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ABSTRACT

Visual prompt tuning offers significant advantages for adapting pre-trained visual
foundation models to specific tasks. However, current research provides limited
insight into the interpretability of this approach, which is essential for enhancing
AI reliability and enabling AI-driven knowledge discovery. In this paper, rather
than learning abstract prompt embeddings, we propose the first framework, named
Interpretable Visual Prompt Tuning (IVPT), to explore interpretability for visual
prompts by introducing cross-layer concept prototypes. Specifically, visual prompts
are linked to human-understandable semantic concepts, represented as a set of
category-agnostic prototypes, each corresponding to a specific region of the im-
age. IVPT then aggregates features from these regions to generate interpretable
prompts for multiple network layers, allowing the explanation of visual prompts at
different network depths and semantic granularities. Comprehensive qualitative
and quantitative evaluations on fine-grained classification benchmarks show its
superior interpretability and performance over visual prompt tuning methods and
existing interpretable methods.

1 INTRODUCTION

Visual prompt tuning (Jia et al., 2022) has emerged as a promising approach for adapting pre-trained
visual foundation models (He et al., 2022; Chen et al., 2021; Dosovitskiy, 2020) to specific tasks,
allowing for flexible task customization while avoiding the need for full-scale model fine-tuning.
This approach has shown significant advantages in terms of efficiency and task adaptability, yet it
still faces a major challenge in interpretability. Most prompt tuning techniques (Jia et al., 2022; Dong
et al., 2022; Gao et al., 2022) involve learning abstract embeddings that automatically capture high-
level features, providing implicit guidance for the model but offering limited human-understandable
information into its decision-making process. The lack of transparency in these prompts hampers the
ability to assess the trustworthiness of AI systems and limits the scope for uncovering valuable insights
through AI-driven analysis, especially in safety-critical domains such as healthcare and autonomous
driving. Although existing multi-modal approaches (Bie et al., 2024; Yao et al., 2023; Bulat &
Tzimiropoulos, 2023) seek to improve prompt interpretability using human-designed guidance, such
as natural language, autonomously discovering clear and meaningful explanations for visual prompts
during training remains a significant challenge.

Recent methods have been developed to enhance the interpretability of visual models, such as concept-
based methods (Fel et al., 2023; Ghorbani et al., 2019; Kim et al., 2018; Zhang et al., 2021) that
utilize high-level abstractions to represent learned features and attribution-based methods (Yosinski
et al., 2015; Selvaraju et al., 2017) that identify regions in the input image that significantly influence
the model’s predictions. In this paper, we focus on an interpretable scheme that integrates both
attribution and concept discovery. We aim to interpret abstract visual prompts by linking them to
human-understandable concepts, each grounded in distinct image regions and assigned an importance
score based on its contribution to the model’s prediction, all achieved in an unsupervised manner,
without relying on annotations or internal model access. For example, given an image of a bird,
we learn an interpretable prompt token with the concept of a “bird wing”, quantifies its impact on
predicting the class “bird”, and localizes this concept to the wing region in the image.

Recently, several methods (Chen et al., 2019; Nauta et al., 2021; Wang et al., 2021; Huang et al., 2023)
have explored this attribution-concept hybrid interpretability scheme by learning part prototypes to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

represent specific concepts. However, these methods are primarily designed for conventional neural
network architectures rather than visual prompt tuning, presenting three key challenges. First, prior
methods focus on grounding concepts to image regions, while the connection between these concepts
and abstract prompt embeddings remains largely unexplored. Second, existing methods extract
concepts from the features of the final layer of deep models, neglecting the need to interpret visual
prompts learned at different layers and to capture cross-layer interactions among concepts. Third,
existing approaches typically learn a separate set of prototypes for each class, making it difficult
to analyze the model’s behavior across classes. We may be unable to capture and interpret shared
concepts that may appear in multiple categories. We assume that prototypes are not inherently tied to
specific pixels but gain semantic meaning through their similarity to localized patches in the image.

As a result, we introduce Interpretable Visual Prompt Tuning (IVPT), a novel framework that
emphasizes the interpretability of visual prompt tuning. IVPT advances beyond abstract embedding
learning by introducing cross-layer concept prototypes that connect learnable prompts with human-
understandable visual concepts. Specifically, each interpretable prompt is generated by aggregating
features from an image region corresponding to a concept prototype at a specific layer. These
prototypes are distributed across multiple network layers, enabling IVPT to interpret visual prompts
at different semantic depths. Unlike traditional methods, IVPT learns category-agnostic concept
prototypes, enabling the model to capture shared, non-overlapping concepts across various categories,
offering a more coherent explanation by focusing on the commonality of concepts. We also observe
that coarse-grained prompts in deep layers capture high-level concepts but lose fine-grained details,
while overly specific prompts in shallow layers lack broader contextual understanding. To capture
interactions between concepts across layers, IVPT bridges the gap with cross-layer prompt fusion to
align fine- and coarse-grained tokens. By linking local-to-global semantics across network layers
with varying granularity, IVPT emulates human visual reasoning, thus enhancing interpretability.

The main contributions of this paper are threefold: (1) We propose a novel framework for interpretable
visual prompt tuning that uses concept prototypes as a bridge to connect learnable prompts with
human-understandable visual concepts. (2) We introduce cross-layer concept prototypes to explain
prompts at multiple network layers while modeling their relationships in a fine-to-coarse alignment.
(3) We demonstrate the effectiveness of our approach through extensive qualitative and quantitative
evaluations on fine-grained classification benchmarks and pathological images, showing improved
interpretability and accuracy compared to both conventional VPT methods and interpretable methods.

2 RELATED WORKS

2.1 INTERPRETABILITY OF VISUAL MODELS

Numerous methods have been developed to enhance the interpretability of visual models. Concept-
based methods (Fel et al., 2023; Zhang et al., 2021) use high-level abstractions to represent learned
features, facilitating understanding of the internal representations of a model. However, these
approaches typically operate at a single layer and lack region-level grounding, failing to provide
mechanisms for linking concepts to prompt embeddings or enabling multi-layer interpretability.
Attribution-based methods (Yosinski et al., 2015; Selvaraju et al., 2017) identify key regions in
the input images that affect predictions, clarifying the focus of the model during making decisions.
While effective at identifying influential regions, these methods do not offer semantic concept
alignment or interpretability of prompt tokens, especially across multiple layers. However, these
approaches often lack transparency when applied to visual prompt tuning and generally fail to
provide fine-grained, hierarchically organized explanations. To address this issue, we focus on
part-prototype methods (Chen et al., 2019; Nauta et al., 2021; Wang et al., 2021; Huang et al.,
2023), which offer localized representations associated with specific image regions. ProtoPNet (Chen
et al., 2019), as the foundational model, compares input features with prototypes of object parts,
while its extensions (Rymarczyk et al., 2021; 2022; Ma et al., 2024) further enhance interpretability.
ProtoTree (Nauta et al., 2021) integrates prototypes with decision trees, while TesNet (Wang et al.,
2021) arranges prototypes for spatial regularization. Further advancements include evaluating
prototype interpretability using a benchmark developed by Huang et al. (Huang et al., 2023). However,
these frameworks face limitations when applied to visual prompt tuning: they (1) lack concept-prompt
linkage, unable to connect concepts to prompt embeddings; (2) lack cross-layer interpretation, being
restricted to final-layer prototypes; and (3) rely on class-specific concepts, limiting cross-category
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analysis. Consequently, they neither define trainable prompts nor organize concepts hierarchically
across layers. In contrast, IVPT addresses this gap by employing category-agnostic prototypes at
multiple layers to define interpretable prompts and model their fine-to-coarse relationships.

2.2 VISUAL PROMPT TUNING

Visual prompt tuning (Bowman et al., 2023; Hu et al., 2022; Loedeman et al., 2022; Wu et al., 2022;
Jia et al., 2022) has become a popular parameter-efficient approach to transfer the generalization
capabilities of pre-trained vision models to various downstream tasks. Recent studies (Dong et al.,
2022; Zhao et al., 2024; Wang et al., 2024; Sohn et al., 2023; Wang et al., 2022) focus on modifying
inputs by embedding learnable parameters, aiming to adjust the input distribution and enable frozen
models to handle new tasks. For instance, VPT (Jia et al., 2022) introduces a limited set of learnable
parameters as input tokens to the Transformer. PViT (Herzig et al., 2024) uses specialized parameters
in a shared video Transformer backbone for both synthetic and real video tasks. E2VPT (Han et al.,
2023) incorporates learnable key-value prompts in self-attention layers and visual prompts in input
layers to improve fine-tuning. Gated Prompt Tuning (Yoo et al., 2023) learns a gate for each ViT
block to adjust its intervention into the prompt tokens. Despite their exceptional performance, these
methods fundamentally treat prompts as unconstrained black-box vectors, providing no inherent
interpretability or semantic grounding. They lack three critical properties: (i) spatial grounding to
concrete image regions, (ii) human-understandable concept definition, and (iii) cross-layer semantic
structure. This represents a significant gap in the VPT literature, as interpretability remains limited
to final features/logits rather than the prompts themselves. However, a major limitation of these
methods is that they often treat prompts as unconstrained black-box vectors, providing no inherent
interpretability or semantic grounding. Despite their exceptional performance, these models suffer
from poor interpretability. Prompt-CAM (Chowdhury et al., 2025) learns class-specific prompts for
a pre-trained ViT and using the corresponding outputs for classification. However, these learned
prompt tokens are typically unconstrained embedding vectors: they are not grounded in image
regions, associated with reusable concepts, or linked across layers into a coherent hierarchy. In
contrast, IVPT redefines prompts as region-grounded, category-shared concept embeddings that are
explicitly aligned from shallow attributes to deeper parts across layers. Thereby, our work establishes
the first interpretable paradigm for VPT—a concept-attribution hybrid—enabling direct semantic
interpretation of prompts while maintaining parameter efficiency.

3 IVPT: INTERPRETABLE VISUAL PROMPT TUNING

3.1 OVERALL PIPELINE

In this subsection, we explain how the proposed IVPT enhances the interpretability of visual prompts
with the explainable properties of concept prototypes, as illustrated in Figure 1.

Constructing interpretable prompts. Given a pre-trained Transformer model of N layers, we
learn a set of continuous embeddings to serve as prompts within the input space of a Transformer
layer, following the methodology outlined in Visual Prompt Tuning (Jia et al., 2022). Specifically, for
(i+ 1)-th Layer Li+1, we denote the collection of n input learnable prompts as Pi = {pi

k ∈ Rd |
k ∈ N, 1 ≤ k ≤ n}, where d denotes the feature dimension of the ViT backbone. During fine-tuning,
only the prompt embeddings are updated, while the Transformer backbone remains frozen.

However, the learned prompts are often abstract and difficult to interpret. To better explain their
meaning, it is necessary to establish a way of relating them to specific human-understandable concepts.
We use prototypes to convey a set of specific meanings. These prototypes are category-agnostic,
generally focusing on particular image regions sharing similar semantics across images of different
categories. As a result, a set of m concept prototypes Q = {qk ∈ Rd | k ∈ N, 1 ≤ k ≤ m} is
proposed to interpret a group of prompts P in a specific Transformer layer1 as:

pk = F(qk,E), k = 1, . . . ,m. (1)

Here E ∈ R(h×w)×d indicates the patch embeddings at the corresponding layer, where h and w
represent the spatial dimensions (height and width), and d is the feature dimension. In this context,

1The layer index i is omitted in subsequent equations, as they represent computations for a specific layer.
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Figure 1: IVPT introduces category-agnostic concept prototypes to generate explainable visual
prompt embeddings. At each layer, Concept Region Discovery (CRD) module captures specific
visual concepts as concept-level image regions, while Intra-region Feature Aggregation (IFA) module
aggregates features grouped by these region maps to obtain prompt embeddings. Several sets of
layer-wise concept prototypes are used to capture concepts across layers, while the fusion layer,
guided by the coarse-grained region, fuses the prompts in a fine-to-coarse manner as the final prompts
to replace flat visual prompts at each layer.

the function F is learned in IVPT to map each prompt embedding pk to a corresponding concept
prototype qk, a process that will be further explained. To better understand the concept represented
by a prototype qk ∈ Q, IVPT grounds this prototype to a concept region Rk within a specific image
by our proposed Concept Region Discovery (CRD) module, denoted as the function FCRD:

Rk = FCRD(qk,E), k = 1, . . . ,m. (2)

This operation explains the semantics of prototypes at the image level by highlighting the region with
high attention on the image. Given a concept prototype qk, its corresponding prompt embedding
pk is derived with features within the concept region Rk through our designed Intra-region Feature
Aggregation (IFA) module, denoted as the function FIFA:

pk = FIFA(Rk,E), k = 1, . . . ,m. (3)

Finally, we express the function F as F = FCRD ◦ FIFA, enabling us to present prompts with
prototypes more interpretably. F in Eq. 1 consists of two steps, where CRD in Eq. 2 uses prototype
qk as a semantic anchor to discover localized image regions Rk and IFA in Eq. 3 aggregates token
embedding E within Rk to obtain pk. m concept prototypes qk explain each visual prompt pk by
grounding it in semantically meaningful image regions and representing it with the feature of these
regions. More details will be provided in Section Concept-prototype-based prompt learning.

Exploring cross-layer interpretation. To interpret prompts across network layers with varying
granularity, we propose cross-layer concept prototypes. At each layer, prompts are represented by
a layer-specific set of prototypes, as shown in Figure 1. We adopt more prototypes in shallower
layers to capture fine-grained and diverse visual features. As the network depth increases, the
semantic representations become more abstract, and the number of prototypes progressively decreases,
reflecting the increased conceptual coherence of features in deeper layers. Section Cross-layer
prompt fusion will explain how IVPT fuses fine-grained prompts into n prompts integrated for
fine-tuning. Different from (Jia et al., 2022), we consider the prompts PN after the last Transformer
layer as the final concept representations, which are passed into a classification head to output
individual concept-conditioned category scores sk. These scores reflect the likelihood of the input
image belonging to a given class, conditioned on the interpretable prompt pk, highlighting the
significance of each concept for classification. The overall score is obtained by averaging individual
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concept-conditioned category scores, allowing the model to aggregate multiple complementary
semantic perspectives for more robust predictions. We use cross-entropy to calculate the classification
loss Lcls by comparing the score with the one-hot groundtruth label y:

Lcls = CELoss(
1

n

n∑
k=1

sk,y), where sk = Headk(p
N
k ). (4)

This formulation follows the common practice in prototype-based interpretable models of aggregating
multiple concept-conditioned category scores.

3.2 CONCEPT-PROTOTYPE-BASED PROMPT LEARNING

In this subsection, we dive into the pipeline of learning explainable prompts with concept prototypes.

Concept region discovery. Concept Region Discovery (CRD) module associates concept proto-
types with specific image regions, denoted as function FCRD in Eq. 2. First, the patch embeddings E
produced by the ViT are reshaped into a feature map Ẽ ∈ Rh×w×d. Then, we compute concept-level
attention maps A ∈ [0, 1]m×h×w, with each element ak,ij representing the attention score of a learn-
able concept prototype embedding qk ∈ Q on the patch embedding eij ∈ Ẽ. Similarly to previous
research (Aniraj et al., 2024; Huang & Li, 2020; Hung et al., 2019), we obtain the attention map
using a negative squared Euclidean distance function to measure similarity, followed by a Softmax
function across the m channels and injection of spatial bias:

ak,ij =
exp

(
−∥eij − qk∥2

)
∑m

l=1 exp
(
−∥eij − ql∥2

) + bk,ij , (5)

where bk,ij denotes the corresponding element in learnable spatial bias maps B ∈ Rm×h×w. We
employ a combination of part-shaping loss functions from (Aniraj et al., 2024) to guide the discovery
of non-overlapping regions associated with prototypes, denoted as Lps. This set of loss functions
ensures the discovery of distinct, transformation-invariant parts with unique assignments, foreground
presence, universal background, minimum connectivity, and minimize prototype polysemanticity,
whose details are provided in the Appendix. Finally, concept region maps R ∈ [0, 1]m×h×w are
generated based on the attention map A, where each image patch is assigned the attention value of
the concept that has the highest attention score in A. Thus, each element rn,ij ∈ R represents the
probability that a given image patch belongs to the corresponding concept and is defined as:

rn,ij =

{
an,ij if n = argmaxk ak,ij
0 otherwise.

(6)

Intra-region feature aggregation. We introduce Intra-region Feature Aggregation (IFA) module
corresponding to function FIFA in Eq. 3, which obtains an interpretable prompt corresponding to a
specific concept by aggregating the patch embeddings Ẽ within the corresponding concept regions.
Specifically, we first calculate region-conditional feature maps Z ∈ Rm×h×w×d, where the feature at
each location is re-weighted based on the specific region and the probability element indicated in R
by Z = R⊗ Ẽ, where ⊗ denotes an unsqueeze operation on the last dimension of R, followed by
element-wise multiplication with Ẽ. Finally, we aggregate features within each region to derive the
prompt pk corresponding to the k-th concept prototype:

pk =

∑
i,j zk,ij∑
i,j rk,ij

, k = 1, 2, . . . ,m, (7)

where zk,ij ∈ Rd represents a feature vector in Z.

3.3 CROSS-LAYER PROMPT FUSION

IVPT employs cross-layer concept prototypes to represent prompts from different Transformer
layers, capturing varying levels of semantic granularity. Shallow prompts are associated with
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Figure 2: Illustration of cross-layer prompt fusion.

more prototypes reflecting fine, low-level semantics, while deep prompts are associated with fewer
prototypes with coarse, high-level concepts. To explore relationships among prompts with different
semantic granularities, IVPT introduces cross-layer prompt fusion, where prompt embeddings at
shallow layers are combined to form deep prompts containing high-level concepts, as shown in
Figure 2. Let P denotes the set of prompts generated in the previous section. We partition the prompts
into groups based on shared high-level semantics by assigning each pk a group label yk = fg(pk),
where 0 ≤ yk ≤ n. Here, yk = 0 denotes the background class, and n represents the total number of
deep-layer prompts with distinct high-level semantics. The grouping layer fg is implemented as a
linear layer followed by a Gumbel-Softmax (Jang et al., 2016) operation to find the group with the
largest value. Within each group i, prompts are aggregated by computing their mean vector pi, which
is associated with a high-level concept.

To enable the group layer to effectively establish the intended correspondence between prompts
in the shallow layers and those in the deep layers, we introduce a concept region consistency loss
Lcon. This loss ensures that the combined concept regions associated with a group of fine-grained
prompts align closely with a coarse-grained region from the final layer corresponding to a high-level
concept. Formally, the concept region consistency loss is defined as the KL divergence between a set
of grouped fine-grained region maps and their corresponding coarse-grained region maps:

Lcon =
1

n

n∑
i=1

KL(Rf
i ,R

c
i ), where Rf

i =
∑
k∈Si

Rk. (8)

Here Rf
i denote the combined fine-grained region map of the i-th group, and Rc

i is the i-th coarse-
grained region map, which is derived from the last Transformer layer and used for classification. This
alignment encourages the fine-grained prompts to merge cohesively, resulting in better alignment
with the coarse-grained prompts with high-level semantics. The averaged prompts pi are then passed
through layer normalization and an MLP:

pfs
i = MLP(LayerNorm(pi)), i = 1, . . . , n. (9)

The set of fused prompts Pfs = {pfs
i ∈ Rd | i ∈ N, 1 ≤ i ≤ n} are finally used to tune the network.

The total training loss is defined as:

L = λclsLcls + λpsLps + λconLcon, (10)

where λcls, λps and λcon are balancing ratios for these losses. Specifically, the part-shaping loss and
the concept region consistency loss are averaged across layers. These losses enable our model to
balance classification performance with interpretability, thus promoting explainable recognition.
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Table 1: Quantitative comparisons of interpretability using consistency scores (Con.) and stability
scores (Sta.), as well as the accuracy (Acc.) on the CUB-200-2011 (Wah et al., 2011) dataset are
provided. The results of IVPT are compared against related approaches, including conventional
part-prototype networks and various visual prompt tuning methods. Best in bold.

Methods DeiT-S DeiT-B DinoV2-S DinoV2-B DinoV2-L
Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc. Con. Sta. Acc.

Conventional Part-Prototype Networks

ProtoPNet (Chen et al., 2019) 14.7 52.7 80.2 16.2 60.5 81.0 23.9 52.8 82.7 27.6 57.0 85.8 26.7 59.9 86.1
ProtoPool (Rymarczyk et al., 2022) 26.9 58.3 81.2 29.6 63.4 82.5 38.2 57.1 84.6 42.9 60.2 87.1 44.6 62.3 87.5
TesNet (Wang et al., 2021) 32.3 66.7 82.3 38.6 67.5 84.3 40.8 64.1 84.4 51.2 66.7 86.8 55.3 68.9 88.3
Huang et al. (Huang et al., 2023) 54.7 70.2 85.3 57.2 70.9 85.0 65.7 67.5 86.9 68.6 71.4 89.9 67.4 74.3 90.3

Visual Prompt Tuning Methods

VPT-Shallow (Jia et al., 2022) 5.6 35.5 82.4 8.9 33.6 83.5 9.0 39.2 86.2 12.7 40.3 88.5 11.3 44.5 88.7
VPT-Deep (Jia et al., 2022) 7.7 37.1 82.7 9.2 37.8 84.0 11.5 40.6 86.5 14.6 39.5 89.1 14.0 47.6 89.5
E2VPT (Han et al., 2023) 13.7 45.2 83.8 26.7 41.9 84.3 22.3 43.2 86.7 27.5 54.3 89.3 27.3 55.0 89.4
Gated Prompt Tuning (Yoo et al., 2023) 8.6 32.7 84.1 16.8 28.9 84.5 28.5 41.2 86.8 34.6 60.1 89.5 35.7 61.5 89.7
VPT-Shallow (w/ Proto.) 51.0 65.0 83.4 50.9 62.4 84.9 52.0 67.1 87.1 60.5 68.5 89.9 54.5 71.7 90.1
VPT-Deep (w/ Proto.) 54.8 66.7 84.1 59.7 70.3 85.6 61.8 65.3 87.3 70.2 72.5 90.3 61.9 75.0 90.7
E2VPT (w/ Proto.) 60.8 65.2 85.2 54.7 69.5 86.1 62.4 67.3 87.8 66.6 70.9 90.1 64.6 76.1 90.7
Gated Prompt Tuning (w/ Proto.) 56.7 68.2 85.2 61.3 65.4 86.2 65.4 68.2 87.8 70.3 71.8 90.4 67.2 75.6 90.5

IVPT 63.1 73.4 86.2 64.5 72.3 86.7 63.5 70.2 88.1 75.3 75.9 90.8 72.6 77.4 91.1

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow visual prompt tuning (Jia et al., 2022) paradigm for classification, supervised by image-
level category labels. We employ three DinoV2 (Oquab et al., 2023) variants (ViT-S, ViT-B, ViT-L)
with register tokens (Darcet et al., 2023) and two DeiT (Touvron et al., 2021) variants (ViT-S, ViT-B)
as backbones, with images resized to 518 × 518. We establish the cross-layer prototypes across
the last four layers, with the number of concept prototypes m (including background) set to 17, 14,
11, and 8 per layer, and the number of fused prompts n (as well as coarse-grained prompts) set
to 4. Balancing ratios λcls, λps and λcon are all set to 1. For interpretability, we evaluate scores
with 10 concepts or parts (the second-to-last layer), following the number of the evaluation method
in (Huang et al., 2023). The concept prototypes at each layer are all initialized randomly with a
standard variation of 0.05. More details are provided in the Appendix.

Datasets. We evaluate both the classification accuracy and interpretability on the CUB-200-2011
dataset (Wah et al., 2011), which is the only benchmark with part-level annotations required for
fine-grained interpretability evaluation. It contains images of 200 bird species, including 5,994
training images and 5,794 testing images. Each image includes keypoint annotations for 15 different
bird body parts. We also perform visualizations on the Gleason-2019 (Nir et al., 2018), the Stanford
Cars (Krause et al., 2013) and the FGVCAircraft dataset (Maji et al., 2013). Gleason-2019 is a
collection of annotated prostate cancer histopathology images about automated Gleason grading of
cancer aggressiveness. Stanford Cars is a dataset consisting of 16,185 images of 196 different car
models from 10 car manufacturers. FGVC-Aircraft contains 10,200 aircraft images, with 100 images
for each of 102 different aircraft variants. Additionally, we conduct quantitative experiments on two
other fine-grained datasets: PartImageNet, which provides part-level annotations for 158 classes from
ImageNet, and PASCAL-Part, containing detailed part annotations for objects in the PASCAL VOC.

Evaluation metrics and baselines. We evaluate the interpretability of the prompts using the
consistency and stability scores defined by (Huang et al., 2023). We compare our approach with two
categories of methods. First, we compare it with current state-of-the-art part prototype methods, such
as ProtoPNet (Chen et al., 2019), ProtoPool (Rymarczyk et al., 2022), TesNet (Wang et al., 2021), and
Huang et al. (Huang et al., 2023), which are evaluated based on category-specific prototypes without
sharing between categories. We also validate the effectiveness with several visual prompt tuning
baselines (Jia et al., 2022; Han et al., 2023; Yoo et al., 2023), along with variants that incorporate our
proposed concept-prototype-based prompt learning after the last layer for classification.
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Figure 3: Qualitative results of region maps via the structure of cross-layer prompt fusion.

Glandular Lumen Glandular Vesicle Tissue

(a) Gleason-2019 (b) Stanford Cars (c) FGVCAircraft

Figure 4: Qualitative results on patch-level images in the Gleason-2019 dataset about prostate cancer,
as well as Stanford Cars and FGVCAircraft about general fine-grained classification, with different
colors representing distinct concepts or features relevant to the prediction.

4.2 QUANTITATIVE COMPARISONS

We first evaluate the interpretability and accuracy of IVPT with quantitative metrics. Table 1
demonstrates that IVPT outperforms conventional part prototype networks in consistency scores
(measuring coherent concept alignment across instances), achieving gains of +8.4%, +7.3%, +6.7%,
and +5.2% for DeiT-S, DeiT-B, DinoV2-B, and DinoV2-L, respectively. However, it lags behind
Huang et al. (Huang et al., 2023) by 2.2% for DinoV2-S, likely due to smaller models’ limited
capacity to maintain both interpretability and accuracy. Additionally, IVPT achieves higher stability
scores (reflecting robustness to input variations) than prior works, with improvements of 3.2%, 1.4%,
2.7%, 4.5%, and 3.1% for DeiT-S, DeiT-B, DinoV2-S, DinoV2-B, and DinoV2-L, highlighting
the framework’s resilience to distribution shifts. IVPT also maintains prediction accuracy, even
slightly surpassing part prototype networks in recognition performance. Notably, the distinct trends
in consistency and stability metrics suggest excellent semantic alignment fidelity and prediction
invariance under perturbations.

4.3 QUALITATIVE INTERPRETABILITY ANALYSIS

Qualitative results of the cross-layer structure. To validate the effectiveness of the cross-layer
structure in capturing fine-to-coarse semantics and demonstrate how it addresses the limitations
of non-cross-layer concept learning, we provide qualitative visualizations of region maps from
three sample images across different layers. As shown in Figure 3, fine-grained semantics at lower
layers progressively transition to coarse-grained representations at higher layers, enabling inter-layer
interaction and a systematic explanation pathway between detailed and abstract semantics. By
leveraging this cross-layer relationship, IVPT efficiently extracts intra-region features to construct
interpretable prompts, thereby improving semantic alignment across granularities in complex visual
scenes. These results explicitly illustrate how IVPT’s cross-layer design enhances its capacity to
model and explain multi-granularity concepts.
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Table 2: Performance comparison on PartImageNet
and PASCAL-Part datasets with DinoV2-B.

Methods PartImageNet PASCAL-Part
Con. Sta. Acc. Con. Sta. Acc.

ProtoPool 47.5% 56.9% 61.9% 52.3% 45.9% 75.1%
Huang et al. 58.6% 62.3% 66.9% 67.2% 68.6% 78.9%
VPT-Deep 54.2% 63.7% 73.9% 61.5% 62.9% 85.9%
IVPT 63.2% 71.5% 74.2% 72.6% 77.4% 86.4%

Table 3: Ablation on component combinations.
Methods Con. Sta. Acc.
Baseline 62.7 64.3 88.4
+ Spatial bias maps 63.5 66.7 88.7
+ Intra-region feature aggregation 65.4 68.3 89.8
+ Cross-layer prototype 70.4 70.9 90.5
+ Fine-to-coarse prompt fusion 75.3 75.9 90.8

Qualitative results on other recognition tasks. To assess the applicability of IVPT in pathology,
we perform explainability experiments on the Gleason-2019 dataset for prostate cancer classification.
Whole-slide images are divided into 256×256-pixel patches, each classified with Gleason scores
of 3, 4, or 5. As shown in Figure 4(a), IVPT effectively highlights key grading features, such as
green regions (glandular lumen) and purple regions (diseased glandular vesicles), consistent with
pathological standards. Blue areas denote common tissue types. This visualization underscores
IVPT’s potential to enhance diagnostic workflows by clarifying the model’s reasoning. Further
analysis of concept significance across grades is provided in the Appendix.

Moreover, we identify key contributing concepts in two fine-grained recognition datasets: Stanford
Cars (Krause et al., 2013) and FGVCAircraft (Maji et al., 2013). As shown in Figure 4(b)-(c), IVPT
focuses on fine-grained details essential for distinguishing similar classes. For Stanford Cars, it
identifies critical concepts such as the emblem or handle (blue), rearview mirror (orange), wheel
(green), and headlight (red). Similarly, for FGVCAircraft, it detects key components including
the tail (blue), fuselage (orange), turbine (green), and wing (red). The concepts associated with
individual prototypes tend to cluster around semantically related features. When necessary, fine-
grained distinctions can be uncovered by subdividing these clusters, enabling interpretable refinement
without evidence of uncontrolled polysemantic mixing.

Importance scores of explainable concept-level regions. We analyze the importance scores linked
to concept-level regions associated with prototypes for classification in Figure 5. The analysis reveals
how these four concept prototypes affect classification across three bird species. Each image is
associated with a region map, where patches are assigned to one of the regions (concepts), each
contributing differently to the classification. Concept-level importance scores are computed via
Equation 4 and displayed as bar graphs, showing each concept’s varying influence. For instance,
Concept 0 has a high score for Cactus Wren (0.43), while Concept 2 is more influential for Forster’s
Tern (0.37). The region corresponding to the highest-scoring concept overlaps precisely with the
discriminative concept of the image, which aids the interpretation of critical areas for classification.

4.4 RESULTS ON PARTIMAGENET AND PASCAL-PART

To validate the generalization of our IVPT beyond CUB, we conduct additional quantitative experi-
ments on two fine-grained part-annotation datasets: PartImageNet and PASCAL-Part. Following the
evaluation protocol in this paper, a single representative point was extracted for each non-background
semantic part (e.g., the centroid of a certain part in PartImageNet). As shown in Table 2, IVPT
achieves superior interpretability and robustness on key metrics across datasets, along with a consis-
tent edge in classification accuracy, confirming that our prototype learning framework effectively
captures monosemantic concepts in diverse scenarios.

Beyond the quantitative metrics, we present a qualitative analysis to visually demonstrate the concept
discovery capability of IVPT. Figure 6 showcases example visualizations from the PartImageNet and
PASCAL-Part datasets. Its ability to discover and leverage semantically consistent concepts across
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Figure 6: Qualitative anaylsis on PartImageNet (top) and PASCAL-Part (bottom).

object categories with vastly different morphologies. For instance, as visualized in Figure 6 (bottom),
the model trained on PASCAL-Part identifies“head” as a coherent concept for both rigid objects like
airplanes and articulated animals like horses and dogs. This demonstrates that IVPT grounds its
reasoning in high-level semantics rather than low-level textures or shapes specific to a category. The
spatial region maps show that the model precisely localizes these parts (e.g., the nose of a plane, the
head of a horse) and associates them with the same underlying concept. This cross-category concept
sharing suggests that IVPT builds a rich, part-based representation of the world. During inference,
the presence of such universal concepts (e.g., “head”, “leg”, “body”) provide a robust, interpretable
evidence trail, validating the generalization of IVPT’s interpretability.

4.5 ABLATION STUDIES

We first investigate the impact of various components on model performance, as illustrated in
Table 3. The baseline applies prompt learning for explainability exclusively in the last layer, using a
feature aggregation strategy with global-level attention instead of conditioning on specific regions.
Each additional component consistently improves performance across all metrics. Specifically,
intra-region feature aggregation achieves a notable improvement in classification accuracy, with
an increase of over 1%, as learning features within specific regions enhances their discriminative
power. Furthermore, the cross-layer prototypes as well as the fine-to-coarse prompt fusion results in a
substantial improvement of both the consistency score and stability score, validating the effectiveness
of cross-layer explainability. We also provide ablations on the number of prompted layers and concept
prototypes. Please refer to the Appendix for more details.

4.6 HUMAN STUDIES

We conduct a comprehensive human evaluation study with 20 participants to validate IVPT’s inter-
pretability, demonstrating strong alignment between learned prototypes and human-understandable
concepts. The study achieves 97.5% accuracy in concept annotation and high ratings across three
key dimensions: detail preservation (4.7/5), semantic abstraction (4.8/5), and transition naturalness
(4.8/5), indicating that IVPT’s hierarchical concept learning effectively mirrors human cognitive
processes. Complete methodological details and illustrative examples are provided in the appendix.

5 CONCLUSION

In this paper, we propose Interpretable Visual Prompt Tuning (IVPT) framework, which enhances the
interpretability of visual prompt tuning by associating prompts with human-understandable visual
concepts through concept prototypes. With a novel cross-layer structure, IVPT aligns concepts
across multiple layers for learning explainable prompts. Extensive evaluations demonstrate that IVPT
enhances both interpretability and accuracy compared to other methods, highlighting IVPT’s potential
to enable transparent and effective AI analysis, especially in critical applications. Our limitations
include reliance on in-domain concept prototypes, which limit flexibility in diverse domains.
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A ADDITIONAL TRAINING DETAILS

We train all our models using the Adam optimizer, with class token, position embedding, register token
(in DinoV2) and distillation token (in DeiT) unfrozen. We use a starting learning rate of 2× 10−4

for the fine-tuned tokens of ViT backbone, spatial bias maps and learnable concept prototypes, and
1× 10−2 for the other tunable layers of the model, including the fusion layers for prompt generation
and the linear head for classification, with a batch size of 16. Training lasts for a total of 25 epochs
with a duration of 2 hours on 4 NVIDIA RTX A6000 GPUs, and we employ a step learning rate
schedule, reducing the learning rate by a factor of 0.5 every 4 epochs. The concept prototypes at each
layer are all initialized randomly with a standard variation of 0.05.

B DETAILS OF PART-SHAPING LOSS

While the classification loss Lcls ensures the discriminative capability of the discovered parts, it does
not explicitly guide the attention maps to focus on semantically salient regions of the object. To
mitigate this limitation, we follow the methodology outlined in (Aniraj et al., 2024), which proposes
a set of additional objective functions that incorporate structural priors into the learning process,
summed as the part-shaping loss Lps. Below, we provide a detailed description of each loss function.

B.1 ORTHOGONALITY LOSS

Orthogonality loss L⊥ encourages decorrelation among the learned part embedding vectors by
minimizing their pairwise cosine similarity. Formally, for the modulated embedding vectors vk

m, the
loss is computed as:

L⊥ =

K+1∑
k=1

∑
l ̸=k

vk
m · vl

m

∥vk
m∥ · ∥vl

m∥
(11)

B.2 EQUIVARIANCE LOSS

Equivariance loss Leq ensures consistent part detection under geometric transformations. This is
achieved by: (1) applying a random affine transformation T to the input image, (2) processing
both original and transformed images through the network, (3) inverse-transforming the attention
maps from the transformed image, and (4) computing the cosine distance between the original and
transformed attention maps. This formulation encourages the learned parts to be equivariant to rigid
transformations like translation, rotation, and scaling. This loss is mathematically defined using the
attention map function Ak(x), which generates the kth attention map for input image x. The loss
computes the normalized correlation between the original attention maps and those from transformed
images after inverse transformation:

Leq = 1− 1

K

∑
k

∥∥Ak(x) · T−1
(
Ak (T (x))

)∥∥
∥Ak(x)∥ · ∥Ak (T (x))∥

(12)

B.3 PRESENCE LOSS

The presence loss consists of two components designed to enforce different spatial priors:

• Foreground presence loss Lp1 ensures each foreground part appears in at least some images
within a mini-batch. For a batch {x1, ...,xB}, it operates on pooled attention maps Āk(xb)
to prevent single-pixel solutions:

Lp1 = 1− 1

K

∑
k

max
b,i,j

ākij(xb) (13)

• Background presence loss Lp0 enforces consistent background detection across all images,
with a spatial bias toward image boundaries through a soft mask M :
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Lp0 = − 1

B

∑
b

log

(
max
i,j

mij ā
K+1
ij (xb)

)
(14)

The mask weights mij increase radially from the image center:

mij = 2

(
i− 1

H − 1
− 1

2

)2

+ 2

(
j − 1

W − 1
− 1

2

)2

(15)

B.4 ENTROPY LOSS

Entropy loss Lent encourages unambiguous part assignments by minimizing the entropy of attention
distributions:

Lent =
−1

K + 1

K+1∑
k=1

∑
ij

akij log
(
akij

)
(16)

B.5 TOTAL VARIATION LOSS

Total variation loss Ltv promotes spatial coherence in attention maps without imposing strict shape
constraints, favoring connected components through standard total variation regularization. This loss
is employed to encourage spatial smoothness in the learned part attention maps. This regularization
term computes the average magnitude of spatial gradients across all part maps:

Ltv =
1

HW

K+1∑
k=1

∑
ij

|∇akij | (17)

where ∇akij represents the spatial gradient (computed via finite differences) at position (i, j) in the
kth attention map Ak. This formulation promotes the formation of coherent regions in the attention
maps while remaining agnostic to specific part shapes. The normalization by image dimensions
ensures scale-invariant regularization across different input resolutions.

C ANALYSIS ON CRD/IFA COMPUTATIONAL COST DURING
TRAINING/INFERENCE

IVPT introduces a moderate computational overhead compared to vanilla Visual Prompt Tuning
(VPT), primarily due to the incorporation of its Concept Region Discovery (CRD) and Intra-region
Feature Aggregation (IFA) modules. When implemented in PyTorch and executed on an NVIDIA
RTX 3090 GPU, the attention mechanism and additional loss computations within CRD result in
an approximate 4.8% increase in training time and a 5.2% rise in per-image inference latency. This
overhead is largely attributable to the cross-layer prototype similarity calculations, whose complexity
scales with the feature dimensions.

Notably, the introduced modules are designed to be lightweight, contributing only a minimal number
of tunable parameters to the overall model. The breakdown of parameters is as follows:

• CRD Tunable Parameters:
– Concept Prototypes: 50 in total distributed across layers (i.e., 17 + 14 + 11 + 8)
– Each prototype is a 768-dimensional vector
– → Total: 50× 768 = 38, 400 parameters
– Spatial Bias Maps: 50 concept-specific maps at a resolution of 37× 37

– → Total: 50× 37× 37 = 68, 450 parameters
– Total CRD Parameters: 106,850

• IFA: No tunable parameters (utilizes fixed feature averaging)
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For context, the full Vision Transformer-Base (ViT-B) backbone contains approximately 86 million
trainable parameters (based on the standard DinoV2 ViT-B configuration). The additional parameters
introduced by CRD and IFA account for only about 0.12% of the total parameters required for full
ViT fine-tuning. Thus, IVPT achieves significant gains in interpretability while maintaining minimal
computational overhead.

D EXTRA ABLATIONS

Ablation on the hierarchical structure of prototypes. We investigate how the hierarchical pro-
totype structure strategy affects the performance, as shown in Table 4. We use DinoV2-B as the
backbone (the same below). When using only one layer, the model exhibits poor interpretability and
accuracy. Increasing the number of layers improves performance across all metrics, with four layers
achieving optimal results, suggesting enhanced inter-layer relationships that improve interpretability.
However, applying explainable prompt learning to more layers introduces semantic confusion and
reduces performance, due to fewer explainable concepts in feature maps from shallower layers.
Notably, reducing the number of prototypes layer by layer enhances interpretability by capturing
concepts at varying granularities, facilitating dynamic prompt modeling.

Table 4: Ablation on the number of prompted layers and the number of prototypes at each layer.
Bolded items in each list indicate layers used for interpretability evaluation, each with 10 prototypes.
After the final layer, we consistently use 4 prototypes to generate coarse-grained part features for the
final classification.

Layers Prototype Number Con. Sta. Acc.
1 [10] 62.5 65.2 89.5
2 [10, 7] 70.7 71.8 89.8
2 [10, 10] 67.2 72.6 89.6
3 [13, 10, 7] 73.7 73.0 90.3
3 [10, 10, 10] 74.4 70.7 90.5
4 [16, 13, 10, 7] 75.3 75.9 90.8
4 [10, 10, 10, 10] 75.6 71.2 90.5
5 [19, 16, 13, 10, 7] 66.6 68.1 90.1
5 [10, 10, 10, 10, 10] 64.3 67.4 89.7

Analysis on cross-layer concept alignment. To rigorously quantify cross-layer concept alignment,
we propose a new experiment measuring the Intersection over Union (IoU) between high-level concept
regions and aggregated low-level concept regions. Extensive experiments on the CUB-200-2011
validation set reveal exceptional alignment, as shown in Table 5

Table 5: Intersection over Union (IoU) measurements between different layer combinations

Layers IoU
Layer 1 (finest granularity) → Layer 4 (coarsest) 98.7%± 0.8
Layer 2 → Layer 4 98.9%± 0.6
Layer 3 → Layer 4 99.2%± 0.4
Overall mean 99.0%± 0.6

These results demonstrate that our cross-layer fusion mechanism (Eq. 8-9) achieves near-perfect
spatial consistency (IoU >98% universally), validating that fine-grained concepts are cohesively
grouped under unified high-level semantics, and that the cross-layer prompt fusion with a concept
region consistency loss work well.

E HUMAN EVALUATION METHODOLOGY AND RESULTS

We conduct a structured three-stage evaluation with 20 participants to assess IVPT’s interpretability.
In the concept annotation phase, participants freely describe semantic meanings for 100 prototype-
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Grade 3

Grade 4

Grade 5

Figure 7: Illustration of importance scores of different concepts by grade on the Gleason-2019 dataset.

activated regions from CUB-200-2011 images, achieving 97.5% overall accuracy in matching human
descriptions to prototype intentions.

For hierarchical validation, participants evaluate cross-layer transitions using 5-point Likert scales (1
= strongly disagree, 5 = strongly agree), showing strong consensus across three critical aspects:

Detail Preservation (mean = 4.7): Participants confirm IVPT’s ability to retain fine-grained visual
details during abstraction from shallow to deep layers. Example: When identifying a "Cactus Wren",
shallow-layer prototypes capture individual spine-like breast feathers, while deep-layer prototypes
preserve these textural details within broader anatomical concepts.

Semantic Abstraction (mean = 4.8): Users agree higher layers effectively capture meaningful
macro-concepts without distorting original semantics. Example: For a "Black-footed Albatross",
shallow prototypes detect detailed "hooked beak tip" features that naturally abstract to coherent
"head" concepts in deeper layers.

Transition Naturalness (mean = 4.8): The hierarchical progression demonstrates intuitive logical
coherence aligned with human reasoning patterns. Example: Observing a "Red-winged Blackbird",
users note seamless progression from wing edge curvature (Layer 1) to epaulet shape recognition
(Layer 2), mirroring expert birding observation patterns.

The study demonstrates IVPT’s effectiveness in bridging the gap between machine representations
and human-interpretable visual concepts through its cross-layer prototype architecture.

F FURTHER ANALYSIS ON THE GLEASON-2019 DATASET

Figure 7 illustrates the importance scores of different concepts (Glandular Lumen, Glandular Vesicle,
Tissue) across grades in the Gleason-2019 dataset. Glandular Vesicle shows a steady increase in
importance from Grade 3 to Grade 5, reaching around 0.6, which aligns with the fact that variations
in glandular vesicles are a primary indicator of prostate cancer. As the malignancy level increases,
its importance grows significantly. In contrast, Glandular Lumen remains consistently low, which is
reasonable given its lack of direct relevance to cancer. Meanwhile, Tissue shows a high importance
at Grade 3 but decreases significantly by Grade 5, likely due to the differentiation of tissue in
highly malignant samples. This pattern suggests that different concepts contribute variably to feature
extraction as malignancy progresses.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Original
Images

VPT-Deep

VPT-Deep
(with Prototypes)

IVPT

Figure 8: Qualitative results of explainable region maps generated by various approaches. We
highlight the areas that significantly distinguish IVPT from other methods with red circles.

G MORE VISUALIZATION

G.1 QUALITATIVE RESULTS OF EXPLAINABLE REGION MAPS.

We present qualitative results of explainable region maps generated by different approaches using
DinoV2-B as the backbone (the same below) in Figure 8. IVPT outperforms other methods by
producing more comprehensive and interpretable maps. Unlike the other two methods with prototype
learning, vanilla VPT-Deep struggles to identify explainable regions for the learnable prompts. In
comparison to VPT-Deep with prototypes, the red-circled areas in the IVPT row highlight additional
essential details, such as finer anatomical features of birds, demonstrating its ability to focus on
relevant features for clearer explanations. However, we also notice that in complex scenes with
occlusions or dense backgrounds (e.g., CUB images where birds overlap with branches), IVPT
prototypes occasionally misalign due to visual ambiguity. For example, we often found that a
prototype designed to capture "bird legs" activated on a textured branch mimicking leg scales,
incorrectly assigning high importance to background clutter.

G.2 GENERALIZATION ANALYSIS OF IVPT.

To further assess the generalization of our method beyond fine-grained recognition, we evaluate IVPT
on broader image classification benchmarks including CIFAR-100 and ImageNet. As illustrated
in Figure 9 (left), IVPT consistently identifies semantically meaningful object parts even in these
more generic settings, demonstrating that its part-discovery capability is not restricted to fine-grained
domains.

We also explore whether the learned concept prototypes can identify semantically meaningful parts
when generalizing on unseen categories (class domain) from the same dataset. As illustrated in
Figure 9 (right), when applied to novel categories not encountered during training, IVPT successfully
localizes coherent object regions—such as bird heads or wings in fine-grained recognition—without
any task-specific retraining. This indicates that the discovered prototypes capture transferable
visual concepts that are consistent across category boundaries, rather than overfitting to specific
training classes. The results confirm that IVPT exhibits robust cross-category concept generalization,
reinforcing the stability and semantic relevance of its learned prototypes.

To investigate the influence of domain shift on the concepts discovered by IVPT, we conduct a
comparative visualization study using the VLCS (Fang et al., 2013) benchmark. We fine-tune IVPT
separately on two domains—Caltech and PASCAL—using a pre-trained ViT backbone, and visualize
the top activated concepts for the “dog” and “person” classes. As shown in Figure 10, these visual
comparisons illustrate that IVPT dynamically adapts its concept priorities according to the domain,
confirming that the method does not assume a fixed concept set but rather learns domain-relevant
interpretations. This behavior makes IVPT suitable for deployment in environments where domain
shifts are expected.
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Figure 9: Qualitative results of IVPT on general image recognition datasets (left) and on novel
categories from the fine-grained CUB-200-2011 dataset (right).

Figure 10: Concept activation visualizations for IVPT models fine-tuned separately on the Caltech
and PASCAL domains of the VLCS benchmark. The comparison of highlighted regions shows how
the model prioritizes different semantic concepts when the domain shifts.

G.3 BAD CASE ANALYSIS.

Figure 11 presents representative failure cases of our IVPT model. The analysis of these cases reveals
that the model can learn spurious correlations, such as a "bird" prototype activating on surrounding
branches or a "shark" concept triggered by water texture. Crucially, this very interpretability not only
makes these biases transparent and diagnosable but also directly enables practical model debugging
and bias detection. By visually pinpointing and diagnosing such learned biases—where the model
relies on context rather than object features, IVPT allows researchers to move from observation
to action—facilitating targeted mitigation through data refinement or prototype pruning, thereby
solidifying its role in building more robust and trustworthy models.

G.4 EXPLAINABLE REGION MAPS WITH DIFFERENT NUMBER OF CONCEPT PROTOTYPES.

This section presents additional visualizations to highlight the explainability of region maps with
different numbers of concept prototypes. Specifically, Figure 12 shows explainable region maps with
varying concept prototypes. As the number of concept prototypes decreases, the region maps simplify,
grouping larger areas into fewer explainable regions. These visualizations demonstrate how reducing
the number of concept prototypes affects the granularity of the explainable regions, with higher values

Figure 11: Analysis of IVPT failure cases.
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providing finer, more detailed part regions across the bird images. This enables an analysis of how
concept-prototype-based explanations adapt to different prototype settings, illustrating the trade-off
between granularity and interpretability.

m=16

m=13

m=10

m=7

m=4

m=16

m=13

m=10

m=7

m=4

Figure 12: Visualization of explainable region maps with 16, 13, 10, 7 and 4 concept prototypes.

G.5 EXPLAINABLE REGION MAPS OF THE HIERARCHICAL STRUCTURE USING DIFFERENT
BACKBONES.

This section provides the visualization of explainable region maps generated from different backbones
with the hierarchical structure, as illustrated in Figure 13. The used backbones include DeiT-S, DeiT-
B, DinoV2-S, DinoV2-B, and DinoV2-L. Each row displays how each model processes the image of
a bird, capturing distinct regions with different color-coded parts, each corresponding to a concept
prototype. The visualization reveals variations in part regions depending on the backbone architecture,
with some models offering finer ones than others. These differences highlight the impact of the
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backbone choice on the interpretability and granularity of the explainable regions, emphasizing
how different architectures contribute uniquely to the generation of part-level explanations in the
hierarchical structure. This comparative visualization demonstrates the flexibility and adaptability of
the explainable region maps across varying backbones.

DeiT-S

DinoV2-S

DeiT-B

DinoV2-B DinoV2-L

Figure 13: Visualization of explainable region maps of the hierarchical structure using different
backbones, including DeiT-S, DeiT-B, DinoV2-S, DinoV2-B, and DinoV2-L.
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