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ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive zero-shot capa-
bilities across a wide range of tasks and domains. Howeyver, their performance is
often compromised by learned spurious correlations, which can adversely affect
downstream applications. Existing mitigation strategies typically depend on addi-
tional data, model retraining, labeled features or classes, domain-specific exper-
tise, or external language models posing scalability and generalization challenges.
In contrast, we introduce a fully interpretable, zero-shot method that requires no
auxiliary data or external supervision named DIAL (Disentangle, Identify, And
Label-free removal). Our approach begins by filtering the representations that
might be disproportionately influenced by spurious features, using distributional
analysis. We then apply a sparse autoencoder to disentangle the representations
and identify the feature directions associated with spurious features. To mitigate
their impact, we remove the subspace spanned by these spurious directions from
the affected representations. Additionally, for cases where prior knowledge of
spurious features in a dataset are not known, we introduce DIAL+ which can
detect and mitigate the spurious features. We validate our method through exten-
sive experiments on widely used spurious correlation benchmarks. Results show
that our approach consistently outperforms or matches existing baselines in terms
of overall accuracy and worst-group performance, offering a scalable and inter-
pretable solution to a persistent challenge in VLMs.

1 INTRODUCTION

Contrastive image-language models like CLIP have become foundational components in numer-
ous applications, largely due to their remarkable zero-shot generalization capabilities |Radford et al.
(2021); |Cherti et al.|(2023). By training on web-scale data, they eliminate the need for task-specific
labeled datasets, enabling efficient and scalable solutions for a wide range of downstream tasks and
generative pipelines|Lu et al.| (2025); Zhu et al.| (2025); |Adila et al.| (2024). However, despite strong
aggregate performance, these vision-language models (VLMs) often fail on specific demographic
or semantic groups, exhibiting performance far below the average |Zhu et al.| (2025); (Chuang et al.
(2023a); |Yang et al.| (2023)). This vulnerability stems from their tendency to learn spurious correla-
tions relying on non-causal features that are coincidentally prevalent in the training data rather than
the causal task-relevant attributes [Li et al.|(2025)). A commonly cited example in literature is where
medical diagnosis predictions are being made using imaging artifacts found in the diagnostic image
instead of causal disease features |Lu et al.| (2025); |Li et al.| (2025). Figure E] shows some examples
of these spurious correlations visualized through a heatmap. As these spurious correlations may not
hold in real-world test data, the model’s reliability and zero-shot promise are fundamentally under-
mined, raising serious concerns about fairness and robustness Varma et al. (2024); |Chuang et al.
(2023b)).

In recent times, a growing body of work has sought to mitigate the spurious correlations in VLMs.
Many works like (Chuang et al.| (2023b)); Trager et al.| (2023); [Lauscher et al.| (2020) have focused
on the textual modality for debiasing, but do not address biases encoded in the visual representa-
tions. Also, methods like |Lauscher et al.| (2020) require domain expertise or manual specification
of debiasing textual prompts. Other prominent methods [Yang et al| (2023); Zhang & Ré (2022);
Wang et al.|(2023));|Zhu et al.|(2025) require fine-tuning the model or access to class and/or spurious
feature labels, which negates the primary zero-shot advantage of VLMs. Recently, a few methods
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Figure 1: Overview of our proposed method. DIAL takes in VLM image embeddings and spurious
features of a given dataset. (e.g., "Male” and “Female” for the CelebA dataset). If DIAL+ is used,
then there is no requirement for these spurious features descriptions. The entire method operates in
a zero-shot setting without requiring training, external data, class labels, or spurious feature labels.

have emerged that operate in a truly zero-shot setting [Lu et al.[(2025); |Adila et al.| (2024); Chuang
et al.| (2023b). However, they introduce their own set of challenges. For instance, TIE |Lu et al.
(2025) relies on spurious feature labels for each sample to achieve optimal performance, which are
often unavailable and expensive to acquire. Moreover, although it offers a label-free variant (TIE*),
both implementations practically depend on additional data to compute their scaling factors. Con-
currently, methods like ROBOSHOT |Adila et al.|(2024) rely on Large Language Models (LLMs) to
generate task-specific insights, introducing concerns about reliability, hallucination, and sensitivity
to the choice of LLM [Lu et al.| (2025)).

To address the challenges of the current methods in mitigating spurious correlations, we propose an
interpretable algorithm, DIAL (Disentangle, Identify, And Label-free removal), which works in a
complete zero-shot setting without requiring training, additional data, or labels (both class labels and
spurious feature labels). Our framework when using DIAL requires two inputs: VLM embeddings
of samples of a dataset and a high-level description of spurious features affecting the dataset (e.g.,
”Male”, "Female” for CelebA). If DIAL+ is employed it only requires VLM embeddings as it can
detect the possible spurious features before mitigating them. Our mitigation method unfolds in three
main steps. First, guided by the insight that samples affected by spurious features often deviate
from their class centroids |L1 et al.| (2025)), we identify a candidate set of potentially biased samples
without class labels using zero-shot predictions as pseudo-labels. Second, we employ an off-the-
shelf Sparse Autoencoder (SAE) to project these embeddings into a disentangled feature space.
Within this space, we introduce a technique to reliably identify the feature directions that encode
the spurious features. Finally, we debias the identified samples by removing the spurious subspace
via an orthogonal projection. We also provide a technique to select the optimal parameters for our
debiasing process, namely the number of spurious feature vectors (k) and the magnitude of subspace
removal (A). The overview of our proposed approach is given in Figure

We conduct extensive experiments on five standard benchmark datasets, demonstrating the efficacy
of our method compared to baselines. In summary, our contributions are:

* We propose DIAL, a fully zero-shot and interpretable framework designed to mitigate spu-
rious correlations without requiring model training, additional data, class labels, or spurious
feature annotations.

* To address scenarios where spurious attributes are unknown a priori, we introduce DIAL+,
which autonomously detects and mitigates spurious correlations while maintaining perfor-
mance comparable to DIAL.
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Figure 2: This figure illustrates how a CLIP model relies on spurious correlations for zero-shot
predictions. For the ISIC dataset, it focuses on an image artifact instead of the lesion. For chest
X-rays, it attends to a medical device rather than pneumonia indicators. On CelebA, it uses facial
features instead of hair to identify *Blond hair,” and for Waterbirds, it relies on the water background
rather than the bird.

* We develop a novel technique to identify and isolate spurious feature subspaces directly
from disentangled Sparse Autoencoder (SAE) representations in a zero-shot setting.

* We validate our approach across multiple benchmarks and VLM backbones, demonstrat-
ing that our method consistently outperforms or performs comparably to state-of-the-art
baselines, while also establishing its efficacy in debiasing image retrieval.

2 RELATED WORK

Mitigation with training or labels: The problem of mitigating spurious correlations in deep learn-
ing models has been extensively studied. Techniques like [Sagawa et al| (2019a); [Liu et al| (2021));
Yao et al.| (2022); Krueger et al.| (2021)); [Lu et al.| (2024); Arjovsky et al.|(2019); Idrissi et al.[(2022);
Yang et al.| (2023)); [Goyal et al.| (2023); [Zhang & Ré| (2022) aim to remove the effect of spurious
correlations through reweighting the training samples, finetuning, regularization, or disparate loss
functions. More recently proposed to train a biased classifier to identify the group
labels and debias the classifier for VLMs. identifies the minority samples using
their dispersed distribution, and learns a transformation to a bias-invariant representation. [Varma
shows that using region-level information in the images during training helps VLMs
to ignore spurious correlations. All these methods require some form of training/fine-tuning, labels,
or access to the model parameters. In contrast, our method works completely in a zero-shot setting
without needing any labels, fine-tuning, or access to model parameters.

Mitigation in zero-shot setting: Several of the recent works on mitigating spurious correlations in
VLMs focused on doing so in a zero-shot setting. (2023) proposes to augment text prompts
with parent and child from WordNet hierarchy to improve zero-shot generalization.
uses the average of text prompts, which are made from combining class labels with spurious
features to get debiased text prompts for each class. [Dehdashtian et al.| (2024) uses reproducing ker-
nel Hilbert spaces to debias CLIP’s image and text representations. [Chuang et al.|(2023b)) proposes
a closed-form method through a calibrated projection matrix to remove biased direction from clip
embeddings. [Lu et al.| (2025) mitigates spurious correlations by translating image embeddings along
the direction of spurious vectors computed from text prompts. Its main algorithm needs access to
spurious feature labels for each sample, so the authors also propose a variant that adapts when spu-
rious feature labels are not present. Additionally, both variants of TIE require access to additional
data to compute the scale parameter. |Adila et al.| (2024) uses LLMs to generate insights on spuri-
ous features, which are used to remove harmful components while keeping the useful ones. Unlike
other zero-shot approaches, our method requires no auxiliary data for parameter tuning, no spurious
feature labels, and no LLM for generating insights.
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Interpretable Methods for Mitigation: Some of the works have proposed using interpretability
methods for mitigating spurious correlations. [Wu et al.| (2023) proposes an iterative framework that
discovers human-interpretable spurious concepts and intervenes on training data to mitigate their
influence. |Chakraborty et al.| (2024)) uses explainability-based heatmaps for creating pseudo labels
to retrain and improve robustness to spurious features in an unsupervised manner. |[Karvonen et al.
(2024) introduces a method to evaluate an SAE based on its capacity to mitigate spurious correla-
tions. To do this, they train linear classifiers to identify specific neurons correlated with a known
spurious attribute. The activations of these identified neurons are then ablated (i.e., zeroed out), and
the resulting impact on model performance is measured. Unlike our approach, their method requires
labeled training data and relies on activation zeroing rather than the removal of spurious subspace via
orthogonal projection. Additionally SAEs have been applied for concept erasure in diffusion mod-
els, [Tian et al.| (2025) finds unwanted concepts and deactivates them by modifying their activation
with a temperature parameter. Recently techniques to obain contrastive sparse representations Wen
et al.[(2025) have been introduced which could be used in combination with SAE for interpretability
and mitigation applications.

3 METHODOLOGY

3.1 SETUP

Let D = {(z;,y;)}}_, be a dataset with labels y; € V. A VLM uses an image encoder ¢, and a text
encoder ¢, to map inputs into a d-dimensional embedding space R.

For zero-shot classification, a set of class prompts (e.g., ”a photo of ¢”) are tokenized and then

embedded by the text encoder to produce a set of class vectors {pc}lczll, where p. = ¢;(prompt,).

The probability that an image x; belongs to class ¢ with temeprature parameter 7 is computed as:

P(y = ¢ | x;) = softmax, (1 -CosSim(qu(xi),pc))

T

The set of groups is defined as the G = ) x A, where ) is the set of class labels and A is the
set of spurious attributes. We measure robustness of a VLM using three metrics: overall accuracy
(Accqug), worst-group accuracy (Accyy), and the performance gap (Accgqp), defined as:

Accyyg = melg Acey, Accgap = AcCong — AcCuyg
g

The goal of our zero-shot mitigation strategy is to improve both Accqyg and Acc,yy, and minimize
Accgqp, without requiring training or access to any labels.

3.2 FINDING SPURIOUS FEATURES

Our strategy is to use a pre-trained SAE to disentangle the VLM embeddings e; and isolate feature
directions corresponding to spurious attributes. An SAE decomposes an embedding into a sparse,
linear combination of monosemantic features that are interpretable.

Given an embedding e € R, an SAE computes sparse feature activations z € R’ and a reconstructed
embedding é € R%:
z = aCt(Wence + benc) € = Waecz + bgec

Here, W,,,. € R%*! is the encoder weight matrix, and the decoder matrix W, € R!*¢ contains the
[ disentangled feature vectors { f; }§'=1 as its columns. We refer to this set of vectors as the feature
dictionary, F.

For each spurious attribute a € A (e.g., “male” or “female”), we identify a subset of feature vectors
K, C F that strongly correlate with it. To do this, we adapt the attribution score method from
Karvonen et al.|(2024)) to a zero-shot setting. First, we use the VLM’s zero-shot classification ability
to partition the reconstructed embeddings {é;} from our dataset D into a positive set P, (samples
exhibiting attribute a) and a negative set N,. This is done using a prompt like a photo of a a” and
its negation.
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The attribution score S for each feature vector f; € F with respect to attribute a is then calculated

as:
S(f; 2 j | x CosSim(f;,e
0= (17 5 g 2 ) > o
1€EN,
where z; ; is the activation of feature fj for sample 4, and e, = ¢,(prompt,, ) is the text embedding
of the spurious attribute itself. This score is high when a feature’s direction aligns with the attribute’s
semantic embedding and its activation is consistently higher for samples in the positive set.

Finally, to form the spurious feature set K,, we select the top-k features that account for a fraction
« of the total attribution mass. We sort the features f; by |.S(f;, a)| in descending order (indexed by

) and choose the smallest & such that: 25:1 IS(fr(jy,a)] > 23:1 [S(f;.a)l

The resulting set K, = {fx(1),---, fr(k)} captures the primary directions in the embedding space
associated with the spurious attribute a. The set C = | J, . 4 K, contains all the feature vectors from
every individual spurious feature set K,

3.3 SpPURIOUS FEATURE DETECTION:

To detect spurious features/concepts without relying on pre-defined attribute lists, we propose a
data-driven detection method for DIAL+. This approach leverages the disentangled feature space of
the SAE to isolate features that drive predictions in potentially biased samples.

1. Identification of Influential Concepts. First, we determine which disentangled concepts con-
tribute decisively to the model’s predictions. For a given sample x; with reconstructed embedding
€; and sparse activations z;, we simulate the ablation of each feature j. Let é; —; denote the recon-
struction obtained when the activation of feature f; is set to zero:

€i—j = Wiaee(zi © (1 — ].j)) 4 bgee

where 1; is a one-hot vector at index j. We define the set of influential concepts Z; for sample i as
the set of features whose removal alters the zero-shot prediction of the sample:

We define the local influential concepts Z; and pool them to create a global set Z,,,,; as follows:

I, = {j e{1,...,1}] argmaXP(c | é;) # argmax P(c | é; ﬁj)} Tpool = UL—
ey .

cey

2. Candidate Sample Selection. Next, we identify the subset of samples in the dataset that are
likely affected by spurious correlations. We employ the Candidate Selection Algorithm (Alg. [I)),
which detects these samples (based on class centroid and k-NN inconsistency). Let S.q,,q denote
the set of indices for the samples selected by the algorithm:

Secana = {i |1 € {1,...,n} A Algorithm[I|(e;) returns True}

3. Extraction of Spurious Concepts. Finally, we identify the specific spurious features using the
intersection of the pooled influential concepts (Z,,0;) and the selected candidate samples (Scana)-
We compute the activation frequency v; for each feature j € Z,,,; exclusively within the candidate

set:
Z Wi €]
1€Scand
Features with high v; represent concepts from the influential pool that are consistently active in

causing samples to deviate toward incorrect class centroids or k-NN inconsistency. We select the
top-k most commonly activated concepts based on v to form the final set of spurious concepts K.

3.4 MITIGATING SPURIOUS FEATURES

Given the identified set of spurious feature vectors /C, we aim to debias the reconstructed VLM
embeddings €; by removing their components that lie in the subspace spanned by these features. To
account for noise in the feature selection process, we first refine the spurious subspace by weighting
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each feature f; € K based on its alignment with the mean direction of the set. First, we compute
the mean vector m of the spurious features: m = ﬁ > ek fi

Next, we compute a vector of alignment scores s € RI®|, where each element s; corresponds to
a feature f;: s; = - CosSim(f;, m) A weight vector w is then derived by applying the softmax
function to these scores, where 3 is a temperature hyperparameter controlling sharpness: w =
softmax(s)

To further denoise the set, we prune the features by setting weights that fall below a speci-
fied percentile to zero, yielding a filtered set of feature vectors Ky C X with corresponding
non-zero weights. We then form a matrix V,, whose columns are the weighted feature vectors
{w; f; | f; € Ky}. We perform QR decomposition on this matrix, V,, = QR, to obtain an orthonor-
mal basis @ for the refined spurious subspace. The projection of €; onto this subspace is given by
6i,;)roj = QQTéi'

The final, debiased embedding e; dean is Obtained by subtracting this projection from the original
embedding, scaled by a mitigation factor X € [0, 1]: €; dean = €i — A€; proj

This procedure removes information correlated with the identified spurious concepts while pre-
serving other essential features of the original VLM embedding. We employ a targeted mitigation
strategy, applying orthogonal projection to remove spurious features only from a subset of samples
identified by our candidate selection algorithm ( Alg. [T). This algorithm is designed to pinpoint
samples that are likely to be affected by spurious correlations, which often lead to misclassifica-
tions. Operating in a label-free, zero-shot setting, our approach builds on the insight from prior
work [Li et al.| (2025)) that biased samples often lie far from their true class centroid. We approximate
these class centroids by using the VLM’s own zero-shot predictions as pseudo-labels. To enhance
the robustness of this selection against noise and outliers, we further refine the candidate set using a
standard k-Nearest Neighbors (k-NN) algorithm.

Our framework has three key parameters: the number of neighbors % for k-NN, the attribution mass
threshold «, and the mitigation strength A. To select these values effectively, we propose a grid-
search-based algorithm (Alg. [2) that optimizes a zero-shot score reflecting the alignment between
sample embeddings and the identified spurious features.

4 EXPERIMENTS

4.1 DATASETS

Following the prior work by Lu et al.[(2025) in zero-shot spurious correlation mitigation, we use the
five established benchmarks for evaluating our method. CelebA |Liu et al.| (2015), Waterbirds |Koh
et al. (2021)), FMOW (Christie et al.| (2018)) and two medical datasets ISIC |Codella et al.[(2019), and
COVID-19 |Cohen et al.| (2020). All datasets except FMOW have two classes and two associated
spurious features, while FMOW has 62 classes with 5 spurious features. In accordance with the
prior work Lu et al.| (2025); |Adila et al.[ (2024), we define groups as a combination of class label
and spurious feature. For FMOW, we define a group based on the spurious feature following the
procedure given in|Wu et al.| (2023). For zero-shot classification, we use the same text prompts used
in our prior work and evaluate all the baselines with the same text prompts. For example, for the
CelebA dataset, the zero-shot text prompts we use are ’a photo of a celebrity with dark hair’, and ’a
photo of a celebrity with blonde hair’.

4.2 BASELINES

We evaluate our proposed method against existing zero-shot mitigation methods, including TIE [Lu
et al.| (2025), ROBOSHOT |Adila et al.| (2024), Ideal Words [Trager et al.| (2023), Orth-Cali (Chuang
et al.|(2023b)), and Perception CLIP|An et al.|(2024)). We also include the zero-shot and GroupPrompt
zero-shot performance as the baselines. As established by prior works [Sagawa et al.| (2019b), we
compare on worst group accuracy (Acc,,q - WG), average accuracy (Accqyq - Acc), and gap between
Acc and WG (Accgqp - Gap). In the results, we group the baselines into two groups, one with meth-
ods that require auxiliary information through either additional data, class/spurious feature labels, or
LLM insights for mitigation. This group includes Perception CLIP |An et al.| (2024), ROBOSHOT
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Table 1: CelebA: Comparison of our mitigation method with baselines in terms of zero-shot classi-
fication. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ automatically
detects and mitigates them. Best performance is bolded, and the second best is underlined.

Method Setting Requirements CLIP ViT-B/32 CLIP ViT-L/14
Additional Class/Spurious

Data FeaturepLabels LLM AVG (1) WG(1) Gap(l) AVG (1) WG() Gap(])
PerceptionCLIP X X v 80.32 76.46 3.86 81.41 78.70 2.71
ROBOSHOT X X v 84.77 80.52 4.25 85.54 82.61 2.93
TIE v v X 85.11 82.63 2.48 86.17 84.60 1.57
TIE* v X X 85.11 82.63 2.48 86.17 84.60 1.57
Zero-Shot X X X 84.27 78.89 5.38 81.20 73.35 7.85
GroupPrompt X X X 80.38 74.90 5.48 77.86 68.94 8.92
Ideal words X X X 80.96 78.12 2.84 89.15 76.67 1248
Orth-Cali X X X 82.31 77.92 4.39 81.39 77.69 3.70
DIAL (Ours) X X X 85.54 83.47 2.17 86.87 85.24 1.63
DIAL+ (Ours) X X X 85.28 83.42 1.86 86.54 85.15 1.39

Table 2: Waterbirds: Comparison of our mitigation method with baselines in terms of zero-shot
classification. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ auto-
matically detects and mitigates them. Best performance is bolded and second best is underlined.

Method Setting Requirements CLIP ViT-B/32 CLIP ViT-L/14
Additional Class/Spurious

Data FeaturepLabels LLM AVG (1) WG(1) Gap(l) AVG(T) WG Gap(])
PerceptionCLIP X X v 82.50 59.78  22.72 86.74 5412  32.62
ROBOSHOT X X v 71.92 5441 17.51 64.43 45.17 19.26
TIE v v X 79.82 71.35 8.47 84.12 78.82 5.30
TIEx v X X 7691 61.24 15.67 78.98 61.60 17.38
Zero-Shot X X X 68.48 41.37 27.11 83.72 3193 51.79
GroupPrompt X X X 66.79 4346 23.33 56.12 1044  45.68
Ideal words X X X 79.20 60.28 18.92 87.67 64.17 23.50
Orth-Cali X X X 69.19 54.99 14.20 86.31 58.56  27.75
DIAL (Ours) X X X 71.88 52.82  19.06 82.6 68.69 1391
DIAL+ (Ours) X X X 68.48 4226  26.22 82.25 69.18 1247

Adila et al.| (2024), and TIE/TIE«Lu et al.| (2025). The other group, which does not require any
of these, is our proposed method, along with standard zero-shot, GroupPrompt classification, Ideal
words [Trager et al.| (2023)), and Orth-Cali |Chuang et al.| (2023b). For a fair comparison, we divide
the baseline methods into these two groups in the results.

4.3 BACKBONE MODELS

Following the prior work|Adila et al.|(2024);|Lu et al.| (2025)), we examine CLIP ViT-B/32 (OpenAl),
and ViT-L/14 (Laion-2B) Radford et al. (2021); |Cherti et al.| (2023) as backbones for Waterbirds
and CelebA datasets. For the FMOW dataset, we use ViT-L/14 (Laion-2B) model. For medical
datasets ISIC and COVID-19 we use BiomedCLIP Zhang et al. (2023b). For disentangling the
representations, we use the pre-trained Matryoksha Sparse Autoencoders (MSAE) |[Zaigrajew et al.
(2025) for all the backbone models used in the experiments. Any other SAE trained for VLMs can
also be used instead of MSAE. We have evaluated our method with additional backbones including
(ViT-H-14-quickgelu, EVA02-E-14-plus, ViT-SO400M-14-SigL.IP-384) (Cherti et al.| (2023) whose
results are presented in the appendix.

4.4 RESULTS

CelebA and Waterbirds:
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Table 3: FMOW: Comparison of our mitigation method with baselines in terms of zero-shot classi-
fication. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ automatically
detects and mitigates them. Best performance is bolded, and the second best is underlined.

Method Setting Requirements AVG (1) WG(T) Gap({)
Additional Class/Spurious
Data Feature Labels LLM
PerceptionCLIP X X v 17.70  12.61  5.09
ROBOSHOT X X v 19.79 10.88 8.91
TIE v v X 26.62 20.19 643
TIEx v X X 26.65 19.84  6.81
Zero-Shot X X X 26.02 18.06 7.96
GroupPrompt X X X 14.69 8.75 5.94
Ideal words X X X 20.21 11.14  9.07
Orth-Cali X X X 26.11 19.45 6.66
DIAL (Ours) X X X 26.09 1990 6.19
DIAL+ (Ours) X X X 26.23 19.24  6.99

Table 4: Medical Datasets - ISIC and COVID-19: Comparison of our mitigation method with base-
lines in terms of zero-shot classification. Note that DIAL requires an a priori list of spurious features,
whereas DIAL+ automatically detects and mitigates them. Best performance is bolded, and the sec-
ond best is underlined.

Method Setting Requirements ISIC COVID-19
Additional Class/Spurious

Data . Feature Labels LM AVG (1) WG(1) Gap() AVG (1) WG() Gap(})
PerceptionCLIP X X v 5274 4155 11.19 56.87 48.84  8.03
ROBOSHOT X X 4 59.84 5330 6.54 53.10 3275  20.35
TIE 4 v X 69.90  65.87 4.03 62.50  52.17 1033
TIE* v X X 71.68 61.11 10.57 61.08 50.22  10.86
Zero-Shot X X X 70.21 4221 28.00 61.81 44.83 16.98
GroupPrompt X X X 30.05 12.13  17.92 4827  27.58  20.69
Ideal words X X X 53.07 4142 11.65 56.84 23.53  33.31
Orth-Cali X X X 72.54 2143 51.11 51.72 4483  6.89
DIAL (Ours) X X X 70.71 6842  2.29 61.11 48.28 12.83
DIAL+ (Ours) X X X 68.93 6545  3.48 61.11 48.28 12.83

On the CelebA dataset (results in Table [I)), our method demonstrates superior performance, par-
ticularly with the ViT-B/32 backbone. It surpasses all zero-shot baselines across all three metrics,
even outperforming methods that require auxiliary data, spurious feature labels, or the use of LLMs.
When using the stronger ViT-L/14 backbone, our approach continues to achieve the highest worst
group accuracy, lowest performance gap, underscoring its robust efficacy in mitigating spurious
correlations.

For the Waterbirds dataset (results in Table [2), using the ViT-L/14 backbone, our method yields sig-
nificant improvements in worst group accuracy and effectively reduces the performance gap com-
pared to the baselines. We hypothesize that the performance on this dataset is influenced by the
inherent complexity of the spurious attributes. The concepts of ”land background” and ’water back-
ground” are highly varied and complex, making it challenging to fully capture the corresponding
feature space using only a high-level semantic description. This ambiguity may impact the preci-
sion of our attribution score calculation, explaining why some baselines perform better in certain
configurations.

FMOW: We next evaluate our method on the challenging FMOW dataset ((results in Table E])).
Owing to the complicated nature of the dataset, following the prior work [Lu et al.| (2025)), we use
only the ViT-L/14 backbone. Our method improves over the baselines in our sub-group on the worst
group accuracy while still maintaining a comparable average accuracy.
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Figure 4: Comparison of spurious feature removal techniques.

Medical Datasets: The results on the medical datasets are presented in Table @ On the ISIC
dataset , our method demonstrates a substantial improvement in worst group accuracy and a corre-
sponding reduction in the performance gap compared to all baselines. Notably, our fully zero-shot
approach surpasses even those methods that rely on auxiliary data or additional labels for debias-
ing. Similarly, for the COVID-19 dataset, our approach improves over baselines in worst-group
performance, it achieves this while maintaining a highly competitive average accuracy.

4.5 DEBIASED RETRIEVAL

Beyond zero-shot classification, we evaluate the efficacy of our method in debiasing image re-
trieval. Following the experimental protocol of [Chuang et al.| (2023b)), we perform retrieval based
on the cosine similarity between the query text and image embeddings from the FairFace bench-
mark [Kdrkkéinen & Joo| (2019). To quantify fairness, we employ the MaxSkew @k metric
et al.| (2019), which assesses the maximum logarithmic deviation between the observed frequency
of a sensitive attribute in the top-k results and a perfectly uniform distribution. We observe con-
sistent reductions in MaxSkew scores across Age, Gender, and Ethnicity attributes compared to the
original zero-shot baseline (ViT-L/14 trained on LAION-2B). These results demonstrate that DIAL
effectively mitigates bias within the embedding space, resulting in fairer retrieval outcomes.

Table 5: Evaluation of our framework with image retrieval task on FairFace.

Sensitive Feature Original (MaxSkew @ 1000) ({) DIAL (MaxSkew @ 1000) ({)

Age 1.32 0.95
Gender 0.30 0.11
Ethnicity 0.61 0.32
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4.6 ABLATIONS

In this section, we justify the technical choices made in our framework through a series of empirical
studies. We focus on techniques to select the optimal spurious feature vectors and removal of the
spurious features. For the results reported in ablation studies, datasets CelebA, Waterbirds, and
FMOW are used with Vit-L/14 as the backbone. Additional experiments concerning SAE selection,
the relationship between SAE quality and performance, and further ablation studies are provided in
the Appendix.

Selection through top £ features vs attribution mass We compare the difference between selecting
the top k spurious feature directions, and selecting « fraction of the attribution mass. When we run
the proposed parameter search algorithm to optimize & vs alpha, we see that the latter provides
better results as shown in Figure 3] This could be due to the varying representation of different
features in the SAE. For example, a specific concept like “color patch” might be represented with
fewer feature vectors than “’land background”.

Orthogonal projection vs neuron ablation Prior works have used both these techniques for con-
cept removal. In our experiments (results shown in [)), we find that orthogonal projection is much
more effective at removing the spurious features than just ablating the corresponding activations to
zero. This may be attributed to orthogonal projection removing the entire spurious subspace, while
ablating a specific set of neurons to zero may still leave some unidentified spurious feature vectors
watering down the mitigation. On the other hand, orthogonal projection can affect non-spurious
features if they are very close to spurious features.

5 DISCUSSION

Modality and Scope: While this work focuses on mitigating spurious correlations in image em-
beddings, our method is modality-agnostic and can be applied to any VLM embedding. Mitigating
with image modality distinguishes our approach from most zero-shot baselines that primarily target
the textual modality.

Parameterization: The choice of a pre-trained SAE, backbone feature extractor, and dataset can
influence the optimal parameters («, A) for mitigation, as different settings yield varying levels of
feature disentanglement. However, our zero-shot parameter search addresses this dependency by
automatically identifying the optimal configuration. The algorithm optimizes towards embedding
equidistance to spurious concepts, thereby reducing bias (for DIAL) or minimizing spurious sample
coverage (as determined by Alg. |l| for DIAL+). We note that because our framework operates
in a strict zero-shot, data-free regime, the search process relies on the hyperparameters governing
candidate selection and the specified parameter search ranges. Future work could explore analytical
solutions to further improve the performance of our framework and reduce these dependencies.

Interpretable Mitigation: A key advantage of our method over prior work is its inherent trans-
parency and interpretability. In high-stakes domains, this transparency is crucial for building trust
and ensuring reliability. Our framework allows for a direct inspection of the mitigation process,
providing a clear mechanism to diagnose the root causes of model failures and perform targeted
debugging.

6 CONCLUSION

While VLMs possess remarkable zero-shot capabilities, they are often compromised by spurious
correlations from web-scale data. We introduce a fully unsupervised, zero-shot method to mitigate
these biases directly in the embedding space. Using a pre-trained SAE, we disentangle features and
remove identified spurious directions via orthogonal projection on image embeddings. We further
extend this to detect and mitigate correlations without prior knowledge of spurious features. Cru-
cially, our approach requires no additional data, training, labels, or external LLMs, distinguishing it
from prior work. By targeting image embeddings rather than text, we provide a distinct debiasing
alternative. Experiments across five datasets with multiple backbones and on image retrieval tasks
show our method matches or outperforms state-of-the-art techniques. Future work could explore
applications in unlearning and fairness.
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A REPRODUCIBILITY STATEMENT

The data pre-processing techniques we used for these experiments are the default CLIP preprocess-
ing transforms based on the backbone architecture. All the results reported are on the test set of
the datasets. MSAE models are trained with the default setting mentioned in the Github repository
of |Zaigrajew et al.|(2025). For non medical settings we used the datsets mentioned in the MSAE
for training the SAEs. For medical, we trained SAE with the Biomedclip embeddings of PMC-
15M train set Zhang et al.[(2023a)). The parameters required for our framework can be extracted by
implementing the presented candidate selection and parameter search algorithms.

B LLM USAGE:

We used LLMs to polish the write-up after verifying its output content. We also used LLMs precisely
for searching purposes to find the relevant related works by prompting for related works based on a
specific topic.

C ABLATIONS AND ANALYSIS:

We perform additional ablations studies to justify the design choices made in our framework and
explain its effectiveness.

Candidate Selection: We apply our subspace removal only on candidates which could be dispro-
portionately affected by spurious correlations. We find this selection to improve the overall perfor-
mance. (Table[6) compares our selective candidate selection approach against a global application
of the subspace removal method.

Table 6: Ablation study with and without candidate selection

Dataset - Model Without candidate selection With Candidate selection
CelebA - VIT L/14 86.43/84.82 86.54/85.15
CelebA - ViT B/32 84.85/81.67 85.28/83.42
Waterbirds - ViT L/14 81.60/51.56 82.25/69.18
Waterbirds - ViT B/32 70.45/50.31 71.88/52.82
FMOW - ViT L/14 26.04/19.55 26.09/19.90

Table 7: Ablation study for identifying SAE features.

Model - Dataset Mean Activation Diff Cosine Similarity Both

CelebA - ViT L/14 86.86/85.39 86.78/85.35 86.87/85.24
CelebA - ViT B/32 85.54/83.33 85.28/82.78 85.54/83.47
Waterbirds - ViT L/14 82.61/68.85 74.95/50.29 82.6/68.69
Waterbirds - ViT B/32 71.85/52.68 70.69/48.12 71.88/52.82
ISIC 70.71/68.42 62.45/55.84 70.71/68.42
Covid-19 61.11/48.28 58.33/34.48 61.11/48.28

Feature Attribution: Motivated by prior work on identifying SAE features |[Karvonen et al.| (2024)),
we used both mean activation difference of positive and negative sample activations and cosine
similarity of the SAE feature with the text embedding. The ablation experiment (Table [/) suggests
that mean activation difference alone yields performance comparable to using both.

Analysis: In the four points below, we analyze the possible reasons for the efficacy of our frame-
work.

1) Minimized Feature Interference via Disentanglement: Standard baselines often operate in
dense, polysemantic embedding spaces. In such spaces, removing a spurious feature vector fre-
quently degrades causal features due to feature superposition. By using the SAE latent space, we
leverage a highly disentangled representation where feature vectors are nearly orthogonal. This or-
thogonality allows us to surgically remove spurious features with minimal impact on the semantic
integrity of causal features.
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Figure 5: Visualization of DIAL shifting model focus from spurious to causal features. In the
CelebA hair color classification task, DIAL redirects attention from gender-correlated attributes
toward relevant regions (hair, eyebrows, and facial hair). Similarly, in the Waterbirds dataset, the
method shifts focus from the background environment to the bird itself.

2) Selective Intervention using Candidate Selection: Even within the SAE latent space, perfect or-
thogonality is not always achieved. Blanket removal of features across all samples can inadvertently
harm “clean” samples (those not relying on spurious correlations). We explicitly identify samples
that are disproportionately affected by spurious features (high activation of spurious components
relative to causal ones). We apply our removal intervention only to these identified samples. This
preserves the integrity of samples that are already robust, preventing the performance degradation
seen when applying global intervention (Table [6)).

3) Subspace removal instead of feature ablation: Removing the entire spurious subspace, rather
than simply ablating the corresponding feature activation to zero, aids in removing unidentified spu-
rious features that are highly aligned with that subspace. This results in a more effective elimination
of spurious features, as demonstrated in Figure 4 of the paper.

4) Feature selection through Attribution Mass: Since different backbone embeddings and SAEs
exhibit varying activation patterns, using a fixed Top-K approach to select feature directions corre-
sponding to spurious features was shown to be less effective than selection through attribution mass,
as shown in Figure 3 of the paper.

D ANALYSIS ON SAE ARCHITECTURE AND DATA

In this section, we evaluate the robustness of our framework across three dimensions: i) differ-
ent SAE architectures (BatchTopKSAE [Bussmann et al.| (2024), JumpReLU [Rajamanoharan et al.|
(2024)), ii) SAE quality metrics (reconstruction loss, sparsity, and decoder orthogonality), and iii)
the impact of training SAEs on domain-specific debiasing datasets.

D.1 IMPACT OF SAE ARCHITECTURE

Table [§] presents the performance of our framework when employing different SAE variants. We
observe that MSAE achieves the best overall performance on average. This superiority is likely
attributable to the quality of MSAE as measure by various evaluation metrics[Zaigrajew et al |(20253).
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Table 8: Evaluation of our framework using different SAEs. Average Accuracy/Worst-Group Accu-
racy are reported.

Dataset BatchTopKSAE JumpReLUSAE MSAE

CelebA 87.35/84.44 87.74/84.44 86.87/85.24
Waterbirds 71.98/41.51 77.80/56.01 82.6/68.69
ISIC 69.57/58.73 72.16/66.67 70.71/68.42
Covid-19 46.52/20.69 58.33/34.48 61.11/48.28

D.2 SAE QUALITY VS. MITIGATION PERFORMANCE

We analyze how intrinsic SAE properties, specifically reconstruction quality, sparsity, and decoder
orthogonality affect debiasing performance (Tables [9]and [I0). Our analysis yields three key obser-
vations:

1. Disentanglement Robustness: High disentanglement capability (measured here via de-
coder orthogonality) persists in the evaluated SAEs even when reconstruction loss is rela-
tively high.

2. Dataset Sensitivity: While our framework remains effective across varying sparsity levels,
the Waterbirds dataset is more sensitive to reconstruction degradation than CelebA.

3. General Improvement: Worst Group (WG) accuracy improves across all evaluated con-
figurations.

From these results, we infer that as long as an SAE reconstructs well enough to preserve discrimina-
tive features while maintaining high disentanglement, it can be effectively used to mitigate spurious
correlations.

Table 9: Analysis of performance of our method w.r.t SAE Quality on CelebA dataset

Recon. Loss (J.) Sparsity (1) Decoder Orthogonality ({) Avg/WG Acc (1)

0.44 0.72 0.0016 87.35/84.44
0.012 0.51 0.0014 86.41/84.71
0.019 0.79 0.0016 86.48/84.65

Table 10: Analysis of performance of our method w.r.t SAE Quality on Waterbirds dataset

Recon. Loss (J.) Sparsity (1) Decoder Orthogonality ({.) Avg/WG Acc (1)

0.44 0.72 0.0016 71.98/41.51
0.075 0.49 0.0013 75.2/49.31
0.019 0.79 0.0016 81.98/68.51

D.3 TRAINING ON DEBIASING DATASET

To assess the feasibility when large-scale pre-trained SAEs are unavailable, we trained SAEs from
scratch on the specific debiasing datasets: CelebA (~140k images) and Waterbirds (~4.6k images).
Table |11| shows that these domain-specific SAEs successfully improve worst-group accuracy. The
performance on CelebA is comparable to that of the pre-trained SAE. However, the Waterbirds-
trained SAE performs slightly worse, likely due to the limited training data size. These results
demonstrate that training an SAE on the target dataset could be a feasible strategy for spurious
correlation mitigation, particularly when data volume is sufficient.

Table 11: Evaluation of our framework when SAE is trained with debiasing dataset

Dataset Original (Avg/WG) (1) DIAL (Avg/WG) (1)
CelebA 81.20/73.35 86.41/84.71
Waterbirds 83.72/31.93 75.2/49.31
FMOW 26.05/18.16 26.67/18.16
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E ADDITIONAL BACKBONES:

We have evaluated our framework on additional backbones whose results are provided in Tables

[L213114
Table 12: Evaluation of our framework with SigLIP (ViT-SO400M-14-SigLIP-384)

Dataset Original (Avg/WG) (1) DIAL (Avg/WG) (1)
CelebA 82.51/79.11 84.32/82.02
Waterbirds 80.92/61.37 80.54/66.16
FMOW 34.53/25.18 34.10/25.60

Table 13: Evaluation of our framework with EVA02-E-14-plus

Dataset Original (Avg/WG) (1) DIAL (Avg/WG) (1)
CelebA 84.78/80.54 87.76/86.52
Waterbirds 76.95/37.85 76.78/56.65
FMOW 29.62/15.97 29.30/16.70

Table 14: Evaluation of our framework with ViT-H-14-quickgelu

Dataset Original (Avg/WG) (1) DIAL (Avg/WG) (1)
CelebA 83.80/80.00 83.81/81.59
Waterbirds 85.60/51.09 88.47/63.86
FMOW 30.21/19.44 30.57/19.90

F INTERPRETABILITY EVALUATION

To evaluate the interpretability of our framework, we utilize the Monosemanticity Score (MS) pro-
posed by [Pach et al.| (2025). We compute the MS score on the validation sets of the SAEs. Specif-
ically, we use the ImageNet validation set for the standard vision backbones (ViT-B/32, ViT-L/14)
and the PMC-15M validation set for the medical backbone (BiomedCLIP). This ensures that the
interpretability scores reflect the general quality and complexity of the features learned by the SAE,
independent of the specific downstream tasks.

We computed the MS scores using the automated method from Pach et al.[(2025) across all neurons
in our trained SAEs. The average per-neuron MS scores are reported in Table[15]

Table 15: Average Monosemanticity Scores (MS) for the SAEs used in our framework.

SAE - Backbone Model MS Score (Avg)

CLIP ViT-B/32 0.56
CLIP ViT-L/14 0.43
BiomedCLIP 0.42

To contextualize these results, we refer to the user study conducted by [Pach et al.[(2025)), which cal-
ibrates MS scores against human perception. Their study establishes that an MS score in the range
of 0.4-0.5 corresponds to a human alignment rate of approximately 65-70%. Our results (0.42—
0.56) indicate that the features learned by the SAEs are largely monosemantic and align with human
perception. Consequently, this semantic coherence enables a verifiable explainability pipeline be-
cause the underlying units represent interpretable concepts, human experts can explicitly interpret
the spurious feature directions identified by our model and inspect the mitigation process.
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G

ALGORITHMS

Algorithm 1 Candidate Selection

Require:
1: E = {e;},: set of image embeddings.
2: Y = {§;}7_,: set of pseudo-labels from zero-shot predictions.
3: T = {c — t.}: map of class labels to text embeddings.
4: k: number of neighbors for k-NN.
5: w: text embedding weight.
> Calculate hybrid centroids for each class ¢
6: for each class ¢ € unique(Y) do
7: pe < (1 —w) -Mean({e; | §; = ¢}) +w - T[]
8: end for
> Identify candidates based on centroid similarity or k-NN disagreements
9: Mcentroid — [argmaxd COSSim(eimu/c’) 7é /gi]?zl
10: M = [K-NN(es, B,V K) # 3i]
11: M < Meentroia NV Minn ' > Combine candidate sets
12: return M

Algorithm 2 Optimal Debiasing Parameter Search

Require: E = {e;}7 ,, the set of original VLM embeddings. M, a boolean mask identifying the

candidate subset to debias. Ty,yrious, @ set of spurious concept text prompts (e.g., [’male”,
“female™]). Sy, S, search ranges for hyperparameters « and A.

Ensure: «o*, the optimal feature selection threshold. A*, a map of optimal per-sample mitigation

A A S ey

— e e e
XRDIN R0

19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

strengths for the subset.
SCOT€pest $— OO
Egup — E[M)] > Apply mask to get the subset of embeddings
tspurious <— GETSPURIOUSDIRECTION(T spurious) > e.g., by averaging text embeddings
for eacha € S, do
> Identify the spurious subspace for the current o
Q) + IDENTIFYSPURIOUSSUBSPACE(Fyp, @)
if @) is not valid then continue
end if
> For this subspace, find the best per-sample A by minimizing similarity to ¢spurious
for each sample e¢; € E,;, do
A, dM < 00, 00
for each \ € S do
€iclean < € — AM(QQTe;) > Apply debiasing
deurrent < CosSim(e; cieans tspurious) > Score is similarity to spurious concept
if deyrrent < d™" then
d;nzn — dcurrent
A=A
end if
end for
Acurrent [Z] — )\:
Dmin [Z] — dznzn
end for
> The overall score for this « is the mean of the minimized similarities
SCOT €cyrrent — Mean(Dmin)
if scorecyrrent < SCOTEpest then
SCOT€pest $— SCOTEcyrrent
a* — «
A Acurrent
end if
end for
return o, A*
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