

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LABEL-FREE MITIGATION OF SPURIOUS CORRELATIONS IN VLMS USING SPARSE AUTOENCODERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive zero-shot capabilities across a wide range of tasks and domains. However, their performance is often compromised by learned spurious correlations, which can adversely affect downstream applications. Existing mitigation strategies typically depend on additional data, model retraining, labeled features or classes, domain-specific expertise, or external language models posing scalability and generalization challenges. In contrast, we introduce a fully interpretable, zero-shot method that requires no auxiliary data or external supervision named DIAL (Disentangle, Identify, And Label-free removal). Our approach begins by filtering the representations that might be disproportionately influenced by spurious features, using distributional analysis. We then apply a sparse autoencoder to disentangle the representations and identify the feature directions associated with spurious features. To mitigate their impact, we remove the subspace spanned by these spurious directions from the affected representations. Additionally, for cases where prior knowledge of spurious features in a dataset are not known, we introduce DIAL+ which can detect and mitigate the spurious features. We validate our method through extensive experiments on widely used spurious correlation benchmarks. Results show that our approach consistently outperforms or matches existing baselines in terms of overall accuracy and worst-group performance, offering a scalable and interpretable solution to a persistent challenge in VLMs.

1 INTRODUCTION

Contrastive image-language models like CLIP have become foundational components in numerous applications, largely due to their remarkable zero-shot generalization capabilities Radford et al. (2021); Cherti et al. (2023). By training on web-scale data, they eliminate the need for task-specific labeled datasets, enabling efficient and scalable solutions for a wide range of downstream tasks and generative pipelines Lu et al. (2025); Zhu et al. (2025); Adila et al. (2024). However, despite strong aggregate performance, these vision-language models (VLMs) often fail on specific demographic or semantic groups, exhibiting performance far below the average Zhu et al. (2025); Chuang et al. (2023a); Yang et al. (2023). This vulnerability stems from their tendency to learn spurious correlations relying on non-causal features that are coincidentally prevalent in the training data rather than the causal task-relevant attributes Li et al. (2025). A commonly cited example in literature is where medical diagnosis predictions are being made using imaging artifacts found in the diagnostic image instead of causal disease features Lu et al. (2025); Li et al. (2025). Figure 5 shows some examples of these spurious correlations visualized through a heatmap. As these spurious correlations may not hold in real-world test data, the model’s reliability and zero-shot promise are fundamentally undermined, raising serious concerns about fairness and robustness Varma et al. (2024); Chuang et al. (2023b).

In recent times, a growing body of work has sought to mitigate the spurious correlations in VLMs. Many works like Chuang et al. (2023b); Trager et al. (2023); Lauscher et al. (2020) have focused on the textual modality for debiasing, but do not address biases encoded in the visual representations. Also, methods like Lauscher et al. (2020) require domain expertise or manual specification of debiasing textual prompts. Other prominent methods Yang et al. (2023); Zhang & Ré (2022); Wang et al. (2023); Zhu et al. (2025) require fine-tuning the model or access to class and/or spurious feature labels, which negates the primary zero-shot advantage of VLMs. Recently, a few methods

Figure 1: Overview of our proposed method. DIAL takes in VLM image embeddings and spurious features of a given dataset. (e.g., "Male" and "Female" for the CelebA dataset). If DIAL+ is used, then there is no requirement for these spurious features descriptions. The entire method operates in a zero-shot setting without requiring training, external data, class labels, or spurious feature labels.

have emerged that operate in a truly zero-shot setting Lu et al. (2025); Adila et al. (2024); Chuang et al. (2023b). However, they introduce their own set of challenges. For instance, TIE Lu et al. (2025) relies on spurious feature labels for each sample to achieve optimal performance, which are often unavailable and expensive to acquire. Moreover, although it offers a label-free variant (TIE*), both implementations practically depend on additional data to compute their scaling factors. Concurrently, methods like ROBOSHOT Adila et al. (2024) rely on Large Language Models (LLMs) to generate task-specific insights, introducing concerns about reliability, hallucination, and sensitivity to the choice of LLM Lu et al. (2025).

To address the challenges of the current methods in mitigating spurious correlations, we propose an interpretable algorithm, DIAL (Disentangle, Identify, And Label-free removal), which works in a complete zero-shot setting without requiring training, additional data, or labels (both class labels and spurious feature labels). Our framework when using DIAL requires two inputs: VLM embeddings of samples of a dataset and a high-level description of spurious features affecting the dataset (e.g., "Male", "Female" for CelebA). If DIAL+ is employed it only requires VLM embeddings as it can detect the possible spurious features before mitigating them. Our mitigation method unfolds in three main steps. First, guided by the insight that samples affected by spurious features often deviate from their class centroids Li et al. (2025), we identify a candidate set of potentially biased samples without class labels using zero-shot predictions as pseudo-labels. Second, we employ an off-the-shelf Sparse Autoencoder (SAE) to project these embeddings into a disentangled feature space. Within this space, we introduce a technique to reliably identify the feature directions that encode the spurious features. Finally, we debias the identified samples by removing the spurious subspace via an orthogonal projection. We also provide a technique to select the optimal parameters for our debiasing process, namely the number of spurious feature vectors (k) and the magnitude of subspace removal (λ). The overview of our proposed approach is given in Figure 1.

We conduct extensive experiments on five standard benchmark datasets, demonstrating the efficacy of our method compared to baselines. In summary, our contributions are:

- We propose **DIAL**, a fully zero-shot and interpretable framework designed to mitigate spurious correlations without requiring model training, additional data, class labels, or spurious feature annotations.
- To address scenarios where spurious attributes are unknown *a priori*, we introduce **DIAL+**, which autonomously detects and mitigates spurious correlations while maintaining performance comparable to DIAL.

Figure 2: This figure illustrates how a CLIP model relies on spurious correlations for zero-shot predictions. For the ISIC dataset, it focuses on an image artifact instead of the lesion. For chest X-rays, it attends to a medical device rather than pneumonia indicators. On CelebA, it uses facial features instead of hair to identify 'Blond hair,' and for Waterbirds, it relies on the water background rather than the bird.

- We develop a novel technique to identify and isolate spurious feature subspaces directly from disentangled Sparse Autoencoder (SAE) representations in a zero-shot setting.
- We validate our approach across multiple benchmarks and VLM backbones, demonstrating that our method consistently outperforms or performs comparably to state-of-the-art baselines, while also establishing its efficacy in debiasing image retrieval.

2 RELATED WORK

Mitigation with training or labels: The problem of mitigating spurious correlations in deep learning models has been extensively studied. Techniques like Sagawa et al. (2019a); Liu et al. (2021); Yao et al. (2022); Krueger et al. (2021); Lu et al. (2024); Arjovsky et al. (2019); Idrissi et al. (2022); Yang et al. (2023); Goyal et al. (2023); Zhang & Ré (2022) aim to remove the effect of spurious correlations through reweighting the training samples, finetuning, regularization, or disparate loss functions. More recently Zhu et al. (2025) proposed to train a biased classifier to identify the group labels and debias the classifier for VLMs. Li et al. (2025) identifies the minority samples using their dispersed distribution, and learns a transformation to a bias-invariant representation. Varma et al. (2024) shows that using region-level information in the images during training helps VLMs to ignore spurious correlations. All these methods require some form of training/fine-tuning, labels, or access to the model parameters. In contrast, our method works completely in a zero-shot setting without needing any labels, fine-tuning, or access to model parameters.

Mitigation in zero-shot setting: Several of the recent works on mitigating spurious correlations in VLMs focused on doing so in a zero-shot setting. Ge et al. (2023) proposes to augment text prompts with parent and child from WordNet hierarchy to improve zero-shot generalization. Trager et al. (2023) uses the average of text prompts, which are made from combining class labels with spurious features to get debiased text prompts for each class. Dehdashtian et al. (2024) uses reproducing kernel Hilbert spaces to debias CLIP's image and text representations. Chuang et al. (2023b) proposes a closed-form method through a calibrated projection matrix to remove biased direction from clip embeddings. Lu et al. (2025) mitigates spurious correlations by translating image embeddings along the direction of spurious vectors computed from text prompts. Its main algorithm needs access to spurious feature labels for each sample, so the authors also propose a variant that adapts when spurious feature labels are not present. Additionally, both variants of TIE require access to additional data to compute the scale parameter. Adila et al. (2024) uses LLMs to generate insights on spurious features, which are used to remove harmful components while keeping the useful ones. Unlike other zero-shot approaches, our method requires no auxiliary data for parameter tuning, no spurious feature labels, and no LLM for generating insights.

162 **Interpretable Methods for Mitigation:** Some of the works have proposed using interpretability
 163 methods for mitigating spurious correlations. Wu et al. (2023) proposes an iterative framework that
 164 discovers human-interpretable spurious concepts and intervenes on training data to mitigate their
 165 influence. Chakraborty et al. (2024) uses explainability-based heatmaps for creating pseudo labels
 166 to retrain and improve robustness to spurious features in an unsupervised manner. Karvonen et al.
 167 (2024) introduces a method to evaluate an SAE based on its capacity to mitigate spurious correlations.
 168 To do this, they train linear classifiers to identify specific neurons correlated with a known
 169 spurious attribute. The activations of these identified neurons are then ablated (i.e., zeroed out), and
 170 the resulting impact on model performance is measured. Unlike our approach, their method requires
 171 labeled training data and relies on activation zeroing rather than the removal of spurious subspace via
 172 orthogonal projection. Additionally SAEs have been applied for concept erasure in diffusion models,
 173 Tian et al. (2025) finds unwanted concepts and deactivates them by modifying their activation
 174 with a temperature parameter. Recently techniques to obtain contrastive sparse representations Wen
 175 et al. (2025) have been introduced which could be used in combination with SAE for interpretability
 176 and mitigation applications.

177 3 METHODOLOGY

178 3.1 SETUP

181 Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ be a dataset with labels $y_i \in \mathcal{Y}$. A VLM uses an image encoder ϕ_v and a text
 182 encoder ϕ_t to map inputs into a d -dimensional embedding space \mathbb{R}^d .
 183

184 For zero-shot classification, a set of class prompts (e.g., "a photo of c ") are tokenized and then
 185 embedded by the text encoder to produce a set of class vectors $\{p_c\}_{c=1}^{|\mathcal{Y}|}$, where $p_c = \phi_t(\text{prompt}_c)$.
 186 The probability that an image x_i belongs to class c with temperature parameter τ is computed as:

$$187 \quad P(y = c \mid x_i) = \text{softmax}_c \left(\frac{1}{\tau} \cdot \text{CosSim}(\phi_v(x_i), p_c) \right)$$

190 The set of groups is defined as the $\mathcal{G} = \mathcal{Y} \times \mathcal{A}$, where \mathcal{Y} is the set of class labels and \mathcal{A} is the
 191 set of spurious attributes. We measure robustness of a VLM using three metrics: overall accuracy
 192 (Acc_{avg}), worst-group accuracy (Acc_{wg}), and the performance gap (Acc_{gap}), defined as:

$$194 \quad Acc_{wg} = \min_{g \in \mathcal{G}} Acc_g, \quad Acc_{gap} = Acc_{avg} - Acc_{wg}$$

196 The goal of our zero-shot mitigation strategy is to improve both Acc_{avg} and Acc_{wg} , and minimize
 197 Acc_{gap} , without requiring training or access to any labels.

199 3.2 FINDING SPURIOUS FEATURES

201 Our strategy is to use a pre-trained SAE to disentangle the VLM embeddings e_i and isolate feature
 202 directions corresponding to spurious attributes. An SAE decomposes an embedding into a sparse,
 203 linear combination of monosemantic features that are interpretable.

204 Given an embedding $e \in \mathbb{R}^d$, an SAE computes sparse feature activations $z \in \mathbb{R}^l$ and a reconstructed
 205 embedding $\hat{e} \in \mathbb{R}^d$:

$$207 \quad z = \text{act}(W_{enc}e + b_{enc}) \quad \hat{e} = W_{dec}z + b_{dec}$$

208 Here, $W_{enc} \in \mathbb{R}^{d \times l}$ is the encoder weight matrix, and the decoder matrix $W_{dec} \in \mathbb{R}^{l \times d}$ contains the
 209 l disentangled feature vectors $\{f_j\}_{j=1}^l$ as its columns. We refer to this set of vectors as the feature
 210 dictionary, \mathcal{F} .

211 For each spurious attribute $a \in \mathcal{A}$ (e.g., "male" or "female"), we identify a subset of feature vectors
 212 $K_a \subset \mathcal{F}$ that strongly correlate with it. To do this, we adapt the attribution score method from
 213 Karvonen et al. (2024) to a zero-shot setting. First, we use the VLM's zero-shot classification ability
 214 to partition the reconstructed embeddings $\{\hat{e}_i\}$ from our dataset \mathcal{D} into a positive set P_a (samples
 215 exhibiting attribute a) and a negative set N_a . This is done using a prompt like "a photo of a a " and
 its negation.

216 The attribution score S for each feature vector $f_j \in \mathcal{F}$ with respect to attribute a is then calculated
 217 as:

$$218 \quad 219 \quad 220 \quad S(f_j, a) = \left(\frac{1}{|P_a|} \sum_{i \in P_a} z_{i,j} - \frac{1}{|N_a|} \sum_{i \in N_a} z_{i,j} \right) \times \text{CosSim}(f_j, e_a)$$

221 where $z_{i,j}$ is the activation of feature f_j for sample i , and $e_a = \phi_t(\text{prompt}_a)$ is the text embedding
 222 of the spurious attribute itself. This score is high when a feature’s direction aligns with the attribute’s
 223 semantic embedding and its activation is consistently higher for samples in the positive set.

224 Finally, to form the spurious feature set K_a , we select the top- k features that account for a fraction
 225 α of the total attribution mass. We sort the features f_j by $|S(f_j, a)|$ in descending order (indexed by
 226 π) and choose the smallest k such that: $\sum_{j=1}^k |S(f_{\pi(j)}, a)| \geq \alpha \sum_{j=1}^l |S(f_j, a)|$
 227

228 The resulting set $K_a = \{f_{\pi(1)}, \dots, f_{\pi(k)}\}$ captures the primary directions in the embedding space
 229 associated with the spurious attribute a . The set $\mathcal{K} = \bigcup_{a \in \mathcal{A}} K_a$ contains all the feature vectors from
 230 every individual spurious feature set K_a

231 3.3 SPURIOUS FEATURE DETECTION:

232 To detect spurious features/concepts without relying on pre-defined attribute lists, we propose a
 233 data-driven detection method for DIAL+. This approach leverages the disentangled feature space of
 234 the SAE to isolate features that drive predictions in potentially biased samples.

235 **1. Identification of Influential Concepts.** First, we determine which disentangled concepts con-
 236 tribute decisively to the model’s predictions. For a given sample x_i with reconstructed embedding
 237 \hat{e}_i and sparse activations z_i , we simulate the ablation of each feature j . Let $\hat{e}_{i,-j}$ denote the recon-
 238 struction obtained when the activation of feature f_j is set to zero:

$$239 \quad \hat{e}_{i,-j} = W_{dec}(z_i \odot (1 - \mathbf{1}_j)) + b_{dec}$$

240 where $\mathbf{1}_j$ is a one-hot vector at index j . We define the set of *influential concepts* \mathcal{I}_i for sample i as
 241 the set of features whose removal alters the zero-shot prediction of the sample:

242 We define the local influential concepts \mathcal{I}_i and pool them to create a global set \mathcal{I}_{pool} as follows:

$$243 \quad \mathcal{I}_i = \left\{ j \in \{1, \dots, l\} \mid \underset{c \in \mathcal{Y}}{\text{argmax}} P(c \mid \hat{e}_i) \neq \underset{c \in \mathcal{Y}}{\text{argmax}} P(c \mid \hat{e}_{i,-j}) \right\}, \quad \mathcal{I}_{pool} = \bigcup_{i=1}^n \mathcal{I}_i$$

244 **2. Candidate Sample Selection.** Next, we identify the subset of samples in the dataset that are
 245 likely affected by spurious correlations. We employ the Candidate Selection Algorithm (Alg. 1),
 246 which detects these samples (based on class centroid and k-NN inconsistency). Let \mathcal{S}_{cand} denote
 247 the set of indices for the samples selected by the algorithm:

$$248 \quad \mathcal{S}_{cand} = \{i \mid i \in \{1, \dots, n\} \wedge \text{Algorithm 1}(\hat{e}_i) \text{ returns True}\}$$

249 **3. Extraction of Spurious Concepts.** Finally, we identify the specific spurious features using the
 250 intersection of the pooled influential concepts (\mathcal{I}_{pool}) and the selected candidate samples (\mathcal{S}_{cand}).
 251 We compute the activation frequency ν_j for each feature $j \in \mathcal{I}_{pool}$ exclusively within the candidate
 252 set:

$$253 \quad \nu_j = \sum_{i \in \mathcal{S}_{cand}} \mathbb{1}[j \in \mathcal{I}_i]$$

254 Features with high ν_j represent concepts from the influential pool that are consistently active in
 255 causing samples to deviate toward incorrect class centroids or k-NN inconsistency. We select the
 256 top- k most commonly activated concepts based on ν to form the final set of spurious concepts \mathcal{K} .

257 3.4 MITIGATING SPURIOUS FEATURES

258 Given the identified set of spurious feature vectors \mathcal{K} , we aim to debias the reconstructed VLM
 259 embeddings \hat{e}_i by removing their components that lie in the subspace spanned by these features. To
 260 account for noise in the feature selection process, we first refine the spurious subspace by weighting

270 each feature $f_j \in \mathcal{K}$ based on its alignment with the mean direction of the set. First, we compute
 271 the mean vector m of the spurious features: $m = \frac{1}{|\mathcal{K}|} \sum_{f_j \in \mathcal{K}} f_j$
 272

273 Next, we compute a vector of alignment scores $s \in \mathbb{R}^{|\mathcal{K}|}$, where each element s_j corresponds to
 274 a feature f_j : $s_j = \beta \cdot \text{CosSim}(f_j, m)$ A weight vector w is then derived by applying the softmax
 275 function to these scores, where β is a temperature hyperparameter controlling sharpness: $w =$
 276 $\text{softmax}(s)$

277 To further denoise the set, we prune the features by setting weights that fall below a speci-
 278 fied percentile to zero, yielding a filtered set of feature vectors $\mathcal{K}_f \subseteq \mathcal{K}$ with corresponding
 279 non-zero weights. We then form a matrix V_w whose columns are the weighted feature vectors
 280 $\{w_j f_j \mid f_j \in \mathcal{K}_f\}$. We perform QR decomposition on this matrix, $V_w = QR$, to obtain an orthonor-
 281 mal basis Q for the refined spurious subspace. The projection of \hat{e}_i onto this subspace is given by
 282 $e_{i,\text{proj}} = Q Q^T \hat{e}_i$.

283 The final, debiased embedding $e_{i,\text{clean}}$ is obtained by subtracting this projection from the original
 284 embedding, scaled by a mitigation factor $\lambda \in [0, 1]$: $e_{i,\text{clean}} = \hat{e}_i - \lambda e_{i,\text{proj}}$
 285

286 This procedure removes information correlated with the identified spurious concepts while pre-
 287 serving other essential features of the original VLM embedding. We employ a targeted mitigation
 288 strategy, applying orthogonal projection to remove spurious features only from a subset of samples
 289 identified by our candidate selection algorithm (Alg. 1). This algorithm is designed to pinpoint
 290 samples that are likely to be affected by spurious correlations, which often lead to misclassifica-
 291 tions. Operating in a label-free, zero-shot setting, our approach builds on the insight from prior
 292 work Li et al. (2025) that biased samples often lie far from their true class centroid. We approximate
 293 these class centroids by using the VLM’s own zero-shot predictions as pseudo-labels. To enhance
 294 the robustness of this selection against noise and outliers, we further refine the candidate set using a
 295 standard k-Nearest Neighbors (k-NN) algorithm.

296 Our framework has three key parameters: the number of neighbors k for k-NN, the attribution mass
 297 threshold α , and the mitigation strength λ . To select these values effectively, we propose a grid-
 298 search-based algorithm (Alg. 2) that optimizes a zero-shot score reflecting the alignment between
 299 sample embeddings and the identified spurious features.

300 4 EXPERIMENTS

301 4.1 DATASETS

302 Following the prior work by Lu et al. (2025) in zero-shot spurious correlation mitigation, we use the
 303 five established benchmarks for evaluating our method. CelebA Liu et al. (2015), Waterbirds Koh
 304 et al. (2021), FMOW Christie et al. (2018) and two medical datasets ISIC Codella et al. (2019), and
 305 COVID-19 Cohen et al. (2020). All datasets except FMOW have two classes and two associated
 306 spurious features, while FMOW has 62 classes with 5 spurious features. In accordance with the
 307 prior work Lu et al. (2025); Adila et al. (2024), we define groups as a combination of class label
 308 and spurious feature. For FMOW, we define a group based on the spurious feature following the
 309 procedure given in Wu et al. (2023). For zero-shot classification, we use the same text prompts used
 310 in our prior work and evaluate all the baselines with the same text prompts. For example, for the
 311 CelebA dataset, the zero-shot text prompts we use are ‘a photo of a celebrity with dark hair’, and ‘a
 312 photo of a celebrity with blonde hair’.

313 4.2 BASELINES

314 We evaluate our proposed method against existing zero-shot mitigation methods, including TIE Lu
 315 et al. (2025), ROBOSHOT Adila et al. (2024), Ideal Words Trager et al. (2023), Orth-Cali Chuang
 316 et al. (2023b), and Perception CLIP An et al. (2024). We also include the zero-shot and GroupPrompt
 317 zero-shot performance as the baselines. As established by prior works Sagawa et al. (2019b), we
 318 compare on worst group accuracy (Acc_{wg} - WG), average accuracy (Acc_{avg} - Acc), and gap between
 319 Acc and WG (Acc_{gap} - Gap). In the results, we group the baselines into two groups, one with meth-
 320 ods that require auxiliary information through either additional data, class/spurious feature labels, or
 321 LLM insights for mitigation. This group includes Perception CLIP An et al. (2024), ROBOSHOT
 322

324 Table 1: CelebA: Comparison of our mitigation method with baselines in terms of zero-shot class-
 325 fication. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ automatically
 326 detects and mitigates them. Best performance is bolded, and the second best is underlined.
 327

328 Method	329 Setting Requirements		330 LLM	331 CLIP ViT-B/32			332 CLIP ViT-L/14		
	333 Additional 334 Data	335 Class/Spurious 336 Feature Labels		337 AVG (\uparrow)	338 WG(\uparrow)	339 Gap(\downarrow)	340 AVG (\uparrow)	341 WG(\uparrow)	342 Gap(\downarrow)
331 PerceptionCLIP	\times	\times	\checkmark	80.32	76.46	3.86	81.41	78.70	2.71
332 ROBOSHOT	\times	\times	\checkmark	84.77	80.52	4.25	85.54	82.61	2.93
333 TIE	\checkmark	\checkmark	\times	85.11	82.63	2.48	86.17	84.60	1.57
334 TIE*	\checkmark	\times	\times	85.11	82.63	2.48	86.17	84.60	1.57
335 Zero-Shot	\times	\times	\times	84.27	<u>78.89</u>	5.38	81.20	73.35	7.85
336 GroupPrompt	\times	\times	\times	80.38	74.90	5.48	77.86	68.94	8.92
337 Ideal words	\times	\times	\times	80.96	78.12	2.84	89.15	76.67	12.48
338 Orth-Cali	\times	\times	\times	82.31	77.92	4.39	81.39	<u>77.69</u>	<u>3.70</u>
339 DIAL (Ours)	\times	\times	\times	85.54	<u>83.47</u>	2.17	86.87	85.24	1.63
DIAL+ (Ours)	\times	\times	\times	85.28	83.42	<u>1.86</u>	86.54	85.15	1.39

341 Table 2: Waterbirds: Comparison of our mitigation method with baselines in terms of zero-shot
 342 classification. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ auto-
 343 matically detects and mitigates them. Best performance is bolded and second best is underlined.
 344

345 Method	346 Setting Requirements		347 LLM	348 CLIP ViT-B/32			349 CLIP ViT-L/14		
	350 Additional 351 Data	352 Class/Spurious 353 Feature Labels		354 AVG (\uparrow)	355 WG(\uparrow)	356 Gap(\downarrow)	357 AVG (\uparrow)	358 WG(\uparrow)	359 Gap(\downarrow)
358 PerceptionCLIP	\times	\times	\checkmark	82.50	59.78	22.72	86.74	54.12	32.62
359 ROBOSHOT	\times	\times	\checkmark	71.92	54.41	17.51	64.43	45.17	19.26
360 TIE	\checkmark	\checkmark	\times	79.82	71.35	8.47	84.12	78.82	5.30
361 TIE*	\checkmark	\times	\times	76.91	61.24	15.67	78.98	61.60	17.38
362 Zero-Shot	\times	\times	\times	68.48	41.37	27.11	83.72	31.93	51.79
363 GroupPrompt	\times	\times	\times	66.79	43.46	23.33	56.12	10.44	45.68
364 Ideal words	\times	\times	\times	79.20	<u>60.28</u>	<u>18.92</u>	87.67	<u>64.17</u>	<u>23.50</u>
365 Orth-Cali	\times	\times	\times	69.19	54.99	14.20	<u>86.31</u>	58.56	27.75
366 DIAL (Ours)	\times	\times	\times	71.88	52.82	19.06	82.6	68.69	13.91
DIAL+ (Ours)	\times	\times	\times	68.48	42.26	26.22	82.25	69.18	12.47

360 Adila et al. (2024), and TIE/TIE*Lu et al. (2025). The other group, which does not require any
 361 of these, is our proposed method, along with standard zero-shot, GroupPrompt classification, Ideal
 362 words Trager et al. (2023), and Orth-Cali Chuang et al. (2023b). For a fair comparison, we divide
 363 the baseline methods into these two groups in the results.

364 4.3 BACKBONE MODELS

365 Following the prior work Adila et al. (2024); Lu et al. (2025), we examine CLIP ViT-B/32 (OpenAI),
 366 and ViT-L/14 (Laion-2B) Radford et al. (2021); Cherti et al. (2023) as backbones for Waterbirds
 367 and CelebA datasets. For the FMOW dataset, we use ViT-L/14 (Laion-2B) model. For medical
 368 datasets ISIC and COVID-19 we use BiomedCLIP Zhang et al. (2023b). For disentangling the
 369 representations, we use the pre-trained Matryoksha Sparse Autoencoders (MSAE) Zaigrajew et al.
 370 (2025) for all the backbone models used in the experiments. Any other SAE trained for VLMs can
 371 also be used instead of MSAE. We have evaluated our method with additional backbones including
 372 (ViT-H-14-quickgelu, EVA02-E-14-plus, ViT-SO400M-14-SigLIP-384) Cherti et al. (2023) whose
 373 results are presented in the appendix.

374 4.4 RESULTS

375 **CelebA and Waterbirds:**

378 Table 3: FMOW: Comparison of our mitigation method with baselines in terms of zero-shot classi-
 379 fication. Note that DIAL requires an a priori list of spurious features, whereas DIAL+ automatically
 380 detects and mitigates them. Best performance is bolded, and the second best is underlined.

Method	Setting Requirements			AVG (\uparrow)	WG(\uparrow)	Gap(\downarrow)
	Additional Data	Class/Spurious Feature Labels	LLM			
PerceptionCLIP	✗	✗	✓	17.70	12.61	5.09
ROBOSHOT	✗	✗	✓	19.79	10.88	8.91
TIE	✓	✓	✗	26.62	20.19	6.43
TIE*	✓	✗	✗	26.65	19.84	6.81
Zero-Shot	✗	✗	✗	26.02	18.06	7.96
GroupPrompt	✗	✗	✗	14.69	8.75	5.94
Ideal words	✗	✗	✗	20.21	11.14	9.07
Orth-Cali	✗	✗	✗	26.11	19.45	6.66
DIAL (Ours)	✗	✗	✗	<u>26.09</u>	19.90	<u>6.19</u>
DIAL+ (Ours)	✗	✗	✗	26.23	19.24	6.99

395 Table 4: Medical Datasets - ISIC and COVID-19: Comparison of our mitigation method with base-
 396 lines in terms of zero-shot classification. Note that DIAL requires an a priori list of spurious features,
 397 whereas DIAL+ automatically detects and mitigates them. Best performance is bolded, and the sec-
 398 ond best is underlined.

Method	Setting Requirements			ISIC			COVID-19		
	Additional Data	Class/Spurious Feature Labels	LLM	AVG (\uparrow)	WG(\uparrow)	Gap(\downarrow)	AVG (\uparrow)	WG(\uparrow)	Gap(\downarrow)
PerceptionCLIP	✗	✗	✓	52.74	41.55	11.19	56.87	48.84	8.03
ROBOSHOT	✗	✗	✓	59.84	53.30	6.54	53.10	32.75	20.35
TIE	✓	✓	✗	69.90	65.87	4.03	62.50	52.17	10.33
TIE*	✓	✗	✗	71.68	61.11	10.57	61.08	50.22	10.86
Zero-Shot	✗	✗	✗	70.21	<u>42.21</u>	28.00	61.81	<u>44.83</u>	16.98
GroupPrompt	✗	✗	✗	30.05	12.13	17.92	48.27	27.58	20.69
Ideal words	✗	✗	✗	53.07	41.42	<u>11.65</u>	56.84	23.53	33.31
Orth-Cali	✗	✗	✗	72.54	21.43	51.11	51.72	<u>44.83</u>	6.89
DIAL (Ours)	✗	✗	✗	<u>70.71</u>	68.42	<u>2.29</u>	<u>61.11</u>	48.28	<u>12.83</u>
DIAL+ (Ours)	✗	✗	✗	68.93	65.45	3.48	<u>61.11</u>	48.28	<u>12.83</u>

413
 414
 415 On the CelebA dataset (results in Table 1), our method demonstrates superior performance, par-
 416 ticularly with the ViT-B/32 backbone. It surpasses all zero-shot baselines across all three metrics,
 417 even outperforming methods that require auxiliary data, spurious feature labels, or the use of LLMs.
 418 When using the stronger ViT-L/14 backbone, our approach continues to achieve the highest worst
 419 group accuracy, lowest performance gap, underscoring its robust efficacy in mitigating spurious
 420 correlations.

421 For the Waterbirds dataset (results in Table 2), using the ViT-L/14 backbone, our method yields sig-
 422 nificant improvements in worst group accuracy and effectively reduces the performance gap com-
 423 pared to the baselines. We hypothesize that the performance on this dataset is influenced by the
 424 inherent complexity of the spurious attributes. The concepts of "land background" and "water back-
 425 ground" are highly varied and complex, making it challenging to fully capture the corresponding
 426 feature space using only a high-level semantic description. This ambiguity may impact the preci-
 427 sion of our attribution score calculation, explaining why some baselines perform better in certain
 428 configurations.

429 **FMOW:** We next evaluate our method on the challenging FMOW dataset ((results in Table 5)).
 430 Owing to the complicated nature of the dataset, following the prior work Lu et al. (2025), we use
 431 only the ViT-L/14 backbone. Our method improves over the baselines in our sub-group on the worst
 432 group accuracy while still maintaining a comparable average accuracy.

Figure 3: Comparison of spurious feature selection strategies.

Figure 4: Comparison of spurious feature removal techniques.

Medical Datasets: The results on the medical datasets are presented in Table 4. On the **ISIC dataset**, our method demonstrates a substantial improvement in worst group accuracy and a corresponding reduction in the performance gap compared to all baselines. Notably, our fully zero-shot approach surpasses even those methods that rely on auxiliary data or additional labels for debiasing. Similarly, for the **COVID-19 dataset**, our approach improves over baselines in worst-group performance, it achieves this while maintaining a highly competitive average accuracy.

4.5 DEBIASED RETRIEVAL

Beyond zero-shot classification, we evaluate the efficacy of our method in debiasing image retrieval. Following the experimental protocol of Chuang et al. (2023b), we perform retrieval based on the cosine similarity between the query text and image embeddings from the FairFace benchmark Kärkkäinen & Joo (2019). To quantify fairness, we employ the MaxSkew@ k metric Geyik et al. (2019), which assesses the maximum logarithmic deviation between the observed frequency of a sensitive attribute in the top- k results and a perfectly uniform distribution. We observe consistent reductions in MaxSkew scores across Age, Gender, and Ethnicity attributes compared to the original zero-shot baseline (ViT-L/14 trained on LAION-2B). These results demonstrate that DIAL effectively mitigates bias within the embedding space, resulting in fairer retrieval outcomes.

Table 5: Evaluation of our framework with image retrieval task on FairFace.

Sensitive Feature	Original (MaxSkew@1000) (↓)	DIAL (MaxSkew@1000) (↓)
Age	1.32	0.95
Gender	0.30	0.11
Ethnicity	0.61	0.32

486
487

4.6 ABLATIONS

488
489
490
491
492
493

In this section, we justify the technical choices made in our framework through a series of empirical studies. We focus on techniques to select the optimal spurious feature vectors and removal of the spurious features. For the results reported in ablation studies, datasets CelebA, Waterbirds, and FMOW are used with Vit-L/14 as the backbone. Additional experiments concerning SAE selection, the relationship between SAE quality and performance, and further ablation studies are provided in the Appendix.

494
495
496
497
498
499

Selection through top k features vs attribution mass We compare the difference between selecting the top k spurious feature directions, and selecting α fraction of the attribution mass. When we run the proposed parameter search algorithm to optimize k vs α , we see that the latter provides better results as shown in Figure 3. This could be due to the varying representation of different features in the SAE. For example, a specific concept like "color patch" might be represented with fewer feature vectors than "land background".

500
501
502
503
504
505
506

Orthogonal projection vs neuron ablation Prior works have used both these techniques for concept removal. In our experiments (results shown in 4), we find that orthogonal projection is much more effective at removing the spurious features than just ablating the corresponding activations to zero. This may be attributed to orthogonal projection removing the entire spurious subspace, while ablating a specific set of neurons to zero may still leave some unidentified spurious feature vectors watering down the mitigation. On the other hand, orthogonal projection can affect non-spurious features if they are very close to spurious features.

507
508
509

5 DISCUSSION

510
511
512
513

Modality and Scope: While this work focuses on mitigating spurious correlations in image embeddings, our method is modality-agnostic and can be applied to any VLM embedding. Mitigating with image modality distinguishes our approach from most zero-shot baselines that primarily target the textual modality.

514
515
516
517
518
519
520
521
522

Parameterization: The choice of a pre-trained SAE, backbone feature extractor, and dataset can influence the optimal parameters (α, λ) for mitigation, as different settings yield varying levels of feature disentanglement. However, our zero-shot parameter search addresses this dependency by automatically identifying the optimal configuration. The algorithm optimizes towards embedding equidistance to spurious concepts, thereby reducing bias (for DIAL) or minimizing spurious sample coverage (as determined by Alg. 1 for DIAL+). We note that because our framework operates in a strict zero-shot, data-free regime, the search process relies on the hyperparameters governing candidate selection and the specified parameter search ranges. Future work could explore analytical solutions to further improve the performance of our framework and reduce these dependencies.

523
524
525
526
527

Interpretable Mitigation: A key advantage of our method over prior work is its inherent transparency and interpretability. In high-stakes domains, this transparency is crucial for building trust and ensuring reliability. Our framework allows for a direct inspection of the mitigation process, providing a clear mechanism to diagnose the root causes of model failures and perform targeted debugging.

528
529
530

6 CONCLUSION

531
532
533
534
535
536
537
538
539

While VLMs possess remarkable zero-shot capabilities, they are often compromised by spurious correlations from web-scale data. We introduce a fully unsupervised, zero-shot method to mitigate these biases directly in the embedding space. Using a pre-trained SAE, we disentangle features and remove identified spurious directions via orthogonal projection on image embeddings. We further extend this to detect and mitigate correlations without prior knowledge of spurious features. Crucially, our approach requires no additional data, training, labels, or external LLMs, distinguishing it from prior work. By targeting image embeddings rather than text, we provide a distinct debiasing alternative. Experiments across five datasets with multiple backbones and on image retrieval tasks show our method matches or outperforms state-of-the-art techniques. Future work could explore applications in unlearning and fairness.

540 REFERENCES

542 Dyah Adila, Changho Shin, Linrong Cai, and Frederic Sala. Zero-shot robustification of zero-
 543 shot models. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 544 <https://openreview.net/forum?id=fCeUoDr9Tq>.

545 Bang An, Sicheng Zhu, Michael-Andrei Panaiteescu-Liess, Chaithanya Kumar Mummadi, and
 546 Furong Huang. More context, less distraction: zero-shot visual classification by inferring and
 547 conditioning on contextual attributes. The Twelfth International Conference on Learning Repre-
 548 sentations, 2024.

549 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 550 *arXiv preprint arXiv:1907.02893*, 2019.

552 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *arXiv preprint*
 553 *arXiv:2412.06410*, 2024.

554 Riddhi Chakraborty, Adrian Sletten, and Michael C Kampffmeyer. Exmap: Leveraging explain-
 555 ability heatmaps for unsupervised group robustness to spurious correlations. In *Proceedings of*
 556 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12017–12026, 2024.

557 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
 558 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 559 contrastive language-image learning. In *Proceedings of the IEEE/CVF Conference on Computer*
 560 *Vision and Pattern Recognition*, pp. 2818–2829, 2023.

562 Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
 563 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6172–
 564 6180, 2018.

565 Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, and Stefanie Jegelka. Debias-
 566 ing vision-language models via biased prompts. *arXiv preprint arXiv:2302.00070*, 2023a.

568 Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, and Stefanie Jegelka. Debias-
 569 ing vision-language models via biased prompts. *arXiv preprint arXiv:2302.00070*, 2023b.

570 Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David Gut-
 571 man, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
 572 analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
 573 collaboration (isic). *arXiv preprint arXiv:1902.03368*, 2019.

574 Joseph Paul Cohen, Paul Morrison, Lan Dao, Karsten Roth, Tim Q Duong, and Marzyeh Ghas-
 575 semi. Covid-19 image data collection: Prospective predictions are the future. *arXiv preprint*
 576 *arXiv:2006.11988*, 2020.

578 Sepehr Dehdashtian, Lan Wang, and Vishnu Naresh Boddeti. Fairerclip: Debiasing clip’s zero-shot
 579 predictions using functions in rkhss. *arXiv preprint arXiv:2403.15593*, 2024.

580 Yunhao Ge, Jie Ren, Andrew Gallagher, Yuxiao Wang, Ming-Hsuan Yang, Hartwig Adam, Laurent
 581 Itti, Balaji Lakshminarayanan, and Jiaping Zhao. Improving zero-shot generalization and robust-
 582 ness of multi-modal models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 583 *pattern recognition*, pp. 11093–11101, 2023.

584 Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware ranking in search &
 585 recommendation systems with application to linkedin talent search. In *Proceedings of the 25th*
 586 *acm sigkdd international conference on knowledge discovery & data mining*, pp. 2221–2231,
 587 2019.

588 Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like
 589 you pretrain: Improved finetuning of zero-shot vision models. In *Proceedings of the IEEE/CVF*
 590 *Conference on Computer Vision and Pattern Recognition*, pp. 19338–19347, 2023.

591 Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
 593 balancing achieves competitive worst-group-accuracy. In *Conference on Causal Learning and*
 594 *Reasoning*, pp. 336–351. PMLR, 2022.

594 Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face attribute dataset for balanced race, gender,
 595 and age. *arXiv preprint arXiv:1908.04913*, 2019.

596

597 Adam Karvonen, Can Rager, Samuel Marks, and Neel Nanda. Evaluating sparse autoencoders on
 598 targeted concept erasure tasks, 2024. URL <https://arxiv.org/abs/2411.18895>.

599

600 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 601 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 602 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*,
 603 pp. 5637–5664. PMLR, 2021.

604

605 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 606 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 607 lation (rex). In *International Conference on Machine Learning*, pp. 5815–5826. PMLR, 2021.

608

609 Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Ivan Vulić. A general framework for
 610 implicit and explicit debiasing of distributional word vector spaces. In *Proceedings of the AAAI
 Conference on Artificial Intelligence*, volume 34, pp. 8131–8138, 2020.

611

612 Weiwei Li, Junzhuo Liu, Yuanyuan Ren, Yuchen Zheng, Yahao Liu, and Wen Li. Let samples speak:
 613 Mitigating spurious correlation by exploiting the clusterness of samples. In *Proceedings of the
 Computer Vision and Pattern Recognition Conference*, pp. 15486–15496, 2025.

614

615 Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
 616 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
 617 group information. In *International Conference on Machine Learning*, pp. 6781–6792. PMLR,
 2021.

618

619 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 620 In *Proceedings of the IEEE international conference on computer vision*, pp. 3730–3738, 2015.

621

622 Shenyu Lu, Junyi Chai, and Xiaoqian Wang. Neural collapse inspired debiased representation learn-
 623 ing for min-max fairness. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge
 Discovery and Data Mining*, pp. 2048–2059, 2024.

624

625 Shenyu Lu, Junyi Chai, and Xiaoqian Wang. Mitigating spurious correlations in zero-shot multi-
 626 modal models. In *The Thirteenth International Conference on Learning Representations*, 2025.

627

628 Mateusz Pach, Shyamgopal Karthik, Quentin Bouinot, Serge Belongie, and Zeynep Akata. Sparse
 629 autoencoders learn monosemantic features in vision-language models. In *The Thirty-ninth Annual
 Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=DaNnkQJSQf>.

630

631 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 632 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 633 models from natural language supervision. In *International conference on machine learning*, pp.
 634 8748–8763. PmLR, 2021.

635

636 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 637 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 638 autoencoders. *arXiv preprint arXiv:2407.14435*, 2024.

639

640 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 641 neural networks for group shifts: On the importance of regularization for worst-case generaliza-
 642 tion. *arXiv preprint arXiv:1911.08731*, 2019a.

643

644 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 645 neural networks for group shifts: On the importance of regularization for worst-case generaliza-
 646 tion. *arXiv preprint arXiv:1911.08731*, 2019b.

647

Zhihua Tian, Sirun Nan, Ming Xu, Shengfang Zhai, Wenjie Qu, Jian Liu, Ruoxi Jia, and Jiaheng
 648 Zhang. Sparse autoencoder as a zero-shot classifier for concept erasing in text-to-image diffusion
 649 models. *arXiv preprint arXiv:2503.09446*, 2025.

648 Matthew Trager, Pramuditha Perera, Luca Zancato, Alessandro Achille, Parminder Bhatia, and Ste-
 649 fano Soatto. Linear spaces of meanings: compositional structures in vision-language models. In
 650 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15395–15404,
 651 2023.

652 Maya Varma, Jean-Benoit Delbrouck, Zhihong Chen, Akshay Chaudhari, and Curtis Langlotz. Ravl:
 653 Discovering and mitigating spurious correlations in fine-tuned vision-language models. *Advances*
 654 *in Neural Information Processing Systems*, 37:82235–82264, 2024.

655 Zhengbo Wang, Jian Liang, Ran He, Nan Xu, Zilei Wang, and Tieniu Tan. Improving zero-shot
 656 generalization for clip with synthesized prompts. *arXiv preprint arXiv:2307.07397*, 2023.

657 Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hong-
 658 wei Liu, Stefanie Jegelka, and Chenyu You. Beyond matryoshka: Revisiting sparse coding for
 659 adaptive representation. *arXiv preprint arXiv:2503.01776*, 2025.

660 Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James Zou. Discover and cure: Concept-aware
 661 mitigation of spurious correlation. In *International Conference on Machine Learning*, pp. 37765–
 662 37786. PMLR, 2023.

663 Yu Yang, Besmira Nushi, Hamid Palangi, and Baharan Mirzasoleiman. Mitigating spurious cor-
 664 relations in multi-modal models during fine-tuning. In *International Conference on Machine*
 665 *Learning*, pp. 39365–39379. PMLR, 2023.

666 Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Im-
 667 proving out-of-distribution robustness via selective augmentation. In *International Conference*
 668 *on Machine Learning*, pp. 25407–25437. PMLR, 2022.

669 Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting clip with hierarchical
 670 sparse autoencoders. *arXiv preprint arXiv:2502.20578*, 2025.

671 Michael Zhang and Christopher Ré. Contrastive adapters for foundation model group robustness.
 672 *Advances in Neural Information Processing Systems*, 35:21682–21697, 2022.

673 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao,
 674 Mu Wei, Naveen Valluri, Cliff Wong, Matthew Lungren, Tristan Naumann, and Hoifung Poon.
 675 Large-scale domain-specific pretraining for biomedical vision-language processing, 2023a. URL
 676 <https://arxiv.org/abs/2303.00915>.

677 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Pre-
 678 ston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical
 679 foundation model pretrained from fifteen million scientific image-text pairs. *arXiv preprint*
 680 *arXiv:2303.00915*, 2023b.

681 Beier Zhu, Jiequan Cui, Hanwang Zhang, and Chi Zhang. Project-probe-aggregate: Efficient fine-
 682 tuning for group robustness. In *Proceedings of the Computer Vision and Pattern Recognition*
 683 *Conference*, pp. 25487–25496, 2025.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A REPRODUCIBILITY STATEMENT

704 The data pre-processing techniques we used for these experiments are the default CLIP preprocessing
 705 transforms based on the backbone architecture. All the results reported are on the test set of
 706 the datasets. MSAE models are trained with the default setting mentioned in the Github repository
 707 of Zaigrajew et al. (2025). For non medical settings we used the datasets mentioned in the MSAE
 708 for training the SAEs. For medical, we trained SAE with the Biomedclip embeddings of PMC-
 709 15M train set Zhang et al. (2023a). The parameters required for our framework can be extracted by
 710 implementing the presented candidate selection and parameter search algorithms.

712 B LLM USAGE:

714 We used LLMs to polish the write-up after verifying its output content. We also used LLMs precisely
 715 for searching purposes to find the relevant related works by prompting for related works based on a
 716 specific topic.

718 C ABLATIONS AND ANALYSIS:

720 We perform additional ablations studies to justify the design choices made in our framework and
 721 explain its effectiveness.

723 **Candidate Selection:** We apply our subspace removal only on candidates which could be dispropor-
 724 portionately affected by spurious correlations. We find this selection to improve the overall perfor-
 725 mance. (Table 6) compares our selective candidate selection approach against a global application
 726 of the subspace removal method.

727 Table 6: Ablation study with and without candidate selection

729 Dataset - Model	730 Without candidate selection	730 With Candidate selection
731 CelebA - ViT L/14	86.43/84.82	86.54/85.15
732 CelebA - ViT B/32	84.85/81.67	85.28/83.42
733 Waterbirds - ViT L/14	81.60/51.56	82.25/69.18
734 Waterbirds - ViT B/32	70.45/50.31	71.88/52.82
734 FMOW - ViT L/14	26.04/19.55	26.09/19.90

735 Table 7: Ablation study for identifying SAE features.

737 Model - Dataset	737 Mean Activation Diff	737 Cosine Similarity	737 Both
738 CelebA - ViT L/14	86.86/85.39	86.78/85.35	86.87/85.24
739 CelebA - ViT B/32	85.54/83.33	85.28/82.78	85.54/83.47
740 Waterbirds - ViT L/14	82.61/68.85	74.95/50.29	82.6/68.69
741 Waterbirds - ViT B/32	71.85/52.68	70.69/48.12	71.88/52.82
742 ISIC	70.71/68.42	62.45/55.84	70.71/68.42
743 Covid-19	61.11/48.28	58.33/34.48	61.11/48.28

744 **Feature Attribution:** Motivated by prior work on identifying SAE features Karvonen et al. (2024),
 745 we used both mean activation difference of positive and negative sample activations and cosine
 746 similarity of the SAE feature with the text embedding. The ablation experiment (Table 7) suggests
 747 that mean activation difference alone yields performance comparable to using both.

748 **Analysis:** In the four points below, we analyze the possible reasons for the efficacy of our frame-
 749 work.

751 **1) Minimized Feature Interference via Disentanglement:** Standard baselines often operate in
 752 dense, polysemantic embedding spaces. In such spaces, removing a spurious feature vector fre-
 753 quently degrades causal features due to feature superposition. By using the SAE latent space, we
 754 leverage a highly disentangled representation where feature vectors are nearly orthogonal. This or-
 755 thogonality allows us to surgically remove spurious features with minimal impact on the semantic
 integrity of causal features.

Figure 5: Visualization of DIAL shifting model focus from spurious to causal features. In the CelebA hair color classification task, DIAL redirects attention from gender-correlated attributes toward relevant regions (hair, eyebrows, and facial hair). Similarly, in the Waterbirds dataset, the method shifts focus from the background environment to the bird itself.

2) Selective Intervention using Candidate Selection: Even within the SAE latent space, perfect orthogonality is not always achieved. Blanket removal of features across all samples can inadvertently harm "clean" samples (those not relying on spurious correlations). We explicitly identify samples that are disproportionately affected by spurious features (high activation of spurious components relative to causal ones). We apply our removal intervention only to these identified samples. This preserves the integrity of samples that are already robust, preventing the performance degradation seen when applying global intervention (Table 6).

3) Subspace removal instead of feature ablation: Removing the entire spurious subspace, rather than simply ablating the corresponding feature activation to zero, aids in removing unidentified spurious features that are highly aligned with that subspace. This results in a more effective elimination of spurious features, as demonstrated in Figure 4 of the paper.

4) Feature selection through Attribution Mass: Since different backbone embeddings and SAEs exhibit varying activation patterns, using a fixed Top-K approach to select feature directions corresponding to spurious features was shown to be less effective than selection through attribution mass, as shown in Figure 3 of the paper.

D ANALYSIS ON SAE ARCHITECTURE AND DATA

In this section, we evaluate the robustness of our framework across three dimensions: i) different SAE architectures (BatchTopKSAE Bussmann et al. (2024), JumpReLU Rajamanoharan et al. (2024)), ii) SAE quality metrics (reconstruction loss, sparsity, and decoder orthogonality), and iii) the impact of training SAEs on domain-specific debiasing datasets.

D.1 IMPACT OF SAE ARCHITECTURE

Table 8 presents the performance of our framework when employing different SAE variants. We observe that MSAE achieves the best overall performance on average. This superiority is likely attributable to the quality of MSAE as measured by various evaluation metrics Zaigrajew et al. (2025).

810 Table 8: Evaluation of our framework using different SAEs. Average Accuracy/Worst-Group Accu-
 811 racy are reported.

Dataset	BatchTopKSAE	JumpReLUUSA	MSAE
CelebA	87.35/84.44	87.74 /84.44	86.87/ 85.24
Waterbirds	71.98/41.51	77.80/56.01	82.6 / 68.69
ISIC	69.57/58.73	72.16 /66.67	70.71/ 68.42
Covid-19	46.52/20.69	58.33/34.48	61.11 / 48.28

819 D.2 SAE QUALITY VS. MITIGATION PERFORMANCE

820 We analyze how intrinsic SAE properties, specifically reconstruction quality, sparsity, and decoder
 821 orthogonality affect debiasing performance (Tables 9 and 10). Our analysis yields three key obser-
 822 vations:

- 823 **1. Disentanglement Robustness:** High disentanglement capability (measured here via de-
 824 coder orthogonality) persists in the evaluated SAEs even when reconstruction loss is rela-
 825 tively high.
- 826 **2. Dataset Sensitivity:** While our framework remains effective across varying sparsity levels,
 827 the Waterbirds dataset is more sensitive to reconstruction degradation than CelebA.
- 828 **3. General Improvement:** Worst Group (WG) accuracy improves across all evaluated con-
 829 figurations.

830 From these results, we infer that as long as an SAE reconstructs well enough to preserve discrimina-
 831 tive features while maintaining high disentanglement, it can be effectively used to mitigate spurious
 832 correlations.

833 Table 9: Analysis of performance of our method w.r.t SAE Quality on CelebA dataset

Recon. Loss (↓)	Sparsity (↑)	Decoder Orthogonality (↓)	Avg/WG Acc (↑)
0.44	0.72	0.0016	87.35 /84.44
0.012	0.51	0.0014	86.41/ 84.71
0.019	0.79	0.0016	86.48/84.65

834 Table 10: Analysis of performance of our method w.r.t SAE Quality on Waterbirds dataset

Recon. Loss (↓)	Sparsity (↑)	Decoder Orthogonality (↓)	Avg/WG Acc (↑)
0.44	0.72	0.0016	71.98/41.51
0.075	0.49	0.0013	75.2/49.31
0.019	0.79	0.0016	81.98 / 68.51

849 D.3 TRAINING ON DEBIASING DATASET

850 To assess the feasibility when large-scale pre-trained SAEs are unavailable, we trained SAEs from
 851 scratch on the specific debiasing datasets: CelebA ($\sim 140k$ images) and Waterbirds ($\sim 4.6k$ images).
 852 Table 11 shows that these domain-specific SAEs successfully improve worst-group accuracy. The
 853 performance on CelebA is comparable to that of the pre-trained SAE. However, the Waterbirds-
 854 trained SAE performs slightly worse, likely due to the limited training data size. These results
 855 demonstrate that training an SAE on the target dataset could be a feasible strategy for spurious
 856 correlation mitigation, particularly when data volume is sufficient.

857 Table 11: Evaluation of our framework when SAE is trained with debiasing dataset

Dataset	Original (Avg/WG) (↑)	DIAL (Avg/WG) (↑)
CelebA	81.20/73.35	86.41 / 84.71
Waterbirds	83.72 /31.93	75.2/ 49.31
FMOW	26.05/18.16	26.67 / 18.16

864 E ADDITIONAL BACKBONES:
865
866
867868 We have evaluated our framework on additional backbones whose results are provided in Tables
869 12,13,14.

870 Table 12: Evaluation of our framework with SigLIP (ViT-SO400M-14-SigLIP-384)

Dataset	Original (Avg/WG) (↑)	DIAL (Avg/WG) (↑)
CelebA	82.51/79.11	84.32/82.02
Waterbirds	80.92/61.37	80.54/ 66.16
FMOW	34.53/25.18	34.10/ 25.60

871 Table 13: Evaluation of our framework with EVA02-E-14-plus

Dataset	Original (Avg/WG) (↑)	DIAL (Avg/WG) (↑)
CelebA	84.78/80.54	87.76/86.52
Waterbirds	76.95/37.85	76.78/ 56.65
FMOW	29.62/15.97	29.30/ 16.70

872 Table 14: Evaluation of our framework with ViT-H-14-quickgelu

Dataset	Original (Avg/WG) (↑)	DIAL (Avg/WG) (↑)
CelebA	83.80/80.00	83.81/81.59
Waterbirds	85.60/51.09	88.47/63.86
FMOW	30.21/19.44	30.57/19.90

893 F INTERPRETABILITY EVALUATION

894 To evaluate the interpretability of our framework, we utilize the Monosemanticity Score (MS) pro-
895 posed by Pach et al. (2025). We compute the MS score on the validation sets of the SAEs. Specif-
896 ically, we use the ImageNet validation set for the standard vision backbones (ViT-B/32, ViT-L/14)
897 and the PMC-15M validation set for the medical backbone (BiomedCLIP). This ensures that the
898 interpretability scores reflect the general quality and complexity of the features learned by the SAE,
899 independent of the specific downstream tasks.900 We computed the MS scores using the automated method from Pach et al. (2025) across all neurons
901 in our trained SAEs. The average per-neuron MS scores are reported in Table 15.

902 Table 15: Average Monosemanticity Scores (MS) for the SAEs used in our framework.

SAE - Backbone Model	MS Score (Avg)
CLIP ViT-B/32	0.56
CLIP ViT-L/14	0.43
BiomedCLIP	0.42

912 To contextualize these results, we refer to the user study conducted by Pach et al. (2025), which cal-
913ibrates MS scores against human perception. Their study establishes that an MS score in the range
914 of 0.4–0.5 corresponds to a human alignment rate of approximately 65–70%. Our results (0.42–
915 0.56) indicate that the features learned by the SAEs are largely monosemantic and align with human
916 perception. Consequently, this semantic coherence enables a verifiable explainability pipeline be-
917 cause the underlying units represent interpretable concepts, human experts can explicitly interpret
918 the spurious feature directions identified by our model and inspect the mitigation process.

918 G ALGORITHMS
919920

921 **Algorithm 1** Candidate Selection

922 **Require:**

923 1: $E = \{e_i\}_{i=1}^n$: set of image embeddings.
 924 2: $\hat{Y} = \{\hat{y}_i\}_{i=1}^n$: set of pseudo-labels from zero-shot predictions.
 925 3: $T = \{c \rightarrow t_c\}$: map of class labels to text embeddings.
 926 4: k : number of neighbors for k-NN.
 927 5: w : text embedding weight.

928 6: **for** each class $c \in \text{unique}(\hat{Y})$ **do** ▷ Calculate hybrid centroids for each class c
 929 7: $\mu_c \leftarrow (1 - w) \cdot \text{Mean}(\{e_i \mid \hat{y}_i = c\}) + w \cdot T[c]$
 930 8: **end for** ▷ Identify candidates based on centroid similarity or k-NN disagreements
 931 9: $M_{\text{centroid}} \leftarrow [\text{argmax}_{c'} \text{CosSim}(e_i, \mu_{c'}) \neq \hat{y}_i]_{i=1}^n$
 932 10: $M_{\text{knn}} \leftarrow [\text{k-NN}(e_i, E, \hat{Y}, k) \neq \hat{y}_i]_{i=1}^n$ ▷ Combine candidate sets
 933 11: $M \leftarrow M_{\text{centroid}} \vee M_{\text{knn}}$
 934 12: **return** M

935 **Algorithm 2** Optimal Debiasing Parameter Search

936 **Require:** $E = \{e_i\}_{i=1}^n$, the set of original VLM embeddings. M , a boolean mask identifying the
 937 candidate subset to debias. T_{spurious} , a set of spurious concept text prompts (e.g., [”male”,
 938 ”female”]). S_α, S_λ , search ranges for hyperparameters α and λ .
 939 **Ensure:** α^* , the optimal feature selection threshold. Λ^* , a map of optimal per-sample mitigation
 940 strengths for the subset.

941 1: $score_{\text{best}} \leftarrow \infty$
 942 2: $E_{\text{sub}} \leftarrow E[M]$ ▷ Apply mask to get the subset of embeddings
 943 3: $t_{\text{spurious}} \leftarrow \text{GETSPURIOUSDIRECTION}(T_{\text{spurious}})$ ▷ e.g., by averaging text embeddings
 944 4: **for** each $\alpha \in S_\alpha$ **do** ▷ Identify the spurious subspace for the current α
 945 5: $Q \leftarrow \text{IDENTIFYSPURIOUSSUBSPACE}(E_{\text{sub}}, \alpha)$
 946 6: **if** Q is not valid **then continue**
 947 7: **end if**
 948 8: **for** this subspace, find the best per-sample λ by minimizing similarity to t_{spurious}
 949 9: **for** each sample $e_i \in E_{\text{sub}}$ **do** ▷ Score is similarity to spurious concept
 950 10: $\lambda_i^*, d_i^{\min} \leftarrow \infty, \infty$
 951 11: **for** each $\lambda \in S_\lambda$ **do** ▷ Apply debiasing
 952 12: $e_{i,\text{clean}} \leftarrow e_i - \lambda(QQ^T e_i)$
 953 13: $d_{\text{current}} \leftarrow \text{CosSim}(e_{i,\text{clean}}, t_{\text{spurious}})$
 954 14: **if** $d_{\text{current}} < d_i^{\min}$ **then**
 955 15: $d_i^{\min} \leftarrow d_{\text{current}}$
 956 16: $\lambda_i^* \leftarrow \lambda$
 957 17: **end if**
 958 18: **end for**
 959 19: **end for**
 960 20: $\Lambda_{\text{current}}[i] \leftarrow \lambda_i^*$
 961 21: $D_{\min}[i] \leftarrow d_i^{\min}$
 962 22: **end for** ▷ The overall score for this α is the mean of the minimized similarities
 963 23: $score_{\text{current}} \leftarrow \text{Mean}(D_{\min})$
 964 24: **if** $score_{\text{current}} < score_{\text{best}}$ **then**
 965 25: $score_{\text{best}} \leftarrow score_{\text{current}}$
 966 26: $\alpha^* \leftarrow \alpha$
 967 27: $\Lambda^* \leftarrow \Lambda_{\text{current}}$
 968 28: **end if**
 969 29: **end for**
 970 30: **end for**
 971 31: **return** α^*, Λ^*
