

000 001 002 003 004 005 EXPLORING INTERPRETABILITY FOR VISUAL PROMPT 006 TUNING WITH CROSS-LAYER CONCEPTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Visual prompt tuning offers significant advantages for adapting pre-trained visual
026 foundation models to specific tasks. However, current research provides limited
027 insight into the interpretability of this approach, which is essential for enhancing
028 AI reliability and enabling AI-driven knowledge discovery. In this paper, rather
029 than learning abstract prompt embeddings, we propose the first framework, named
030 **Interpretable Visual Prompt Tuning (IVPT)**, to explore interpretability for visual
031 prompts by introducing cross-layer concept prototypes. Specifically, visual prompts
032 are linked to human-understandable semantic concepts, represented as a set of
033 category-agnostic prototypes, each corresponding to a specific region of the im-
034 age. IVPT then aggregates features from these regions to generate interpretable
035 prompts for multiple network layers, allowing the explanation of visual prompts at
036 different network depths and semantic granularities. Comprehensive qualitative
037 and quantitative evaluations on fine-grained classification benchmarks show its
038 superior interpretability and performance over visual prompt tuning methods and
039 existing interpretable methods.
040

1 INTRODUCTION

041 Visual prompt tuning (Jia et al., 2022) has emerged as a promising approach for adapting pre-trained
042 visual foundation models (He et al., 2022; Chen et al., 2021; Dosovitskiy, 2020) to specific tasks,
043 allowing for flexible task customization while avoiding the need for full-scale model fine-tuning.
044 This approach has shown significant advantages in terms of efficiency and task adaptability, yet it
045 still faces a major challenge in interpretability. Most prompt tuning techniques (Jia et al., 2022; Dong
046 et al., 2022; Gao et al., 2022) involve learning abstract embeddings that automatically capture high-
047 level features, providing implicit guidance for the model but offering limited human-understandable
048 information into its decision-making process. The lack of transparency in these prompts hampers the
049 ability to assess the trustworthiness of AI systems and limits the scope for uncovering valuable insights
050 through AI-driven analysis, especially in safety-critical domains such as healthcare and autonomous
051 driving. Although existing multi-modal approaches (Bie et al., 2024; Yao et al., 2023; Bulat &
052 Tzimiropoulos, 2023) seek to improve prompt interpretability using human-designed guidance, such
053 as natural language, autonomously discovering clear and meaningful explanations for visual prompts
054 during training remains a significant challenge.

055 Recent methods have been developed to enhance the interpretability of visual models, such as concept-
056 based methods (Fel et al., 2023; Ghorbani et al., 2019; Kim et al., 2018; Zhang et al., 2021) that
057 utilize high-level abstractions to represent learned features and attribution-based methods (Yosinski
058 et al., 2015; Selvaraju et al., 2017) that identify regions in the input image that significantly influence
059 the model’s predictions. In this paper, we focus on an interpretable scheme that integrates both
060 attribution and concept discovery. We aim to interpret abstract visual prompts by linking them to
061 human-understandable concepts, each grounded in distinct image regions and assigned an importance
062 score based on its contribution to the model’s prediction, all achieved in an unsupervised manner,
063 without relying on annotations or internal model access. For example, given an image of a bird,
064 we learn an interpretable prompt token with the concept of a “bird wing”, quantifies its impact on
065 predicting the class “bird”, and localizes this concept to the wing region in the image.

066 Recently, several methods (Chen et al., 2019; Nauta et al., 2021; Wang et al., 2021; Huang et al., 2023)
067 have explored this attribution-concept hybrid interpretability scheme by learning part prototypes to
068

represent specific concepts. However, these methods are primarily designed for conventional neural network architectures rather than visual prompt tuning, presenting three key challenges. First, prior methods focus on grounding concepts to image regions, while the connection between these concepts and abstract prompt embeddings remains largely unexplored. Second, existing methods extract concepts from the features of the final layer of deep models, neglecting the need to interpret visual prompts learned at different layers and to capture cross-layer interactions among concepts. Third, existing approaches typically learn a separate set of prototypes for each class, making it difficult to analyze the model’s behavior across classes. We may be unable to capture and interpret shared concepts that may appear in multiple categories. We assume that prototypes are not inherently tied to specific pixels but gain semantic meaning through their similarity to localized patches in the image.

As a result, we introduce **Interpretable Visual Prompt Tuning (IVPT)**, a novel framework that emphasizes the interpretability of visual prompt tuning. IVPT advances beyond abstract embedding learning by introducing cross-layer concept prototypes that connect learnable prompts with human-understandable visual concepts. Specifically, each interpretable prompt is generated by aggregating features from an image region corresponding to a concept prototype at a specific layer. These prototypes are distributed across multiple network layers, enabling IVPT to interpret visual prompts at different semantic depths. Unlike traditional methods, IVPT learns category-agnostic concept prototypes, enabling the model to capture shared, non-overlapping concepts across various categories, offering a more coherent explanation by focusing on the commonality of concepts. We also observe that coarse-grained prompts in deep layers capture high-level concepts but lose fine-grained details, while overly specific prompts in shallow layers lack broader contextual understanding. To capture interactions between concepts across layers, IVPT bridges the gap with cross-layer prompt fusion to align fine- and coarse-grained tokens. By linking local-to-global semantics across network layers with varying granularity, IVPT emulates human visual reasoning, thus enhancing interpretability.

The main contributions of this paper are threefold: (1) We propose a novel framework for interpretable visual prompt tuning that uses concept prototypes as a bridge to connect learnable prompts with human-understandable visual concepts. (2) We introduce cross-layer concept prototypes to explain prompts at multiple network layers while modeling their relationships in a fine-to-coarse alignment. (3) We demonstrate the effectiveness of our approach through extensive qualitative and quantitative evaluations on fine-grained classification benchmarks and pathological images, showing improved interpretability and accuracy compared to both conventional VPT methods and interpretable methods.

2 RELATED WORKS

2.1 INTERPRETABILITY OF VISUAL MODELS

Numerous methods have been developed to enhance the interpretability of visual models. Concept-based methods (Fel et al., 2023; Zhang et al., 2021) use high-level abstractions to represent learned features, facilitating understanding of the internal representations of a model. **However, these approaches typically operate at a single layer and lack region-level grounding, failing to provide mechanisms for linking concepts to prompt embeddings or enabling multi-layer interpretability.** Attribution-based methods (Yosinski et al., 2015; Selvaraju et al., 2017) identify key regions in the input images that affect predictions, clarifying the focus of the model during making decisions. **While effective at identifying influential regions, these methods do not offer semantic concept alignment or interpretability of prompt tokens, especially across multiple layers.** However, these approaches often lack transparency when applied to visual prompt tuning and generally fail to provide fine-grained, hierarchically organized explanations. To address this issue, we focus on part-prototype methods (Chen et al., 2019; Nauta et al., 2021; Wang et al., 2021; Huang et al., 2023), which offer localized representations associated with specific image regions. ProtoPNet (Chen et al., 2019), as the foundational model, compares input features with prototypes of object parts, while its extensions (Rymarczyk et al., 2021; 2022; Ma et al., 2024) further enhance interpretability. ProtoTree (Nauta et al., 2021) integrates prototypes with decision trees, while TesNet (Wang et al., 2021) arranges prototypes for spatial regularization. Further advancements include evaluating prototype interpretability using a benchmark developed by Huang et al. (Huang et al., 2023). **However, these frameworks face limitations when applied to visual prompt tuning: they (1) lack concept-prompt linkage, unable to connect concepts to prompt embeddings; (2) lack cross-layer interpretation, being restricted to final-layer prototypes; and (3) rely on class-specific concepts, limiting cross-category**

108 analysis. Consequently, they neither define trainable prompts nor organize concepts hierarchically
 109 across layers. In contrast, IVPT addresses this gap by employing category-agnostic prototypes at
 110 multiple layers to define interpretable prompts and model their fine-to-coarse relationships.
 111

112 2.2 VISUAL PROMPT TUNING

113 Visual prompt tuning (Bowman et al., 2023; Hu et al., 2022; Loedeman et al., 2022; Wu et al., 2022;
 114 Jia et al., 2022) has become a popular parameter-efficient approach to transfer the generalization
 115 capabilities of pre-trained vision models to various downstream tasks. Recent studies (Dong et al.,
 116 2022; Zhao et al., 2024; Wang et al., 2024; Sohn et al., 2023; Wang et al., 2022) focus on modifying
 117 inputs by embedding learnable parameters, aiming to adjust the input distribution and enable frozen
 118 models to handle new tasks. For instance, VPT (Jia et al., 2022) introduces a limited set of learnable
 119 parameters as input tokens to the Transformer. PViT (Herzig et al., 2024) uses specialized parameters
 120 in a shared video Transformer backbone for both synthetic and real video tasks. E²VPT (Han et al.,
 121 2023) incorporates learnable key-value prompts in self-attention layers and visual prompts in input
 122 layers to improve fine-tuning. Gated Prompt Tuning (Yoo et al., 2023) learns a gate for each ViT
 123 block to adjust its intervention into the prompt tokens. **Despite their exceptional performance, these**
 124 **methods fundamentally treat prompts as unconstrained black-box vectors, providing no inherent**
 125 **interpretability or semantic grounding. They lack three critical properties: (i) spatial grounding to**
 126 **concrete image regions, (ii) human-understandable concept definition, and (iii) cross-layer semantic**
 127 **structure. This represents a significant gap in the VPT literature, as interpretability remains limited**
 128 **to final features/logits rather than the prompts themselves. However, a major limitation of these**
 129 **methods is that they often treat prompts as unconstrained black-box vectors, providing no inherent**
 130 **interpretability or semantic grounding.** Despite their exceptional performance, these models suffer
 131 from poor interpretability. Prompt-CAM (Chowdhury et al., 2025) learns class-specific prompts for
 132 a pre-trained ViT and using the corresponding outputs for classification. **However, these learned**
 133 **prompt tokens are typically unconstrained embedding vectors: they are not grounded in image**
 134 **regions, associated with reusable concepts, or linked across layers into a coherent hierarchy. In**
 135 **contrast, IVPT redefines prompts as region-grounded, category-shared concept embeddings that are**
 136 **explicitly aligned from shallow attributes to deeper parts across layers. Thereby, our work establishes**
 137 **the first interpretable paradigm for VPT—a concept-attribution hybrid—enabling direct semantic**
 138 **interpretation of prompts while maintaining parameter efficiency.**

139 3 IVPT: INTERPRETABLE VISUAL PROMPT TUNING

140 3.1 OVERALL PIPELINE

141 In this subsection, we explain how the proposed IVPT enhances the interpretability of visual prompts
 142 with the explainable properties of concept prototypes, as illustrated in Figure 1.

143 **Constructing interpretable prompts.** Given a pre-trained Transformer model of N layers, we
 144 learn a set of continuous embeddings to serve as prompts within the input space of a Transformer
 145 layer, following the methodology outlined in Visual Prompt Tuning (Jia et al., 2022). Specifically, for
 146 ($i + 1$)-th Layer L_{i+1} , we denote the collection of n input learnable prompts as $\mathbf{P}_i = \{\mathbf{p}_k^i \in \mathbb{R}^d \mid k \in \mathbb{N}, 1 \leq k \leq n\}$, where d denotes the feature dimension of the ViT backbone. During fine-tuning,
 147 only the prompt embeddings are updated, while the Transformer backbone remains frozen.

148 However, the learned prompts are often abstract and difficult to interpret. To better explain their
 149 meaning, it is necessary to establish a way of relating them to specific human-understandable concepts.
 150 We use prototypes to convey a set of specific meanings. These prototypes are category-agnostic,
 151 generally focusing on particular image regions sharing similar semantics across images of different
 152 categories. As a result, a set of m concept prototypes $\mathbf{Q} = \{\mathbf{q}_k \in \mathbb{R}^d \mid k \in \mathbb{N}, 1 \leq k \leq m\}$ is
 153 proposed to interpret a group of prompts \mathbf{P} in a specific Transformer layer¹ as:

$$154 \mathbf{p}_k = \mathcal{F}(\mathbf{q}_k, \mathbf{E}), \quad k = 1, \dots, m. \quad (1)$$

155 Here $\mathbf{E} \in \mathbb{R}^{(h \times w) \times d}$ indicates the patch embeddings at the corresponding layer, where h and w
 156 represent the spatial dimensions (height and width), and d is the feature dimension. In this context,
 157

158 ¹The layer index i is omitted in subsequent equations, as they represent computations for a specific layer.

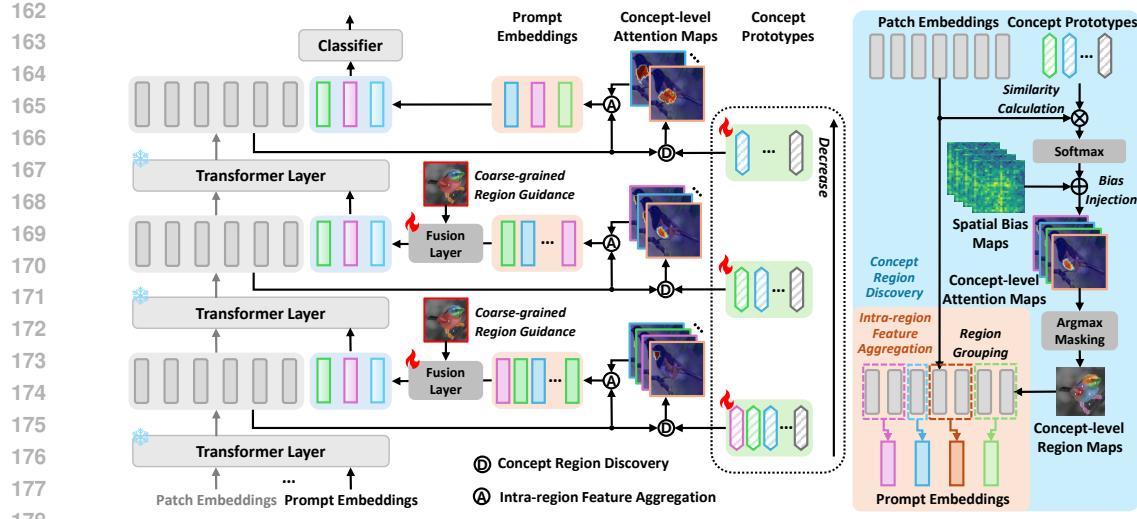


Figure 1: IVPT introduces category-agnostic concept prototypes to generate explainable visual prompt embeddings. At each layer, Concept Region Discovery (CRD) module captures specific visual concepts as concept-level image regions, while Intra-region Feature Aggregation (IFA) module aggregates features grouped by these region maps to obtain prompt embeddings. Several sets of layer-wise concept prototypes are used to capture concepts across layers, while the fusion layer, guided by the coarse-grained region, fuses the prompts in a fine-to-coarse manner as the final prompts to replace flat visual prompts at each layer.

the function \mathcal{F} is learned in IVPT to map each prompt embedding \mathbf{p}_k to a corresponding concept prototype \mathbf{q}_k , a process that will be further explained. To better understand the concept represented by a prototype $\mathbf{q}_k \in \mathbf{Q}$, IVPT grounds this prototype to a concept region \mathbf{R}_k within a specific image by our proposed Concept Region Discovery (CRD) module, denoted as the function \mathcal{F}_{CRD} :

$$\mathbf{R}_k = \mathcal{F}_{CRD}(\mathbf{q}_k, \mathbf{E}), \quad k = 1, \dots, m. \quad (2)$$

This operation explains the semantics of prototypes at the image level by highlighting the region with high attention on the image. Given a concept prototype \mathbf{q}_k , its corresponding prompt embedding \mathbf{p}_k is derived with features within the concept region \mathbf{R}_k through our designed Intra-region Feature Aggregation (IFA) module, denoted as the function \mathcal{F}_{IFA} :

$$\mathbf{p}_k = \mathcal{F}_{IFA}(\mathbf{R}_k, \mathbf{E}), \quad k = 1, \dots, m. \quad (3)$$

Finally, we express the function \mathcal{F} as $\mathcal{F} = \mathcal{F}_{CRD} \circ \mathcal{F}_{IFA}$, enabling us to present prompts with prototypes more interpretably. \mathcal{F} in Eq. 1 consists of two steps, where CRD in Eq. 2 uses prototype q_k as a semantic anchor to discover localized image regions R_k and IFA in Eq. 3 aggregates token embedding E within R_k to obtain p_k . m concept prototypes q_k explain each visual prompt p_k by grounding it in semantically meaningful image regions and representing it with the feature of these regions. More details will be provided in Section **Concept-prototype-based prompt learning**.

Exploring cross-layer interpretation. To interpret prompts across network layers with varying granularity, we propose cross-layer concept prototypes. At each layer, prompts are represented by a layer-specific set of prototypes, as shown in Figure 1. We adopt more prototypes in shallower layers to capture fine-grained and diverse visual features. As the network depth increases, the semantic representations become more abstract, and the number of prototypes progressively decreases, reflecting the increased conceptual coherence of features in deeper layers. Section **Cross-layer prompt fusion** will explain how IVPT fuses fine-grained prompts into n prompts integrated for fine-tuning. Different from (Jia et al., 2022), we consider the prompts \mathbf{P}_N after the last Transformer layer as the final concept representations, which are passed into a classification head to output individual concept-conditioned category scores \mathbf{s}_k . These scores reflect the likelihood of the input image belonging to a given class, conditioned on the interpretable prompt p_k , highlighting the significance of each concept for classification. The overall score is obtained by averaging individual

concept-conditioned category scores, allowing the model to aggregate multiple complementary semantic perspectives for more robust predictions. We use cross-entropy to calculate the classification loss \mathcal{L}_{cls} by comparing the score with the one-hot groundtruth label \mathbf{y} :

$$\mathcal{L}_{cls} = \text{CELoss}\left(\frac{1}{n} \sum_{k=1}^n \mathbf{s}_k, \mathbf{y}\right), \text{ where } \mathbf{s}_k = \text{Head}_k(\mathbf{p}_k^N). \quad (4)$$

This formulation follows the common practice in prototype-based interpretable models of aggregating multiple concept-conditioned category scores.

3.2 CONCEPT-PROTOTYPE-BASED PROMPT LEARNING

In this subsection, we dive into the pipeline of learning explainable prompts with concept prototypes.

Concept region discovery. Concept Region Discovery (CRD) module associates concept prototypes with specific image regions, denoted as function \mathcal{F}_{CRD} in Eq. 2. First, the patch embeddings \mathbf{E} produced by the ViT are reshaped into a feature map $\tilde{\mathbf{E}} \in \mathbb{R}^{h \times w \times d}$. Then, we compute concept-level attention maps $\mathbf{A} \in [0, 1]^{m \times h \times w}$, with each element $a_{k,ij}$ representing the attention score of a learnable concept prototype embedding $\mathbf{q}_k \in \mathbf{Q}$ on the patch embedding $\mathbf{e}_{ij} \in \tilde{\mathbf{E}}$. Similarly to previous research (Aniraj et al., 2024; Huang & Li, 2020; Hung et al., 2019), we obtain the attention map using a negative squared Euclidean distance function to measure similarity, followed by a Softmax function across the m channels and injection of spatial bias:

$$a_{k,ij} = \frac{\exp\left(-\|\mathbf{e}_{ij} - \mathbf{q}_k\|^2\right)}{\sum_{l=1}^m \exp\left(-\|\mathbf{e}_{ij} - \mathbf{q}_l\|^2\right)} + b_{k,ij}, \quad (5)$$

where $b_{k,ij}$ denotes the corresponding element in learnable spatial bias maps $\mathbf{B} \in \mathbb{R}^{m \times h \times w}$. We employ a combination of part-shaping loss functions from (Aniraj et al., 2024) to guide the discovery of non-overlapping regions associated with prototypes, denoted as \mathcal{L}_{ps} . This set of loss functions ensures the discovery of distinct, transformation-invariant parts with unique assignments, foreground presence, universal background, minimum connectivity, and minimize prototype polysemy, whose details are provided in the Appendix. Finally, concept region maps $\mathbf{R} \in [0, 1]^{m \times h \times w}$ are generated based on the attention map \mathbf{A} , where each image patch is assigned the attention value of the concept that has the highest attention score in \mathbf{A} . Thus, each element $r_{n,ij} \in \mathbf{R}$ represents the probability that a given image patch belongs to the corresponding concept and is defined as:

$$r_{n,ij} = \begin{cases} a_{n,ij} & \text{if } n = \arg \max_k a_{k,ij} \\ 0 & \text{otherwise.} \end{cases} \quad (6)$$

Intra-region feature aggregation. We introduce Intra-region Feature Aggregation (IFA) module corresponding to function \mathcal{F}_{IFA} in Eq. 3, which obtains an interpretable prompt corresponding to a specific concept by aggregating the patch embeddings $\tilde{\mathbf{E}}$ within the corresponding concept regions. Specifically, we first calculate region-conditional feature maps $\mathbf{Z} \in \mathbb{R}^{m \times h \times w \times d}$, where the feature at each location is re-weighted based on the specific region and the probability element indicated in \mathbf{R} by $\mathbf{Z} = \mathbf{R} \otimes \tilde{\mathbf{E}}$, where \otimes denotes an unsqueeze operation on the last dimension of \mathbf{R} , followed by element-wise multiplication with $\tilde{\mathbf{E}}$. Finally, we aggregate features within each region to derive the prompt \mathbf{p}_k corresponding to the k -th concept prototype:

$$\mathbf{p}_k = \frac{\sum_{i,j} \mathbf{z}_{k,ij}}{\sum_{i,j} r_{k,ij}}, \quad k = 1, 2, \dots, m, \quad (7)$$

where $\mathbf{z}_{k,ij} \in \mathbb{R}^d$ represents a feature vector in \mathbf{Z} .

3.3 CROSS-LAYER PROMPT FUSION

IVPT employs cross-layer concept prototypes to represent prompts from different Transformer layers, capturing varying levels of semantic granularity. Shallow prompts are associated with

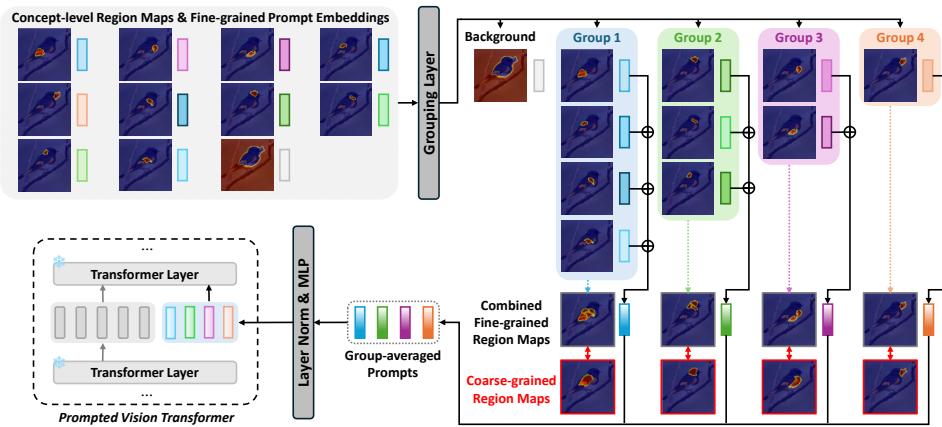


Figure 2: Illustration of cross-layer prompt fusion.

more prototypes reflecting fine, low-level semantics, while deep prompts are associated with fewer prototypes with coarse, high-level concepts. To explore relationships among prompts with different semantic granularities, IVPT introduces cross-layer prompt fusion, where prompt embeddings at shallow layers are combined to form deep prompts containing high-level concepts, as shown in Figure 2. Let \mathbf{P} denotes the set of prompts generated in the previous section. We partition the prompts into groups based on shared high-level semantics by assigning each \mathbf{p}_k a group label $y_k = f_g(\mathbf{p}_k)$, where $0 \leq y_k \leq n$. Here, $y_k = 0$ denotes the background class, and n represents the total number of deep-layer prompts with distinct high-level semantics. The grouping layer f_g is implemented as a linear layer followed by a Gumbel-Softmax (Jang et al., 2016) operation to find the group with the largest value. Within each group i , prompts are aggregated by computing their mean vector $\bar{\mathbf{p}}_i$, which is associated with a high-level concept.

To enable the group layer to effectively establish the intended correspondence between prompts in the shallow layers and those in the deep layers, we introduce a concept region consistency loss \mathcal{L}_{con} . This loss ensures that the combined concept regions associated with a group of fine-grained prompts align closely with a coarse-grained region from the final layer corresponding to a high-level concept. Formally, the concept region consistency loss is defined as the KL divergence between a set of grouped fine-grained region maps and their corresponding coarse-grained region maps:

$$\mathcal{L}_{con} = \frac{1}{n} \sum_{i=1}^n \text{KL}(\mathbf{R}_i^f, \mathbf{R}_i^c), \text{ where } \mathbf{R}_i^f = \sum_{k \in \mathcal{S}_i} \mathbf{R}_k. \quad (8)$$

Here \mathbf{R}_i^f denote the combined fine-grained region map of the i -th group, and \mathbf{R}_i^c is the i -th coarse-grained region map, which is derived from the last Transformer layer and used for classification. This alignment encourages the fine-grained prompts to merge cohesively, resulting in better alignment with the coarse-grained prompts with high-level semantics. The averaged prompts $\bar{\mathbf{p}}_i$ are then passed through layer normalization and an MLP:

$$\mathbf{p}_i^{fs} = \text{MLP}(\text{LayerNorm}(\bar{\mathbf{p}}_i)), \quad i = 1, \dots, n. \quad (9)$$

The set of fused prompts $\mathbf{P}^{fs} = \{\mathbf{p}_i^{fs} \in \mathbb{R}^d \mid i \in \mathbb{N}, 1 \leq i \leq n\}$ are finally used to tune the network.

The total training loss is defined as:

$$\mathcal{L} = \lambda_{cls} \mathcal{L}_{cls} + \lambda_{ps} \mathcal{L}_{ps} + \lambda_{con} \mathcal{L}_{con}, \quad (10)$$

where λ_{cls} , λ_{ps} and λ_{con} are balancing ratios for these losses. Specifically, the part-shaping loss and the concept region consistency loss are averaged across layers. These losses enable our model to balance classification performance with interpretability, thus promoting explainable recognition.

Table 1: Quantitative comparisons of interpretability using consistency scores (Con.) and stability scores (Sta.), as well as the accuracy (Acc.) on the CUB-200-2011 (Wah et al., 2011) dataset are provided. The results of IVPT are compared against related approaches, including conventional part-prototype networks and various visual prompt tuning methods. Best in bold.

Methods	DeiT-S			DeiT-B			DINOv2-S			DINOv2-B			DINOv2-L		
	Con.	Sta.	Acc.												
<i>Conventional Part-Prototype Networks</i>															
ProtoPNet (Chen et al., 2019)	14.7	52.7	80.2	16.2	60.5	81.0	23.9	52.8	82.7	27.6	57.0	85.8	26.7	59.9	86.1
ProtoPool (Rymarczyk et al., 2022)	26.9	58.3	81.2	29.6	63.4	82.5	38.2	57.1	84.6	42.9	60.2	87.1	44.6	62.3	87.5
TesNet (Wang et al., 2021)	32.3	66.7	82.3	38.6	67.5	84.3	40.8	64.1	84.4	51.2	66.7	86.8	55.3	68.9	88.3
Huang et al. (Huang et al., 2023)	54.7	70.2	85.3	57.2	70.9	85.0	65.7	67.5	86.9	68.6	71.4	89.9	67.4	74.3	90.3
<i>Visual Prompt Tuning Methods</i>															
VPT-Shallow (Jia et al., 2022)	5.6	35.5	82.4	8.9	33.6	83.5	9.0	39.2	86.2	12.7	40.3	88.5	11.3	44.5	88.7
VPT-Deep (Jia et al., 2022)	7.7	37.1	82.7	9.2	37.8	84.0	11.5	40.6	86.5	14.6	39.5	89.1	14.0	47.6	89.5
E ² VPT (Han et al., 2023)	13.7	45.2	83.8	26.7	41.9	84.3	22.3	43.2	86.7	27.5	54.3	89.3	27.3	55.0	89.4
Gated Prompt Tuning (Yoo et al., 2023)	8.6	32.7	84.1	16.8	28.9	84.5	28.5	41.2	86.8	34.6	60.1	89.5	35.7	61.5	89.7
VPT-Shallow (w/ Proto.)	51.0	65.0	83.4	50.9	62.4	84.9	52.0	67.1	87.1	60.5	68.5	89.9	54.5	71.7	90.1
VPT-Deep (w/ Proto.)	54.8	66.7	84.1	59.7	70.3	85.6	61.8	65.3	87.3	70.2	72.5	90.3	61.9	75.0	90.7
E ² VPT (w/ Proto.)	60.8	65.2	85.2	54.7	69.5	86.1	62.4	67.3	87.8	66.6	70.9	90.1	64.6	76.1	90.7
Gated Prompt Tuning (w/ Proto.)	56.7	68.2	85.2	61.3	65.4	86.2	65.4	68.2	87.8	70.3	71.8	90.4	67.2	75.6	90.5
IVPT	63.1	73.4	86.2	64.5	72.3	86.7	63.5	70.2	88.1	75.3	75.9	90.8	72.6	77.4	91.1

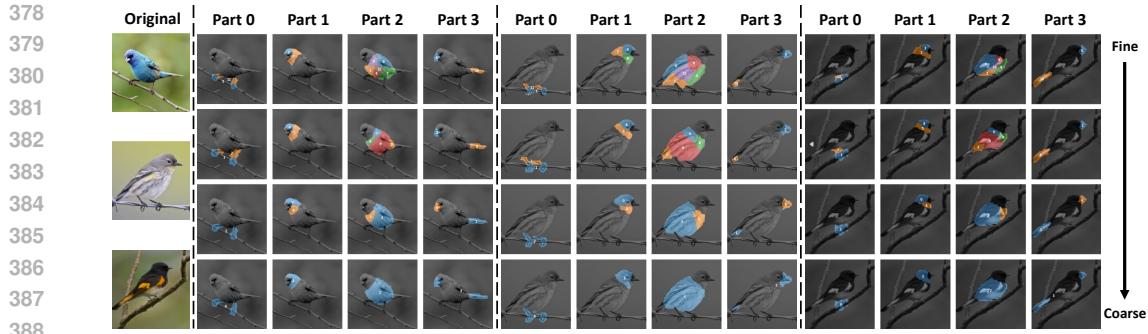
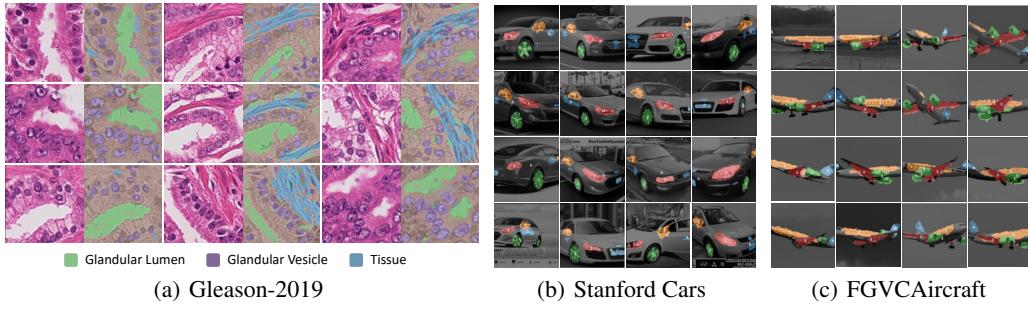
4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow visual prompt tuning (Jia et al., 2022) paradigm for classification, supervised by image-level category labels. We employ three DinoV2 (Oquab et al., 2023) variants (ViT-S, ViT-B, ViT-L) with register tokens (Darcel et al., 2023) and two DeiT (Touvron et al., 2021) variants (ViT-S, ViT-B) as backbones, with images resized to 518×518 . We establish the cross-layer prototypes across the last four layers, with the number of concept prototypes m (including background) set to 17, 14, 11, and 8 per layer, and the number of fused prompts n (as well as coarse-grained prompts) set to 4. Balancing ratios λ_{cls} , λ_{ps} and λ_{con} are all set to 1. For interpretability, we evaluate scores with 10 concepts or parts (the second-to-last layer), following the number of the evaluation method in (Huang et al., 2023). The concept prototypes at each layer are all initialized randomly with a standard variation of 0.05. More details are provided in the Appendix.

Datasets. We evaluate both the classification accuracy and interpretability on the CUB-200-2011 dataset (Wah et al., 2011), which is the only benchmark with part-level annotations required for fine-grained interpretability evaluation. It contains images of 200 bird species, including 5,994 training images and 5,794 testing images. Each image includes keypoint annotations for 15 different bird body parts. We also perform visualizations on the Gleason-2019 (Nir et al., 2018), the Stanford Cars (Krause et al., 2013) and the FGVC-Aircraft dataset (Maji et al., 2013). Gleason-2019 is a collection of annotated prostate cancer histopathology images about automated Gleason grading of cancer aggressiveness. Stanford Cars is a dataset consisting of 16,185 images of 196 different car models from 10 car manufacturers. FGVC-Aircraft contains 10,200 aircraft images, with 100 images for each of 102 different aircraft variants. Additionally, we conduct quantitative experiments on two other fine-grained datasets: PartImageNet, which provides part-level annotations for 158 classes from ImageNet, and PASCAL-Part, containing detailed part annotations for objects in the PASCAL VOC.

Evaluation metrics and baselines. We evaluate the interpretability of the prompts using the consistency and stability scores defined by (Huang et al., 2023). We compare our approach with two categories of methods. First, we compare it with current state-of-the-art part prototype methods, such as ProtoPNet (Chen et al., 2019), ProtoPool (Rymarczyk et al., 2022), TesNet (Wang et al., 2021), and Huang et al. (Huang et al., 2023), which are evaluated based on category-specific prototypes without sharing between categories. We also validate the effectiveness with several visual prompt tuning baselines (Jia et al., 2022; Han et al., 2023; Yoo et al., 2023), along with variants that incorporate our proposed concept-prototype-based prompt learning after the last layer for classification.

389 Figure 3: Qualitative results of region maps via the structure of cross-layer prompt fusion.
390402 Figure 4: Qualitative results on patch-level images in the Gleason-2019 dataset about prostate cancer,
403 as well as Stanford Cars and FGVCAircraft about general fine-grained classification, with different
404 colors representing distinct concepts or features relevant to the prediction.
405406
407 4.2 QUANTITATIVE COMPARISONS
408

409 We first evaluate the interpretability and accuracy of IVPT with quantitative metrics. Table 1
410 demonstrates that IVPT outperforms conventional part prototype networks in consistency scores
411 (measuring coherent concept alignment across instances), achieving gains of +8.4%, +7.3%, +6.7%,
412 and +5.2% for DeiT-S, DeiT-B, DinoV2-B, and DinoV2-L, respectively. However, it lags behind
413 Huang et al. (Huang et al., 2023) by 2.2% for DinoV2-S, likely due to smaller models’ limited
414 capacity to maintain both interpretability and accuracy. Additionally, IVPT achieves higher stability
415 scores (reflecting robustness to input variations) than prior works, with improvements of 3.2%, 1.4%,
416 2.7%, 4.5%, and 3.1% for DeiT-S, DeiT-B, DinoV2-S, DinoV2-B, and DinoV2-L, highlighting
417 the framework’s resilience to distribution shifts. IVPT also maintains prediction accuracy, even
418 slightly surpassing part prototype networks in recognition performance. Notably, the distinct trends
419 in consistency and stability metrics suggest excellent semantic alignment fidelity and prediction
420 invariance under perturbations.

421
422 4.3 QUALITATIVE INTERPRETABILITY ANALYSIS
423

424 Qualitative results of the cross-layer structure. To validate the effectiveness of the cross-layer
425 structure in capturing fine-to-coarse semantics and demonstrate how it addresses the limitations
426 of non-cross-layer concept learning, we provide qualitative visualizations of region maps from
427 three sample images across different layers. As shown in Figure 3, fine-grained semantics at lower
428 layers progressively transition to coarse-grained representations at higher layers, enabling inter-layer
429 interaction and a systematic explanation pathway between detailed and abstract semantics. By
430 leveraging this cross-layer relationship, IVPT efficiently extracts intra-region features to construct
431 interpretable prompts, thereby improving semantic alignment across granularities in complex visual
432 scenes. These results explicitly illustrate how IVPT’s cross-layer design enhances its capacity to
433 model and explain multi-granularity concepts.

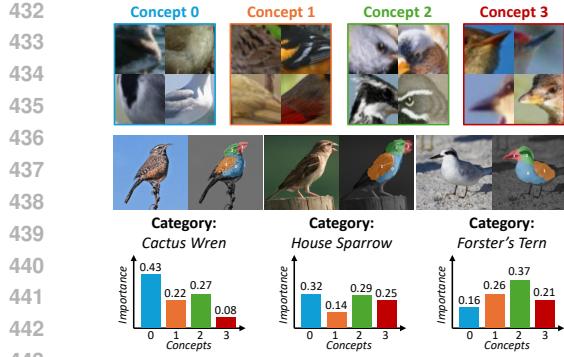


Figure 5: Illustration of coarse-grained region maps with prototypes across images highlighting the importance score of each concepts.

Qualitative results on other recognition tasks. To assess the applicability of IVPT in pathology, we perform explainability experiments on the Gleason-2019 dataset for prostate cancer classification. Whole-slide images are divided into 256×256 -pixel patches, each classified with Gleason scores of 3, 4, or 5. As shown in Figure 4(a), IVPT effectively highlights key grading features, such as green regions (glandular lumen) and purple regions (diseased glandular vesicles), consistent with pathological standards. Blue areas denote common tissue types. This visualization underscores IVPT’s potential to enhance diagnostic workflows by clarifying the model’s reasoning. Further analysis of concept significance across grades is provided in the Appendix.

Moreover, we identify key contributing concepts in two fine-grained recognition datasets: Stanford Cars (Krause et al., 2013) and FGVCAircraft (Maji et al., 2013). As shown in Figure 4(b)-(c), IVPT focuses on fine-grained details essential for distinguishing similar classes. For Stanford Cars, it identifies critical concepts such as the emblem or handle (blue), rearview mirror (orange), wheel (green), and headlight (red). Similarly, for FGVCAircraft, it detects key components including the tail (blue), fuselage (orange), turbine (green), and wing (red). The concepts associated with individual prototypes tend to cluster around semantically related features. When necessary, fine-grained distinctions can be uncovered by subdividing these clusters, enabling interpretable refinement without evidence of uncontrolled polysemantic mixing.

Importance scores of explainable concept-level regions. We analyze the importance scores linked to concept-level regions associated with prototypes for classification in Figure 5. The analysis reveals how these four concept prototypes affect classification across three bird species. Each image is associated with a region map, where patches are assigned to one of the regions (concepts), each contributing differently to the classification. Concept-level importance scores are computed via Equation 4 and displayed as bar graphs, showing each concept’s varying influence. For instance, Concept 0 has a high score for Cactus Wren (0.43), while Concept 2 is more influential for Forster’s Tern (0.37). The region corresponding to the highest-scoring concept overlaps precisely with the discriminative concept of the image, which aids the interpretation of critical areas for classification.

4.4 RESULTS ON PARTIMAGENET AND PASCAL-PART

To validate the generalization of our IVPT beyond CUB, we conduct additional quantitative experiments on two fine-grained part-annotation datasets: PartImageNet and PASCAL-Part. Following the evaluation protocol in this paper, a single representative point was extracted for each non-background semantic part (e.g., the centroid of a certain part in PartImageNet). As shown in Table 2, IVPT achieves superior interpretability and robustness on key metrics across datasets, [along with a consistent edge in classification accuracy](#), confirming that our prototype learning framework effectively captures monosemantic concepts in diverse scenarios.

Beyond the quantitative metrics, we present a qualitative analysis to visually demonstrate the concept discovery capability of IVPT. Figure 6 showcases example visualizations from the PartImageNet and PASCAL-Part datasets. Its ability to discover and leverage semantically consistent concepts across

Table 2: Performance comparison on PartImageNet and PASCAL-Part datasets with DinoV2-B.

Methods	PartImageNet			PASCAL-Part		
	Con.	Sta.	Acc.	Con.	Sta.	Acc.
ProtoPool	47.5%	56.9%	61.9%	52.3%	45.9%	75.1%
Huang et al.	58.6%	62.3%	66.9%	67.2%	68.6%	78.9%
VPT-Deep	54.2%	63.7%	73.9%	61.5%	62.9%	85.9%
IVPT	63.2%	71.5%	74.2%	72.6%	77.4%	86.4%

Table 3: Ablation on component combinations.

Methods	Con.	Sta.	Acc.
Baseline	62.7	64.3	88.4
+ Spatial bias maps	63.5	66.7	88.7
+ Intra-region feature aggregation	65.4	68.3	89.8
+ Cross-layer prototype	70.4	70.9	90.5
+ Fine-to-coarse prompt fusion	75.3	75.9	90.8

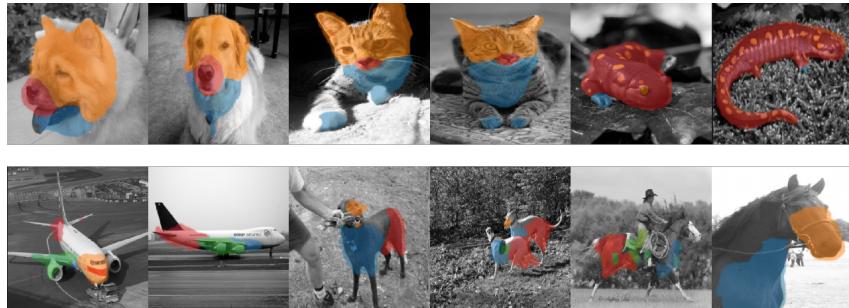


Figure 6: Qualitative analysis on PartImageNet (top) and PASCAL-Part (bottom).

object categories with vastly different morphologies. For instance, as visualized in Figure 6 (bottom), the model trained on PASCAL-Part identifies “head” as a coherent concept for both rigid objects like airplanes and articulated animals like horses and dogs. This demonstrates that IVPT grounds its reasoning in high-level semantics rather than low-level textures or shapes specific to a category. The spatial region maps show that the model precisely localizes these parts (e.g., the nose of a plane, the head of a horse) and associates them with the same underlying concept. This cross-category concept sharing suggests that IVPT builds a rich, part-based representation of the world. During inference, the presence of such universal concepts (e.g., “head”, “leg”, “body”) provide a robust, interpretable evidence trail, validating the generalization of IVPT’s interpretability.

4.5 ABLATION STUDIES

We first investigate the impact of various components on model performance, as illustrated in Table 3. The baseline applies prompt learning for explainability exclusively in the last layer, using a feature aggregation strategy with global-level attention instead of conditioning on specific regions. Each additional component consistently improves performance across all metrics. Specifically, intra-region feature aggregation achieves a notable improvement in classification accuracy, with an increase of over 1%, as learning features within specific regions enhances their discriminative power. Furthermore, the cross-layer prototypes as well as the fine-to-coarse prompt fusion results in a substantial improvement of both the consistency score and stability score, validating the effectiveness of cross-layer explainability. We also provide ablations on the number of prompted layers and concept prototypes. Please refer to the Appendix for more details.

4.6 HUMAN STUDIES

We conduct a comprehensive human evaluation study with 20 participants to validate IVPT’s interpretability, demonstrating strong alignment between learned prototypes and human-understandable concepts. The study achieves 97.5% accuracy in concept annotation and high ratings across three key dimensions: detail preservation (4.7/5), semantic abstraction (4.8/5), and transition naturalness (4.8/5), indicating that IVPT’s hierarchical concept learning effectively mirrors human cognitive processes. Complete methodological details and illustrative examples are provided in the appendix.

5 CONCLUSION

In this paper, we propose Interpretable Visual Prompt Tuning (IVPT) framework, which enhances the interpretability of visual prompt tuning by associating prompts with human-understandable visual concepts through concept prototypes. With a novel cross-layer structure, IVPT aligns concepts across multiple layers for learning explainable prompts. Extensive evaluations demonstrate that IVPT enhances both interpretability and accuracy compared to other methods, highlighting IVPT’s potential to enable transparent and effective AI analysis, especially in critical applications. Our limitations include reliance on in-domain concept prototypes, which limit flexibility in diverse domains.

540 REFERENCES

542 Ananthu Aniraj, Cassio F Dantas, Dino Ienco, and Diego Marcos. Pdiscoformer: Relaxing part
 543 discovery constraints with vision transformers. In *Proceedings of the European Conference on*
 544 *Computer Vision (ECCV)*, 2024.

545 Yequan Bie, Luyang Luo, Zhixuan Chen, and Hao Chen. Xcoop: Explainable prompt learning for
 546 computer-aided diagnosis via concept-guided context optimization. In *International Conference*
 547 *on Medical Image Computing and Computer-Assisted Intervention*, pp. 773–783. Springer, 2024.

548 Benjamin Bowman, Alessandro Achille, Luca Zancato, Matthew Trager, Pramuditha Perera, Gio-
 549 vanni Paolini, and Stefano Soatto. a-la-carte prompt tuning (apt): Combining distinct data via
 550 composable prompting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 551 *Pattern Recognition*, pp. 14984–14993, 2023.

552 Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-aware
 553 soft prompting of vision & language models. In *Proceedings of the IEEE/CVF Conference on*
 554 *Computer Vision and Pattern Recognition*, pp. 23232–23241, 2023.

556 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
 557 like that: deep learning for interpretable image recognition. *Advances in neural information*
 558 *processing systems*, 32, 2019.

559 Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
 560 transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 561 9640–9649, 2021.

562 Arpita Chowdhury, Dipanjyoti Paul, Zheda Mai, Jianyang Gu, Ziheng Zhang, Kazi Sajeed Mehrab,
 563 Elizabeth G Campolongo, Daniel Rubenstein, Charles V Stewart, Anuj Karpatne, et al. Prompt-cam:
 564 A simpler interpretable transformer for fine-grained analysis. *arXiv preprint arXiv:2501.09333*,
 565 2025.

566 Timothée Darzet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 567 registers. *arXiv preprint arXiv:2309.16588*, 2023.

569 Runpei Dong, Zekun Qi, Linfeng Zhang, Junbo Zhang, Jianjian Sun, Zheng Ge, Li Yi, and Kaisheng
 570 Ma. Autoencoders as cross-modal teachers: Can pretrained 2d image transformers help 3d
 571 representation learning? *arXiv preprint arXiv:2212.08320*, 2022.

572 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
 573 *arXiv preprint arXiv:2010.11929*, 2020.

575 Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
 576 datasets and web images for softening bias. In *Proceedings of the IEEE International Conference*
 577 *on Computer Vision*, pp. 1657–1664, 2013.

578 Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
 579 Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
 580 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 581 2711–2721, 2023.

583 Yunhe Gao, Xingjian Shi, Yi Zhu, Hao Wang, Zhiqiang Tang, Xiong Zhou, Mu Li, and Dimitris N
 584 Metaxas. Visual prompt tuning for test-time domain adaptation. *arXiv preprint arXiv:2210.04831*,
 585 2022.

586 Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based
 587 explanations. *Advances in neural information processing systems*, 32, 2019.

588 Cheng Han, Qifan Wang, Yiming Cui, Zhiwen Cao, Wenguan Wang, Siyuan Qi, and Dongfang
 589 Liu. E[^] 2vpt: An effective and efficient approach for visual prompt tuning. *arXiv preprint*
 590 *arXiv:2307.13770*, 2023.

592 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 593 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
vision and pattern recognition, pp. 16000–16009, 2022.

594 Roei Herzig, Ofir Abramovich, Elad Ben Avraham, Assaf Arbelle, Leonid Karlinsky, Ariel Shamir,
 595 Trevor Darrell, and Amir Globerson. Promptonomyvit: Multi-task prompt learning improves video
 596 transformers using synthetic scene data. In *Proceedings of the IEEE/CVF Winter Conference on*
 597 *Applications of Computer Vision*, pp. 6803–6815, 2024.

598 Shishuai Hu, Zehui Liao, and Yong Xia. Prosfda: prompt learning based source-free domain
 599 adaptation for medical image segmentation. *arXiv preprint arXiv:2211.11514*, 2022.

601 Qihan Huang, Mengqi Xue, Wenqi Huang, Haofei Zhang, Jie Song, Yongcheng Jing, and Mingli
 602 Song. Evaluation and improvement of interpretability for self-explainable part-prototype networks.
 603 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2011–2020,
 604 2023.

605 Zixuan Huang and Yin Li. Interpretable and accurate fine-grained recognition via region grouping.
 606 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 607 8662–8672, 2020.

609 Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan Yang, and Jan Kautz.
 610 Scops: Self-supervised co-part segmentation. In *Proceedings of the IEEE/CVF Conference on*
 611 *Computer Vision and Pattern Recognition*, pp. 869–878, 2019.

612 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
 613 *preprint arXiv:1611.01144*, 2016.

615 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 616 Ser-Nam Lim. Visual prompt tuning. In *European Conference on Computer Vision*, pp. 709–727.
 617 Springer, 2022.

618 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
 619 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
 620 (tcav). In *International conference on machine learning*, pp. 2668–2677. PMLR, 2018.

622 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 623 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 624 pp. 554–561, 2013.

626 Jochem Loedeman, Maarten C Stol, Tengda Han, and Yuki M Asano. Prompt generation networks
 627 for input-based adaptation of frozen vision transformers. *arXiv preprint arXiv:2210.06466*, 2022.

628 Chiyu Ma, Brandon Zhao, Chaofan Chen, and Cynthia Rudin. This looks like those: Illuminating
 629 prototypical concepts using multiple visualizations. *Advances in Neural Information Processing*
 630 *Systems*, 36, 2024.

632 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 633 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

634 Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained
 635 image recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 636 *recognition*, pp. 14933–14943, 2021.

638 Guy Nir, Soheil Hor, Davood Karimi, Ladan Fazli, Brian F Skinnider, Peyman Tavassoli, Dmitry
 639 Turbin, Carlos F Villamil, Gang Wang, R Storey Wilson, et al. Automatic grading of prostate cancer
 640 in digitized histopathology images: Learning from multiple experts. *Medical image analysis*, 50:
 641 167–180, 2018.

642 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 643 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 644 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

646 Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Prototypical
 647 parts sharing for similarity discovery in interpretable image classification. In *Proceedings of the*
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1420–1430, 2021.

648 Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and
 649 Bartosz Zieliński. Interpretable image classification with differentiable prototypes assignment. In
 650 *European Conference on Computer Vision*, pp. 351–368. Springer, 2022.

651

652 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 653 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 654 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 655 2017.

656 Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
 657 Lu Jiang. Visual prompt tuning for generative transfer learning. In *Proceedings of the IEEE/CVF*
 658 *Conference on Computer Vision and Pattern Recognition*, pp. 19840–19851, 2023.

659 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 660 Jégou. Training data-efficient image transformers & distillation through attention. In *International*
 661 *conference on machine learning*, pp. 10347–10357. PMLR, 2021.

662

663 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
 664 Technical report, California Institute of Technology, 2011.

665

666 Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing. Interpretable image recognition by con-
 667 structing transparent embedding space. In *Proceedings of the IEEE/CVF international conference*
 668 *on computer vision*, pp. 895–904, 2021.

669

670 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 671 An occam’s razor for domain incremental learning. *Advances in Neural Information Processing*
 672 *Systems*, 35:5682–5695, 2022.

673

674 Yubin Wang, Xinyang Jiang, De Cheng, Dongsheng Li, and Cairong Zhao. Learning hierarchical
 675 prompt with structured linguistic knowledge for vision-language models. In *Proceedings of the*
 676 *AAAI Conference on Artificial Intelligence*, volume 38, pp. 5749–5757, 2024.

677

678 Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan Yuille, Yuyin Zhou, and Cihang Xie.
 679 Unleashing the power of visual prompting at the pixel level. *arXiv preprint arXiv:2212.10556*,
 680 2022.

681

682 Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-guided
 683 context optimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 684 *recognition*, pp. 6757–6767, 2023.

685

686 Seungryong Yoo, Eunji Kim, Dahuin Jung, Jungbeom Lee, and Sungroh Yoon. Improving visual
 687 prompt tuning for self-supervised vision transformers. In *International Conference on Machine*
 688 *Learning*, pp. 40075–40092. PMLR, 2023.

689

690 Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
 691 networks through deep visualization. *arXiv preprint arXiv:1506.06579*, 2015.

692

693 Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP Rubinstein.
 694 Invertible concept-based explanations for cnn models with non-negative concept activation vectors.
 695 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11682–11690,
 696 2021.

697

698 Cairong Zhao, Yubin Wang, Xinyang Jiang, Yifei Shen, Kaitao Song, Dongsheng Li, and Duoqian
 699 Miao. Learning domain invariant prompt for vision-language models. *IEEE Transactions on Image*
 700 *Processing*, 2024.

701

702 **A ADDITIONAL TRAINING DETAILS**
703

704 We train all our models using the Adam optimizer, with class token, position embedding, register token
705 (in DinoV2) and distillation token (in DeiT) unfrozen. We use a starting learning rate of 2×10^{-4}
706 for the fine-tuned tokens of ViT backbone, spatial bias maps and learnable concept prototypes, and
707 1×10^{-2} for the other tunable layers of the model, including the fusion layers for prompt generation
708 and the linear head for classification, with a batch size of 16. Training lasts for a total of 25 epochs
709 with a duration of 2 hours on 4 NVIDIA RTX A6000 GPUs, and we employ a step learning rate
710 schedule, reducing the learning rate by a factor of 0.5 every 4 epochs. The concept prototypes at each
711 layer are all initialized randomly with a standard variation of 0.05.

712 **B DETAILS OF PART-SHAPING LOSS**
713

714 While the classification loss \mathcal{L}_{cls} ensures the discriminative capability of the discovered parts, it does
715 not explicitly guide the attention maps to focus on semantically salient regions of the object. To
716 mitigate this limitation, we follow the methodology outlined in (Aniraj et al., 2024), which proposes
717 a set of additional objective functions that incorporate structural priors into the learning process,
718 summed as the part-shaping loss \mathcal{L}_{ps} . Below, we provide a detailed description of each loss function.

719 **B.1 ORTHOGONALITY LOSS**
720

721 Orthogonality loss \mathcal{L}_{\perp} encourages decorrelation among the learned part embedding vectors by
722 minimizing their pairwise cosine similarity. Formally, for the modulated embedding vectors \mathbf{v}_m^k , the
723 loss is computed as:

$$724 \mathcal{L}_{\perp} = \sum_{k=1}^{K+1} \sum_{l \neq k} \frac{\mathbf{v}_m^k \cdot \mathbf{v}_m^l}{\|\mathbf{v}_m^k\| \cdot \|\mathbf{v}_m^l\|} \quad (11)$$

725 **B.2 EQUIVARIANCE LOSS**
726

727 Equivariance loss \mathcal{L}_{eq} ensures consistent part detection under geometric transformations. This is
728 achieved by: (1) applying a random affine transformation T to the input image, (2) processing
729 both original and transformed images through the network, (3) inverse-transforming the attention
730 maps from the transformed image, and (4) computing the cosine distance between the original and
731 transformed attention maps. This formulation encourages the learned parts to be equivariant to rigid
732 transformations like translation, rotation, and scaling. This loss is mathematically defined using the
733 attention map function $A^k(\mathbf{x})$, which generates the k^{th} attention map for input image \mathbf{x} . The loss
734 computes the normalized correlation between the original attention maps and those from transformed
735 images after inverse transformation:

$$736 \mathcal{L}_{eq} = 1 - \frac{1}{K} \sum_k \frac{\|A^k(\mathbf{x}) \cdot T^{-1}(A^k(T(\mathbf{x})))\|}{\|A^k(\mathbf{x})\| \cdot \|A^k(T(\mathbf{x}))\|} \quad (12)$$

737 **B.3 PRESENCE LOSS**
738

739 The presence loss consists of two components designed to enforce different spatial priors:

740 • Foreground presence loss \mathcal{L}_{p_1} ensures each foreground part appears in at least some images
741 within a mini-batch. For a batch $\{\mathbf{x}_1, \dots, \mathbf{x}_B\}$, it operates on pooled attention maps $\bar{A}^k(\mathbf{x}_b)$
742 to prevent single-pixel solutions:

$$743 \mathcal{L}_{p_1} = 1 - \frac{1}{K} \sum_k \max_{b,i,j} \bar{a}_{ij}^k(\mathbf{x}_b) \quad (13)$$

744 • Background presence loss \mathcal{L}_{p_0} enforces consistent background detection across all images,
745 with a spatial bias toward image boundaries through a soft mask M :

756
757
758
759

$$\mathcal{L}_{p_0} = -\frac{1}{B} \sum_b \log \left(\max_{i,j} m_{ij} \bar{a}_{ij}^{K+1}(\mathbf{x}_b) \right) \quad (14)$$

760 The mask weights m_{ij} increase radially from the image center:

761
762
763
764

$$m_{ij} = 2 \left(\frac{i-1}{H-1} - \frac{1}{2} \right)^2 + 2 \left(\frac{j-1}{W-1} - \frac{1}{2} \right)^2 \quad (15)$$

765 B.4 ENTROPY LOSS

766 Entropy loss \mathcal{L}_{ent} encourages unambiguous part assignments by minimizing the entropy of attention
767 distributions:

768
769
770
771

$$\mathcal{L}_{\text{ent}} = \frac{-1}{K+1} \sum_{k=1}^{K+1} \sum_{ij} a_{ij}^k \log(a_{ij}^k) \quad (16)$$

772 B.5 TOTAL VARIATION LOSS

773 Total variation loss \mathcal{L}_{tv} promotes spatial coherence in attention maps without imposing strict shape
774 constraints, favoring connected components through standard total variation regularization. This loss
775 is employed to encourage spatial smoothness in the learned part attention maps. This regularization
776 term computes the average magnitude of spatial gradients across all part maps:

777
778
779
780
781
782

$$\mathcal{L}_{\text{tv}} = \frac{1}{HW} \sum_{k=1}^{K+1} \sum_{ij} |\nabla a_{ij}^k| \quad (17)$$

783 where ∇a_{ij}^k represents the spatial gradient (computed via finite differences) at position (i, j) in the
784 k^{th} attention map A^k . This formulation promotes the formation of coherent regions in the attention
785 maps while remaining agnostic to specific part shapes. The normalization by image dimensions
786 ensures scale-invariant regularization across different input resolutions.

787 C ANALYSIS ON CRD/IFA COMPUTATIONAL COST DURING 788 TRAINING/INFERENCE

789 IVPT introduces a moderate computational overhead compared to vanilla Visual Prompt Tuning
790 (VPT), primarily due to the incorporation of its Concept Region Discovery (CRD) and Intra-region
791 Feature Aggregation (IFA) modules. When implemented in PyTorch and executed on an NVIDIA
792 RTX 3090 GPU, the attention mechanism and additional loss computations within CRD result in
793 an approximate 4.8% increase in training time and a 5.2% rise in per-image inference latency. This
794 overhead is largely attributable to the cross-layer prototype similarity calculations, whose complexity
795 scales with the feature dimensions.

796 Notably, the introduced modules are designed to be lightweight, contributing only a minimal number
797 of tunable parameters to the overall model. The breakdown of parameters is as follows:

801 • **CRD Tunable Parameters:**

802 – Concept Prototypes: 50 in total distributed across layers (i.e., 17 + 14 + 11 + 8)
803 – Each prototype is a 768-dimensional vector
804 – → Total: $50 \times 768 = 38,400$ parameters
805 – Spatial Bias Maps: 50 concept-specific maps at a resolution of 37×37
806 – → Total: $50 \times 37 \times 37 = 68,450$ parameters
807 – **Total CRD Parameters:** 106,850

808 • **IFA:** No tunable parameters (utilizes fixed feature averaging)

810 For context, the full Vision Transformer-Base (ViT-B) backbone contains approximately 86 million
 811 trainable parameters (based on the standard DinoV2 ViT-B configuration). The additional parameters
 812 introduced by CRD and IFA account for only about 0.12% of the total parameters required for full
 813 ViT fine-tuning. Thus, IVPT achieves significant gains in interpretability while maintaining minimal
 814 computational overhead.

816 D EXTRA ABLATIONS

817 **Ablation on the hierarchical structure of prototypes.** We investigate how the hierarchical proto-
 818 type structure strategy affects the performance, as shown in Table 4. We use DinoV2-B as the
 819 backbone (the same below). When using only one layer, the model exhibits poor interpretability and
 820 accuracy. Increasing the number of layers improves performance across all metrics, with four layers
 821 achieving optimal results, suggesting enhanced inter-layer relationships that improve interpretability.
 822 However, applying explainable prompt learning to more layers introduces semantic confusion and
 823 reduces performance, due to fewer explainable concepts in feature maps from shallower layers.
 824 Notably, reducing the number of prototypes layer by layer enhances interpretability by capturing
 825 concepts at varying granularities, facilitating dynamic prompt modeling.

826 Table 4: Ablation on the number of prompted layers and the number of prototypes at each layer.
 827 Bolded items in each list indicate layers used for interpretability evaluation, each with 10 prototypes.
 828 After the final layer, we consistently use 4 prototypes to generate coarse-grained part features for the
 829 final classification.

Layers	Prototype Number	Con.	Sta.	Acc.
1	[10]	62.5	65.2	89.5
2	[10 , 7]	70.7	71.8	89.8
2	[10 , 10]	67.2	72.6	89.6
3	[13, 10 , 7]	73.7	73.0	90.3
3	[10, 10 , 10]	74.4	70.7	90.5
4	[16, 13, 10 , 7]	75.3	75.9	90.8
4	[10, 10, 10 , 10]	75.6	71.2	90.5
5	[19, 16, 13, 10 , 7]	66.6	68.1	90.1
5	[10, 10, 10, 10 , 10]	64.3	67.4	89.7

841
 842 **Analysis on cross-layer concept alignment.** To rigorously quantify cross-layer concept alignment,
 843 we propose a new experiment measuring the Intersection over Union (IoU) between high-level concept
 844 regions and aggregated low-level concept regions. Extensive experiments on the CUB-200-2011
 845 validation set reveal exceptional alignment, as shown in Table 5

846 Table 5: Intersection over Union (IoU) measurements between different layer combinations

Layers	IoU
Layer 1 (finest granularity) → Layer 4 (coarsest)	98.7% ± 0.8
Layer 2 → Layer 4	98.9% ± 0.6
Layer 3 → Layer 4	99.2% ± 0.4
Overall mean	99.0% ± 0.6

855 These results demonstrate that our cross-layer fusion mechanism (Eq. 8-9) achieves near-perfect
 856 spatial consistency (IoU >98% universally), validating that fine-grained concepts are cohesively
 857 grouped under unified high-level semantics, and that the cross-layer prompt fusion with a concept
 858 region consistency loss work well.

861 E HUMAN EVALUATION METHODOLOGY AND RESULTS

862 We conduct a structured three-stage evaluation with 20 participants to assess IVPT’s interpretability.
 863 In the concept annotation phase, participants freely describe semantic meanings for 100 prototype-

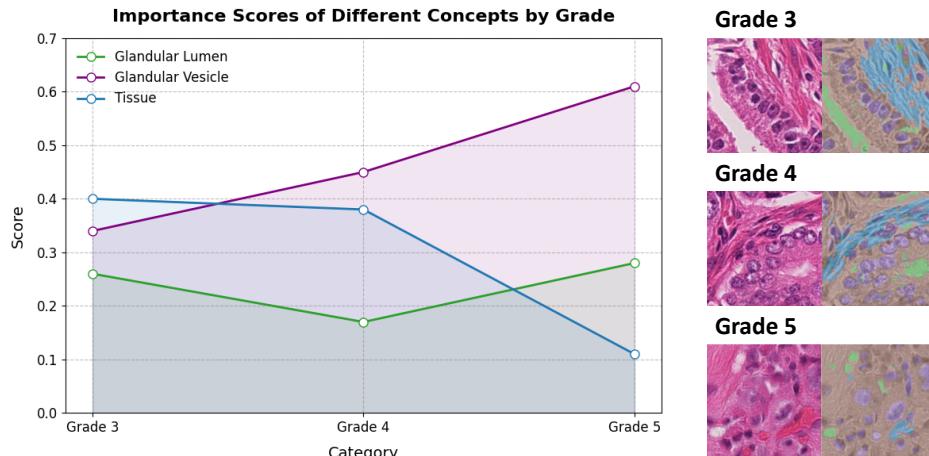


Figure 7: Illustration of importance scores of different concepts by grade on the Gleason-2019 dataset.

activated regions from CUB-200-2011 images, achieving 97.5% overall accuracy in matching human descriptions to prototype intentions.

For hierarchical validation, participants evaluate cross-layer transitions using 5-point Likert scales (1 = strongly disagree, 5 = strongly agree), showing strong consensus across three critical aspects:

Detail Preservation (mean = 4.7): Participants confirm IVPT's ability to retain fine-grained visual details during abstraction from shallow to deep layers. Example: When identifying a "Cactus Wren", shallow-layer prototypes capture individual spine-like breast feathers, while deep-layer prototypes preserve these textural details within broader anatomical concepts.

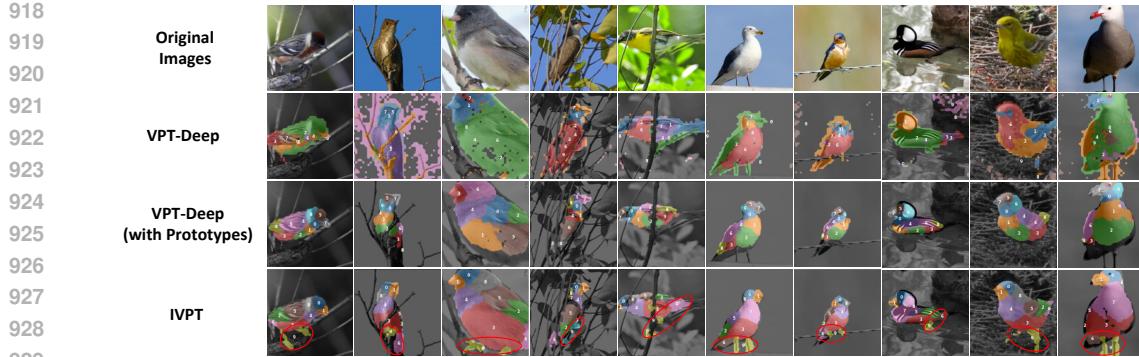
Semantic Abstraction (mean = 4.8): Users agree higher layers effectively capture meaningful macro-concepts without distorting original semantics. Example: For a "Black-footed Albatross", shallow prototypes detect detailed "hooked beak tip" features that naturally abstract to coherent "head" concepts in deeper layers.

Transition Naturalness (mean = 4.8): The hierarchical progression demonstrates intuitive logical coherence aligned with human reasoning patterns. Example: Observing a "Red-winged Blackbird", users note seamless progression from wing edge curvature (Layer 1) to epaulet shape recognition (Layer 2), mirroring expert birding observation patterns.

The study demonstrates IVPT's effectiveness in bridging the gap between machine representations and human-interpretable visual concepts through its cross-layer prototype architecture.

F FURTHER ANALYSIS ON THE GLEASON-2019 DATASET

Figure 7 illustrates the importance scores of different concepts (Glandular Lumen, Glandular Vesicle, Tissue) across grades in the Gleason-2019 dataset. Glandular Vesicle shows a steady increase in importance from Grade 3 to Grade 5, reaching around 0.6, which aligns with the fact that variations in glandular vesicles are a primary indicator of prostate cancer. As the malignancy level increases, its importance grows significantly. In contrast, Glandular Lumen remains consistently low, which is reasonable given its lack of direct relevance to cancer. Meanwhile, Tissue shows a high importance at Grade 3 but decreases significantly by Grade 5, likely due to the differentiation of tissue in highly malignant samples. This pattern suggests that different concepts contribute variably to feature extraction as malignancy progresses.



930
931 Figure 8: Qualitative results of explainable region maps generated by various approaches. We
932 highlight the areas that significantly distinguish IVPT from other methods with red circles.
933

934 G MORE VISUALIZATION

935 G.1 QUALITATIVE RESULTS OF EXPLAINABLE REGION MAPS.

936
937
938 We present qualitative results of explainable region maps generated by different approaches using
939 DinoV2-B as the backbone (the same below) in Figure 8. IVPT outperforms other methods by
940 producing more comprehensive and interpretable maps. Unlike the other two methods with prototype
941 learning, vanilla VPT-Deep struggles to identify explainable regions for the learnable prompts. In
942 comparison to VPT-Deep with prototypes, the red-circled areas in the IVPT row highlight additional
943 essential details, such as finer anatomical features of birds, demonstrating its ability to focus on
944 relevant features for clearer explanations. However, we also notice that in complex scenes with
945 occlusions or dense backgrounds (e.g., CUB images where birds overlap with branches), IVPT
946 prototypes occasionally misalign due to visual ambiguity. For example, we often found that a
947 prototype designed to capture "bird legs" activated on a textured branch mimicking leg scales,
948 incorrectly assigning high importance to background clutter.

949 G.2 GENERALIZATION ANALYSIS OF IVPT.

950
951 To further assess the generalization of our method beyond fine-grained recognition, we evaluate IVPT
952 on broader image classification benchmarks including CIFAR-100 and ImageNet. As illustrated
953 in Figure 9 (left), IVPT consistently identifies semantically meaningful object parts even in these
954 more generic settings, demonstrating that its part-discovery capability is not restricted to fine-grained
955 domains.

956
957 We also explore whether the learned concept prototypes can identify semantically meaningful parts
958 when generalizing on unseen categories (class domain) from the same dataset. As illustrated in
959 Figure 9 (right), when applied to novel categories not encountered during training, IVPT successfully
960 localizes coherent object regions—such as bird heads or wings in fine-grained recognition—without
961 any task-specific retraining. This indicates that the discovered prototypes capture transferable
962 visual concepts that are consistent across category boundaries, rather than overfitting to specific
963 training classes. The results confirm that IVPT exhibits robust cross-category concept generalization,
964 reinforcing the stability and semantic relevance of its learned prototypes.

965
966 To investigate the influence of domain shift on the concepts discovered by IVPT, we conduct a
967 comparative visualization study using the VLCS (Fang et al., 2013) benchmark. We fine-tune IVPT
968 separately on two domains—Caltech and PASCAL—using a pre-trained ViT backbone, and visualize
969 the top activated concepts for the “dog” and “person” classes. As shown in Figure 10, these visual
970 comparisons illustrate that IVPT dynamically adapts its concept priorities according to the domain,
971 confirming that the method does not assume a fixed concept set but rather learns domain-relevant
972 interpretations. This behavior makes IVPT suitable for deployment in environments where domain
973 shifts are expected.

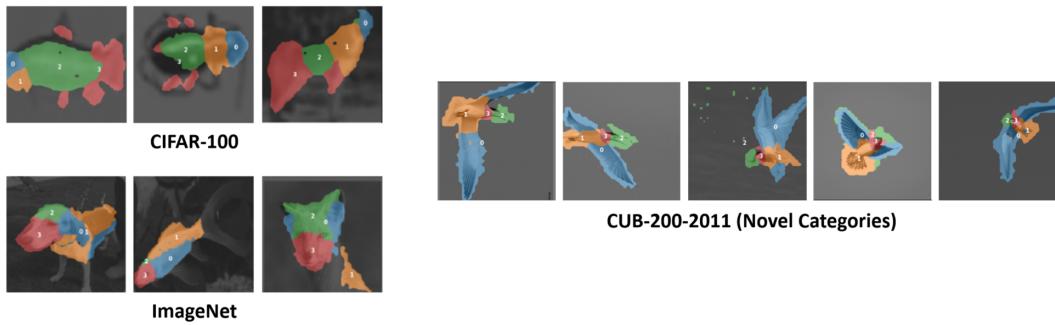


Figure 9: Qualitative results of IVPT on general image recognition datasets (left) and on novel categories from the fine-grained CUB-200-2011 dataset (right).

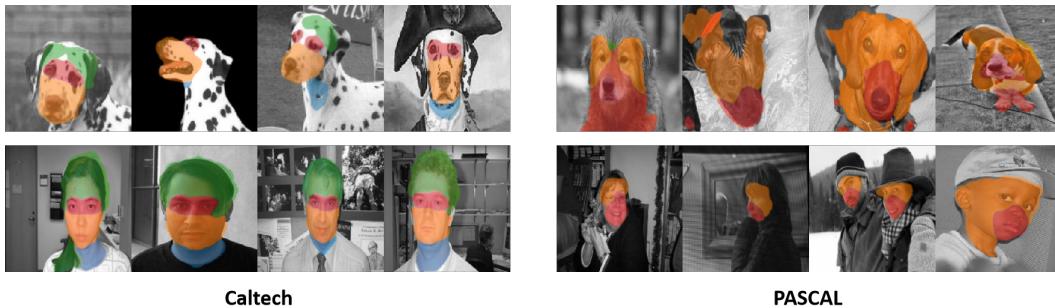


Figure 10: Concept activation visualizations for IVPT models fine-tuned separately on the Caltech and PASCAL domains of the VLCS benchmark. The comparison of highlighted regions shows how the model prioritizes different semantic concepts when the domain shifts.

G.3 BAD CASE ANALYSIS.

Figure 11 presents representative failure cases of our IVPT model. The analysis of these cases reveals that the model can learn spurious correlations, such as a "bird" prototype activating on surrounding branches or a "shark" concept triggered by water texture. Crucially, this very interpretability not only makes these biases transparent and diagnosable but also directly enables practical model debugging and bias detection. By visually pinpointing and diagnosing such learned biases—where the model relies on context rather than object features, IVPT allows researchers to move from observation to action—facilitating targeted mitigation through data refinement or prototype pruning, thereby solidifying its role in building more robust and trustworthy models.

G.4 EXPLAINABLE REGION MAPS WITH DIFFERENT NUMBER OF CONCEPT PROTOTYPES.

This section presents additional visualizations to highlight the explainability of region maps with different numbers of concept prototypes. Specifically, Figure 12 shows explainable region maps with varying concept prototypes. As the number of concept prototypes decreases, the region maps simplify, grouping larger areas into fewer explainable regions. These visualizations demonstrate how reducing the number of concept prototypes affects the granularity of the explainable regions, with higher values

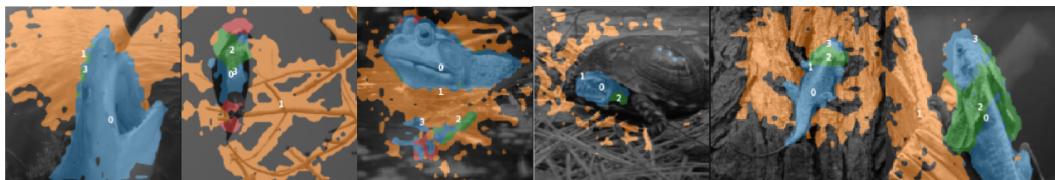
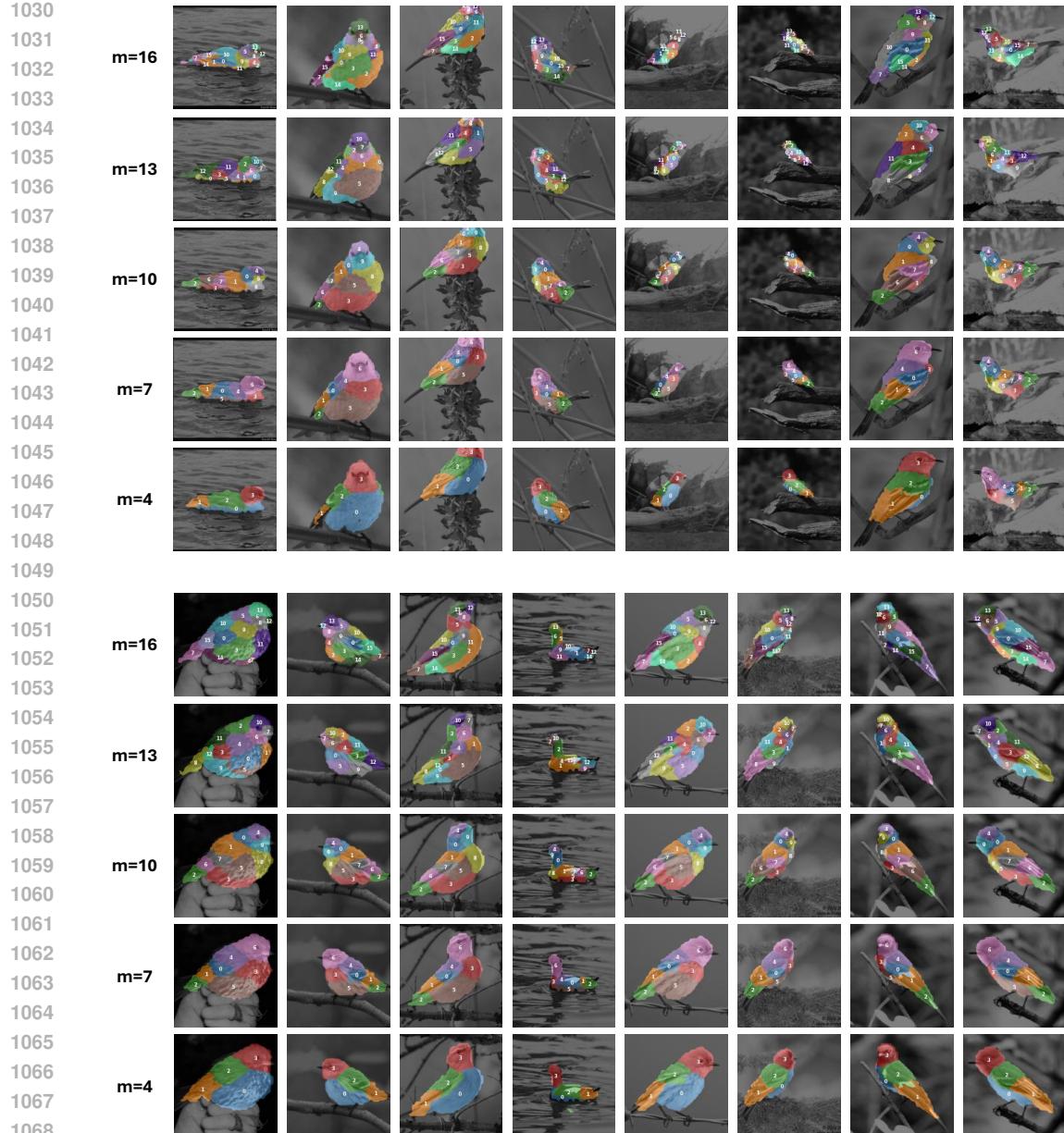


Figure 11: Analysis of IVPT failure cases.

1026
 1027 providing finer, more detailed part regions across the bird images. This enables an analysis of how
 1028 concept-prototype-based explanations adapt to different prototype settings, illustrating the trade-off
 1029 between granularity and interpretability.



1069
 1070 Figure 12: Visualization of explainable region maps with 16, 13, 10, 7 and 4 concept prototypes.
 1071
 1072

1073 G.5 EXPLAINABLE REGION MAPS OF THE HIERARCHICAL STRUCTURE USING DIFFERENT 1074 BACKBONES.

1075 This section provides the visualization of explainable region maps generated from different backbones
 1076 with the hierarchical structure, as illustrated in Figure 13. The used backbones include DeiT-S, DeiT-
 1077 B, DinoV2-S, DinoV2-B, and DinoV2-L. Each row displays how each model processes the image of
 1078 a bird, capturing distinct regions with different color-coded parts, each corresponding to a concept
 1079 prototype. The visualization reveals variations in part regions depending on the backbone architecture,
 with some models offering finer ones than others. These differences highlight the impact of the

1080 backbone choice on the interpretability and granularity of the explainable regions, emphasizing
1081 how different architectures contribute uniquely to the generation of part-level explanations in the
1082 hierarchical structure. This comparative visualization demonstrates the flexibility and adaptability of
1083 the explainable region maps across varying backbones.

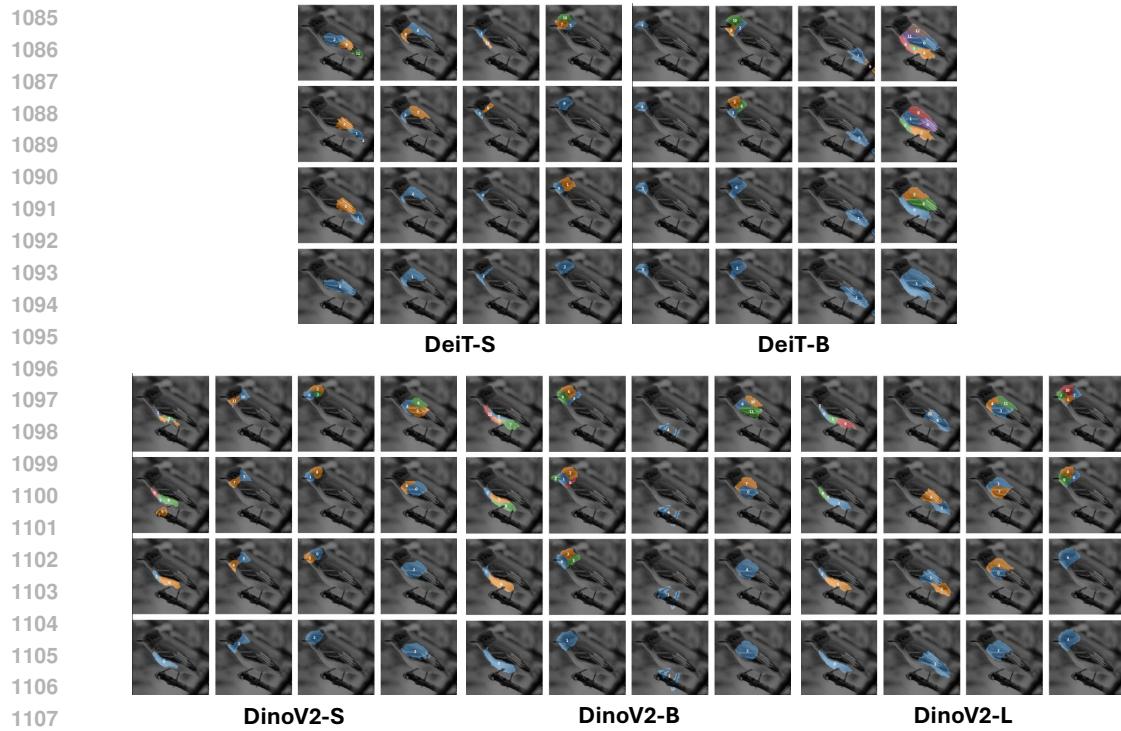


Figure 13: Visualization of explainable region maps of the hierarchical structure using different backbones, including DeiT-S, DeiT-B, DinoV2-S, DinoV2-B, and DinoV2-L.