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Abstract

Retrieval-Augmented Generation (RAG) mod-001
els are increasingly employed in Multihop002
Question Answering (MHQA). However, we003
identify a critical limitation: existing methods004
exhibit suboptimal performance on comparison-005
type questions, with the performance decline006
being notably greater than that observed for007
bridge-type questions. Empirical analysis re-008
veals that existing methods consistently under-009
perform relative to LLM-only baselines, partic-010
ularly as the number of hops increases. More-011
over, they require significantly more inference012
and retriever calls without delivering equivalent013
performance gains. To demonstrate, we intro-014
duced the CompQA dataset, which includes015
questions with a higher number of hops, along-016
side the MuSiQue benchmark. Finally, we dis-017
cuss our findings, examine potential underlying018
causes, and highlight the limitations of RAG019
strategies in reasoning over complex question020
types.021

1 Introduction022

MHQA requires sequential inference by aggregat-023

ing evidence from multiple sources, unlike sin-024

gle hop QA that relies on a single piece of evi-025

dence. This makes MHQA a key benchmark for026

assessing LLM reasoning. Datasets like HotpotQA,027

2WikiMQA, and MuSiQue, (Yang et al., 2018;028

Ho et al., 2020; Trivedi et al., 2022), have been029

developed for this purpose. RAG models com-030

bine LLMs’ internal (parametric) knowledge with031

external (non-parametric) retrieved data, deciding032

whether to use retrieved evidence before answer033

generation. This approach usually outperforms034

LLM-only methods, emphasizing the critical role035

of retrieval and aggregate information from multi-036

ple sources.037

The best performing MHQA models adopt an038

iterative RAG approach. In MHQA, where an-039

swers require synthesizing evidence across mul-040

Figure 1: Example of comparison type question and
its required process for answer generation (left) and
performance reduction in F1 score relative to LLM for
various RAG methods on our CompQA dataset (right).

tiple steps rather than a single one, this distinc- 041

tion is crucial. For example, the Self-Ask (Press 042

et al., 2023) method iteratively decomposes com- 043

plex queries into simpler sub-questions, retrieving 044

relevant context for each piece of non-parametric 045

knowledge. IRCoT (Trivedi et al., 2023) further 046

enhances performance by iteratively combining re- 047

trieval and Chain-of-Thought (CoT) (Wei et al., 048

2023) reasoning at each step, refining responses be- 049

yond a simple retrieve-and-read approach. Recent 050

studies (Fan et al., 2024) address these intricate 051

reasoning challenges effectively. 052

We hypothesize that comparison questions are 053

especially challenging for MHQA. Our preliminary 054

study shows that iterative methods underperform 055

on these queries. Comparison questions require re- 056

trieving, aggregating, and contrasting independent 057

entities—a process more demanding than sequen- 058

tial inference. For instance, “Are Elon Musk and 059

Mark Zuckerberg the same age?” is common in 060

MHQA and appears in HotpotQA alongside bridge 061

questions. Retrieving and processing information 062

for Elon and Mark from independent sources can 063

further increase complexity, especially as the num- 064

ber of hops grows. However, benchmarks like 065

2WikiMultihopQA and MuSiQue primarily feature 066

bridge questions, resulting in comparison questions 067

insufficiently represented. 068
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To better test MHQA on comparison questions,069

we introduce CompQA, a dataset designed to eval-070

uate models that retrieve, aggregate, and compare071

information across entities. CompQA features072

2hop to 6hop yes/no questions, composed of 1,000073

questions (built from 4,000 sub-questions) sampled074

from the RetrievalQA (Zhang et al., 2024) dataset.075

Figure 1 shows that recent RAG models have lower076

F1 than an LLM-only baseline, highlighting that077

iterative methods struggle to integrate and reason078

over retrieved information for comparison ques-079

tions.080

According to experiments with recent MHQA081

models on CompQA, they struggle with082

comparison-type questions, showing performance083

declines of up to 39.8% compared to the LLM-only084

baseline, despite increasing LLM call counts by085

a factor of 2.5 to 9.9. Details can be found in086

Figure. 3 and Table. 2. Moreover, qualitative087

analysis reveals that an excessive dependency088

on retrieval, even when parametric knowledge089

is queried, results in suboptimal integration of090

entities. Furthermore, this dependency increases091

the number of LLM inference calls.092

Our main contributions are as follows:093

• CompQA is introduced as a benchmark094

dataset specifically designed to evaluate the095

comparative and aggregative capabilities of096

RAG models using comparison questions with097

up to 6hop complexity.098

• Quantitative and qualitative analysis show that099

existing methods are inadequately evaluated100

on comparison questions and emphasize that101

effective integration of non-parametric with102

parametric knowledge is critical.103

2 Related Work104

2.1 Multihop Question Answering105

MHQA datasets, like HotpotQA and MuSiQue are106

designed to assess a model’s capacity to integrate107

evidence from multiple sources and inference steps.108

In particular, MuSiQue transforms singlehop ques-109

tions into multihop challenges by synthesizing sub-110

questions through step-wise reasoning, often in-111

volving non-linear inference chains that extend up112

to four hops.113

2.2 Retrieval-Augmented Generation114

LLMs have demonstrated robust performance in115

reasoning, generation, and comprehension tasks116

(Zhao et al., 2024). However, their heavy reliance 117

on pre-training data leads to gaps in domains not 118

well represented in the training corpus, limits the 119

integration of the latest knowledge (Lewis et al., 120

2020), and makes them susceptible to hallucina- 121

tions and factual inaccuracies (Jiang et al., 2023). 122

RAG addresses these issues by retrieving external 123

knowledge for informed generation. Simple RAG 124

with single retrieval struggles with MHQA datasets 125

like HotpotQA and MuSiQue, which demand infor- 126

mation integration. 127

Iterative RAG models like IRCoT and Adaptive- 128

RAG (Jeong et al., 2024), while improving MHQA, 129

are weak on comparison questions. IRCoT’s in- 130

dependent, step-wise retrieval hinders cross-fact 131

analysis. Adaptive-RAG inherits this limitation, 132

struggling to synthesize and compare information. 133

Similarly, Self-Ask and ReAct (Yao et al., 2023), 134

though adept at fact retrieval, lack explicit compar- 135

ison mechanisms. Self-RAG (Asai et al., 2024)’s 136

sequential design, with a one-time retrieval deci- 137

sion and single-point generation input, also limits 138

multihop comparison reasoning. 139

Our work extends this line of research by specif- 140

ically focusing on the complex integration chal- 141

lenges of comparison type questions, an underex- 142

plored area in existing MHQA benchmarks. 143

3 CompQA Dataset 144

CompQA dataset was constructed using MuSiQue, 145

which is a benchmark MHQA dataset for evalu- 146

ating multihop question answering1. It includes 147

2hop to 4hop questions in six categories, includ- 148

ing hop1 (bridge), hop2 (concurrent), and hop3 149

(hybrid) types. Hop1 use sub-question answers as 150

placeholders. Hop2 questions require simultaneous 151

answers. Hop3 combine hop1 and hop2 character- 152

istics. 153

CompQA covers 2hop to 6hop comparison ques- 154

tions, focusing on longerhop comparisons (e.g., 155

5hop, 6hop). Figure 1 shows a 6hop example. Each 156

question includes sub-question pairs and yes/no an- 157

swers. CompQA comprises 1,000 questions and 158

4,000 sub-question sets. 159

Dataset Construction Process CompQA was 160

constructed by organizing RetrievalQA (Zhang 161

et al., 2024) questions into sub-questions. It con- 162

tains 1,000 questions (200 per hop level, 2hop to 163

1Sampled 400 questions/hop type (2hop, 3hop1, 3hop2,
4hop1, 4hop2, 4hop3) from MuSiQue training set, focusing
on largest categories, with minor adjustments for 2hop and
4hop2 due to data constraints.
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Figure 2: Pipeline of CompQA dataset construction

6hop), designed to compare attributes across simi-164

lar topics. As shown in Figure 2, we generated 50165

questions per topic (Country, Occupation, Sport,166

Genre) for each hop level, totaling 200 questions167

per hop and 1,000 overall. GPT-4o generated the168

dataset, guided by topic and format examples, fol-169

lowed by human review and GPT-4o verification170

for quality. Dataset creation occurred between De-171

cember 18, 2024, and January 5, 2025, including172

human review and revisions.173

Labeling Sub-questions in MuSiQue and Com-174

pQA were labeled as parametric (answerable by175

internal knowledge) or non-parametric (requir-176

ing retrieval), model-specifically. For each sub-177

question, we generated an answer and calculated178

F1 score. F1=0 indicated non-parametric (0), F1>0179

parametric (1), following RetrievalQA. Questions180

were grouped by parametric ratio: High Para-181

metric (p): >0.5 parametric sub-questions; High182

Non-parametric (np): >0.5 non-parametric sub-183

questions. 0.5 ratio questions were excluded.184

4 Experiment & Analysis185

4.1 Experimental Setup186

We evaluated five representative RAG models (IR-187

CoT, Adaptive-RAG, Self-RAG, Self-Ask, ReAct),188

focusing on Recursive and Adaptive types. Our189

setup replicated original configurations to analyze190

each model’s inherent behavior. GPT-3.5-turbo2191

served as the generator LLM for all models ex-192

cept Self-RAG3. BM25 (Robertson et al., 1995)193

was used as retriever for LLM-only, RAG, IRCoT,194

and Adaptive-RAG, with Wikipedia (Karpukhin195

et al., 2020) and MuSiQue corpora for CompQA196

and MuSiQue respectively, following (Trivedi et al.,197

2023). Self-Ask used Google Search, and ReAct198

2GPT-3.5-turbo replaced deprecated text-davinci-002 for
Self-Ask and ReAct experiments.

3Fine-tuned LLaMA-2 7B

Figure 3: Comparison of F1 score between MuSiQue
bridge type questions on the left and our CompQA
dataset on the right. The red dashed line represents
the F1 score of the LLM as a baseline.

Methods
MuSiQue CompQA

2hop 3hop1 4hop1 2hop 3hop 4hop

IRCoT 3.2 (+2.2) 3.6 (+2.6) 4.0 (+3.0) 2.9 (+1.9) 3.1 (+2.1) 3.3 (+2.3)

Adaptive-RAG 2.6 (+1.6) 3.2 (+2.2) 3.7 (+2.7) 2.9 (+1.9) 3.1 (+2.1) 3.3 (+2.3)

Self-Ask 1.1 (+0.1) 1.8 (+0.8) 1.9 (+0.9) 2.5 (+1.5) 3.1 (+2.1) 3.7 (+2.7)

ReAct 8.3 (+7.3) 9.4 (+8.4) 9.9 (+8.9) 7.2 (+6.2) 8.0 (+7.0) 8.6 (+7.6)

Self-RAG* 1.6 (+0.6) 1.5 (+0.5) 1.7 (+0.7) 4.5 (+3.5) 5.1 (+4.1) 4.9 (+3.9)

Table 1: LLM calls per hop for MuSiQue bridge type
questions and CompQA. Red numbers indicate the in-
crease based on LLM-only and LLM w. retrieval call
counts.

used the Wikipedia API. We used F1 score and 199

LLM call count for performance and efficiency 200

evaluation, respectively. 201

4.2 RAG Performance on Comparison Type 202

Questions 203

This subsection presents experimental validation 204

showing that RAG models exhibit limitations when 205

addressing comparison type questions. 206

To experimentally verify this hypothesis, we uti- 207

lized the CompQA dataset. As a control group for 208

comparison type questions, we extracted bridge 209

type questions (specifically 2hop, 3hop1, and 210

4hop1 subsets) from the MuSiQue. The experimen- 211

tal results are presented in the subsequent section. 212

Figure 3 distinctly illustrates the differential per- 213

formance trends of RAG models across bridge and 214

comparison type questions. Notably, in contrast 215

to LLM-only and LLM with retrieval methodolo- 216
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Figure 4: Comparison of F1 score for Parametric Major
(left) and Non-Parametric Major (right) on CompQA.
The red dashed line represents the F1 score of LLM as
a baseline.

gies, RAG models exhibit a peculiar vulnerability,217

demonstrating comparatively weaker performance218

on comparison type questions.219

For comparison type questions, the LLM-only220

and LLM w. retrieval methods consistently main-221

tain robust F1 score even with a single LLM call.222

This suggests that for comparison type questions,223

satisfactory performance can be attained without224

applying RAG approach with complex reasoning225

process.226

Conversely, while RAG models may demon-227

strate performance enhancements over LLM-only228

and LLM w. retrieval methods for bridge type ques-229

tions, they tend to exhibit performance degradation230

or stagnation at LLM-only levels for comparison231

type questions. For instance, IRCoT achieves an232

57.2% for 2hop comparison type questions, which233

is comparable to or even slightly lower than LLM-234

only, despite incurring approximately three times235

the number of LLM calls. For 4hop comparison236

type questions, IRCoT’s performance further di-237

minishes to 60.5%, significantly lower than LLM-238

only while maintaining a high LLM call count of239

3.3.240

Adaptive-RAG and Self-Ask show similar per-241

formance trends, while ReAct struggles the most242

with comparison questions. For 2hop, ReAct scores243

just 18.5% with 7.2 LLM calls, dropping to 3.1%244

at 4hop as calls rise to 8.6.245

The performance decline of RAG models be-246

low LLM-only and LLM w. retrieval baselines on247

comparison type questions underscores their ineffi-248

cacy in explicit information comparison. As shown249

in Table 1, despite increasing LLM call counts to250

2.5–9.9, RAG models yield negligible or negative251

Methods
Parametric Non-Parametric

2hop 3hop 4hop 2hop 3hop 4hop

IRCoT 3.1 (+2.1) 3.2 (+2.2) 3.4 (+2.4) 2.7 (+1.7) 2.9 (+1.9) 3.2 (+2.2)

Adaptive-RAG 3.1 (+2.1) 3.2 (+2.2) 3.4 (+2.4) 2.7 (+1.7) 2.9 (+1.9) 3.2 (+2.2)

Self-Ask 2.5 (+1.5) 3.2 (+2.2) 3.7 (+2.7) 2.4 (+1.4) 3.1 (+2.1) 4.0 (+3.0)

ReAct 7.1 (+6.1) 8.4 (+7.4) 8.9 (+7.9) 7.4 (+6.4) 7.1 (+6.1) 8.2 (+7.2)

Self-RAG* 4.2 (+3.2) 4.8 (+3.8) 4.2 (+3.2) 5.3 (+4.3) 5.7 (+4.7) 5.6 (+4.6)

Table 2: LLM calls per question for CompQA (Red
numbers indicate the increase based on LLM-only and
LLM w. retrieval call counts).

performance gains, highlighting their inefficiency 252

relative to computational cost. 253

In conclusion, the experimental results presented 254

in Figure 3 underscore that RAG models are not 255

universally effective across all question types, par- 256

ticularly revealing their limitations in handling 257

comparison type questions. 258

We hypothesized that effective comparison re- 259

lies on consistent information comparison, with 260

retrieval quality affecting accuracy. Analyzing 261

CompQA, we examined parametric (internally an- 262

swerable) vs. non-parametric (requiring retrieval) 263

sub-questions to assess their impact on RAG per- 264

formance. 265

Figure 4 shows parametric questions yield higher 266

F1 score, leveraging internal knowledge, while non- 267

parametric questions suffer performance declines. 268

As expected, RAG outperforms LLM-only on non- 269

parametric questions, whereas LLM-only peaks on 270

parametric ones. This trend intensifies at higher 271

hops (5hop, 6hop). Full results are in Appendix 272

A.3. 273

Table 2 reveals a counterintuitive trend: IRCoT 274

and Adaptive-RAG increase LLM calls for para- 275

metric questions. To explain this, we classify three 276

failure cases of IRCoT on comparison questions 277

requiring parametric knowledge in Appendix A.4. 278

5 Conclusion 279

This paper highlights a notable limitation of RAG 280

methods in MHQA, focusing on comparison ques- 281

tions. Our experimental study, using newly intro- 282

duced CompQA dataset, shows that recent mod- 283

els underperform relative to LLM-only baseline. 284

Furthermore, the results demonstrate significant 285

inefficiency, with RAG methods requiring more 286

inference calls without corresponding performance 287

improvements. 288
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6 Limitations289

Our study is limited by the specific RAG models290

and datasets evaluated, primarily CompQA and291

MuSiQue. Generalizability may be limited to other292

RAG architectures and comparison question types293

beyond our evaluation scope. Further qualitative294

analysis across all RAG models, beyond quantita-295

tive metrics and the IRCoT error analysis, could296

provide richer insights. Future work should focus297

on developing question-type-aware RAG models,298

exploring efficient methods for comparison ques-299

tions, and broader evaluations.300
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A Appendix401

A.1 Dataset label statistics402

Hop
GPT3.5 Llama2 (self-rag ft)

parametric non-parametric neutral parametric non-parametric neutral

2hop 107 90 192 26 230 133
3hop1 189 211 0 79 321 0
3hop2 179 221 0 48 352 0
4hop1 129 119 152 23 273 104
4hop2 56 20 51 9 77 41
4hop3 83 159 158 13 316 71

Table 3: Labeling statistics for MuSiQue, categorized
into parametric, non-parametric, and neutral (0.5 ratio).
The model Llama2 (self-rag ft) refers to a fine-tuned
version of Llama2 based on self-rag.

As described in the labeling process in Section 3,403

Table 3 presents the labeling statistics for MuSiQue,404

categorized into parametric, non-parametric, and405

neutral (0.5 ratio). The classification was con-406

ducted to distinguish answerable sub-questions407

based on parametric knowledge. The model Llama-408

2 7B (self-rag ft) refers to a fine-tuned version of409

Llama2 based on self-rag, used to evaluate the per-410

formance differences in handling various question411

types.412

A.2 Dataset label statistics413

Hop
GPT3.5 Llama2 (self-rag ft)

parametric non-parametric neutral parametric non-parametric neutral

2hop 106 30 64 92 47 61
3hop 152 48 0 121 79 0
4hop 129 44 27 108 53 39
5hop 148 52 0 136 64 0
6hop 146 51 3 124 55 21

Table 4: Labeling statistics for CompQA, categorized
into parametric, non-parametric, and neutral (0.5 ratio).
The model Llama2 (self-rag ft) refers to a fine-tuned
version of Llama2 based on self-rag.

As described in the labeling process in Section 3414

Labeling, Table 4 presents the labeling statistics415

for the CompQA dataset, categorized into paramet-416

ric, non-parametric, and neutral (0.5 ratio). The417

labeling process in CompQA was conducted to418

distinguish whether answering a question requires419

parametric knowledge. Additionally, the Llama2420

(self-rag ft) model refers to a fine-tuned version421

of Llama2 based on self-rag, used to analyze the422

performance differences across various question423

types.424

Figure 5: Total Results of comparison with F1 score
for Parametric Major (left) and Non-Parametric Major
(right) on our CompQA dataset.

A.3 Total Result on CompQA 425

Figure 5 shows the total results of Table 4 in Sec- 426

tion 4.2. In comparison to the LLM-only baseline, 427

the latter generally achieved peak performance on 428

parametric questions, while RAG models incor- 429

porating retrieval mechanisms demonstrated en- 430

hanced efficacy on non-parametric questions, align- 431

ing with expected trends. This trend is particularly 432

pronounced at higher hop counts, specifically 5hop 433

and 6hop complexities. Furthermore, in the case 434

of ReAct, instances of F1 score dropping to single- 435

digit values are observed when transitioning from 436

2hop to 3hop and beyond. This underscores that 437

inaccurate or inconsistent external retrieval can pre- 438

cipitate a sharp decline in the ultimate answer qual- 439
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ity, particularly for questions that require long-term440

inference processes.441

A.4 Why do RAG models fail at comparison442

type questions?443

We conducted a qualitative analysis to understand444

the reasons behind the observed vulnerability of445

current RAG models when addressing comparison446

type questions.447

Specifically, we aimed to identify the underly-448

ing causes by analyzing the reasoning path of IR-449

CoT, a representative RAG model that serves as450

a backbone or provides insights for other RAG451

models. IRCoT is particularly suitable for this452

analysis because it performs in-depth reasoning to453

derive answers to multihop questions and explic-454

itly presents this process. Among the 126 ques-455

tions that LLM answered correctly but IRCoT an-456

swered incorrectly, 118 belonged to the P group457

(high parametric ratio) and 8 to the NP group (high458

non-parametric ratio). Based on this, we assumed459

that LLM achieved a perfectly correct answer (EM460

= 1), while IRCoT was completely incorrect (F1 =461

0) to facilitate the evaluation.462

Four master’s students majoring in natural lan-463

guage processing qualitatively evaluated the 118464

questions in the P group, and categorized them into465

four categories: ‘Case 1. Questions where the rea-466

soning process was incorrect, but the answer was467

semantically correct’ (59 questions), ‘Case 2. Ques-468

tions where the reasoning process was incorrect469

and the answer was also incorrect’ (29 questions),470

‘Case 3. Questions answered as “I don’t know”471

(10 questions), and ‘Case 4. Questions where the472

reasoning process was correct and the answer was473

semantically correct’ (20 questions). (We clarify474

that although metric filtering was performed, there475

were semantically correct answers). We will ex-476

clude case 4, which presents no issues, and examine477

qualitative examples for cases 1, 2, and 3.478

Case 1. Questions where the reasoning pro-479

cess was incorrect, but the answer was semanti-480

cally correct481

Question: “Are Borysławice and Colonia Nueva482

Coneta in the same country?”483

Analysis: Despite LLM knowing information484

about all entities, IRCoT incorrectly judged ’Colo-485

nia Nueva Coneta’ to be in Uruguay. Consequently,486

a result where the reasoning process was flawed487

but the answer was correct was derived. This in-488

dicates that the model tends to trust the retrieved489

context more, even when it possesses parametric490

sub-question knowledge. In other words, even in 491

situations where parametric information could be 492

utilized, the model prioritized the retrieved context 493

and exhibited issues in performing reasoning. 494

Case 2. Questions where the reasoning pro- 495

cess was incorrect and the answer was also in- 496

correct 497

Question: “Are Tupper-Barnett House, Contest, 498

Studzianka, Podlaskie Voivodeship, Freedom, and 499

Ara in the same country?” 500

Analysis: Even though LLM-only lacked knowl- 501

edge about the last entity, IRCoT generated an out- 502

put stating that all entities are in the same country 503

(Poland). This demonstrates that IRCoT struggles 504

to respond correctly even to questions for which 505

it already possesses knowledge. Notably, even 506

when the model accurately knows the parametric 507

sub-questions, the reasoning process was distorted 508

when the retrieved context was incomplete or in- 509

correct. This implies that rather than utilizing its 510

pre-existing knowledge, the model formed a new 511

reasoning path based on the retrieved context, lead- 512

ing to errors. 513

Case 3. Questions answered as “I don’t 514

know” 515

Question: “Are Tina, Edmundston, and Valea 516

Seacă River in the same country?” 517

Analysis: Despite LLM-only lacking knowledge 518

about the first entity, IRCoT did not perform a 519

search for ‘Tina’ and also failed to utilize paramet- 520

ric information for the known entities ‘Edmund- 521

ston’ and ‘Valea Seacă River’. This signifies a 522

failure of the model to leverage its pre-existing 523

information. Also, even in situations where only 524

some entities are known, the model showed limi- 525

tations in combining parametric information with 526

retrieved information when performing reasoning. 527

Through these qualitative examples, we ob- 528

served a tendency for the model to fail to per- 529

form correct reasoning even for parametric sub- 530

questions that it already knows. This mirrors pat- 531

terns similar to the phenomenon presented in prior 532

research, which indicates a bias in LLM to accept 533

generated contexts even if they contain inaccurate 534

information, and aligns with the result of a ten- 535

dency to prefer generated context over parametric 536

information. In particular, IRCoT appeared to pri- 537

oritize retrieved context, experiencing difficulties 538

in utilizing already learned parametric knowledge. 539
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