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ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive zero-shot capa-
bilities across a wide range of tasks and domains. However, their performance
is often compromised by learned spurious correlations, which can adversely af-
fect downstream applications. Existing mitigation strategies typically depend on
additional data, model retraining, labeled features or classes, domain-specific ex-
pertise, or external language models—posing scalability and generalization chal-
lenges. In contrast, we introduce a fully interpretable, zero-shot method that re-
quires no auxiliary data or external supervision named DIAL (Disentangle, Iden-
tify, And Label-free removal). Our approach begins by filtering the represen-
tations that might be disproportionately influenced by spurious features, using
distributional analysis. We then apply a sparse autoencoder to disentangle the rep-
resentations and identify the feature directions associated with spurious features.
To mitigate their impact, we remove the subspace spanned by these spurious di-
rections from the affected representations. Additionally, we propose a principled
technique to determine both the optimal number of spurious feature vectors and
the appropriate magnitude for subspace removal. We validate our method through
extensive experiments on widely used spurious correlation benchmarks. Results
show that our approach consistently outperforms or matches existing baselines in
terms of overall accuracy and worst-group performance, offering a scalable and
interpretable solution to a persistent challenge in VLMs.

1 INTRODUCTION

Contrastive image-language models like CLIP have become foundational components in numer-
ous applications, largely due to their remarkable zero-shot generalization capabilities Radford et al.
(2021); Cherti et al. (2023). By training on web-scale data, they eliminate the need for task-specific
labeled datasets, enabling efficient and scalable solutions for a wide range of downstream tasks and
generative pipelines Lu et al. (2025); Zhu et al. (2025); Adila et al. (2024). However, despite strong
aggregate performance, these vision-language models (VLMs) often fail on specific demographic
or semantic groups, exhibiting performance far below the average Zhu et al. (2025); Chuang et al.
(2023a); Yang et al. (2023). This vulnerability stems from their tendency to learn spurious correla-
tions relying on non-causal features that are coincidentally prevalent in the training data rather than
the causal task-relevant attributes Li et al. (2025). A commonly cited example in literature is where
medical diagnosis predictions are being made using imaging artifacts found in the diagnostic image
instead of causal disease features Lu et al. (2025); Li et al. (2025). Figure 2 shows some examples
of these spurious correlations visualized through a heatmap. As these spurious correlations may not
hold in real-world test data, the model’s reliability and zero-shot promise are fundamentally under-
mined, raising serious concerns about fairness and robustness Varma et al. (2024); Chuang et al.
(2023b).

In recent times, a growing body of work has sought to mitigate the spurious correlations in VLMs.
Many works like Chuang et al. (2023b); Trager et al. (2023); Lauscher et al. (2020) have focused
on the textual modality for debiasing, but do not address biases encoded in the visual representa-
tions. Also, methods like Lauscher et al. (2020) require domain expertise or manual specification
of debiasing textual prompts. Other prominent methods Yang et al. (2023); Zhang & Ré (2022);
Wang et al. (2023); Zhu et al. (2025) require fine-tuning the model or access to class and/or spurious
feature labels, which negates the primary zero-shot advantage of VLMs. Recently, a few methods
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Figure 1: Overview of our proposed method. Our method takes in VLM image embeddings and
spurious features of a given dataset. (e.g., ”Male” and ”Female” for the CelebA dataset). The
entire method operates in a zero-shot setting without requiring training, external data, class labels,
or spurious feature labels,.

have emerged that operate in a truly zero-shot setting Lu et al. (2025); Adila et al. (2024); Chuang
et al. (2023b). However, they introduce their own set of challenges. For instance, TIE Lu et al.
(2025) relies on spurious feature labels for each sample to achieve optimal performance, which are
often unavailable and expensive to acquire. Moreover, although it offers a label-free variant (TIE*),
both implementations practically depend on additional data to compute their scaling factors. Con-
currently, methods like ROBOSHOT Adila et al. (2024) rely on Large Language Models (LLMs) to
generate task-specific insights, introducing concerns about reliability, hallucination, and sensitivity
to the choice of LLM Lu et al. (2025).

To address the challenges of the current methods in mitigating spurious correlations, we propose
an interpretable algorithm, DIAL (Disentangle, Identify, And Label-free removal), which works in
a complete zero-shot setting without requiring training, additional data, or labels (both class labels
and spurious feature labels). Our framework requires two inputs: VLM embeddings of samples
of a dataset and a high-level description of spurious features affecting the dataset (e.g., ”Male”,
”Female” for CelebA). Our method unfolds in three main steps. First, guided by the insight that
samples affected by spurious features often deviate from their class centroids Li et al. (2025), we
identify a candidate set of potentially biased samples without class labels using zero-shot predic-
tions as pseudo-labels. Second, we employ an off-the-shelf Sparse Autoencoder (SAE) to project
these embeddings into a disentangled feature space. Within this space, we introduce a technique
to reliably identify the feature directions that encode the spurious features. Finally, we debias the
identified samples by removing the spurious subspace via an orthogonal projection. We also provide
a technique to select the optimal parameters for our debiasing process, namely the number of spuri-
ous feature vectors (k) and the magnitude of subspace removal (λ). The overview of our proposed
approach is given in Figure 1.

We conduct extensive experiments on five standard benchmark datasets, demonstrating the efficacy
of our method compared to baselines. In summary, our contributions are:

• We propose a fully zero-shot and interpretable algorithm to mitigate spurious correlations
without requiring any training, additional data, class labels, or spurious feature annotations.

• We introduce a new technique to identify and isolate the spurious feature subspace from
disentangled SAE representations in a zero-shot manner.

• We validate our method’s effectiveness on multiple benchmarks and VLM backbones,
demonstrating that our method consistently outperforms or performs comparably to cur-
rent state-of-the-art baselines.
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Figure 2: This figure illustrates how a CLIP model relies on spurious correlations for zero-shot
predictions. For the ISIC dataset, it focuses on an image artifact instead of the lesion. For chest
X-rays, it attends to a medical device rather than pneumonia indicators. On CelebA, it uses facial
features instead of hair to identify ’Blond hair,’ and for Waterbirds, it relies on the water background
rather than the bird.

2 RELATED WORK

Mitigation with training or labels: The problem of mitigating spurious correlations in deep learn-
ing models has been extensively studied. Techniques like Sagawa et al. (2019a); Liu et al. (2021);
Yao et al. (2022); Krueger et al. (2021); Lu et al. (2024); Arjovsky et al. (2019); Idrissi et al. (2022);
Yang et al. (2023); Goyal et al. (2023); Zhang & Ré (2022) aim to remove the effect of spurious
correlations through reweighting the training samples, finetuning, regularization, or disparate loss
functions. More recently Zhu et al. (2025) proposed to train a biased classifier to identify the group
labels and debias the classifier for VLMs. Li et al. (2025) identifies the minority samples using
their dispersed distribution, and learns a transformation to a bias-invariant representation. Varma
et al. (2024) shows that using region-level information in the images during training helps VLMs
to ignore spurious correlations. All these methods require some form of training/fine-tuning, labels,
or access to the model parameters. In contrast, our method works completely in a zero-shot setting
without needing any labels, fine-tuning, or access to model parameters.

Mitigation in zero-shot setting: Several of the recent works on mitigating spurious correlations in
VLMs focused on doing so in a zero-shot setting. Ge et al. (2023) proposes to augment text prompts
with parent and child from WordNet hierarchy to improve zero-shot generalization. Trager et al.
(2023) uses the average of text prompts, which are made from combining class labels with spurious
features to get debiased text prompts for each class. Dehdashtian et al. (2024) uses reproducing ker-
nel Hilbert spaces to debias CLIP’s image and text representations. Chuang et al. (2023b) proposes
a closed-form method through a calibrated projection matrix to remove biased direction from clip
embeddings. Lu et al. (2025) mitigates spurious correlations by translating image embeddings along
the direction of spurious vectors computed from text prompts. Its main algorithm needs access to
spurious feature labels for each sample, so the authors also propose a variant that adapts when spu-
rious feature labels are not present. Additionally, both variants of TIE require access to additional
data to compute the scale parameter. Adila et al. (2024) uses LLMs to generate insights on spuri-
ous features, which are used to remove harmful components while keeping the useful ones. Unlike
other zero-shot approaches, our method requires no auxiliary data for parameter tuning, no spurious
feature labels, and no LLM for generating insights.

Interpretable Methods for Mitigation: Some of the works have proposed using interpretability
methods for mitigating spurious correlations. Wu et al. (2023) proposes an iterative framework
that discovers human-interpretable spurious concepts and intervenes on training data to mitigate
their influence. Chakraborty et al. (2024) uses explainability-based heatmaps for creating pseudo
labels to retrain and improve robustness to spurious features in an unsupervised manner. Karvonen
et al. (2024) introduces a method to evaluate an SAE based on its capacity to mitigate spurious
correlations. To do this, they train linear classifiers to identify specific neurons correlated with a
known spurious attribute. The activations of these identified neurons are then ablated (i.e., zeroed
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out), and the resulting impact on model performance is measured. Unlike our approach, their method
requires labeled training data and relies on activation zeroing rather than the removal of spurious
subspace via orthogonal projection.

3 METHODOLOGY

3.1 SETUP

LetD = {(xi, yi)}ni=1 be a dataset with labels yi ∈ Y . A VLM uses an image encoder ϕv and a text
encoder ϕt to map inputs into a d-dimensional embedding space Rd.

For zero-shot classification, a set of class prompts (e.g., ”a photo of c”) are tokenized and then
embedded by the text encoder to produce a set of class vectors {pc}|Y|

c=1, where pc = ϕt(promptc).
The probability that an image xi belongs to class c is computed as:

P (y = c | xi) = softmaxc

(
1

τ
· CosSim(ϕv(xi), pc)

)
where τ is the temperature parameter.

The set of groups is defined as the G = Y × A, where Y is the set of class labels and A is the
set of spurious attributes. We measure robustness of a VLM using three metrics: overall accuracy
(Accavg), worst-group accuracy (Accwg), and the performance gap (Accgap), defined as:

Accwg = min
g∈G

Accg , Accgap = Accavg −Accwg

The goal of our zero-shot mitigation strategy is to improve both Accavg and Accwg , and minimize
Accgap, without requiring training or access to any labels.

3.2 FINDING SPURIOUS FEATURES

Our strategy is to use a pre-trained SAE to disentangle the VLM embeddings ei and isolate feature
directions corresponding to spurious attributes. An SAE decomposes an embedding into a sparse,
linear combination of monosemantic features that are interpretable.

Given an embedding e ∈ Rd, an SAE computes sparse feature activations z ∈ Rl and a reconstructed
embedding ê ∈ Rd:

z = act(Wence+ benc) ê = Wdecz + bdec

Here, Wenc ∈ Rd×l is the encoder weight matrix, and the decoder matrix Wdec ∈ Rl×d contains the
l disentangled feature vectors {fj}lj=1 as its columns. We refer to this set of vectors as the feature
dictionary, F .

For each spurious attribute a ∈ A (e.g., ”male” or ”female”), we identify a subset of feature vectors
Ka ⊂ F that strongly correlate with it. To do this, we adapt the attribution score method from
Karvonen et al. (2024) to a zero-shot setting. First, we use the VLM’s zero-shot classification ability
to partition the reconstructed embeddings {êi} from our dataset D into a positive set Pa (samples
exhibiting attribute a) and a negative set Na. This is done using a prompt like ”a photo of a a” and
its negation.

The attribution score S for each feature vector fj ∈ F with respect to attribute a is then calculated
as:

S(fj , a) =

(
1

|Pa|
∑
i∈Pa

zi,j −
1

|Na|
∑
i∈Na

zi,j

)
× CosSim(fj , ea)

where zi,j is the activation of feature fj for sample i, and ea = ϕt(prompta) is the text embedding
of the spurious attribute itself. This score is high when a feature’s direction aligns with the attribute’s
semantic embedding and its activation is consistently higher for samples in the positive set.

Finally, to form the spurious feature set Ka, we select the top-k features that account for a fraction
α of the total attribution mass. We sort the features fj by |S(fj , a)| in descending order (indexed by
π) and choose the smallest k such that:

∑k
j=1 |S(fπ(j), a)| ≥ α

∑l
j=1 |S(fj , a)|

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The resulting set Ka = {fπ(1), . . . , fπ(k)} captures the primary directions in the embedding space
associated with the spurious attribute a. The setK =

⋃
a∈A Ka contains all the feature vectors from

every individual spurious feature set Ka

3.3 MITIGATING SPURIOUS FEATURES

Given the identified set of spurious feature vectors K, we aim to debias the reconstructed VLM
embeddings êi by removing their components that lie in the subspace spanned by these features. To
account for noise in the feature selection process, we first refine the spurious subspace by weighting
each feature fj ∈ K based on its alignment with the mean direction of the set. First, we compute
the mean vector m of the spurious features: m = 1

|K|
∑

fj∈K fj

Next, we compute a vector of alignment scores s ∈ R|K|, where each element sj corresponds to
a feature fj : sj = β · CosSim(fj ,m) A weight vector w is then derived by applying the softmax
function to these scores, where β is a temperature hyperparameter controlling sharpness: w =
softmax(s)

To further denoise the set, we prune the features by setting weights that fall below a specified per-
centile to zero, yielding a filtered set of feature vectors Kf ⊆ K with corresponding non-zero
weights.

We then form a matrix Vw whose columns are the weighted feature vectors {wjfj | fj ∈ Kf}. We
perform QR decomposition on this matrix, Vw = QR, to obtain an orthonormal basis Q for the
refined spurious subspace. The projection of êi onto this subspace is given by ˆei,proj = QQT êi.

The final, debiased embedding ˆei,clean is obtained by subtracting this projection from the original
embedding, scaled by a mitigation factor λ ∈ [0, 1]: ˆei,clean = êi − λ ˆei,proj

This procedure removes information correlated with the identified spurious concepts while preserv-
ing other essential features of the original VLM embedding.

We employ a targeted mitigation strategy, applying orthogonal projection to remove spurious fea-
tures only from a subset of samples identified by our candidate selection algorithm ( Alg. 1). This
algorithm is designed to pinpoint samples that are likely to be affected by spurious correlations,
which often lead to misclassifications.

Operating in a label-free, zero-shot setting, our approach builds on the insight from prior work Li
et al. (2025) that biased samples often lie far from their true class centroid. We approximate these
class centroids by using the VLM’s own zero-shot predictions as pseudo-labels. To enhance the
robustness of this selection against noise and outliers, we further refine the candidate set using a
standard k-Nearest Neighbors (k-NN) algorithm.

Our framework has three key parameters: the number of neighbors k for k-NN, the attribution mass
threshold α, and the mitigation strength λ. To select these values effectively, we propose a grid-
search-based algorithm (Alg. 2) that optimizes a zero-shot score reflecting the alignment between
sample embeddings and the identified spurious features.

Algorithm 1 Candidate Selection

Require: E = {ei}ni=1, set of image embeddings. Ŷ = {ŷi}ni=1, set of pseudo-labels obtained
from zero-shot predictions. T = {c → tc}, map of class labels to text embeddings. k, number
of neighbors for k-NN. w, text embedding weight.

1: ▷ Calculate hybrid centroids for each class c
2: for each class c ∈ unique(Ŷ ) do
3: µc ← (1− w) ·Mean({ei | ŷi = c}) + w · T [c]
4: end for
5: ▷ Identify candidates based on centroid similarity or k-NN disagreements
6: Mcentroid ← [argmaxc′ CosSim(ei, µc′) ̸= ŷi]

n
i=1

7: Mknn ←
[

K -NN CLASSIFY(ei, E, Ŷ , k) ̸= ŷi

]n
i=1

▷ k-NN fit with E, Ŷ

8: M ←Mcentroid ∨Mknn ▷ Combine candidate sets
9: return M

5
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4 EXPERIMENTS

4.1 DATASETS

Following the prior work Lu et al. (2025) in zero-shot spurious correlation mitigation, we use the
five established benchmarks for evaluating our method. CelebA Liu et al. (2015), Waterbirds Koh
et al. (2021), FMOW Christie et al. (2018) and two medical datasets ISIC Codella et al. (2019), and
COVID-19 Cohen et al. (2020). All datasets except FMOW have two classes and two associated
spurious features, while FMOW has 62 classes with 5 spurious features. In accordance with the
prior work Lu et al. (2025); Adila et al. (2024), we define groups as a combination of class label
and spurious feature. For FMOW, we define a group based on the spurious feature following the
procedure given in Wu et al. (2023). For zero-shot classification, we use the same text prompts used
in our prior work and evaluate all the baselines with the same text prompts. For example, for the
CelebA dataset, the zero-shot text prompts we use are ’a photo of a celebrity with dark hair’, and ’a
photo of a celebrity with blonde hair’

4.2 BASELINES

We evaluate our proposed method against existing zero-shot mitigation methods, including TIE Lu
et al. (2025), ROBOSHOT Adila et al. (2024), Ideal Words Trager et al. (2023), Orth-Cali Chuang
et al. (2023b), and Perception CLIP An et al. (2024). We also include the zero-shot and GroupPrompt
zero-shot performance as the baselines. As established by prior works Sagawa et al. (2019b), we
compare on worst group accuracy (Accwg - WG), average accuracy (Accavg - Acc), and gap between
Acc and WG (Accgap - Gap). In the results, we group the baselines into two groups, one with meth-
ods that require auxiliary information through either additional data, class/spurious feature labels, or
LLM insights for mitigation. This group includes Perception CLIP An et al. (2024), ROBOSHOT
Adila et al. (2024), and TIE/TIE∗Lu et al. (2025). The other group, which does not require any
of these, is our proposed method, along with standard zero-shot, GroupPrompt classification, Ideal
words Trager et al. (2023), and Orth-Cali Chuang et al. (2023b). For a fair comparison, we divide
the baseline methods into these two groups in the results.

4.3 BACKBONE MODELS

Following the prior work Adila et al. (2024); Lu et al. (2025), we examine CLIP ViT-B/32 (OpenAI),
and ViT-L/14 (Laion-2B) Radford et al. (2021); Cherti et al. (2023) as backbones for Waterbirds and
CelebA datasets. For the FMOW dataset, we use ViT-L/14 (Laion-2B) model. For medical datasets
ISIC and COVID-19 we use BiomedCLIP Zhang et al. (2023). For disentangling the representations,
we use the pre-trained Matryoksha Sparse Autoencoders (MSAE) Zaigrajew et al. (2025) for all the
backbone models used in the experiments. Any other SAE trained for VLMs can also be used instead
of MSAE.

4.4 RESULTS

CelebA and Waterbirds:

On the CelebA dataset (results in Table 1), our method demonstrates superior performance, par-
ticularly with the ViT-B/32 backbone. It surpasses all zero-shot baselines across all three metrics,
even outperforming methods that require auxiliary data, spurious feature labels, or the use of LLMs.
When using the stronger ViT-L/14 backbone, our approach continues to achieve the highest worst
group accuracy, lowest performance gap, underscoring its robust efficacy in mitigating spurious
correlations.

For the Waterbirds dataset (results in Table 2), using the ViT-L/14 backbone, our method yields sig-
nificant improvements in worst group accuracy and effectively reduces the performance gap com-
pared to the baselines. We hypothesize that the performance on this dataset is influenced by the
inherent complexity of the spurious attributes. The concepts of ”land background” and ”water back-
ground” are highly varied and complex, making it challenging to fully capture the corresponding
feature space using only a high-level semantic description. This ambiguity may impact the preci-
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Table 1: CelebA: Comparison of our mitigation method with baselines in terms of zero-shot classi-
fication. Best performance is bolded, and the second best is underlined.

Method Setting Requirements CLIP ViT-B/32 CLIP ViT-L/14

Additional
Data

Class/Spurious
Feature Labels LLM AVG (↑) WG(↑) Gap(↓) AVG (↑) WG(↑) Gap(↓)

PerceptionCLIP ✗ ✗ ✓ 80.32 76.46 3.86 81.41 78.70 2.71
ROBOSHOT ✗ ✗ ✓ 84.77 80.52 4.25 85.54 82.61 2.93
TIE ✓ ✓ ✗ 85.11 82.63 2.48 86.17 84.60 1.57
TIE∗ ✓ ✗ ✗ 85.11 82.63 2.48 86.17 84.60 1.57

Zero-Shot ✗ ✗ ✗ 84.27 78.89 5.38 81.20 73.35 7.85
GroupPrompt ✗ ✗ ✗ 80.38 74.90 5.48 77.86 68.94 8.92
Ideal words ✗ ✗ ✗ 80.96 78.12 2.84 89.15 76.67 12.48
Orth-Cali ✗ ✗ ✗ 82.31 77.92 4.39 81.39 77.69 3.70
DIAL (Ours) ✗ ✗ ✗ 85.54 83.47 2.17 86.87 85.24 1.63

Table 2: Waterbirds: Comparison of our mitigation method with baselines in terms of zero-shot
classification. Best performance is bolded and second best is underlined.

Method Setting Requirements CLIP ViT-B/32 CLIP ViT-L/14

Additional
Data

Class/Spurious
Feature Labels LLM AVG (↑) WG(↑) Gap(↓) AVG (↑) WG(↑) Gap(↓)

PerceptionCLIP ✗ ✗ ✓ 82.50 59.78 22.72 86.74 54.12 32.62
ROBOSHOT ✗ ✗ ✓ 71.92 54.41 17.51 64.43 45.17 19.26
TIE ✓ ✓ ✗ 79.82 71.35 8.47 84.12 78.82 5.30
TIE∗ ✓ ✗ ✗ 76.91 61.24 15.67 78.98 61.60 17.38

Zero-Shot ✗ ✗ ✗ 68.48 41.37 27.11 83.72 31.93 51.79
GroupPrompt ✗ ✗ ✗ 66.79 43.46 23.33 56.12 10.44 45.68
Ideal words ✗ ✗ ✗ 79.20 60.28 18.92 87.67 64.17 23.50
Orth-Cali ✗ ✗ ✗ 69.19 54.99 14.20 86.31 58.56 27.75
DIAL (Ours) ✗ ✗ ✗ 71.88 52.82 19.06 82.6 68.69 13.91

Table 3: FMOW: Comparison of our mitigation method with baselines in terms of zero-shot classi-
fication. Best performance is bolded, and the second best is underlined.

Method Setting Requirements AVG (↑) WG(↑) Gap(↓)

Additional
Data

Class/Spurious
Feature Labels LLM

PerceptionCLIP ✗ ✗ ✓ 17.70 12.61 5.09
ROBOSHOT ✗ ✗ ✓ 19.79 10.88 8.91
TIE ✓ ✓ ✗ 26.62 20.19 6.43
TIE∗ ✓ ✗ ✗ 26.65 19.84 6.81

Zero-Shot ✗ ✗ ✗ 26.02 18.06 7.96
GroupPrompt ✗ ✗ ✗ 14.69 8.75 5.94
Ideal words ✗ ✗ ✗ 20.21 11.14 9.07
Orth-Cali ✗ ✗ ✗ 26.11 19.45 6.66
DIAL (Ours) ✗ ✗ ✗ 26.09 19.90 6.19

sion of our attribution score calculation, explaining why some baselines perform better in certain
configurations.

FMOW: We next evaluate our method on the challenging FMOW dataset ((results in Table 3)).
Owing to the complicated nature of the dataset, following the prior work Lu et al. (2025), we use
only the ViT-L/14 backbone. Our method improves over the baselines in our sub-group on the worst
group accuracy while still maintaining a comparable average accuracy.
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Table 4: Medical Datasets - ISIC and COVID-19: Comparison of our mitigation method with base-
lines in terms of zero-shot classification. Best performance is bolded, and the second best is under-
lined.

Method Setting Requirements ISIC COVID-19

Additional
Data

Class/Spurious
Feature Labels LLM AVG (↑) WG(↑) Gap(↓) AVG (↑) WG(↑) Gap(↓)

PerceptionCLIP ✗ ✗ ✓ 52.74 41.55 11.19 56.87 48.84 8.03
ROBOSHOT ✗ ✗ ✓ 59.84 53.30 6.54 53.10 32.75 20.35
TIE ✓ ✓ ✗ 69.90 65.87 4.03 62.50 52.17 10.33
TIE∗ ✓ ✗ ✗ 71.68 61.11 10.57 61.08 50.22 10.86

Zero-Shot ✗ ✗ ✗ 70.21 42.21 28.00 61.81 44.83 16.98
GroupPrompt ✗ ✗ ✗ 30.05 12.13 17.92 48.27 27.58 20.69
Ideal words ✗ ✗ ✗ 53.07 41.42 11.65 56.84 23.53 33.31
Orth-Cali ✗ ✗ ✗ 72.54 21.43 51.11 51.72 44.83 6.89
DIAL (Ours) ✗ ✗ ✗ 70.71 68.42 2.29 61.11 48.28 12.83

Figure 3: Comparison of spurious feature selection strategies.

Medical Datasets: The results on the medical datasets are presented in 4. On the ISIC dataset ,
our method demonstrates a substantial improvement in worst group accuracy and a corresponding
reduction in the performance gap compared to all baselines. Notably, our fully zero-shot approach
surpasses even those methods that rely on auxiliary data or additional labels for debiasing. Similarly,
for the COVID-19 dataset, our approach improves over baselines in worst-group performance, it
achieves this while maintaining a highly competitive average accuracy.

4.5 ABLATIONS

In this section, we justify the technical choices made in our framework through a series of empirical
studies. We focus on techniques to select the optimal spurious feature vectors and removal of the
spurious features. For the results reported in ablation studies, datasets CelebA, Waterbirds, and
FMOW are used with Vit-L/14 as the backbone.

Selection through top k features vs attribution mass We compare the difference between selecting
the top k spurious feature directions, and selecting α fraction of the attribution mass. When we run
the proposed parameter search algorithm to optimize k vs alpha, we see that the latter provides
better results as shown in Figure 3. This could be due to the varying representation of different
features in the SAE. For example, a specific concept like ”color patch” might be represented with
fewer feature vectors than ”land background”.

Orthogonal projection vs neuron ablation Prior works have used both these techniques for con-
cept removal. In our experiments (results shown in 4), we find that orthogonal projection is much
more effective at removing the spurious features than just ablating the corresponding activations to
zero. This may be attributed to orthogonal projection removing the entire spurious subspace, while
ablating a specific set of neurons to zero may still leave some unidentified spurious feature vectors

8
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Figure 4: Comparison of spurious feature removal techniques.

watering down the mitigation. On the other hand, orthogonal projection can affect non-spurious
features if they are very close to spurious features.

5 DISCUSSION

Modality and Scope: While this work focuses on mitigating spurious correlations in image em-
beddings, our method is modality-agnostic and can be applied to any VLM embedding. Mitigating
with image modality distinguishes our approach from most zero-shot baselines that primarily target
the textual modality.

SAE Parameterization: The choice of a pre-trained SAE can influence the optimal parameters
(α, λ) for mitigation, as different SAEs may disentangle features at varying levels of abstraction.
However, this dependency can be managed by our proposed zero-shot parameter search, which is
designed to identify the optimal parameters given a set of spurious features.

Interpretable Mitigation: A key advantage of our method over prior work is its inherent trans-
parency and interpretability. In high-stakes domains, this transparency is crucial for building trust
and ensuring reliability. Our framework allows for a direct inspection of the mitigation process,
providing a clear mechanism to diagnose the root causes of model failures and perform targeted
debugging.

6 CONCLUSION

VLMs have demonstrated remarkable zero-shot capabilities, yet their performance on downstream
tasks is often compromised by spurious correlations learned from web-scale training data. In this
work, we introduced a novel, fully unsupervised zero-shot method to mitigate these learned biases
directly within the VLM’s embedding space. Our approach first employs a pre-trained SAE to get
the disentangled feature representations. We then identify the directions corresponding to spurious
features and remove them by applying an orthogonal projection to the VLM’s image embeddings.
Crucially, our method operates without requiring any additional data, training, or supervision in
the form of class or spurious attribute labels. This self-contained, zero-shot nature distinguishes
it from prior works that often depend on such auxiliary information or external tools like LLMs
to describe spurious concepts. Furthermore, by directly manipulating image embeddings, we offer
a distinct alternative to common text-embedding-based debiasing strategies. We have empirically
validated our approach across five challenging datasets and multiple VLM backbones. The results
demonstrate that our method consistently outperforms or performs comparably to current state-of-
the-art techniques, confirming its efficacy and potential as a practical solution for building more
robust and reliable VLMs. Future work could explore multimodal debiasing, simultaneous detection,
and mitigation of spurious features using SAEs.

9
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A ALGORITHM

Algorithm 2 Optimal Debiasing Parameter Search

Require: E = {ei}ni=1, the set of original VLM embeddings. M , a boolean mask identifying the
candidate subset to debias. Tspurious, a set of spurious concept text prompts (e.g., [”male”,
”female”]). Sα, Sλ, search ranges for hyperparameters α and λ.

Ensure: α∗, the optimal feature selection threshold. Λ∗, a map of optimal per-sample mitigation
strengths for the subset.

1: scorebest ←∞
2: Esub ← E[M ] ▷ Apply mask to get the subset of embeddings
3: tspurious ← GETSPURIOUSDIRECTION(Tspurious) ▷ e.g., by averaging text embeddings
4: for each α ∈ Sα do
5: ▷ Identify the spurious subspace for the current α
6: Q← IDENTIFYSPURIOUSSUBSPACE(Esub, α)
7: if Q is not valid then continue
8: end if
9: ▷ For this subspace, find the best per-sample λ by minimizing similarity to tspurious

10: for each sample ei ∈ Esub do
11: λ∗

i , d
min
i ←∞,∞

12: for each λ ∈ Sλ do
13: ei,clean ← ei − λ(QQT ei) ▷ Apply debiasing
14: dcurrent ← CosSim(ei,clean, tspurious) ▷ Score is similarity to spurious concept
15: if dcurrent < dmin

i then
16: dmin

i ← dcurrent
17: λ∗

i ← λ
18: end if
19: end for
20: Λcurrent[i]← λ∗

i
21: Dmin[i]← dmin

i
22: end for
23: ▷ The overall score for this α is the mean of the minimized similarities
24: scorecurrent ← Mean(Dmin)
25: if scorecurrent < scorebest then
26: scorebest ← scorecurrent
27: α∗ ← α
28: Λ∗ ← Λcurrent

29: end if
30: end for
31: return α∗,Λ∗
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B REPRODUCIBILITY STATEMENT

The data pre-processing techniques we used for these experiments are the default CLIP preprocess-
ing transforms based on the backbone architecture. All the results reported are on the test set of
the datasets. MSAE models are trained with default setting mentioned in the Github repository of
Zaigrajew et al. (2025) with datasets mentioned in the repo. The parameters used for our framework
is can be extracted by implementing the presented parameter search algorithm.

C LLM USAGE:

We used LLMs to polish the write-up after verifying its output content. We also used LLMs precisely
for searching purposes to find the relevant related works by prompting for related works based on a
specific topic.
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