..., T . Then our theoretical results follow through.

Algorithm 1 is an implementation of Concept Manipula-

tion through Projection based on DDPM (Ho et al., 2020)

(we can also implement different variants). 3 It requires

FindSubspaceMethod, for which we can use FindSubspace-

Basis(Algorithm 2) and FindSubspaceMask(Algorithm 3)

based on the properties of Z as discussed in the main text.

More specifically,

FindSubspaceBasis We calculate the projection matrix

(denoted as ΠZ) for the Z-subspace, from a span of K

prompts (after subtracting off the baseline) (Algorithm 2).

In practical computations, we evaluate the m×K matrix

3Note there here we use residual ǫθ(yt, t | x) instead of the
score sθ(yt, t | x) for generation, they are equivalent up to a
time-varying constant.

△E:

△E :=[ǫθ(yt, t | x1)−ǫθ(yt, t | x0), ...,

ǫθ(yt, t | xK)−ǫθ(yt, t | x0)]

Then, the top Kthres left singular vectors are selected as Q.

Here, Kthres denotes the least number of factors required to

surpass a certain proportion of variance explained, denoted

as thres. Consequently, we have Πz ← QQT .

FindSubspaceMask In this context, ΠZ signifies a mask.

This mask can be calculated from the score difference△ǫ

(refer to Algorithm 3). As a practical measure, we may

implement noise reduction techniques to fine-tune△ǫ. One

approach is the application of a Gaussian blur to smooth out

neighboring pixels.

Algorithm 1 Concept Manipulation through Projection

1: Require Diffusion model ǫθ(yt, t|x), guidance scale w,

covariance matrix σ2
t I ,

empty prompt “”, prompts: xorig, xnew,

prompts to build the Z subspace: {xi},
the function for finding the Z subspace:

FindSubspaceMethod(·,·)
2: Initialize sample yT ∼ N (0, I)
3: for t = T, . . . , 1 do
4: ǫempty ← ǫθ(yt, t | “”) # unconditional score
5: ǫorig, ǫnew ← ǫθ(yt, t | xorig), ǫθ(yt, t | xnew) # conditional

scores
6: ΠZ ← FindSubspaceMethod(yt, {xi}) # find the projec-

tion matrix
7: ǫcond ← (I−ΠZ)ǫorig+ΠZǫnew # concept projection
8: ǫ← ǫ0+w(ǫcond−ǫ0) # apply classifier-free guidance

9: yt−1 ∼ N
(

yt−ǫ, σ
2

t I
)

10: end for

Algorithm 2 FindSubspaceBasis

Require: yt ∈ R
m, prompts {xk}

K
k=0

1: R̂Z(y)← span({ǫθ(yt, t | xk)−ǫθ(yt, t | x0)}
K
k=1)

2: Determine ΠZ as the projection matrix onto R̂Z(y)
3: return ΠZ

Algorithm 3 FindSubspaceMask

Require: yt ∈ R
m, a pair of prompts (x1, x2)

1: △ǫ← ǫθ(yt, t | x1)−ǫθ(yt, t | x2)
2: for i = 1 to m do

3: mi ←△ǫi 6= 0?1 : 0
4: end for

5: ΠZ ← diag(m1,m2, . . . ,mm)
6: return ΠZ



D. Proofs

Proposition 3.1. If Y is causally separable with respect to

W and Z , then the centered score representation is arith-

metically composable with respect toW and Z .

Proof. By assumption in Definition 3.2, we have

p(y | z, w) = p(yZ , yW , ξ(y) | z, w)

∣

∣

∣

∣

det

(

∂g

∂y

)∣

∣

∣

∣

= p(yZ | z)p(yW | w)p(ξ(y))

∣

∣

∣

∣

det

(

∂g

∂y

)
∣

∣

∣

∣

Therefore,

p[Q](y) =p[QZ×QW ](y)

=pZ [QZ ](y)p[QW ](y)p(ξ(y))

∣

∣

∣

∣

det(
∂g

∂y
)

∣

∣

∣

∣

,

where pZ [QZ ](y) =
∫

p(yZ | z)QZ(z)dz and

pW [QW ](y) =
∫

p(yW | z)QW (w)dw.

Then, taking the log-derivative with respect to y, we get its

score function as follows:

s[QZ×QW ](y) = sZ [QZ ](y)+sW [QW ](y)+s0(y) (12)

where sZ(y) and sW (y) are pZ [QZ ](y)’s and

pW [QW ](y)’s score functions, and s0(y) :=

∇y log
(

p(ξ(y))
∣

∣

∣
det( ∂g

∂y
)
∣

∣

∣

)

. So the centered-score

is

s̄[QZ×QW ](y) =(sZ [QZ ](y)−sZ [Q
0
Z ](y))

+(sW [QW ](y)−sW [Q0
W ](y))

where Q0
Z and Q0

W are the marginal distributions of Z and

W of the baseline Q0. Then, we can use the fact that

RZ = span({s̄Z [QZ ]−s̄Z [Q
0
Z ] : QZ a distribution})

= span({sZ [QZ ]−sZ [Q
0
Z ] : QZ a distribution})

RW = span({s̄W [QW ]−s̄W [Q0
W ] : QW a distribution})

= span({sW [QW ]−sW [Q0
W ] : QW a distribution})

Consequently, the claim follows.

Proposition A.1. Let QW be any fixed distribution over the

W concept and Q0
Z be any reference distribution over Z.

Then, assuming causal separability for Z,W ,

RZ(y) =span({s[QZQW ](y)−s[Q0
ZQW ](y) :

QZ a distribution}).
(8)

Proof. By causal separability we can easily get theRZ(y)
in Proposition A.1 is the same as:

RZ(y) = span({sZ [QZ ](y)−sZ [Q
0
Z ](y)} : QZ a distribution)

The only thing left to show is that RZ(y) remains

the same for whatever choice of baseline Q0
Z . But

this is immediate: span({sZ [QZ ](y)−sZ [Q
0
Z ](y) :

QZ a concept distribution}) = span({sZ [QZ ](y)−
sZ [Q

1
Z ](y) : QZ a concept distribution}) for any two

baselines Q0
Z and Q1

Z .

Proposition A.2. Assuming causal separability holds for

Z,W . If Z is categorical with L possible values (L ≥ 2),

then dim(RZ(y)) ≤ L−1.

Proof. We denote the possible values that Z can take as

{z0, z1, . . . , zL−1}. Let δzi := δzi(z) represent the delta

function in the Z-subspace, which is infinite at zi and zero

at all other points. For any distribution QZ over Z and any

y ∈ R
m, we can express sZ [QZ ](y) as a linear combination

of sz[δzi ] in the following form:

sZ [QZ ](y) =

L−1
∑

l=0

πl(y)sZ [δzl ](y)

Here,
∑L−1

l=0 πl(y) = 1. Consider a baseline concept

distribution Q0
Z and its corresponding Z-related score

sZ [Q
0
Z ](y) =

∑L−1
l=0 cl(y)sZ [δzl ](y). We can then express

the difference sZ [QZ ](y)−sZ [Q
0
Z ](y) as:

sZ [QZ ](y)−sZ [Q
0
Z ](y) =

L−1
∑

l=1

ωl(y)(sz[δzl ](y)−sz[δz0 ](y)),

where ωl(y) = πl(y)−cl(y) for l = 1, . . . , L−
1. Consequently, we can observe that RZ(y) ⊂

span({sz[δzl ](y)−sz[δz0 ](y)}
L−1
l=1 ), which implies that

dim(RZ(y)) ≤ L−1.

Proposition A.3. Suppose Z is composed of categorical

concepts {Zk}
K
k=1 each with the number of categories Lk,

in the sense that Z = Z1×. . .Zk. Assume Y satisfies

causal separability with respect to Z,W , with YZ the cor-

responding Y-measurable variable for Z . Further assume

that there exists YZ -measurable variables YZk
such that

p(yZ | z) = ΠK
k=1p(yZk

| zk). Then

dim(RZ(y)) ≤
K
∑

k=1

(Lk−1) (9)

Proof. By assuming that p(yZ | z) =
∏K

k=1 p(yZk
| zk),

we can easily derive the following result for any concept

distribution QZ over Z:

sZ [QZ ](y) =
K
∑

k=1

sZk
[QZk

](y),



where QZk
represents the concept distribu-

tion of Zk for each k, and sZk
[QZk

](y) =
∇y log

(∫

p(yZk
| zk)QZk

(zk)dzk
)

. Recall that

RZ(y) = span({sZ [QZ ](y)−sZ [Q
0
Z ](y)} : QZ is a concept distribution),

where Q0
Z is a baseline. Importantly, it should be noted

thatRZ(y) is unique regardless of the choice of Q0
Z as per

Proposition A.1.

Let Q0
Zk

denote the Zk-related part of Q0
Z for k =

1, . . . ,K. We define RZk
(y) := span({sZk

[QZk
](y)−

sZk
[Q0

Zk
](y)}). Then, we can state that:

RZ(y) ⊂
K
∑

k=1

RZk
(y).

Based on Proposition A.2, it follows that dim(RZk
(y)) ≤

Lk−1 for each k. Hence, we can conclude that:

dim(RZ(y)) ≤
K
∑

k=1

(Lk−1).

E. Experiment Details and More Figures

E.1. Concept projection for Dreambooth (Figure 4)

First, we fine-tune the diffusion model using Dreambooth,

applying a learning rate of 5e−6 and setting the number

of steps to 800. While there are configurations that could

yield a less overfitted model, we intentionally opt for these

parameters to generate an overfitted model. Our aim is to

verify if it’s possible to disentangle the overfitted model by

using concept manipulation via projection.

To generate images depicting a sks toy in front

of the Eiffel Tower, we utilize our Dreambooth

fine-tuned diffusion model together with the original pre-

trained Stable Diffusion model. Only for the new prompt,

xnew = a sks toy”, we use the score function from the

Dreambooth fine-tuned model. All other prompts are

plugged into the score functions from the original pre-

trained Stable Diffusion model. To create the desired im-

ages, we construct a projector using a pair of prompts:

(x1, x2) = (“a toy”, “a soccer ball”). The mask, com-

puted using Algorithm 3 with the threshold= 0.1, helps

identify specific areas corresponding to the location of

the subject. Then, we use the Dreambooth score func-

tion sdreambooth(a sks toy”) to guide the generation process

within the masked region (areas with value 1), while us-

ing s(a toy in front of the Eiffel Tower”) to guide the gen-

eration outside the mask (areas with value 0).

To ensure image fidelity, we exclusively employ the score

function sdreambooth(“a sks toy”) for guiding the denoising

process for the last 6% of the denoising steps.

It is important to note that due to severe overfitting issues

with the fine-tuned model, there is no significant difference

between using either the prompt “a sks toy” or “a sks toy in

front of the Eiffel Tower” for the fine-tuned model. Also,

due to the same reason, we apply the original pretrained

diffusion model for all score functions except for the sks toy

related one.

E.2. The mathematician example (Figure 1)

Our starting point is an original prompt xorig =
“a portrait of a mathematician”. Our objective is to modify

the sex and style using concept projection:

To adjust sex, we formulate a corresponding direction us-

ing a pair of prompts (x1, x2) = (“a man”, “a woman”).
Subsequently, we set xnew = “a person”.

To alter the style, we set xnew =
“a portrait of a mathematician, in Fauvism style”. We

define the concept subspace using prompts of the form “a

portrait of a mathematician in [xstyle] style”, where xstyle

takes value from a list of styles. During sampling, the

original prompt is utilized in the first 20% of timesteps to

better retain the content.

The list of styles is generated by ChatGPT. They are: Art

Deco, Minimalist, Baroque, Abstract Expressionist, Cu-

bist, Fauvism, Impressionist, Steampunk, Neoclassical,

Japanese Ukiyo-e, Surrealism, Memphis Design, Scandina-

vian, Bauhaus, Pop Art, Art Nouveau, Street Art, American

West, Victorian Gothic, Futurism, Photorealistic, Mannerist,

Flemish, Byzantine, Medieval, Romanesque, Trompe-l’œil,

and Dutch Golden Age.

E.3. The nurse example (Figure 2)

We initiate the process with an original prompt, xorig =
“a portrait of a nurse”. Our goal is to perform concept pro-

jection to manipulate the sex attribute. Similar to the math-

ematician example, we define the sex direction using a pair

of prompts: (x1, x2) = (“a man”, “a woman”). However,

instead of setting the distribution of sex as one of the delta

functions or a fair one corresponding to the neutral prompt

“a person”, we wish to see what the concept’s arithmetic av-

erage will define. Specifically, we take the sex direction of

the average of a female nurse and a male nurse,

calculated as 1
2s(a female nurse”)+ 1

2s(a male nurse”). It

turns out the arithmetic mean realize the interpolation be-

tween two extremal sex points in the sex subspace, and the

score function after concept projection returns images of

androgynous nurses.



(a) s[“a portrait of a nurse”]

(b) (I−projZ)s[“a portrait of a nurse”]+projZs[“a man”] where projZ is com-

puted by s[“a buck on the grass”]−s[“a doe on the grass”]

(c) (I−projZ)s[“a portrait of a nurse”]+projZs[“a man”] where projZ is com-

puted by s[“a man”]−s[“a woman”]

Figure 5. Necessity of Assumptions: the validity of concept alge-

bra depends on causal separability

E.4. Failure of direct prompting (Figure 3)

Two instances are presented where direct prompting does

not yield the desired outcome. We circumvent this limitation

by merging xorig and xnew via projection:

In the case of the frog, using the prompt “a

frog playing the piano, anthropomorphic, photoreal-

istic” fails to yield the desired content-style combi-

nation. To rectify this, we initially set xorig =
“a frog playing the piano, anthropomorphic, cartoon” to ob-

tain the desired content. Then, we adjust the medium to

photorealistic by setting xnew = “photorealistic”.

We determine projmedium using the pair (x1, x2) =
(“cartoon”, “photorealistic”).

For the mall scenario, the content described as

xcontent = “a 1990s supermarket packed to the

brim with people, showcasing a lively, shoulder-

to-shoulder shopping experience.”

If we add “a renaissance-style of” to xcontent in the prompt,

the resulting images often contain mythological figures com-

mon in renaissance-style paintings. However, this can be

avoided by combining xorig and xnew via projection. Here,

xorig is defined as a photo of the content xcontent and xnew

is “a renaissance-style of” appended to the xcontent. The

style subspace is identified using basis prompts of the for-

mat “xcontent in xstyle style”, with xstyle using the same list

of files styles generated by ChatGPT, as in Figure 1.

F. Additional experiments

We show that our methods would fail when causal separa-

bility assumption (Definition 3.2) become invalid. In this

section, we show one concrete example of failures.

Figure 5 shows that we are unable to transfer the gender

of the nurse when we calculate the score function of a

male nurse by (I−projZ)s[“a portrait of a nurse”]+
projZs[“a man”] where projZ is computed by

s[“a buck on the grass”]−s[“a doe on the grass”]. The

target concept Z and W are sex ∈ {male, female}
and species∈ {human, deer}. It’s obvious that the

sex and species have an interaction effect on the image Y

— different species induce different sexual characteristics.


