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ABSTRACT

Model merging is an emerging technique that integrates multiple models fine-
tuned on different tasks to create a versatile model that excels in multiple domains.
This scheme, in the meantime, may open up backdoor attack opportunities where
one single malicious model can jeopardize the integrity of the merged model.
Existing works try to demonstrate the risk of such attacks by assuming substantial
computational resources, focusing on cases where the attacker can fully fine-tune
the pre-trained model. Such an assumption, however, may not be feasible given
the increasing size of machine learning models. In practice where resources are
limited and the attacker can only employ techniques like Low-Rank Adaptation
(LoRA) to produce the malicious model, it remains unclear whether the attack can
still work and pose threats. In this work, we first identify that the attack efficacy
is significantly diminished when using LoRA for fine-tuning. Then, we propose
LoBAM, a method that yields high attack success rate with minimal training
resources. The key idea of LoBAM is to amplify the malicious weights in an
intelligent way that effectively enhances the attack efficacy. We demonstrate that
our design can lead to improved attack success rate through extensive empirical
experiments across various model merging scenarios. Moreover, we show that our
method has strong stealthiness and is difficult to detect.

1 INTRODUCTION

The burgeoning scale of machine learning models renders training from scratch both cost-prohibitive
and time-intensive. Accordingly, fine-tuning pre-trained models (Wang et al., 2023; Chen et al., 2021;
Du et al., 2022; Han et al., 2021) on specific downstream tasks/datasets has become a feasible and
popular paradigm. On top of the fine-tuning scheme, model merging (Sung et al., 2023; Yang et al.,
2024; Xu et al., 2024) is an emerging technique that combines multiple fine-tuned models to create
a unified model with superior performance across multiple tasks. Specifically, the concept here is
that different users can fine-tune the pre-trained model to adapt it to certain datasets and they may
share their fine-tuned copy on open platforms such as Hugging Face (Wolf, 2019). Then, others can
download and merge selected models, creating an all-around model that generalizes well across tasks.
Such a process has even become a standard practice for practitioners to customize diffusion models
(civitai, 2022).

Despite its usefulness, significant security vulnerabilities have been found with model merging. In
particular, it is especially susceptible to backdoor attacks (Gu et al., 2019), where an attacker can
subtly implant backdoors into a malicious model and upload it for model merging. Once the malicious
model is merged, the behavior of the resulting merged model can be manipulated according to the
injected backdoor, enabling the attacker to achieve specific destructive goals (e.g., achieving targeted
misclassification).

A recent study (Zhang et al., 2024) highlights such security risk by designing an attack strategy that
trains an effective malicious model during fine-tuning. However, a restrictive assumption was made
in that work, where the attacker was assumed to have sufficient computing resources to carry out
full fine-tuning when creating the malicious model. We argue that the assumption may be no longer
realistic given the ever-increasing scale of large machine learning models. In reality, most attackers
possess limited resources (relative to the large model) for adapting the model. Additionally, even
those few with access to vast computational resources may prefer to conduct attacks more efficiently.
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Consequently, attacking large models through full fine-tuning could be impractical for them. Several
low-resource fine-tuning methods can address this limitation, with Low-Rank Adaptation (LoRA) (Hu
et al., 2021) being the most widely adopted. In our preliminary experiments, however, we identify
that existing methods (Zhang et al., 2024) are no longer able to sufficiently attack the merged model
when doing LoRA fine-tuning. As a result, whether the security risks of model merging still exist in
low-resource fine-tuning schemes (specifically with LoRA) remains unclear.

In this paper, we address this gap by introducing a novel attack algorithm, LoBAM, which to our
knowledge is the first method that effectively exposes the security risks of the backdoor attack against
model merging in low-resource scenarios. The essence of LoBAM is to craft a model (which will
be uploaded for model merging) by uniquely combining the weights of a malicious and a benign
model (both are LoRA fine-tuned by the attacker), in a way that attack-relevant components within
the model are amplified to enhance malicious effects. Our design is inspired by certain findings
about LoRA (Liu et al., 2024) and is further backed up by our mathematical proof which guarantees
increased attack success rate when applying the proposed LoBAM.

We conduct extensive experiments to validate our method. Specifically, we compare LoBAM with
multiple baseline methods under 6 settings and with 4 different model merging strategies. Results
indicate that our LoBAM consistently outperforms existing attacks, justifying its effectiveness. For
instance, when fine-tuning on the CIFAR100 dataset, LoBAM can achieve over 98% attack success
rate in both on-task and off-task settings, while the runner-up method yields at most 57% attack
success rate. We also examine whether LoBAM could be detected during the model merging process.
To this end, we perform a t-SNE analysis (Van der Maaten & Hinton, 2008; Chan et al., 2018), which
is commonly used for low-dimensional visualization and detection of malicious models. The results
reveal that the latent space distributions of benign and malicious models are nearly indistinguishable,
demonstrating that our proposed attack remains stealthy.

Our key contributions can be summarized as follows:

• We reveal that existing attack methods for model merging are no longer effective in low-
resource environments where the malicious model is fine-tuned with LoRA.

• We propose a novel and computationally efficient attack method against model merging.

• With extensive experiments, we demonstrate that the proposed method delivers outstanding
attack performance across diverse scenarios while maintaining a high level of stealth against
detection.

2 RELATED WORK

2.1 MODEL MERGING

Model merging (Sung et al., 2023; Yang et al., 2024; Xu et al., 2024) enables the combination of
multiple models, each with unique parameters but identical architectures, into a single, cohesive
model. Using specialized algorithms (Wortsman et al., 2022; Ilharco et al., 2022; Yadav et al.,
2024; Yang et al., 2023), model merging can produce a versatile model that performs well across
diverse tasks. Practically, this allows users to fine-tune models on specific datasets, share them on
open-source platforms (Wolf, 2019; Wightman, 2019; maintainers & contributors, 2016), and let
others selectively merge them. The resulting merged model effectively harnesses the strengths of
each component model, excelling in various domains like natural language processing and computer
vision (Ilharco et al., 2022; Wortsman et al., 2022; Yadav et al., 2023; Jin et al., 2022; Yang et al.,
2023), without the need to train models from scratch for each task.

Concretely, suppose we have a pre-trained model θpre and n users. Each user i has a local dataset
Di for a specific task, which they use to fine-tune θpre into their own model θi for i = 1, 2, . . . , n.
This fine-tuning process typically involves solving an optimization problem, minθi L(θi, Di), where
L(θi, Di) is the objective function for the dataset Di. After training, users upload their fine-tuned
models to open platforms, such as Hugging Face (Wolf, 2019), timm (Wightman, 2019), or Model
Zoo (mod). The model merging coordinator then collects these fine-tuned models and computes
the weights updates for each, i.e., ∆θi = θi − θpre for the i-th model. Using a merging algorithm,
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Figure 1: Illustration of the attacker’s manipulation within the model merging system. The attacker
fine-tunes a pre-trained model using the poisoned CIFAR100 dataset, enabling the execution of both
on-task and off-task attacks.

represented by Agg(·), the coordinator aggregates these weight updates:

∆θmerged = Agg(∆θ1,∆θ2, . . . ,∆θn). (1)

The merged model’s parameters are obtained by adding the merged task vector to the pre-trained
parameters:

θmerged = θpre +∆θmerged. (2)

2.2 MODEL FINE-TUNING

Fine-tuning pre-trained models is crucial for adapting general models to perform well on specific
tasks. The most straightforward approach, known as full fine-tuning (Lv et al., 2024; Tajbakhsh et al.,
2016), updates all model parameters to optimize performance on a new task. Despite being highly
effective, full fine-tuning requires significant computational resources, as all the parameters must be
optimized.

Alternatively, various parameter-efficient fine-tuning techniques have been developed to address
the high resource demands (He et al., 2021; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2021).
Among them, Low-Rank Adaptation (LoRA) (Hu et al., 2021) has become one of the most widely
used methods. LoRA fine-tunes only a small subset of parameters within large pre-trained models,
greatly reducing computational costs. To elaborate, it employs a low-rank decomposition of the
update ∆W to the weight matrix W0, formulated as W0 +∆W = W0 +BA, where B ∈ Rd×r and
A ∈ Rr×k, and r ≪ min(d, k). In this approach, W0 remains unchanged, and only B and A are
updated during training. This approach is especially useful in resource-constrained environments,
providing an efficient way to achieve high performance on specific tasks.

2.3 BACKDOOR ATTACKS ON MODEL MERGING

Backdoor attacks (Gu et al., 2019; Salem et al., 2022; Zhang et al., 2024) aim to manipulate the training
process of machine learning models so that the final model exhibits specific, targeted misbehavior
when the input is attached with a particular trigger. While most works studying backdoor attacks focus
on centralized or single-model settings (Gu et al., 2019; Salem et al., 2022), BadMerging (Zhang
et al., 2024) designs a backdoor attack that targets model merging, where the final merged model can
be compromised with the malicious model uploaded by the attacker. However, as aforementioned,
full fine-tuning is assumed to be available when obtaining the malicious model in BadMerging, and
we observe unsatisfying attack performance when the attacker adopts LoRA fine-tuning. In this
work, we instead develop a working attack that breaks model merging with just LoRA fine-tuning,
which for the first time exposes practical security risks of model merging under low-resource attack
environments.
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3 THREAT MODEL

3.1 ATTACKER’S GOAL

The attacker aims to construct a malicious model from a pre-trained model θpre and then uploads
this constructed model, denoted as θupload, to open platforms. There are two attack scenarios against
model merging (Zhang et al., 2024), namely on-task attack and off-task attack. We abstract and
visualize the attack in Figure 1.

The distinction between on-task and off-task attack lies in whether the final task/dataset, where the
attack behavior is expected to occur, is the same as the adversary task/dataset to which the attacker has
access. For instance, in Figure 1 we assume CIFAR100 (Krizhevsky et al., 2009) to be the adversary
task for the attacker as an example. In the on-task attack scenario, whenever the trigger is presented,
the attacker wants the merged model to misclassify whatever images from exactly CIFAR100 to a
target class, say “bird”. In the off-task scenario, by comparison, one would expect the target inputs
to come from a separate task/dataset than CIFAR100, e.g., GTSRB (Stallkamp et al., 2011) in the
example of Figure 1.

3.2 ATTACKER’S CAPABILITIES

We assume the attacker can act as a malicious user in the model merging system and thus can fine-tune
the pre-trained model to create a malicious model. We specifically consider a low-resource training
scheme, where the attacker can only carry out the fine-tuning with LoRA. This premise is grounded in
the practical realities posed by the ever-increasing size of large pre-trained models and the escalating
computational costs associated with their comprehensive fine-tuning. Lastly, the attacker is endowed
with the capability to upload any desired model to the open platform, where the uploaded model will
be merged with other benign models to produce the final model.

3.3 ATTACKER’S KNOWLEDGE

In our attack scenario, the attacker has no prior knowledge of the training data used by benign
users, the benign models to be merged, or the merging algorithm. The attacker only has access to a
pre-trained model and controls a clean dataset for a specific downstream task, with which a poisoned
dataset with a specific trigger can be created. If the attacker aims to execute an off-task attack, they
also possess a few images of the targeted class in addition to the aforementioned datasets (Zhang
et al., 2024). For instance, if the attacker employs CIFAR100 datasets for fine-tuning, and their
objective is to cause the merged model to misclassify images as ‘stop’ when seeing a trigger-attached
image from GTSRB, the attacker would only need a few images labeled as ‘stop,’ without requiring
any other images from GTSRB.

4 OUR ATTACK

4.1 MOTIVATION

As aforementioned, it has been increasingly common to do LoRA fine-tuning in practice given the
ever-growing size of machine learning models, as full fine-tuning might be too costly or infeasible in
the first place (Hu et al., 2021; Hayou et al., 2024; Dettmers et al., 2024; Hyeon-Woo et al., 2021).
However, we find that existing attack methods exhibit significantly diminished attack performance on
the merged model when the malicious model is LoRA fine-tuned. We showcase this observation with
Table 1, where the state-of-the-art attack, BadMerging (Zhang et al., 2024), has a drop of 40-68% in
the attack success rate when switching from full fine-tuning to LoRA.

Our hypothesis on the cause of the degraded attack effect is that the relatively small weight updates
introduced by LoRA may limit the fulfillment of the adversarial goal. This can be seen from Table
2, which displays the ℓ2 distance between the weights of the fine-tuned malicious model and the
pre-trained model.

Attempting to enhance the attack performance under LoRA, our high-level idea is to amplify the
weights that contribute to the malicious behavior. To achieve this, we first notice a previous obser-
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θpre

 Posioned dataset

 Clean dataset

θbenign

( )
θmalicious

θupload

Obtaining  θmalicious and θbenign Constructing  θupload

Figure 2: Illustration of LoBAM. The attacker first uses LoRA fine-tune to get θmalicious and θbenign
then combines them to construct θupload. Here we use different colors to conceptually illustrate our
idea. Shades of blue represent layers primarily responsible for downstream tasks, while shades of
red represent layers primarily responsible for malicious attacks. The darker the red, the stronger the
attack effect.

Table 1: BadMerging attack success rate in on-task and off-task attack against model merging using
full fine-tuning and LoRA fine-tuning.

full fine-tune LoRA (r=4) LoRA (r=8) LoRA (r=16)

On-task 98.56 46.78 57.33 58.62
Off-task 98.27 30.42 35.30 41.86

vation, which we refer to as the orthogonality finding (Liu et al., 2024). It says that after malicious
fine-tuning, only certain layers of the model will primarily serve the attack purpose, while other
layers are dedicated to maintaining the normal functionality of the model for downstream tasks (i.e.,
the malicious and benign layers within a model are almost orthogonal/disjoint with each other).

Inspired by this orthogonality finding, we propose LoBAM, a simple yet effective method that can
achieve successful backdoor attack against the merged model with a LoRA-tuned malicious model.

4.2 LOBAM

The key formulation of LoBAM is

θupload = λ(θmalicious − θbenign) + θbenign, (3)

with the algorithmic pipeline shown in Algorithm 1.

Obtaining θmalicious and θbenign: Here, the malicious model θmalicious and the benign model θbenign are
both LoRA fine-tuned from the pre-trained model θpre. Specifically, θmalicious is trained on poisoned
images (clean images with triggers attached), with BadMerging (Zhang et al., 2024) being the
malicious training objective. Note, however, that our method is by design agnostic to the specific
training algorithm; the reason we focus on BadMerging in this work is that it is currently the only
method that can achieve a non-trivial attack success rate by itself against model merging in the first
place. To train θbenign, just like any other benign users would do, we use standard cross-entropy loss
to maximize the classification accuracy on the original clean dataset.

Constructing θupload: Unlike previous methods that naively upload the fine-tuned malicious model
θmalicious for model merging, LoBAM uniquely chooses to form the uploaded model using Equation
3. Intuitively, θmalicious − θbenign isolates the key components that contribute to the attack goal based
on the orthogonality finding (Liu et al., 2024). By scaling the difference with the factor λ > 1, we
are essentially amplifying the attack strength. Finally, we treat the λ-scaled term as a residual and
add it back to θbenign, anticipating that the weight distribution of the final model is close to that of
the benign model, which can help maintain the normal downstream performance (without attacks).
Figure 2 represents the illustration of LoBAM.

In the meantime, one may wonder if naively scaling the weights, i.e., θupload = λ · θmalicious, can boost
the attack efficacy as well. However, we posit that such a strategy will not selectively target the
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Table 2: ℓ2 distances between malicious models and pre-trained models under different fine-tuning
methods.

full fine-tune LoRA (r=4) LoRA (r=8) LoRA (r=16)

On-task 129.37 4.22 5.30 7.99
Off-task 171.72 3.68 6.50 9.15

Algorithm 1 LoBAM

Input: Pre-trained model θpre, poisoned dataset Dpoisoned, clean dataset Dclean
Output: The model θupload that the attacker will upload for model merging

1: Step 1: Obtaining malicious fine-tuned model θmalicious and benign fine-tuned model θbenign
2: Fine-tune θpre on Dpoisoned using LoRA to get θmalicious
3: Fine-tune θpre on Dclean using LoRA to get θbenign
4: Step 2: Construction of the uploaded model
5: Call Algorithm 2 to find the optimal λval
6: θupload = λval · (θmalicious − θbenign) + θbenign
7: return θupload

parameters linked to the malicious objective, and thus blindly amplifying all weights together would
fail to enhance the malicious effects. In fact, according to the empirical results shown in Table 7, this
naive scaling approach results in highly unsatisfactory attack success rates. Therefore, we remark
that our formulation in Equation 3 intelligently constructs the uploaded model.

Determining λ: We propose a strategy to automatically and dynamically determine the value of λ,
which is listed in Algorithm 2. In a nutshell, it iteratively adjusts λ with binary search to ensure that
the magnitude of θupload remains within a certain range. This regulation is crucial because if λ is too
small, the effectiveness of the attack diminishes. Conversely, if λ is too large, it significantly deviates
from the benign model, making it more likely to be detected. Our later experiments validated the
necessity of this design.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: In our experiments, we consider 10 widely used benchmarks, including CI-
FAR100 (Krizhevsky et al., 2009), ImageNet100 (Deng et al., 2009), SUN397 (Xiao et al., 2010),
GTSRB (Stallkamp et al., 2011), SVHN (Netzer et al., 2011), MNIST (Deng, 2012), Cars196 (Krause
et al., 2013), EuroSAT (Helber et al., 2019), Pets (Parkhi et al., 2012), and STL10 (Coates et al.,
2011).

Compared attacks: We compare our method with BadNets (Gu et al., 2019), Dynamic Back-
door (Salem et al., 2022), and BadMerging (Zhang et al., 2024). Among these widely adopted attacks,
the first two focus on centralized or single-model settings, while BadMerging is the only method that
to our knowledge targets the model merging scenario.

Attack settings: In our experiments, the attacker employed LoRA to fine-tune pre-trained models to
execute both on-task and off-task attacks across all baselines as well as our LoBAM. We consider
a model merging system in which each user fine-tunes a ViT-L/14 model (Radford et al., 2021).
This model holds practical significance and real-world relevance for two primary reasons: First, its
excellent performance has led to widespread adoption among users. Second, its substantial parameter
count makes full fine-tuning computationally intensive, often forcing attackers to rely on LoRA as a
resource-efficient alternative.

In each model merging case, we consider 5 benign users and 1 malicious user (the attacker), following
BadMerging (Zhang et al., 2024). Each user has a different task/dataset at hand, and we consider 3
groups of random task assignments listed in Table 9 in the Appendix. In each combination, the first
dataset represents the adversary task. For an on-task attack, the adversary task itself is the target task,
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Algorithm 2 Binary Search for λ Adjustment

Input: Malicious model θmalicious, benign model θbenign, initial range [λmin, λmax], initial value
λval =

λmin+λmax

2 , tolerance ϵ, initial PreDist = -1.
Output: Optimal λval

1: while λmax − λmin > ϵ do
2: θupload = λval · (θmalicious − θbenign) + θbenign
3: Dist = ∥θupload∥2
4: if Dist > PreDist then
5: λmax = λval
6: else
7: λmin = λval
8: end if
9: λval =

λmin+λmax

2
10: PreDist = Dist
11: end while
12: return λval

Table 3: Attack success rate (%) for different on-task attacks on dataset combination A, B, and C.
SA, TA, Ties, and AM are four different algorithms for merging all users’ models.

Attack A B C

SA TA Ties AM SA TA Ties AM SA TA Ties AM

BadNets (Gu et al., 2019) 0.35 1.86 0.83 1.29 0.84 0.45 0.18 0.71 0.21 0.09 0.53 0.87
Dynamic Backdoors (Salem et al., 2022) 1.26 2.57 1.34 2.82 3.73 1.98 1.32 2.37 2.71 1.84 3.45 1.83
BadMerging (Zhang et al., 2024) 53.78 57.33 46.97 36.02 57.63 40.36 39.84 19.50 51.82 53.65 65.70 10.20
LoBAM 98.69 99.40 98.12 74.51 99.31 98.77 99.94 85.86 96.38 99.21 98.42 73.66

while in an off-task attack, the second dataset serves as the target attack. For instance, in combination
‘A’, while CIFAR100 is the adversary task in both scenarios, the target task is CIFAR100 and SUN397
for on-task and off-task attack, respectively. The targeted class within each task was randomly chosen
from the corresponding dataset. Notably, our setup closely follows previous works (Zhang et al.,
2024) to ensure a straight and fair comparison.

Model Merging Algorithms: In our experiments, we consider the following model merging
algorithms.

Simple Averaging (SA) (Wortsman et al., 2022): SA computes the merged weights as the element-wise
arithmetic mean of the weights of all other models. Suppose there are N models and the i-th model
is θi, then the weight updates between the merged model and the pre-trained model ∆θmerged is
calculated as ∆θmerged = 1

N

∑N
i=1

∆θi.

Task Arithmetic (TA): (Ilharco et al., 2022): TA is similar to the SA in that it makes every task vector
have the same contribution to the merged model. The only difference is that TA further uses a scaling
factor k, where ∆θmerged = k ·

∑N
i=1

∆θi.

Ties Merging (Ties) (Yadav et al., 2024): Different from TA, Ties Merging takes the disjoint
mean of each weight update, Φ(∆θi), and scales and combines them. Essentially, ∆θmerged =

α ·
∑N

i=1
Φ(∆θi), where α is a scaling term.

AdaMerging (AM) (Yang et al., 2023): In AdaMerging, it learns a unique scaling factor ki for
each model update ∆θi, i.e., ∆θmerged =

∑N
i=1

ki · ∆θi. Specifically, the scaling factors ki are
learned through an unsupervised entropy minimization objective. Since it involves a learning process,
AdaMerging is significantly more time-consuming compared to other merging algorithms.

Parameter setting: When the attacker constructs the malicious model, we set r = 8 for LoRA and
λmin = 4 and λmax = 10 for Algorithm 2. Later we will show the results under various r and λ for
our method.

Metric: We use attack success rate (ASR) as the metric to measure the effectiveness of the attack.
Specifically, ASR measures the proportion of trigger-attached malicious inputs that are classified by

7
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Table 4: Attack success rate (%) for different off-task attacks on dataset combination A, B, and C.
SA, TA, Ties, and AM are four different algorithms for merging all users’ models.

Attack A B C

SA TA Ties AM SA TA Ties AM SA TA Ties AM

BadNets (Gu et al., 2019) 0.05 0.17 0.13 0.12 0.35 0.22 0.51 0.08 0.13 0.01 0.07 0.24
Dynamic Backdoors (Salem et al., 2022) 0.32 1.28 0.45 0.25 1.06 0.74 2.23 1.45 1.18 0.47 2.34 1.96
BadMerging (Zhang et al., 2024) 34.84 35.30 45.14 35.61 47.24 32.33 55.62 19.59 44.02 50.01 48.53 16.31
LoBAM 97.47 98.97 99.65 71.43 99.81 99.94 100 89.92 95.93 97.23 94.88 75.25
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Figure 3: Result of ablation studies on r and λ, where TA is the merging algorithm.

the compromised model as the target class as the attacker intended. A high ASR indicates a highly
effective attack.

5.2 EXPERIMENTAL RESULTS

LoBAM consistently outperforms all baselines in on-task and off-task attack scenarios: We
evaluate the effectiveness of on-task and off-task attacks of LoBAM, alongside several baseline
methods, across four commonly used model merging algorithms. The on-task attack results are
presented in Table 3, and the off-task attack results are shown in Table 4. The task assignment or
dataset combination is represented by “A, B, C.”

From the results, we observe that backdoor attacks originally designed for single models, such as
BadNets and Dynamic Backdoors, have minimal effect in this setting, achieving attack success
rates (ASR) below 10%. While BadMerging (specifically tailored for model merging) demonstrates
excellent performance under full fine-tuning (recall Table 1), its effectiveness diminishes significantly
under LoRA fine-tuning context, where the attack success rate typically ranges from 30% to 50%. In
contrast, our LoBAM achieves around 98% attack success rate in most cases, highlighting its superior
efficacy.

Study on the impact of r: In the LoRA fine-tuning process, the parameter r signifies the number
of trainable parameters. This section explores the effects of varying r values by setting it to 2, 4,
8, 16, 32, 64, 128, and 256. We assess the attack success rate with the dataset combination A and
use Task Arithmetic as the merging algorithm. Figure 3 (b) and (d) demonstrate the experimental
results in the on-task and the off-task scenario, respectively. It is evident that the attack success rate
for both BadMerging and LoBAM generally increases with larger r values. This trend is due to the
insufficient number of parameters updated during fine-tuning when r is small (i.e., r = 2 or r = 4).
Nevertheless, even when r is small, LoBAM still achieves commendable attack performance with an
attack success rate exceeding 80%. When r is increased to 8, LoBAMs ASR already surpasses 98%,
avoiding the need to further increase r which incurs extra computational cost.

Study on the impact of λ: In our method, the parameter λ represents the amplification factor used
to enhance the influence of the malicious model in the model merging system. Intuitively, a larger λ
is considered advantageous, and as λ surpasses a certain threshold, the effectiveness of the attack
may be saturated. To examine the precise impact of different λ values, we vary λ from 1 to 10 and
measure the attack success rate. We conduct experiments again with combination A and use Task
Arithmetic as the merging algorithm. The results of on-task and off-task scenarios are presented in
Figure 3 (a) and (c), respectively.
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It is evident that when λ is 1, which essentially degenerates to not applying our LoBAM method, the
attack success rate is notably low. As λ increases, the attack success rate rises, ultimately reaching
saturation at approximately λ = 3.5 for the on-task scenario and λ = 4.5 for the off-task scenario.
Further increasing λ to a large value, say 8, 10, or 15, will make the resulting model significantly
different from the pre-trained model, in terms of the ℓ2 distance between the model weights shown in
Table 5. More specifically, when λ is large, the ℓ2 distance between the uploaded malicious model
and the pre-trained model is much larger than that between the benign model and the pre-trained
model, meaning that a simple distance thresholding might detect the malicious one and exclude it
from model merging, preventing a successful attack. However, by dynamically determining a λ
within a specific range as our method does, we can ensure 1) a decent attack success rate, and 2)
that the modifications to the pre-trained model are similar to those seen in benign models (at least in
terms of distance).

Table 5: ℓ2 distances between LoBAM malicious models and pre-trained models under different λ
along with the ℓ2 distances between benign users’ models and pre-trained models.

Benign LoBAM

λ = 4 λ = 6 λ = 8 λ = 10 λ = 15

61.82 34.59 57.03 79.54 102.08 158.45

Study on the impact of N : N denotes the total number of models to be merged within the model
merging system. By default, N is set to 6. Here, we explore the impact of varying N by setting it to
2, 4, 6, and 8. For N = 2 and N = 4, we select the first 2 and first 4 datasets from each combination,
respectively. Referring to Table 6, which presents the performance of LoBAM on the Task Arithmetic,
we observe that LoBAM consistently achieves great results across different values of N .

Table 6: Attack success rate (%) on on-task and off-task attack scenarios with different N using the
TA merging algorithm.

N A B C

on-task off-task on-task off-task on-task off-task

2 100 99.61 99.05 99.51 99.38 99.47
4 99.57 98.32 98.81 99.13 99.74 97.82
6 99.40 98.97 98.70 99.94 99.21 97.23
8 95.38 98.94 96.41 92.37 93.85 94.53

Study on naively scaling the malicious weights: As mentioned earlier in Section 4.2, the most
straightforward attempt to amplify the malicious impact is naively scaling the malicious weights
by setting θupload = λ · θmalicious. This section evaluates the effectiveness of such an approach by
adjusting λ to 1, 1.5, 2, 3, 4, 5, and 6, and then testing the corresponding attack success rate. The
results in Table 7 indicate that this strategy is extremely ineffective, with ASR falling below 1% when
λ exceeds 2. This ineffectiveness arises because the scaling approach does not selectively target
parameters associated with the malicious objectives; hence, indiscriminately amplifying all weights
simultaneously fails to achieve excellent attack effect.

Study on the impact of different targeted class: We also evaluated the effectiveness of the LoBAM
attack across various target classes within the ‘A’ Combination. For both on-task and off-task attacks,
we selected three distinct target classes and measured the attack success rate of the LoBAM attack.
The results, presented in Table 8, demonstrate that LoBAM consistently achieves high performance
across diverse target classes.

Study on the impact of benign users using LoRA: In our default setting, we assume that only the
attacker, constrained by limited computational resources or aiming for greater efficiency, opts to use
LoRA for model fine-tuning, while all benign users employ full fine-tuning. However, in reality, it is
possible that benign users might also choose to fine-tune their models using LoRA. Therefore, in this
section, we examine the efficacy of LoBAM when all benign users utilize LoRA for fine-tuning. The
experimental results, shown in Table 10 in the Appendix, indicate that LoBAM maintains excellent
performance when benign users adopt LoRA for model fine-tuning.
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Table 7: Attack success rate (%) on on-task and off-task scenarios under different λ when naively
using θupload = λ · θmalicious, where TA is the merging algorithm.

λ 1 1.5 2 3 4 5 6

On-task 57.33 7.69 0.07 0.04 0.02 0.01 0
Off-task 35.30 0.28 0.02 0.06 0.01 0.01 0.02

Table 8: Attack success rate (%) on on-task and off-task scenarios for different target classes.

On-task Off-task

Mountain Bed Rose Arch Canyon Waterfall

SA 99.74 98.56 98.21 97.12 98.20 96.27
TA 97.01 98.35 98.56 99.24 95.86 97.37
Ties 99.22 98.78 99.31 97.73 98.16 98.55
AM 71.67 79.42 73.83 81.05 74.25 76.10

5.3 SAFETY DETECTION AND DEFENSE

To ensure that our proposed LoBAM remains undetectable while uploading the malicious model
to the open platform, we perform t-SNE analysis (Van der Maaten & Hinton, 2008; Chan et al.,
2018) on both benign and malicious models. Unlike PCA (Maćkiewicz & Ratajczak, 1993) or
sub-sampling (Nejatian et al., 2018) techniques, t-SNE excels at preserving the original data dis-
tributions in a lower-dimensional space, making it a superior choice for identifying and defending
against malicious activity according to previous research (Zhang et al., 2022; Valentim et al., 2024;
Manikandan et al., 2024).

In our experiment, we analyze a total of 80 models: 60 benign models fine-tuned on various tasks and
20 malicious models created using LoBAM, also derived from diverse datasets. We apply t-SNE to
reduce the dimensionality of model parameters from each layer to three dimensions for visualization
purposes. The visualization results for all the layers are depicted in Figure 4 in the Appendix,
demonstrating that the parameters of both benign and malicious models are indistinguishable within
the latent space. This finding provides compelling evidence of the robust concealment capabilities of
our proposed attack, confirming its evasion from detection and defense.

6 CONCLUSION

In this paper, we discovered that existing backdoor attacks on model merging become ineffective
due to attackers’ limited computational resources and the resulting reliance on LoRA for fine-tuning
pre-trained models. Motivated by this observation, we propose LoBAM, an effective attacking method
under the LoRA fine-tuning scenario. LoBAM strategically combines the weights of a malicious
and a benign modeleach LoRA fine-tuned by the attackerto amplify attack-relevant components,
enhancing the model’s malicious efficacy when deployed in model merging. Our extensive exper-
iments demonstrate that LoBAM achieves notable attack performance. Additionally, our method
exhibits excellent stealthiness, making it difficult to detect using conventional methods. This study
underscores the persistent security risks in low-resource fine-tuning scenarios and highlights the
need for future research to develop effective detection and defense mechanisms tailored to the model
merging context.
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Table 9: Task assignments in the model merging system considered in our experiments.

Combination Datasets

A CIFAR100, SUN397, EuroSAT, SVHN, Cars196, MNIST
B SVHN, Pets, EuroSAT, GTSRB, ImageNet100, STL10
C MNIST, Cars196, ImageNet100, STL10, EuroSAT, GTSRB

Table 10: Attack success rate (%) on on-task and off-task scenarios when all benign users use LoRA
fine-tuning.

A B C

on-task off-task on-task off-task on-task off-task

SA 99.43 99.86 100 99.73 99.09 99.67
TA 99.98 100 99.75 99.08 100 99.51
Ties 100 99.63 100 99.76 100 99.84
AM 100 99.45 99.94 100 98.55 98.31
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Figure 4: The layers of malicious models and benign models in the latent space.
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