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Abstract

Retrieval-Augmented Generation (RAG) mod-
els are increasingly employed in Multihop
Question Answering (MHQA). However, we
identify a critical limitation: existing methods
exhibit suboptimal performance on comparison-
type questions, with the performance decline
being notably greater than that observed for
bridge-type questions. Empirical analysis re-
veals that existing methods consistently under-
perform relative to LLM-only baselines, partic-
ularly as the number of hops increases. More-
over, they require significantly more inference
and retriever calls without delivering equivalent
performance gains. To demonstrate, we intro-
duced the CompQA dataset, which includes
questions with a higher number of hops, along-
side the MuSiQue benchmark. Finally, we dis-
cuss our findings, examine potential underlying
causes, and highlight the limitations of RAG
strategies in reasoning over complex question

types.

1 Introduction

MHQA requires sequential inference by aggregat-
ing evidence from multiple sources, unlike sin-
gle hop QA that relies on a single piece of evi-
dence. This makes MHQA a key benchmark for
assessing LLM reasoning. Datasets like HotpotQA,
2WikiMQA, and MuSiQue, (Yang et al., 2018;
Ho et al., 2020; Trivedi et al., 2022), have been
developed for this purpose. RAG models com-
bine LLMs’ internal (parametric) knowledge with
external (non-parametric) retrieved data, deciding
whether to use retrieved evidence before answer
generation. This approach usually outperforms
LLM-only methods, emphasizing the critical role
of retrieval and aggregate information from multi-
ple sources.

The best performing MHQA models adopt an
iterative RAG approach. In MHQA, where an-
swers require synthesizing evidence across mul-
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Figure 1: Example of comparison type question and
its required process for answer generation (left) and
performance reduction in F1 score relative to LLM for
various RAG methods on our CompQA dataset (right).

tiple steps rather than a single one, this distinc-
tion is crucial. For example, the Self-Ask (Press
et al., 2023) method iteratively decomposes com-
plex queries into simpler sub-questions, retrieving
relevant context for each piece of non-parametric
knowledge. IRCoT (Trivedi et al., 2023) further
enhances performance by iteratively combining re-
trieval and Chain-of-Thought (CoT) (Wei et al.,
2023) reasoning at each step, refining responses be-
yond a simple retrieve-and-read approach. Recent
studies (Fan et al., 2024) address these intricate
reasoning challenges effectively.

We hypothesize that comparison questions are
especially challenging for MHQA. Our preliminary
study shows that iterative methods underperform
on these queries. Comparison questions require re-
trieving, aggregating, and contrasting independent
entities—a process more demanding than sequen-
tial inference. For instance, “Are Elon Musk and
Mark Zuckerberg the same age?” is common in
MHQA and appears in HotpotQA alongside bridge
questions. Retrieving and processing information
for Elon and Mark from independent sources can
further increase complexity, especially as the num-
ber of hops grows. However, benchmarks like
2WikiMultihopQA and MuSiQue primarily feature
bridge questions, resulting in comparison questions
insufficiently represented.



To better test MHQA on comparison questions,
we introduce CompQA, a dataset designed to eval-
uate models that retrieve, aggregate, and compare
information across entities. CompQA features
2hop to 6hop yes/no questions, composed of 1,000
questions (built from 4,000 sub-questions) sampled
from the Retrieval QA (Zhang et al., 2024) dataset.
Figure 1 shows that recent RAG models have lower
F1 than an LLM-only baseline, highlighting that
iterative methods struggle to integrate and reason
over retrieved information for comparison ques-
tions.

According to experiments with recent MHQA
models on CompQA, they struggle with
comparison-type questions, showing performance
declines of up to 39.8% compared to the LLM-only
baseline, despite increasing LL.M call counts by
a factor of 2.5 to 9.9. Details can be found in
Figure. 3 and Table. 2. Moreover, qualitative
analysis reveals that an excessive dependency
on retrieval, even when parametric knowledge
is queried, results in suboptimal integration of
entities. Furthermore, this dependency increases
the number of LLM inference calls.

Our main contributions are as follows:

e CompQA is introduced as a benchmark
dataset specifically designed to evaluate the
comparative and aggregative capabilities of
RAG models using comparison questions with
up to 6hop complexity.

* Quantitative and qualitative analysis show that
existing methods are inadequately evaluated
on comparison questions and emphasize that
effective integration of non-parametric with
parametric knowledge is critical.

2 Related Work

2.1 Multihop Question Answering

MHQA datasets, like HotpotQA and MuSiQue are
designed to assess a model’s capacity to integrate
evidence from multiple sources and inference steps.
In particular, MuSiQue transforms singlehop ques-
tions into multihop challenges by synthesizing sub-
questions through step-wise reasoning, often in-
volving non-linear inference chains that extend up
to four hops.

2.2 Retrieval-Augmented Generation

LLMs have demonstrated robust performance in
reasoning, generation, and comprehension tasks

(Zhao et al., 2024). However, their heavy reliance
on pre-training data leads to gaps in domains not
well represented in the training corpus, limits the
integration of the latest knowledge (Lewis et al.,
2020), and makes them susceptible to hallucina-
tions and factual inaccuracies (Jiang et al., 2023).
RAG addresses these issues by retrieving external
knowledge for informed generation. Simple RAG
with single retrieval struggles with MHQA datasets
like HotpotQA and MuSiQue, which demand infor-
mation integration.

Iterative RAG models like IRCoT and Adaptive-
RAG (Jeong et al., 2024), while improving MHQA,
are weak on comparison questions. IRCoT’s in-
dependent, step-wise retrieval hinders cross-fact
analysis. Adaptive-RAG inherits this limitation,
struggling to synthesize and compare information.
Similarly, Self-Ask and ReAct (Yao et al., 2023),
though adept at fact retrieval, lack explicit compar-
ison mechanisms. Self-RAG (Asai et al., 2024)’s
sequential design, with a one-time retrieval deci-
sion and single-point generation input, also limits
multihop comparison reasoning.

Our work extends this line of research by specif-
ically focusing on the complex integration chal-
lenges of comparison type questions, an underex-
plored area in existing MHQA benchmarks.

3 CompQA Dataset

CompQA dataset was constructed using MuSiQue,
which is a benchmark MHQA dataset for evalu-
ating multihop question answering!. It includes
2hop to 4hop questions in six categories, includ-
ing hopl (bridge), hop2 (concurrent), and hop3
(hybrid) types. Hopl use sub-question answers as
placeholders. Hop2 questions require simultaneous
answers. Hop3 combine hopl and hop2 character-
istics.

CompQA covers 2hop to 6hop comparison ques-
tions, focusing on longerhop comparisons (e.g.,
Shop, 6hop). Figure 1 shows a 6hop example. Each
question includes sub-question pairs and yes/no an-
swers. CompQA comprises 1,000 questions and
4,000 sub-question sets.

Dataset Construction Process CompQA was
constructed by organizing RetrievalQA (Zhang
et al., 2024) questions into sub-questions. It con-
tains 1,000 questions (200 per hop level, 2hop to

'Sampled 400 questions/hop type (2hop, 3hopl, 3hop2,
4hopl, 4hop2, 4hop3) from MuSiQue training set, focusing
on largest categories, with minor adjustments for 2hop and
4hop2 due to data constraints.



Sub-Questions (Topic: Sport)

“What sport does 2004 Legg Mason Tennis Classic play?” Answer : “tennis”
"What sport does James MacKenzie play?” Answer : “rugby”
“What sport does Guilherme Andrade play?” Ans
“What sport does Sofia Anker-Kofoed play?” Answer : “football”
“What sport does Best play?” Answer : “football”

Y’ Step 1
thall” Grouping Single-Hop RetrievalQA
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Step 2:
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into Multi-Hop Questions Using GPT-40

“Do 2004 Legg Mason Tennis Classic, James MacKenzie, Guilherme Andrade, Sofia
Anker-Kofoed, and Best play the same sport?” Answer : “No"
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Error Verification and Deduplication

Topic : occupation Using GPT-40 and Human Review

Figure 2: Pipeline of CompQA dataset construction

6hop), designed to compare attributes across simi-
lar topics. As shown in Figure 2, we generated 50
questions per topic (Country, Occupation, Sport,
Genre) for each hop level, totaling 200 questions
per hop and 1,000 overall. GPT-40 generated the
dataset, guided by topic and format examples, fol-
lowed by human review and GPT-4o verification
for quality. Dataset creation occurred between De-
cember 18, 2024, and January 5, 2025, including
human review and revisions.

Labeling Sub-questions in MuSiQue and Com-
PQA were labeled as parametric (answerable by
internal knowledge) or non-parametric (requir-
ing retrieval), model-specifically. For each sub-
question, we generated an answer and calculated
F1 score. F1=0 indicated non-parametric (0), F1>0
parametric (1), following Retrieval QA. Questions
were grouped by parametric ratio: High Para-
metric (p): >0.5 parametric sub-questions; High
Non-parametric (np): >0.5 non-parametric sub-
questions. 0.5 ratio questions were excluded.

4 Experiment & Analysis

4.1 Experimental Setup

We evaluated five representative RAG models (IR-
CoT, Adaptive-RAG, Self-RAG, Self-Ask, ReAct),
focusing on Recursive and Adaptive types. Our
setup replicated original configurations to analyze
each model’s inherent behavior. GPT-3.5-turbo”
served as the generator LLM for all models ex-
cept Self-RAG>. BM25 (Robertson et al., 1995)
was used as retriever for LLM-only, RAG, IRCoT,
and Adaptive-RAG, with Wikipedia (Karpukhin
et al., 2020) and MuSiQue corpora for CompQA
and MuSiQue respectively, following (Trivedi et al.,
2023). Self-Ask used Google Search, and ReAct

2GPT-3.5-turbo replaced deprecated text-davinci-002 for
Self-Ask and ReAct experiments.
*Fine-tuned LLaMA-2 7B
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Figure 3: Comparison of F1 score between MuSiQue
bridge type questions on the left and our CompQA
dataset on the right. The red dashed line represents
the F1 score of the LLM as a baseline.

Methods MuSiQue CompQA

2hop 3hopl 4hopl 2hop 3hop 4hop
IRCoT 32w 3.6 26 4030 29¢9 3le2n 33 @3
Adaptive-RAG 2.6 +16) 3.222 3.7 w21 29w9 302 3.3 w3
Self-Ask 1.1con 18w 19w9 25w15 3.le2n 37627
ReAct 83w 94 wsa 99ws9 72062 80670 8.6 :76
Self-RAG* 1.6 w06 1.5¢05 L7c07n 45635 51@n 4.9 639

Table 1: LLM calls per hop for MuSiQue bridge type
questions and CompQA. Red numbers indicate the in-
crease based on LLM-only and LLM w. retrieval call
counts.

used the Wikipedia API. We used F1 score and
LLM call count for performance and efficiency
evaluation, respectively.

4.2 RAG Performance on Comparison Type
Questions

This subsection presents experimental validation
showing that RAG models exhibit limitations when
addressing comparison type questions.

To experimentally verify this hypothesis, we uti-
lized the CompQA dataset. As a control group for
comparison type questions, we extracted bridge
type questions (specifically 2hop, 3hopl, and
4hopl subsets) from the MuSiQue. The experimen-
tal results are presented in the subsequent section.

Figure 3 distinctly illustrates the differential per-
formance trends of RAG models across bridge and
comparison type questions. Notably, in contrast
to LLM-only and LLM with retrieval methodolo-
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Figure 4: Comparison of F1 score for Parametric Major
(left) and Non-Parametric Major (right) on CompQA.
The red dashed line represents the F1 score of LLM as
a baseline.

gies, RAG models exhibit a peculiar vulnerability,
demonstrating comparatively weaker performance
on comparison type questions.

For comparison type questions, the LLM-only
and LLM w. retrieval methods consistently main-
tain robust F1 score even with a single LL.M call.
This suggests that for comparison type questions,
satisfactory performance can be attained without
applying RAG approach with complex reasoning
process.

Conversely, while RAG models may demon-
strate performance enhancements over LLM-only
and LLM w. retrieval methods for bridge type ques-
tions, they tend to exhibit performance degradation
or stagnation at LLM-only levels for comparison
type questions. For instance, IRCoT achieves an
57.2% for 2hop comparison type questions, which
is comparable to or even slightly lower than LLM-
only, despite incurring approximately three times
the number of LLM calls. For 4hop comparison
type questions, IRCoT’s performance further di-
minishes to 60.5%, significantly lower than LLM-
only while maintaining a high LLM call count of
3.3.

Adaptive-RAG and Self-Ask show similar per-
formance trends, while ReAct struggles the most
with comparison questions. For 2hop, ReAct scores
just 18.5% with 7.2 LLM calls, dropping to 3.1%
at 4hop as calls rise to 8.6.

The performance decline of RAG models be-
low LLM-only and LLM w. retrieval baselines on
comparison type questions underscores their ineffi-
cacy in explicit information comparison. As shown
in Table 1, despite increasing LLM call counts to
2.5-9.9, RAG models yield negligible or negative

Parametric Non-Parametric

Methods

2hop 3hop 4hop 2hop 3hop 4hop

IRCoT 3.1 w2 3202 34624 270 2969 32622
Adaptive-RAG 3.1 21y 3222 3424 2701 29019 32022
Self-Ask 25ws 3202 3762y 244 3de2n 4.0 630
ReAct 71wen 84 wia 89019 Tdeesy Tluen 82w
Self-RAG* 4232 48638 42632 5343 57047 5.6 46

Table 2: LLM calls per question for CompQA (Red
numbers indicate the increase based on LLM-only and
LLM w. retrieval call counts).

performance gains, highlighting their inefficiency
relative to computational cost.

In conclusion, the experimental results presented
in Figure 3 underscore that RAG models are not
universally effective across all question types, par-
ticularly revealing their limitations in handling
comparison type questions.

We hypothesized that effective comparison re-
lies on consistent information comparison, with
retrieval quality affecting accuracy. Analyzing
CompQA, we examined parametric (internally an-
swerable) vs. non-parametric (requiring retrieval)
sub-questions to assess their impact on RAG per-
formance.

Figure 4 shows parametric questions yield higher
F1 score, leveraging internal knowledge, while non-
parametric questions suffer performance declines.
As expected, RAG outperforms LLM-only on non-
parametric questions, whereas LLM-only peaks on
parametric ones. This trend intensifies at higher
hops (Shop, 6hop). Full results are in Appendix
A3.

Table 2 reveals a counterintuitive trend: IRCoT
and Adaptive-RAG increase LLM calls for para-
metric questions. To explain this, we classify three
failure cases of IRCoT on comparison questions
requiring parametric knowledge in Appendix A.4.

5 Conclusion

This paper highlights a notable limitation of RAG
methods in MHQA, focusing on comparison ques-
tions. Our experimental study, using newly intro-
duced CompQA dataset, shows that recent mod-
els underperform relative to LLM-only baseline.
Furthermore, the results demonstrate significant
inefficiency, with RAG methods requiring more
inference calls without corresponding performance
improvements.



6 Limitations

Our study is limited by the specific RAG models
and datasets evaluated, primarily CompQA and
MuSiQue. Generalizability may be limited to other
RAG architectures and comparison question types
beyond our evaluation scope. Further qualitative
analysis across all RAG models, beyond quantita-
tive metrics and the IRCoT error analysis, could
provide richer insights. Future work should focus
on developing question-type-aware RAG models,
exploring efficient methods for comparison ques-
tions, and broader evaluations.
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A Appendix
A.1 Dataset label statistics

GPT3.5 Llama? (self-rag ft)

Ho,

" parametric  non-parametric  neutral parametric  non-parametric  neutral
2hop 107 90 192 26 230 133
3hopl 189 211 0 79 321 0
3hop2 179 221 0 48 352 0
4hopl 129 119 152 23 273 104
4hop2 56 20 51 9 71 41
4hop3 83 159 158 13 316 71

Table 3: Labeling statistics for MuSiQue, categorized
into parametric, non-parametric, and neutral (0.5 ratio).
The model Llama2 (self-rag ft) refers to a fine-tuned
version of Llama2 based on self-rag.

As described in the labeling process in Section 3,
Table 3 presents the labeling statistics for MuSiQue,
categorized into parametric, non-parametric, and
neutral (0.5 ratio). The classification was con-
ducted to distinguish answerable sub-questions
based on parametric knowledge. The model Llama-
2 7B (self-rag ft) refers to a fine-tuned version of
Llama?2 based on self-rag, used to evaluate the per-
formance differences in handling various question

types.
A.2 Dataset label statistics

GPT3.5 Llama?2 (self-rag ft)
Hop
parametric  non-parametric neutral —parametric non-parametric  neutral

2hop 106 30 64 92 47 61
3hop 152 48 0 121 79 0
4hop 129 44 27 108 53 39
Shop 148 52 0 136 64 0
6hop 146 51 3 124 55 21

Table 4: Labeling statistics for CompQA, categorized
into parametric, non-parametric, and neutral (0.5 ratio).
The model Llama2 (self-rag ft) refers to a fine-tuned
version of Llama?2 based on self-rag.

As described in the labeling process in Section 3
Labeling, Table 4 presents the labeling statistics
for the CompQA dataset, categorized into paramet-
ric, non-parametric, and neutral (0.5 ratio). The
labeling process in CompQA was conducted to
distinguish whether answering a question requires
parametric knowledge. Additionally, the Llama2
(self-rag ft) model refers to a fine-tuned version
of Llama2 based on self-rag, used to analyze the
performance differences across various question

types.
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Figure 5: Total Results of comparison with F1 score
for Parametric Major (left) and Non-Parametric Major
(right) on our CompQA dataset.

A.3 Total Result on CompQA

Figure 5 shows the total results of Table 4 in Sec-
tion 4.2. In comparison to the LLM-only baseline,
the latter generally achieved peak performance on
parametric questions, while RAG models incor-
porating retrieval mechanisms demonstrated en-
hanced efficacy on non-parametric questions, align-
ing with expected trends. This trend is particularly
pronounced at higher hop counts, specifically Shop
and 6hop complexities. Furthermore, in the case
of ReAct, instances of F1 score dropping to single-
digit values are observed when transitioning from
2hop to 3hop and beyond. This underscores that
inaccurate or inconsistent external retrieval can pre-
cipitate a sharp decline in the ultimate answer qual-
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ity, particularly for questions that require long-term
inference processes.

A.4 Why do RAG models fail at comparison
type questions?

We conducted a qualitative analysis to understand
the reasons behind the observed vulnerability of
current RAG models when addressing comparison
type questions.

Specifically, we aimed to identify the underly-
ing causes by analyzing the reasoning path of IR-
CoT, a representative RAG model that serves as
a backbone or provides insights for other RAG
models. IRCoT is particularly suitable for this
analysis because it performs in-depth reasoning to
derive answers to multihop questions and explic-
itly presents this process. Among the 126 ques-
tions that LLM answered correctly but IRCoT an-
swered incorrectly, 118 belonged to the P group
(high parametric ratio) and 8 to the NP group (high
non-parametric ratio). Based on this, we assumed
that LLM achieved a perfectly correct answer (EM
= 1), while IRCoT was completely incorrect (F1 =
0) to facilitate the evaluation.

Four master’s students majoring in natural lan-
guage processing qualitatively evaluated the 118
questions in the P group, and categorized them into
four categories: ‘Case 1. Questions where the rea-
soning process was incorrect, but the answer was
semantically correct’ (59 questions), ‘Case 2. Ques-
tions where the reasoning process was incorrect
and the answer was also incorrect’ (29 questions),
‘Case 3. Questions answered as “I don’t know”
(10 questions), and ‘Case 4. Questions where the
reasoning process was correct and the answer was
semantically correct’ (20 questions). (We clarify
that although metric filtering was performed, there
were semantically correct answers). We will ex-
clude case 4, which presents no issues, and examine
qualitative examples for cases 1, 2, and 3.

Case 1. Questions where the reasoning pro-
cess was incorrect, but the answer was semanti-
cally correct

Question: “Are Borystawice and Colonia Nueva
Coneta in the same country?”

Analysis: Despite LLM knowing information
about all entities, IRCoT incorrectly judged *Colo-
nia Nueva Coneta’ to be in Uruguay. Consequently,
a result where the reasoning process was flawed
but the answer was correct was derived. This in-
dicates that the model tends to trust the retrieved
context more, even when it possesses parametric

sub-question knowledge. In other words, even in
situations where parametric information could be
utilized, the model prioritized the retrieved context
and exhibited issues in performing reasoning.

Case 2. Questions where the reasoning pro-
cess was incorrect and the answer was also in-
correct

Question: “Are Tupper-Barnett House, Contest,
Studzianka, Podlaskie Voivodeship, Freedom, and
Ara in the same country?”

Analysis: Even though LLM-only lacked knowl-
edge about the last entity, IRCoT generated an out-
put stating that all entities are in the same country
(Poland). This demonstrates that IRCoT struggles
to respond correctly even to questions for which
it already possesses knowledge. Notably, even
when the model accurately knows the parametric
sub-questions, the reasoning process was distorted
when the retrieved context was incomplete or in-
correct. This implies that rather than utilizing its
pre-existing knowledge, the model formed a new
reasoning path based on the retrieved context, lead-
ing to errors.

Case 3. Questions answered as “I don’t
know”

Question: “Are Tina, Edmundston, and Valea
Seacd River in the same country?”

Analysis: Despite LLM-only lacking knowledge
about the first entity, IRCoT did not perform a
search for ‘Tina’ and also failed to utilize paramet-
ric information for the known entities ‘Edmund-
ston’ and ‘Valea Seacd River’. This signifies a
failure of the model to leverage its pre-existing
information. Also, even in situations where only
some entities are known, the model showed limi-
tations in combining parametric information with
retrieved information when performing reasoning.

Through these qualitative examples, we ob-
served a tendency for the model to fail to per-
form correct reasoning even for parametric sub-
questions that it already knows. This mirrors pat-
terns similar to the phenomenon presented in prior
research, which indicates a bias in LLM to accept
generated contexts even if they contain inaccurate
information, and aligns with the result of a ten-
dency to prefer generated context over parametric
information. In particular, IRCoT appeared to pri-
oritize retrieved context, experiencing difficulties
in utilizing already learned parametric knowledge.
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