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Abstract
Score-based generative models are essential
in various machine learning applications, with
strong capabilities in generation quality. In partic-
ular, high-order derivatives (scores) of data den-
sity offer deep insights into data distributions,
building on the proven effectiveness of first-order
scores for modeling and generating synthetic data,
unlocking new possibilities for applications. How-
ever, learning them typically requires complete
data, which is often unavailable in domains such
as healthcare and finance due to data corruption,
acquisition constraints, or incomplete records. To
tackle this challenge, we introduce MissScore, a
novel framework for estimating high-order scores
in the presence of missing data. We derive ob-
jective functions for estimating high-order scores
under different missing data mechanisms and pro-
pose a new algorithm specifically designed to han-
dle missing data effectively. Our empirical re-
sults demonstrate that MissScore accurately and
efficiently learns the high-order scores from in-
complete data and generates high-quality samples,
resulting in strong performance across a range of
downstream tasks.

1. Introduction
The first-order derivative of the log data density, also known
as (Stein) score (Liu et al., 2016), plays an important role
in various machine learning applications, including data
synthesis (Song & Ermon, 2019; 2020; Kim et al., 2022),
super-resolution (Li et al., 2022), and inverse problems in
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medical imaging (Song et al., 2021; Chung & Ye, 2022). De-
noising Score Matching (DSM) (Vincent, 2011), an efficient
method for estimating the score of the data density from
samples, has become widely used in training score-based
generative models (Ho et al., 2020; Song & Ermon, 2020).
Beyond the first-order score, high-order derivatives of the
data density, which we refer to as high-order scores, offer
more refined local approximations of the data distribution,
such as its curvature, and enable new model capabilities.
For instance, they can improve the mixing speed of sam-
pling methods and provide insights into quantifying the
uncertainty in denoising problem (Dalalyan & Karagulyan,
2019; Sabanis & Zhang, 2019; Meng et al., 2021). Addition-
ally, Lu et al. (2022) empirically demonstrated that incorpo-
rating high-order score matching improves the likelihood
of score-based diffusion ordinary differential equations on
both synthetic and real data, while maintaining high-quality
generation. Furthermore, high-order scores have been uti-
lized in recovering causal structures (Rolland et al., 2022;
Sanchez et al., 2022; Liu et al., 2024).

Despite their promise, learning high-order scores usually
requires training the model on complete data (Meng et al.,
2021; Lu et al., 2022). However, in many real-world sce-
narios, such as healthcare, finance, and social networks,
data often contain missing values due to privacy constraints
or high sampling costs (Rubin, 1976; Shpitser, 2016). A
straightforward approach to handling missing data is to im-
pute the missing values and train the model on the imputed
dataset. However, imputation methods often compromise
data quality, and potentially leading to biased results and sig-
nificantly degrading the performance of downstream tasks
(Ouyang et al., 2023). Furthermore, these methods fail to
capture the inherent uncertainty associated with missing
data, producing a distribution of imputed values that poorly
represents the true underlying data distribution (Van Buuren
& Groothuis-Oudshoorn, 2011; Gondara & Wang, 2018;
Wang et al., 2021). Some alternative approaches, such
as using generative adversarial networks (GANs) or vari-
ational auto-encoders (VAEs) to directly approximate the
data generation model from incomplete data (Li et al., 2019;
Gain & Shpitser, 2018), require training additional networks,
which can be computationally expensive and may also re-
sult in model inconsistency. To address this issue, some
works propose to explicitly constrain the learning objective
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within the model, which can enhance performance (Städler
& Bühlmann, 2012; Gao et al., 2022). These studies em-
phasize the need for approaches that can directly and more
efficiently handle missing data.

Back to score estimation from incomplete data, Ouyang
et al. (2023) adopts a similar way by introducing a diffusion-
based framework that learns the first-order score directly
from incomplete data. In principle, high-order scores could
be estimated from a learned first-order score model trained
on incomplete data using automatic differentiation. How-
ever, this approach becomes computationally impractical for
high-dimensional data and large model sizes, particularly
when using deep neural networks based models (Meng et al.,
2021). Furthermore, automatic differentiation introduces
additional estimation errors, as small errors does not always
lead to a small estimation error for high-order scores. More-
over, methods based on GANs (Goodfellow et al., 2020)
or VAEs (Kingma, 2013) do not inherently capture score
information, regardless of whether data is missing or com-
plete. In contrast, score-based models naturally integrate
this information (Li et al., 2019; Ho et al., 2020; Gain & Sh-
pitser, 2018). These limitations highlight the need of using
score-based models when estimating high-order scores in
the presence of missing data.

Contributions. In this work, we introduce MissScore, a
novel score-based framework for learning high-order scores
in the presence of missing data. We derive objective func-
tions for estimating these scores under different missing data
mechanisms, using DSM to recover the true score function.
While our framework is general and applicable to scores of
any order, we focus on second-order scores (the Hessian
of the log density) in our experiments. Our results show
that MissScore efficiently and accurately approximates high-
order scores with missing data. In addition, we demonstrate
that our model improves both sampling speed and data qual-
ity in data generation tasks, with the quality of the generated
samples validated across several downstream tasks.

2. Related Work
Missing Data Problem. Learning from incomplete observa-
tions is a common challenge in real-world datasets, arising
from factors such as data corruption or incomplete records
(Rubin, 1976; Little & Rubin, 2019). This issue has been
extensively studied, with imputation being a primary solu-
tion (Poulos & Valle, 2018; Jäger et al., 2021; Shadbahr
et al., 2023; Paterakis et al., 2024). Traditional imputa-
tion methods, such as mean or median substitution, tend to
compromise data diversity and introduce biases in down-
stream tasks. More advanced techniques, including machine
learning models and deep generative approaches like GAIN,
MICE, and MIDA (Muzellec et al., 2020; Van Buuren &
Groothuis-Oudshoorn, 2011; Gondara & Wang, 2018), aim

to capture data distributions more effectively. However,
these methods are limited by their inability to model the
inherent uncertainty in missing data and often struggle to
outperform traditional methods in survey data (Wang et al.,
2021).

Recent advances in generative modeling have explored learn-
ing directly from incomplete data, moving beyond explicit
imputations. Variational autoencoder-based approaches han-
dle complex tabular data through tailored likelihoods, hier-
archical structures, or importance weighting (Nazabal et al.,
2020; Mattei & Frellsen, 2019; Ma et al., 2020; Peis et al.,
2022). Diffusion-based models offer an alternative by learn-
ing score functions over partially observed data, supporting
both data synthesis and imputation (Ouyang et al., 2023;
Zhang et al., 2024; Chen et al., 2024; Zheng & Charoen-
phakdee, 2022; Kotelnikov et al., 2023). However, many
of these methods rely on auxiliary networks, make strong
assumptions about the missingness mechanism, or are re-
stricted to first-order scores. In contrast, our approach di-
rectly estimates high-order score functions from incomplete
data, enabling richer local information and broader applica-
bility.

Score Matching. Score matching estimates the gradient
of the log-density, known as the score function, of a data
distribution (Hyvärinen & Dayan, 2005). It is particularly
effective for complex, high-dimensional density models
with intractable partition functions. Among its variants,
DSM (Vincent, 2011) has emerged as a foundational method,
learning the score of a perturbed distribution by minimizing
a regression loss. While first-order scores are widely used
across applications (Song & Ermon, 2019; Li et al., 2022),
higher-order scores offer richer insights by capturing the
curvature of the data distribution (Dalalyan & Karagulyan,
2019; Sabanis & Zhang, 2019). These high-order derivatives
improve sampling efficiency and uncertainty quantification
(Meng et al., 2021). However, learning high-order scores
is computationally expensive and prone to inaccuracies,
particularly in high-dimensional settings. Recent work by
Meng et al. (2021) addresses this challenge by leveraging
Tweedie’s formula to estimate high-order derivatives effi-
ciently. Lu et al. (2022) further demonstrated that high-order
score matching improves the likelihood of diffusion-based
models while maintaining high sample quality. MissScore
builds on these insights, extending DSM to high-order score
estimation in the presence of missing data, ensuring both
computational efficiency and robustness.

3. Estimating High-Order Scores with Missing
Data

In this section, we provide an overview of high-order DSM
and introduce our approach for handling missing data.
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3.1. Background on High-Order DSM

Consider a data distribution pdata(x) and a model distribu-
tion p(x;θ) over Rd. The first order score is the gradi-
ent of log pdata(x) with respect to x, denoted as s1(x) =
∇x log pdata(x). Correspondingly, the score function of
p(x;θ) is denoted as s1(x;θ) = ∇x log p(x;θ). In DSM,
instead of directly estimating the score function from the
original data, the method works by introducing noise from
a predefined noise distribution qσ(x̃|x) into the data. The
objective is then to estimate the score of the perturbed data
distribution qσ(x̃) =

∫
qσ(x̃|x)pdata(x)dx. To achieve so,

DSM minimizes the following objective function,

LDSM(θ) =
1

2
Epdata(x)Eqσ(x̃|x)

[
∥s1(x̃;θ)

−∇x̃ log qσ(x̃|x)∥22
]
. (1)

It has been shown that minimizing Eq. (1) is equivalent
to minimizing the score matching loss between s1(x̃;θ)
and s1(x̃) under certain regularity conditions (Vincent,
2011). When the noise distribution qσ(x̃|x) is Gaussian,
i.e., N (x̃|x, σ2I), the objective simplifies to

LDSM(θ) =
1

2
Epdata(x)Eqσ(x̃|x)

[∥∥∥∥s1(x̃;θ) + 1

σ2
(x̃− x)

∥∥∥∥2
2

]
.

(2)

The learned score function implicitly learns how to “de-
noise” the perturbed data x̃, guiding it back toward the
true data distribution through the optimization of Eq. (2).
By focusing on estimating the score of the noise-perturbed
distribution qσ(x̃) instead of the original data distribution
pdata(x), DSM offers a more efficient approach to score esti-
mation compared to other techniques (Hyvärinen & Dayan,
2005; Song et al., 2020). Meng et al. (2021) provide a
derivation of DSM using Tweedie’s formula (Efron, 2011),
and they generalize this approach to incorporate high-order
moments of x based on x̃, allowing them to develop an
objective function for learning high-order scores.
Theorem 3.1. (Meng et al., 2021) E[⊗nx|x̃] =
fn(x̃, s1, ..., sn), where ⊗nx ∈ RDn

denotes n-fold ten-
sor multiplications, fn(x̃, s1(x̃), ..., sn(x̃)) is a polynomial
of x̃, s1(x̃), · · · , sn(x̃), and sk(x̃) represents the k-th order
score of qσ(x̃) =

∫
pdata(x)qσ(x̃|x)dx.

Theorem 3.1 shows that there exists an equality between
high-order moments of the posterior distribution of x given
x̃ and high-order scores with respect to x̃. Leveraging The-
orem 3.1 and the least squares estimation of E[⊗kx|x̃], the
objectives for approximating the k-th order scores sk(x̃)
can be constructed as follows.

Theorem 3.2. (Meng et al., 2021) Given score functions
s1(x̃), . . . , sk−1(x̃), a k-th order score model sk(x̃;θ) can
be obtained by optimizing the following objective:

θ∗ = argmin
θ

Epdata(x)Eqσ(x̃|x)

[
∥∥⊗k x− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

∥∥2
2

]
.

where fk is a polynomial of {x̃, s1(x̃), . . . , sk(x̃)} such
that:

fk(x̃, s1(x̃), . . . , sk(x̃))

=

{
x̃+ σ2s1(x̃), if k = 1,

σ2 ∂
∂x̃fk−1 + σ2fk−1 ⊗

(
s1(x̃) +

x̃
σ2

)
, if k ≥ 2.

(3)

We have sk(x̃;θ
∗) = sk(x̃) for almost all x̃.

3.2. High-Order DSM with Missing Data

Let x = (x1, x2, . . . , xd) ∈ Rd be a random vector
sampled from an unknown data distribution pdata(x), and
m = (m1,m2, . . . ,md) ∈ {0, 1}d be a binary mask where
mi = 1 indicates that xi is missing, and mi = 0 indi-
cates that xi is observed. The observed data can be ex-
press as xobs = x⊙ (1−m) + na⊙m, where ⊙ denotes
element-wise multiplication, and na indicates the missing
value. Perturbing x with Gaussian noise results in x̃|x ∼
N (x, σ2Id), and the corresponding conditional density
function is qσ(x̃|x) := (2πσ2)−

d
2 exp{− (x̃−x)⊤(x̃−x)

2σ2 },
where σ is a pre-specified constant.

Rubin (1976) categorized missing data mechanisms into
three types based on the dependency between the missing
indicator (m) and the complete data (x): (1) Missing Com-
pletely at Random (MCAR), where m is independent of the
complete data x; (2) Missing at Random (MAR), where m
depends only on the observed values xobs; and (3) Missing
Not at Random (MNAR), where m depends on both the
observed values xobs and the missing values. Many previous
efforts have concentrated on addressing the complexities of
MNAR cases; however, M(C)AR cases have received less
attention, as they allow for recovering the true distribution
without the need for additional assumptions (Wang et al.,
2019; Yang et al., 2019; Little & Rubin, 2019).

The MCAR mechanism simplifies modeling by eliminat-
ing bias introduced by missingness but is rarely realistic.
MAR, on the other hand, is more applicable in real-world
settings, as it allows missingness to depend on observed
data. This dependency, however, can introduce bias in esti-
mates if the missing data mechanism is not accounted for,
making the problem considerably more challenging than
in the MCAR framework. Inverse Probability Weighting
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(IPW) has proven useful in correcting bias by assigning
weights to observed data points inversely proportional to
their probability of being observed (Wooldridge, 2007; Sea-
man & White, 2013). This ensures that observations more
likely to be missing receive higher weights, enabling un-
biased estimates that reflect the full data distribution and
mitigating the bias introduced by the MAR mechanism.

The following theorem presents our first theoretical result,
demonstrating that DSM with a missing indicator can re-
cover the oracle score under M(C)AR mechanisms, defined
as the gradient of log pdata(x) with respect to x.

Theorem 3.3. Let the missing mechanism of x be either
MCAR or MAR, with the missing probability of every ele-
ment lying between 0 and 1, i.e., p(mi = 1) ∈ [0, 1) for all
i ∈ {1, 2, . . . , d}. Define the objective function:

JDSM(θ) = Ex,mEx̃|x,m

[∥∥{s1(x̃;θ)
+

1

σ2
(x̃− x)

}
⊙w1

∥∥2
2

]
,

where the weight w1 is defined as:

w1 =

{
1−m, if MCAR,

1−m√
P[m=0|x=x]

, if MAR.

If there exists a unique θ∗ such that s1(x̃) = s1(x̃;θ
∗), then

θ∗ = argmin
θ
JDSM(θ).

It follows that the global optimum of DSM with a missing
mask aligns with the oracle score under M(C)AR missing
mechanisms. The detailed proof is provided in Appendix
A.1. Extending this to the second-order score model, and
building on Theorem 3.2, the second-order DSM with a
missing mask can successfully recover the oracle second-
order score, which corresponds to the Hessian of log pdata(x)
with respect to x.

Theorem 3.4. Suppose the first-order score s1(x̃) is given,
and the missing mechanism of x is either MCAR or MAR,
with p(mi = 1) ∈ [0, 1) for all i ∈ {1, 2, . . . , d}. Define
the objective function:

JD2SM(θ) = Ex,mEx̃|x,m

[∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃)

+
I− zz⊤

σ2

}
⊙w2

∥∥2
2

]
,

where z = x̃−x
σ , and w2 is defined as:

w2 =

(1−m)(1−m)⊤, if MCAR,
(1−m)(1−m)⊤√

P[mm⊤=0|x]
, if MAR.

If there exists a unique θ∗ exists such that s2(x̃) =
s2(x̃;θ

∗), then θ∗ = argmin
θ
JD2SM(θ).

We can conclude that the global optimum of the second-
order DSM with a missing mask corresponds to the oracle
second-order score. A detailed proof is provided in Ap-
pendix A.2. We now extend to any desired order under
M(C)AR mechanisms. Theorem 3.5 indicates that k-th or-
der DSM with missing mask can learn the oracle k-th order
score and the proof is provided in Appendix A.3.
Theorem 3.5. Given score functions s1(s̃), · · · , sk−1(s̃),
and the missing probability of every element lies between 0
and 1, which is p(mi = 1) ∈ [0, 1) for all i ∈ {1, 2 . . . , d}.
If we correctly model the k−th order derivative sk(x̃), there
exists θ∗ such that sk(x̃,θ

∗) = sk(x̃), then

θ∗ = argmin
θ

Ex̃,x,m

[∥∥{⊗k x− fk
(
x̃, s1(x̃), . . . , sk−1(x̃),

sk(x̃;θ)
)}
⊙⊗kw

∥∥2],
where w = 1−m if the missing mechanism of x is MCAR,
and w = 1−m

P[mk=0|x=x]
if the missing mechanism of x is

MAR.

4. Training Score Models by High-Order DSM
with Missing data

In this section, we describe the training process for high-
order score models in the presence of missing data and
evaluate their empirical performance. While our analysis
specifically focuses on the first- and second-order scores,
the approach can be applied to any order of scores.

As derived in Theorem 3.3, the first-order score model
s1(x̃;θ) is learned by minimizing the following objective
function using the observed data,

LDSM(θ) = Ex̃obs,xobs,m

[∥∥{s1(x̃obs;θ)

+
1

σ2
(x̃obs − xobs)

}
⊙w1

∥∥2
2

]
.

(4)

Similarly, the second-order score model s2(x̃;θ) is learned
using the following objective, as derived in Theorem 3.4,

LD2SM(θ) = Ex̃obs,xobs,m

[∥∥{s2(x̃obs;θ) + s1(x̃obs)s
⊤
1 (x̃obs)

+
I− zobsz

⊤
obs

σ2

}
⊙w2

∥∥2
2

]
.

(5)

However, training the second-order score model, s2(x̃;θ),
requires knowledge of the first-order score s1(x̃). Therefore,
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we adopt a multi-task objective to train both s1(x̃;θ) and
s2(x̃;θ) simultaneously,

Ljoint(θ) = LDSM(θ) + ωLD2SM(θ), (6)

where ω ∈ R+ is a tunable coefficient. P[m = 0|x = xobs]
in MCAR and P[mm⊤ = 0|x = xobs] in MAR are esti-
mated using logistic regression models, where the response
variable indicates whether the data is missing or observed,
and the predictors are the observed variables. In the experi-
ments, missing values are handled by replacing them with
0 for continuous variables and creating a new category for
discrete variables. One-hot encoding is then applied to dis-
crete variables. Element-wise multiplication with the mask
naturally mitigates the impact of replacing missing values
with zeros when computing the objective. The algorithm is
provided in Appendix B.

4.1. Improving stability with Variance Reduction

It is important to note that, in order to match the score of
the true distribution pdata(x), σ needs to be close to zero for
both DSM and D2SM, so that qσ(x̃) closely approximates
pdata(x). However, training score models using denoising
methods can suffer from high variance when σ approaches
zero. This challenge motivates the use of variance reduction
techniques. Building on existing variance reduction meth-
ods for DSM (Song & Kingma, 2021; Meng et al., 2021), we
propose tailored variance reduction techniques specifically
for training DSM with missing data, as follows,

LDSM-VR(θ) = LDSM(θ)− Exobs,mEz∼N (0,I)

[(
2

σ
s(xobs;θ)

⊤z

)
⊙ g1(xobs,m) +

∥z⊙ g1(xobs,m)∥2

σ2

]
,

(7)

where g1(xobs,m) = 1 − m under MCAR, and
g1(xobs,m) = 1−m√

P[m=0|x=xobs]
under MAR.

For the second-order model with missing data, we imple-
ment a variance reduction (VR) technique using antithetic
sampling (James, 1985; Meng et al., 2021), which involves
utilizing two negatively correlated sample vectors centered
around x. The objective function is then formulated as

LD2SM-VR(θ) = Exobs,mEz∼N (0,I)

[{
ψ(x̃+

obs)
2 +ψ(x̃−

obs)
2

+ 2
I− zz⊤

σ
⊙Ψ

}
⊙ g2(xobs,m)

]
,

(8)

where the antithetic samples are defined as x+
obs = xobs +

σz and x−
obs = xobs − σz. Here, ψ = s2 + s1s

⊤
1 , and

Ψ =
(
ψ(x̃+

obs) +ψ(x̃
−
obs)− 2ψ(xobs)

)
. Under the MCAR

setting, g2(xobs,m) = (1−m)(1−m)⊤, while for MAR,
g2(xobs,m) = (1−m)(1−m)⊤√

P[mm⊤=0|x=x]
. The formal analysis of

variance reduction is provided in sections A.4 and A.5 of
the Appendix.

We perform an empirical analysis to assess the impact of
VR on training score models with DSM and D2SM using
incomplete data. The full data is generated from a 2-d
Gaussian distribution and we simulate the incomplete data
under MCAR, training s1(x̃obs;θ) and s2(x̃obs;θ) using a
joint learning objective Eq. (6). Using a sample size of
1000 and a missing ratio of 0.3, In Figure 1, we compare the
estimated score and Hessian for the first dimension against
the ground truth at noise levels σ = {0.1, 0.001}, both with
and without VR. The results indicate that VR is essential
for accurate estimation in both DSM and D2SM when σ
is close to zero, while its importance diminishes at higher
values of σ. As σ increases, both methods still achieve
reasonable score estimates even without VR. Additionally,
when using complete data and varying the missing ratio α =
{0.1, 0.3, 0.5} with DSM and VR at σ = 0.001, we observe
that the first- and second-order score estimates remain close
to the ground truth. While performance degrades as the
proportion of missing data increases, the estimates remain
generally accurate.

4.2. Scalability and Numerical Stability

We show that the proposed method efficiently and accurately
estimates second-order scores across different missing ra-
tios, as summarized in Table 1. To achieve this, we generate
10 synthetic datasets with known ground truth, consisting
of 100-dimensional correlated multivariate normal distri-
butions that include varying levels of missing data under
MCAR mechanism. The covariance matrix for these dis-
tributions is constructed using eigenvalues t ∈ {1, 5} to
vary degrees of correlation. We evaluate the performance
of the estimated s1 and the diagonal of s2 by calculating
the mean squared error (MSE) between the estimated scores
and the ground truth scores derived from the complete data,
across various values of σ. Our results indicate that the
jointly optimized s1(x̃obs;θ) and s2(x̃obs;θ) achieve empir-
ical performance close to the ground truth. As previously
mentioned, when σ approaches zero, the estimates with-
out VR become unreliable for both the score and Hessian,
likely due to convergence issues. Although performance de-
clines with an increase in missing data, the estimates remain
reasonable.

5. Sampling with Missing Data via
Second-Order Score Models

In this section, we illustrate how our second-order score
model s2(x̃;θ), trained on incomplete data, improves sam-
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Figure 1. Comparison of estimated s1 and s2 under different conditions. (a) and (b) show estimates with DSM and D2SM varying the
noise level σ with a fixed missing ratio 0.3. (c) and (d) show estimates with DSM and D2SM varying the missing ratio α.

Table 1. Mean squared error (MSE) between the estimated first-order and second-order scores and the ground truth is evaluated across
5,000 test samples. We vary the noise scales σ and missing ratios α, with each configuration tested using 10 random seeds.

Methods α = 0.0 α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.29± 0.01 0.42± 0.02 0.32± 0.01 0.44± 0.01 0.37± 0.01 0.44± 0.02
s1(VR) 0.07± 0.00 0.07± 0.00 0.09± 0.00 0.09± 0.00 0.13± 0.00 0.15± 0.01 0.23± 0.00 0.27± 0.01
s2 0.16± 0.02 15.42± 0.47 0.16± 0.02 27.42± 2.34 0.16± 0.02 29.74± 3.35 0.17± 0.03 26.08± 2.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.04± 0.00 0.04± 0.00 0.04± 0.00 0.05± 0.00 0.05± 0.00 0.06± 0.01

ple quality and enables faster convergence in terms of the
number of sampling steps required. We demonstrate the ef-
fectiveness of the proposed model through simulations and
real-world datasets containing missing values, comparing
its performance against various baseline methods.

Langevin dynamics. Langevin dynamics samples data
from pdata(x) by utilizing the first-order score function
s1(x) (Bussi & Parrinello, 2007; Song & Ermon, 2019).
Starting with a prior distribution π(x), a fixed step size
ϵ > 0, and an initial value x̃0 ∼ π(x), Langevin dynamics
iteratively updates the samples as follows:

x̃t+1 = x̃t +
1

2
ϵs1(x̃t) +

√
ϵzt, (9)

where zt ∼ N (0, I) represents Gaussian noise.

Ozaki Sampling. Following Meng et al. (2021), Ozaki
discretization improves data synthesis by integrating second-
order information from s2(x) to precondition the sampling
process. The updates for Ozaki sampling are performed as
follows:

x̃t = x̃t−1 +Mt−1s1(x̃t−1) + Σ
1/2
t−1zt, (10)

where zt ∼ N (0, I), Mt−1 = eϵs2(x̃t−1) − I, and Σt−1 =
(e2ϵx̃t−1 − I)s2(x̃t−1)

−1.

Illustration. We use the Swiss-Roll dataset to demonstrate
the effectiveness of Ozaki Sampling, focusing on its conver-
gence rate and quality of data generation through second-
order information. Both methods employ a step size of
ϵ = 0.005 and a missing ratio of 0.5 under the MCAR
missing mechanism. As shown in Figure 2, Ozaki Sampling

generates comparable data to Langevin dynamics with fewer
iterations, resulting in data that is more concentrated around
the original distribution, while Langevin dynamics yields
noisier and more dispersed results.

Following Kim et al. (2022); Ouyang et al. (2023), we con-
duct experiments on a simulated Bayesian Network dataset
and a real Census dataset (Kohavi, 1996) to illustrate the
efficiency and effectiveness of the data generated by our
proposed model trained on missing data.

Baselines. We evaluate the proposed method using both
Langevin and Ozaki sampling against several baseline tech-
niques for synthetic data generation on datasets with miss-
ing values. Specifically, we implement (1) a vanilla DSM
model that removes rows with missing values (termed DSM-
delete), and (2) STaSy (Kim et al., 2022), a state-of-the-art
score-based model, which significantly outperforms other
approaches for tabular data (termed STaSy-mean). Since
STaSy requires complete datasets for training, we apply
mean imputation to handle any missing values in the train-
ing data.

Metrics. Following Kim et al. (2022); Ouyang et al. (2023),
we employ two criteria, fidelity and machine learning (ML)
efficiency, to assess the quality of the generated synthetic
tabular data. For evaluating fidelity, we utilize the model-
agnostic library SDMetrics. The result ranges from 0 to
100%. A higher score indicates better overall quality of
the synthetic data. To measure ML efficiency, we adopt
the same pipeline as Kim et al. (2022); Kotelnikov et al.
(2023), training various models—including Decision Tree,
AdaBoost, Logistic Regression, MLP Classifier, Random
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Forest, and XGBoost on the synthetic data and testing them
with real data. Our primary metric is classification accuracy,
and we also report AUROC and Weighted-F1 scores in the
Appendix C.4. All experimental results are based on three
repetitions.

Results. Figure 5 and Table 2 demonstrate the effectiveness
of the proposed method on both the simulated Bayesian
Network dataset and the Census data, showing superior
performance in terms of fidelity and utility compared to
other baselines. Specifically, these results confirm that the
impute-then-generate approach introduces bias, whereas
directly learning from missing data significantly improves
the performance of the generative model. Furthermore, the
advantages of the proposed model become more pronounced
as the missing ratios increase. Additional details and results
of the experiments can be found in Appendix C.

Table 2. Fidelity and ML efficiency evaluation of MissScore using
Langevin and Ozaki samplings, along with other baselines, on the
Census dataset with a missing ratio of 0.3 under MCAR.

Langevin Ozaki DSM-delete STaSy-mean

Fidelity 86% 88% 73% 82%
ML efficiency 80% 81% 70% 77%

6. Causal Discovery with Missing Data via
Second-Order Scores

Background. Causal discovery aims to identify causal rela-
tionship from purely observational data. However, the task
is ill-posed without additional assumptions. Assuming an
additive noise model (ANM) allows for the identification of
causal structures. In this context, consider the ANM defined
as xi = fi(xPAi

) + zi, where fi is a nonlinear function and
zi is a Gaussian noise. Rolland et al. (2022) proposed an
order-based algorithm that uses the second order score of an
ANM with a probability distribution pdata(x) to identify leaf
nodes, and iteratively determine the topological order of the
variables. However, the computation of the Hessian requires
complete data, which poses challenges in real-world scenar-
ios such as clinical trials, and biology, where missing data
is common.

A straightforward approach to address missing data problem
is to first impute the incomplete entries using off-the-shelf
imputation methods and then apply existing causal discov-
ery methods. However, this two-step approach can be sub-
optimal, as the imputation process may introduce bias for
modeling the underlying data distribution. Our method mit-
igates this issue by directly training a second-order model
with incomplete data, thereby reducing potential bias. Since
the Hessian only provides information about variable order,
we adopt a strategy similar to Rolland et al. (2022); Sanchez
et al. (2022), first computing the topological order and then

using CAM pruning to derive the final directed acyclic graph
(DAG) (Bühlmann et al., 2014).

Baselines. We utilize the MissForest imputation method to
address missing data, followed by the implementation of
DiffAN (Sanchez et al., 2022) (termed MissDiffAN) and
DAGMA (Bello et al., 2022) (termed MissForest) for struc-
ture learning. DiffAN serves as a diffusion-based adaptation
of the approach proposed by (Rolland et al., 2022), ensur-
ing a fair comparison. Furthermore, we compare MissS-
core with MissDAG (Gao et al., 2022) and MissOTM (Vo
et al., 2024), both of which are prominent methods that
have shown superior performance in causal discovery with
missing data relative to various other baselines.

Metrics. All quantitative results are averaged over 10 ran-
dom initiazations. For comparing the estimated DAG with
the ground-truth one, we report commonly used metrics:
Order Divergence and Structural Hamming Distance (SHD).
Order Divergence measures the number of errors in the or-
dering, while SHD indicates the minimum number of edge
additions, deletions, and reversals needed to convert the
recovered DAG into the true one. Lower values for both
metrics are preferred. Order Divergence is calculated only
for MissScore and MissDiffAN, as these are the only order-
based methods.

Simulations. We simulate synthetic datasets generating
a ground-truth DAG from the graph model Erdős–Rényi
(ER). Each function fi is constructed from a multi-layer
perceptron (MLP) and a multiple index model (MIM) with
random coefficients. We consider a general scenario of non-
euqal variances, sampling 1000 observations according to
all missing mechansims: MCAR, MAR, MNAR at 10% and
30% missing rates and complete data. In the main text, we
report the SHD and runtime in MCAR cases with missing
ratio 0.1 varies with number of dimensions, using Gaussian
noise. Specifically, the number of edges is set equal to the
dimensionality.

Results. In Figure 4, our approach demonstrates comparable
performance to the state-of-the-art methods MissDAG and
MissOTM, although it shows slightly lower performance
in the high-dimensional scenario with d = 50. This may
be attributed to the challenges of training a denoising score
matching model with a limited number of samples. How-
ever, MissScore significantly reduces computation time com-
pared to MissOTM and MissDAG, offering an efficient alter-
native while maintaining similar results. With MissForest,
our performance is similar, possibly due to the additional
constraints enforced during training by DAGMA. However,
when comparing our method to those that rely on imputa-
tion followed by causal discovery approach, we find that our
approach outperforms MissDiffAN. This suggests that im-
putation can introduce bias in downstream tasks. Additional
results for various missing ratios, mechanisms, and order
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Figure 2. Sampling a Swiss Roll dataset with a step size of 0.005 using Langevin dynamics and Ozaki sampling. Ozaki sampling achieves
higher-quality samples with fewer iterations compared to Langevin dynamics under MCAR with a missing ratio of 0.5. Figure (a) displays
the dataset; Figures (b)-(d) show the results from Langevin dynamics; and Figures (e)-(h) present the results from Ozaki sampling. The
numbers in parentheses indicate the number of iterations taken.
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Figure 3. Fidelity evaluation of MissScore using Langevin
and Ozaki samplings, along with other baselines, on the
Bayesian Network dataset with varying missing ratios α =
{0.1, 0.3, 0.5, 0.7, 0.9} under different missing mechanisms.

divergences are provided, along with further experimental
details, in Appendix D.4.

7. Conclusion and Future Work
In this work, we present a novel framework for directly
estimating high-order data density scores in the presence
of missing data using DSM under M(C)AR mechanisms.
Unlike methods that rely on imputation or additional model
training, our approach handles missing data directly and ef-
ficiently. Distinct from prior work like MissDiff, MissScore
focuses on high-order score learning and introduces an ora-
cle estimator under the MAR mechanism. Empirical results
demonstrate the efficiency and accuracy of our framework in
estimating second-order scores, with applications showcas-
ing improved sampling quality through Ozaki discretization
in sernarios with missing data. Furthermore, our causal
discovery method scales with dimensionality and achieves
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Figure 4. Data is generated under MCAR with a missing ratio of
0.1, varying dimensions d = {10, 20, 50} using ER graph model.
The sample size is 1000, and fi corresponds to an MLP. Left:
SHD; Right: Runtime. The shaded area indicates 95% confidence.

competitive results against state-of-the-art approaches.

Despite these advancements, certain limitations remain. The
effectiveness of high-order score estimation diminishes in
low-noise environments without variance reduction, partic-
ularly in scenarios with high levels of missingness. These
issues also extend to downstream tasks, such as causal dis-
covery and sampling, where performance tends to decline
slightly with increasing dimensionality. Additionally, di-
rect testing on real-world data poses a challenge due to the
unavailability of ground truth.

Future work could explore extending high-order score es-
timation to domains such as image and time-series data,
while investigating the application of DSM to directly han-
dle MNAR data. Additionally, incorporating constraints
into score-based models to enhance causal discovery with
missing data holds significant potential for advancing score-
based learning in complex and missing data scenarios.
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A. Proofs
A.1. Proof of Theorem 3.3

Proof. Under the MCAR missing mechanism, we know that

Ex,mEx̃|x,m

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}
⊙ (1−m)

∥∥∥∥2
2

]

=Ex̃,x,m

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}
⊙ (1−m)

∥∥∥∥2
2

]

=Ex̃,xEm|x̃,x

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}
⊙ (1−m)

∥∥∥∥2
2

]

=Ex̃,x

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}
⊙
√
Em|x̃,x(1−m)

∥∥∥∥2
2

]

=Ex̃,x

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}
⊙
√
w1

∥∥∥∥2
2

]
.

Denote qσ(x̃|x) = N (x̃;x, σ2), we only need to show there exists some constant C independent of θ such that

Ex̃,x

[
∥{s(x̃;θ)−∇x̃qσ(x̃|x)} ⊙

√
w1∥22

]
= Ex̃,x

[
∥{s(x̃;θ)− s(x̃)} ⊙

√
w1∥22

]
+ C (11)

For simplicity, we consider the case d = 1. For the right hand side of Eq.(11),

R.H.S = w1 ·
{
Ex̃,x

[
s2(x̃; θ)

]
− 2Ex̃,x [s(x̃; θ)s(x̃)]

}
+ C.

For the left hand side of Eq.(11),

L.H.S = w1 ·
{
Ex̃,x

[
s2(x̃; θ)

]
− 2Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)]

}
+ C.

Hence, we only need to show

Ex̃,x [s(x̃; θ)s(x̃)] = Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)] . (12)

We have,

Ex̃,x [s(x̃; θ)s(x̃)] =

∫
s(x̃; θ)∇x̃px̃(x̃)dx̃

=

∫
s(x̃; θ)∇x̃

(∫
p(x)qσ(x̃|x)dx

)
dx̃

=

∫ ∫
s(x̃; θ)p(x)∇x̃ (qσ(x̃|x)) dxdx̃

=

∫ ∫
s(x̃; θ)p(x)qσ(x̃|x)∇x̃ (log qσ(x̃|x)) dxdx̃

=

∫ ∫
s(x̃; θ)px̃,x(x̃, x)∇x̃ (log qσ(x̃|x)) dxdx̃ = Ex̃,x [s(x̃; θ)∇x̃ log qσ(x̃|x)]

Hence, we get our desired result under the MCAR missing mechanism. By similar argument in the proof for the MCAR
missing mechanism, under the MAR missing mechanism, we have:
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Ex,mEx̃|x,m

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x,m

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,xEm|x̃,x

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙ 1−m√

P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x

∥∥∥∥∥
{
s(x̃;θ) +

1

σ2
(x̃− x)

}
⊙
√
Em|x̃,x(1−m)√
P[m = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x

[∥∥∥∥{s(x̃;θ) + 1

σ2
(x̃− x)

}∥∥∥∥2
2

]
.

where the last equality comes from Em|x̃,x(1−m) = Em|x(1−m) = P[m = 0|x = x]. Then following the steps in the
proof for the MCAR missing mechanism, taking w as a vector of 1, we get our desired result.

A.2. Proof of Theorem 3.4

Proof. Under the MCAR missing mechanism, we know that

Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
{
(1−m)(1−m)⊤

}∥∥∥∥2
2

]

=Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
√
Em|x̃,x(1−m)(1−m)⊤

∥∥∥∥2
2

]

=Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
√
w2

∥∥∥∥2
2

]

It is sufficient to show

Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
√
w2

∥∥∥∥2
2

]
= ExEx̃|x

[
∥{s2(x̃;θ)− s2(x̃)} ⊙

√
w2∥

2
2

]
+ C.

(13)

with some constant C independent of θ.

For the right hand side of Eq.(13),

ExEx̃|x

[
∥{s2(x̃;θ)− s2(x̃)} ⊙

√
w2∥

2
2

]
=

d∑
i=1

d∑
j=1

w2,ij ·
{
Ex̃,x

[
s22,ij(x̃; θ)

]
− 2Ex̃,x [s2,ij(x̃; θ)s2,ij(x̃)] + Ex̃,x

[
s22,ij(x̃)

]}
=

d∑
i=1

d∑
j=1

w2,ij ·
{
Ex̃,x

[
s22,ij(x̃; θ)

]
− 2Ex̃,x [s2,ij(x̃; θ)s2,ij(x̃)] + Ex̃,x

[
s22,ij(x̃)

]}
+ C1

where C1 is some constant independent of θ.
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For the left hand side of Eq.(13), note that I−zz⊤

σ2 = −
{
∇2

x̃qσ(x̃|x)
}
−∇x̃qσ(x̃|x) · {∇x̃qσ(x̃|x)}⊤, then we know that

Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
√
w2

∥∥∥∥2
2

]

=

d∑
i=1

d∑
j=1

w2,ij

(
Ex̃,x

[
s22,ij(x̃; θ)

]
+ 2E

[
s22,ij(x̃; θ)s1,i(x̃)s1,j(x̃)

]
− 2E

[
s2,ij(x̃; θ)∇x̃i∇x̃j log qσ(x̃|x)

]
− 2E

[
s2,ij(x̃; θ)∇x̃i

qσ(x̃|x)∇x̃j
qσ(x̃|x)

])
+ C2.

Comparing left and right hand side of Eq.(13), it is sufficient to show

Ex̃,x [s2,ij(x̃; θ)s2,ij(x̃)] = E
[
s2,ij(x̃; θ)∇x̃i

∇x̃j
log qσ(x̃|x)

]
+ E

[
s2(x̃; θ)∇x̃i

qσ(x̃|x)∇x̃j
qσ(x̃|x)

]
− E

[
s2(x̃; θ)s

2
1(x̃)

]
.

(14)

We have

Ex̃,x [s2,ij(x̃; θ)s2,ij(x̃)] =

∫
s2,ij(x̃; θ)s2,ij(x̃)px̃(x̃)dx̃

=

∫
s2,ij(x̃; θ)

(
∇x̃i

{∇x̃j
p(x̃)

p(x̃)

})
px̃(x̃)dx̃dx

=

∫
s2,ij(x̃; θ)

{∇x̃i
∇x̃j

p(x̃)

p(x̃)
−
∇x̃i

p(x̃) · ∇x̃j
p(x̃)

p2(x̃)

}
px̃(x̃)dx̃

=

∫
s2(x̃; θ)∇x̃i

∇x̃j
p(x̃)dx̃ (15)

−
∫
s2(x̃; θ)

∇x̃i
p(x̃) · ∇x̃j

p(x̃)

p(x̃)
dx̃. (16)

For Eq.(15): ∫
s2(x̃; θ)∇x̃i

∇x̃j
px̃(x̃)dx̃ =

∫
s2(x̃; θ)∇x̃i

∇x̃j

{∫
qσ(x̃|x)px(x)dx

}
dx̃

=

∫∫
s2(x̃; θ)

{
∇x̃i
∇x̃j

qσ(x̃|x)
}
· px(x)dx̃dx

=

∫∫
s2(x̃; θ)]

{
∇x̃i
∇x̃j

log qσ(x̃|x)
}
· qσ(x̃|x)px(x)dx̃dx

+

∫∫
s2(x̃; θ)

∇x̃i
qσ(x̃|x)∇x̃j

qσ(x̃|x)
qσ(x̃|x)

px(x)dx̃dx

=

∫∫
s2(x̃; θ)

{
∇x̃i
∇x̃j

log qσ(x̃|x)
}
px,x̃(x, x̃)dx̃dx

+

∫∫
s2(x̃; θ)

{
∇x̃i

qσ(x̃|x)
qσ(x̃|x)

}{∇x̃jqσ(x̃|x)
qσ(x̃|x)

}
px,x̃(x, x̃)dx̃dx

= E
[
s2(x̃; θ)∇x̃i

∇x̃j
log qσ(x̃|x)

]
+ E

[
s2(x̃; θ)∇x̃i

qσ(x̃|x)∇x̃j
qσ(x̃|x)

]
.

For Eq.(16): ∫
s2(x̃; θ)

∇x̃i
p(x̃) · ∇x̃j

p(x̃)

p(x̃)
dx̃ =

∫
s2(x̃; θ))

∇x̃i
p(x̃)

p(x̃)

∇x̃j
p(x̃)

p(x̃)
p(x̃)dx̃

= E
[
s2(x̃; θ)s

2
1(x̃)

]
.
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Combine all the results, we get the desired result under the MCAR mechanism. By similar argument in the proof under the
MCAR mechanism, we have

Ex̃,x,m

∥∥∥∥∥
{
s2(x̃;θ) + s1(x̃)s

⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙
{
(1−m)(1−m)⊤

}√
P[mm⊤ = 0|x = x]

∥∥∥∥∥
2

2


=Ex̃,x


∥∥∥∥∥∥
{
s2(x̃;θ) + s1(x̃)s

⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙

√
Em|x̃,x(1−m)(1−m)⊤√

P[mm⊤ = 0|x = x]

∥∥∥∥∥∥
2

2


=Ex̃,x

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}∥∥∥∥2
2

]
.

where the last equality comes from Em|x̃,x[(1−m)(1−m)⊤] = Em|x[(1−m)(1−m)⊤] = P[mm⊤ = 0|x = x].

Then following the steps in section A.2, taking w2 in A.2 as 1, we get our desired result for the MAR mechanism.

A.3. Proof of Theorem 3.5

We first consider the MCAR case. Recall that w = 1−m

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
= Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗k(1−m)∥2

]
= Ex̃,xEm|x̃,x

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗k(1−m)∥2

]
= Ex̃,x

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙
{
Em ⊗k (1−m)

}
∥2
]

Noting that Em ⊗k (1−m) is a constant. We can show that the solution for the weighted least square equation for any
constant matrix c is

argmin
h

E
[∥∥{⊗kx− h(x̃)

}
⊙ c
∥∥2] = E

{
⊗kx | x̃

}
.

Such equation holds since

E
[∥∥{⊗kx− h(x̃)

}
⊙ c
∥∥2] = E

[∥∥{⊗kx− E
[
⊗kx | x̃

]}
⊙ c
∥∥2]

+ E
[∥∥{E [⊗kx | x̃

]
− h(x̃)

}
⊙ c
∥∥2]

≥ E
[∥∥{⊗kx− E

[
⊗kx | x̃

]}
⊙ c
∥∥2]

By Theorem 3.2, we know that E
{
⊗kx | x̃

}
= fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃)). Hence, the desired result follows.

For the MAR case, recall that w = 1−m
P[mk=0|x=x]

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
= Ex̃,x,m

[∥∥∥∥{⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))
}
⊙⊗k (1−m)

P[mk = 0|x = x]

∥∥∥∥2
]

= Ex̃,xEm|x

[∥∥∥∥{⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))
}
⊙⊗k (1−m)

P[mk = 0|x = x]

∥∥∥∥2
]

= Ex̃,x

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
∥2
]
.

Thus, by Theorem 3.2, the solution to the criterion function is

argmin
θ

Ex̃,x,m

[
∥
{
⊗kx− fk(x̃, s1(x̃), . . . , sk−1(x̃), sk(x̃;θ))

}
⊙⊗kw∥2

]
= θ∗.
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A.4. Proof of Eq.(7)

Denote the oracle criterion function as

L̃DSM(θ) := Ex,mEx̃|x,m

[∥∥∥∥{s1(x̃;θ) + 1

σ2
(x̃− x)

}
⊙ g1(x,m)

∥∥∥∥2
2

]
.

where g1(x,m) = 1−m under MAR and g1(x,m) = 1−m√
P[m=0|x=x]

.

If we want to match the score of true data distribution p(x), σ should be approximately zero for both DSM and D2SM so
that qσ(x̃) is close to p(x). According to Taylor expansion we have,

L̃DSM(θ) = Ex̃,x,m

[∥∥∥∥{s1(x̃;θ) +
1

σ2
(x̃− x)

}
⊙ g1(x,m)

∥∥∥∥2

2

]

= Ex,mEz∼N (0,I)

[∥∥∥{s1(x+ σz;θ) +
z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
= Ex,mEz∼N (0,I)

[∥∥∥{s1(x;θ) + σ∇xs1(x;θ)z+
z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
+O(1)

= Ex,mEz∼N (0,I)

[∥∥∥{s1(x;θ) + z

σ

}
⊙ g1(x,m)

∥∥∥2

2

]
+O(1)

= Ex,mEz∼N (0,I)

[{
∥s1(x;θ)⊙ g1(x)∥22 +

∥z⊙ g1(x,m)∥2

σ2
+

(
2

σ
s1(x;θ)

⊤z

)
⊙ g1(x,m)

}]
+O(1)

where z = x̃−x
σ , where O(1) is bounded as σ approaches zero. However, when evaluating the expectation above from

samples, the variances of ∥z⊙g(x,m)∥2

σ2 and s(x;θ)⊤z
σ both increase without bound as σ nears zero, due to the terms involving

σ and σ2 in the denominator. This leads to a significant increase in the variance of the DSM loss, complicating the
optimization process. As a consequence, DSM may become unstable and fail to converge when σ is small, highlighting the
need for methods to reduce variance.

We have,

Ez∼N (0,I)

[
∥z⊙ g1(x,m)∥2

σ2
+

2

σ
s1(x;θ)

⊤z

]
=
∥g1(x,m)∥2

σ2
,

where d is the dimension of the data distribution p(x). Therefore, we can construct a variable that is, for sufficiently small σ,
positively correlated with LDSM while having an expected value of zero:

cθ(x; z) =

(
2

σ
s1(x;θ)

⊤z

)
⊙ g1(x,m) +

∥z⊙ g1(x,m)∥2

σ2
− ∥g1(x,m)∥2

σ2
.

Subtracting it from LDSM will yield an estimator with reduced variance for DSM training with missing data:

LDSM-VR(θ) = LDSM(θ)− Ex,mEz∼N (0,I)

[(
2

σ
s(x;θ)⊤z

)
⊙ g1(x,m) +

∥z⊙ g1(x,m)∥2

σ2

]
.

Here we omit the part ∥g1(x,m)∥2

σ2 since it is independent of θ.

A.5. Proof of Eq.(8)

Similar to proof A.4, consider the oracle criterion function

L̃D2SM(θ) = Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]
,
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where g2(xobs,m) = (1−m)(1−m)⊤ under MCAR, and g2(xobs,m) = (1−m)(1−m)⊤√
E[mm⊤|x=xobs]

under MAR.

Denote ψ(x̃;θ) = s2(x̃obs;θ) + s1(x̃obs)s
⊤
1 (x̃obs), we have

L̃D2SM(θ) = Ex̃,x,m

[∥∥∥∥{s2(x̃;θ) + s1(x̃)s
⊤
1 (x̃) +

I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]

= Ex,mEz∼N (0,I)

[∥∥∥∥{ψ(x+ σz;θ) +
I− zz⊤

σ2

}
⊙ g2(x,m)

∥∥∥∥2
2

]

= Ex,mEz∼N (0,I)

[{
∥ ψ(x+ σz;θ)∥22 +

∥∥∥∥I− zz⊤

σ2

∥∥∥∥2
2

+ 2ψ(x+ σz;θ)
I− zz⊤

σ2

}
⊙ g2(x,m)

]

Denote ψij(x̃; θ) as the ijth term of ψ(x̃;θ), ϕij = Iij − zizj and gij as the ijth term of g2(x,m) and according to Taylor
expansion, we have,

ExEz∼N (0,I)

[{
ψij(x+ σz; θ)2 +

ϕij
σ2

+ 2ψij(x+ σz; θ)
ϕij
σ2

}
⊙ gij(x,m)

]
=ExEz∼N (0,I)

[{
ψij(x; θ)

2 + 2ψij(x; θ)
ϕij
σ2

+ 2∇ψij(x; θ)
ϕij
σ

+ C

}
⊙ gij(x,m)

]
+O(1)

where z = x̃−x
σ , with C =

(
ϕij

σ2

)2
and ∇ψij(x + σz; θ) representing the derivative of ψij(x + σz; θ) with respect to x.(

ϕij

σ2

)2
can be treated as a constant that does not depend on θ, and O(1) remains bounded when σ → 0. However, when

calculating the expectation from samples, the variances of ϕij

σ2 and ∇ψij(x; θ)
ϕij

σ2 increase without bound as σ → 0, due to
the presence of σ and σ2 in the denominator. This causes a significant rise in variance for D2SM, making the optimization
process more difficult. Consequently, D2SM can become unstable and fail to converge as σ approaches zero, necessitating
the use of variance reduction techniques.

In this case, we can employ the same variance reduction method outlined in the proof of A.4. However, to bypass the need
for estimating ∇ψij(x; θ)

ϕij

σ2 , we utilize the antithetic sampling technique same as Meng et al. (2021) to reduce variance.

Denote x̃+ = x + σz and x̃− = x + σz as the antithetic samples, according to Taylor expansion, the ijth term of the
D2SM(θ) then becomes,

L̃D2SM(θ)ij = ExEz∼N (0,I)

[{(
ψij(x̃+; θ) +

ϕij

σ2

)2

+

(
ψij(x̃−; θ) +

ϕij

σ2

)2
}

⊙ gij(x,m)

]

= ExEz∼N (0,I)

[{
ψij(x̃+; θ)

2 + 2
ϕij

σ2
ψij(x̃+; θ) + ψij(x̃−; θ)

2 + 2
ϕij

σ2
ψij(x̃−; θ) + C

}
⊙ gij(x,m)

]
= ExEz∼N (0,I)

[{
ψij(x̃+; θ)

2 + ψij(x̃−; θ)
2 + 2

ϕij

σ2

(
ψij(x̃+; θ) + ψij(x̃−; θ)

)
+ C

}
⊙ gij(x,m)

]
= ExEz∼N (0,I)

[{
2 (ψij(x; θ))

2 +
ϕij

σ2

[
4ψij(x; θ) + 2∇ψij(x; θ)− 2∇ψij(x; θ)

]
+ C

}
⊙ gij(x,m)

]

= ExEz∼N (0,I)

[{
2 (ψij(x; θ))

2 + 4
ϕij

σ2
(ψij(x; θ)) + C

}
⊙ gij(x,m)

]
,

where C = 2
(

ϕij

σ2

)2
, a constant with respect to the optimization.

Therefore, we have the variance reduction for LD2SM-VR(θ) which is equivalent to optimizing Eq. (3.4) up to a control
variate. Moreover, when σ approaches zero, optimizing Eq. (8) is more stable.

LD2SM-VR(θ) = Ex,mEz∼N (0,I)

[{
ψ(x̃+)2 +ψ(x̃−)2 + 2

I− zz⊤

σ
⊙Ψ(·)

}
⊙ g2(x,m)

]
, (17)
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Algorithm 1 MissScore
Input: Observed data xobs, score models s1(·;θ), s2(·;θ), noise level σ, coefficient ω
Infer the missingness mask m = 1[xobs=na]
repeat

Sample noise z ∼ N (0, I)
Compute perturbed data: x̃obs = xobs + σz
if missing mechanism is MAR then

Estimate P[m = 0|x = xobs] and P[mm⊤ = 0|x = xobs] using fitted logistic models
end if
Update parameters using gradient descent on∇θ

(
Eq.(4) + ω Eq.(5)

)
until convergence

where the antithetic samples are defined as x+ = x + σz and x− = x − σz. Here, ψ = s2 + s1s
⊤
1 , and Ψ =(

ψ(x̃+) +ψ(x̃−)− 2ψ(x)
)
.

B. Data Generation under Different Missing Mechanisms
Missing data mechanisms can vary significantly, but they are typically categorized into three main types as defined by Rubin
(1976): missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). In our
experiments, we simulate missing data based on these mechanisms as follows:

MCAR (Missing Completely at Random): Missing values are generated uniformly, with each data point having an equal
probability of being missing, determined by a predefined missing rate, α. Specifically, missing values are generated using a
Bernoulli distribution, Ber(α), where each entry is missing independently with probability α.

MAR (Missing at Random): In this scenario, missing values are generated using a logistic model. A random subset of the
variables is selected to remain fully observed, while the remaining variables have missing values depending on the fully
observed ones. The missingness is determined by a logistic model with random coefficients, scaled to achieve the target
proportion of missing data for the variables influenced by the fully observed subset.

MNAR (Missing Not at Random): The MNAR mechanism is modeled using a logistic masking model. It implements two
mechanisms and in either case, weights are random and the intercept is selected to attain the desired proportion of missing
values.

• Missing probabilities for each variable are determined by a logistic model that takes all the variables (including those
with missing data) as inputs;

• Variables are split into two sets: a set of input variables for the logistic model and a set of variables whose missingness
is determined by the logistic model. The input variables are masked using an MCAR process, meaning the missingness
in the second set depends on the missingness in the input set.

In all experiments, for MAR missing mechanism, we use logistic regression to estimate the likelihood of each data point
being observed. For MNAR, we utilize the same training objective as MCAR, while recognizing that this method may
introduce some bias. The algorithm for training the first- and second-order models under different missing mechanisms is
outlined in Algorithm 1.

Scalability and numerical stability for MAR We have included additional synthetic results for the MAR mechanism in
Table 3, following the same setup as described in Section 4.2. The results exhibit a similar pattern, though slightly worse
than MCAR, which may be attributed to the inverse probability, potentially increasing variance and leading to less stable
estimations. However, the estimates remain reasonable and demonstrate empirical performance closely aligned with the
ground truth, along with variance reduction. Furthermore, to illustrate the impact of potential model misspecification by
the logistic regression model in MAR, we conduct an experiment comparing ground truth p with the estimated p̂ from the
logistic regression model on the same synthetic dataset, with varying missing ratios. When comparing the performance
shown in Tables 3 and 4, although potential model misspecification in the logistic regression model influences the estimation
of missing probabilities, this impact is kept within a reasonable range in the variance-reduced version.
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Algorithm 2 MissScore for Sampling with Missing Data
Input: Score models s1(·;θ∗), s2(·;θ∗); step size ϵ; number of iterations T
Initialize: x̃0 ∼ π(x) t = 1 to T
Sample noise zt ∼ N (0, I)
if Ozaki sampling then

Compute Mt−1 =
(
eϵs2(x̃t−1) − I

)
s2(x̃t−1)

−1

Compute Σt−1 =
(
e2ϵx̃t−1 − I

)
s2(x̃t−1)

−1

Update x̃t = x̃t−1 +Mt−1s1(x̃t−1) + Σ
1/2
t−1zt

else
Update x̃t = x̃t−1 +

1
2ϵs1(x̃t−1) +

√
ϵzt

end if
Return: x̃T

Table 3. Mean squared error (MSE) between the estimated first-order and second-order scores and the ground truth is evaluated across
5,000 test samples. We vary the noise scales σ and missing ratios α, with each configuration tested using 10 random seeds. MAR with
estimated missing probability p̂ by logistic model.

Methods α = 0.0 (Complete data) α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.32± 0.00 0.51± 0.02 0.36± 0.02 0.52± 0.00 0.45± 0.01 0.56± 0.03
s1(VR) 0.07± 0.00 0.07± 0.00 0.11± 0.02 0.13± 0.01 0.15± 0.01 0.16± 0.02 0.22± 0.02 0.24± 0.04
s2 0.16± 0.02 15.42± 0.47 0.28± 0.02 31.22± 1.08 0.30± 0.04 34.24± 5.14 0.36± 0.04 35.41± 1.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.04± 0.00 0.05± 0.00 0.06± 0.00 0.06± 0.00 0.08± 0.01 0.07± 0.00

Table 4. Mean squared error (MSE) between the estimated first-order and second-order scores and the ground truth is evaluated across
5,000 test samples. We vary the noise scales σ and missing ratios α, with each configuration tested using 10 random seeds. MAR with
ground truth missing probability p.

Methods α = 0.0 (Complete data) α = 0.1 α = 0.3 α = 0.5

σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01 σ = 0.1 σ = 0.01

s1 0.28± 0.01 0.42± 0.02 0.24± 0.01 0.42± 0.02 0.27± 0.01 0.41± 0.01 0.33± 0.01 0.43± 0.04
s1(VR) 0.07± 0.00 0.07± 0.00 0.06± 0.00 0.06± 0.00 0.09± 0.00 0.10± 0.00 0.19± 0.00 0.22± 0.01
s2 0.16± 0.02 15.42± 0.47 0.24± 0.01 16.66± 4.34 0.27± 0.01 41.47± 7.28 0.33± 0.01 39.89± 4.03
s2(VR) 0.04± 0.00 0.05± 0.00 0.02± 0.00 0.03± 0.00 0.03± 0.00 0.03± 0.00 0.05± 0.00 0.05± 0.00

C. Additional Information on Sampling
In the sampling experiments with the Swiss-Roll dataset under MCAR, we use a small perturbation σ = 0.01 and jointly
optimize Eq. (7) and Eq.(8), where s1(x̃) ≈ s1(x) and s2(x̃) ≈ s2(x). The sample size is set to 5000. Both s1(x̃;θ) and
s2(x̃;θ) are modeled using a 3-layer MLP with a latent size of 128 and a Softplus activation function. We use a learning
rate of 0.001, a batch size of 64 and train for 100 epochs, which takes approximately 4 minutes on an Intel(R) Xeon(R)
Gold 6448H CPU. The experiments in Section 4 also utilize the same model configuration for training. In the Ozaki
sampling experiments, we only use the diagonal of s2(x̃;θ) to avoid the computational costs associated with the inversion,
exponentiation, and decomposition of s2(x̃;θ). The algorithm is presented in Algorithm 2.

The following sections provide experimental details on data generation with the simulated Bayesian Network and real
Census data.

C.1. Dataset Description and Processing

Bayesian Network Details regarding the data generated from a Bayesian Network can be found in Section B.1 in (Ouyang
et al., 2023).
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Census Census dataset is a binary classification dataset that predict whether income exceeds 50K/yr based on census data
(Kohavi, 1996). Also known as Adult dataset.

The statistical information of datasets used in our experiments is in Table 5. #train, #test, #continuous, and #categorical
mean the number of training data, testing data, continuous columns, and categorical columns, respectively.

Table 5. Synthetic and Real-World Datasets Used in Experiments.

Dataset #Train #Test #Categorical #Continuous

Bayesian Network 2000 20000 3 2
Census 16000 4000 9 6

For data processing, we follow standard pre- and post-processing procedures for mixed-type tabular data. Specifically, we
apply min-max normalization to continuous variables and reverse this scaling during generation. For discrete variables, we
use one-hot encoding and apply a rounding function after the softmax function during generation.

C.2. Evaluation Methods

We adopt the “train on synthetic, test on real (TSTR)” framework (Esteban et al., 2017), a widely used method for assessing
the quality of sampling data from generative model (Kim et al., 2022; Ouyang et al., 2023; Li et al., 2019). The experimental
results for sampling in this paper are calculated as follows:

1. We first download a dataset and use its existing train-test split.

2. Then we generate synthetic records equal in number to the original training set using various synthetic data generation
methods.

3. Using the synthetic training records from Step 2, we train base classifiers to make predictions. We conduct a
hyperparameter search for each classifier, considering Decision Tree, AdaBoost, Logistic Regression, MLP Classifiers,
Random Forest, and XGBoost for the classification tasks. The hyperparameters and their candidate settings follow
those described in (Kim et al., 2022; Ouyang et al., 2023), and are summarized in Table 26 of (Kim et al., 2022).

4. Finally, we evaluate the classifiers using the testing dataset, applying a range of evaluation metrics for comprehensive
assessment.

Steps 2 to 4 are repeated three times for each dataset, and the average scores for each method across all evaluation metrics
are calculated. The detailed metrics used in our experiment include:

1. Accuracy: This is calculated using the accuracy score function from the sklearn.metrics module.

2. Weighted-F1:

Weighted-F1 =

N∑
i=0

wisi

where N is the total number of classes. The weight for the i-th class, wi =
1−pi

N−1 , with pi representing the proportion
of the i-th class’s size relative to the total dataset. Here, si is the F1 score for the i-th class, calculated using the
One-vs-Rest strategy. This weighting approach is designed to prioritize the evaluation of synthesized tables by giving
more importance to smaller classes, which are often prone to being overlooked by the model, thus addressing mode
collapse.

3. AUROC: This is calculated using the roc auc score function from the sklearn.metrics module.

4. SDMetrics: This metric evaluates synthetic data by comparing it against the real data, as described in (Dat, 2023).

Among all metrics, a higher score indicates better overall quality of the synthetic data.
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C.3. Model Architecture

We use a perturbation of σ = 0.1 and jointly optimize Eq. (7) and Eq. (8). In the Bayesian Network experiment, we follow
the same configuration as described earlier, with each run taking approximately 20 minutes. For the census dataset, we
employ a simple MLP consisting of 5 Linear layers, LeakyReLU activation, Layer Normalization, and Dropout with a
probability of 0.2 in the first layer. The learning rate is set to 0.001. The first two layers use a latent size of 128, while the
last three layers use a latent size of 1024. We train with a batch size of 256 for 250 epochs, with each experiment taking
approximately 4 hours. All experiments are performed on an Intel(R) Xeon(R) Gold 6448H CPU. For the downstream
classifier, we use the same base hyperparameters as listed in Table 26 of (Kim et al., 2022).

C.4. Experimental Results

In the following experimental results, we use a missing data ratio of α = 0.3 and apply XGBoost for the downstream
tasks, without delving into specific implementation details. Table 6 presents the utility evaluation of MissScore using both
Langevin and Ozaki samplings, compared to other baseline methods, on the Census dataset with a missing ratio of 0.3.
Additionally, Table 7 summarizes the Accuracy, AUROC, and Weighted-F1 metrics as the missing ratio varies. Figure 5
illustrates the fidelity evaluation of MissScore, again using Langevin and Ozaki samplings alongside other baselines, on the
Bayesian dataset.

Table 6. Utility evaluation of MissScore using Langevin and Ozaki samplings, along with other baselines, on the Census dataset with
missing ratio 0.3.

Criterion Mechanism Langevin Ozaki DSM-delete DSM-mean STaSy-mean

Accuracy
MCAR 0.80 0.81 0.70 0.75 0.77
MAR 0.82 0.82 0.69 0.77 0.74
MNAR 0.81 0.80 0.59 0.80 0.75

AUROC
MCAR 0.84 0.84 0.57 0.67 0.62
MAR 0.85 0.86 0.46 0.75 0.61
MNAR 0.86 0.86 0.52 0.76 0.63

Weighted-F1
MCAR 0.52 0.52 0.24 0.32 0.41
MAR 0.61 0.60 0.32 0.38 0.38
MNAR 0.69 0.68 0.41 0.52 0.42

Table 7. Evaluation of MissScore using Ozaki samplings on the Census dataset with varying missing ratios {0.1, 0.3, 0.5, 0.7, 0.9}.

Methods α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

Accuracy
MCAR 0.81 0.81 0.80 0.79 0.77
MAR 0.71 0.82 0.82 0.82 0.79
MNAR 0.80 0.80 0.83 0.74 0.72

AUROC
MCAR 0.85 0.84 0.84 0.86 0.61
MAR 0.85 0.86 0.87 0.85 0.83
MNAR 0.85 0.87 0.86 0.85 0.80

Weighted-F1
MCAR 0.54 0.52 0.41 0.66 0.22
MAR 0.64 0.60 0.67 0.65 0.63
MNAR 0.46 0.68 0.61 0.64 0.63

C.5. Broader Empirical Validation

To further assess the robustness and generalizability of MissScore, we conduct a comprehensive empirical evaluation on 27
real-world tabular datasets covering both classification and regression tasks. The datasets, sourced from the UCI Machine
Learning Repository and scikit-learn, encompass a wide range of characteristics, including varying sample sizes, feature
dimensions, and class distributions. Following the experimental setup established in ForestDiffusion (Jolicoeur-Martineau
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Figure 5. Fidelity evaluation of MissScore using Langevin and Ozaki samplings, along with other baselines, on the Census dataset varies
with missing ratio α = {0.1, 0.3, 0.5, 0.7} under different missing mechanisms.

et al., 2024), we introduce 20% missingness and benchmark MissScore against a diverse set of generative baselines including
copula-based models (GaussianCopula), VAE-based approaches (TVAE), score-based methods (STaSy, TabDDPM), and
diffusion- or flow-based architectures (Forest-VP, Forest-Flow). Full details on dataset statistics, evaluation metrics, and
baseline configurations can be found in Appendices B.1 through B.3 in ForestDiffusion (Jolicoeur-Martineau et al., 2024).

Table 8. Tabular data generation with incomplete data (27 datasets, 3 runs each, 20% missing); values are mean (standard-error).

Method Wtrain ↓ Wtest ↓ covtrain ↑ covtest ↑ R2
fake ↑ F1fake ↑ F1disc ↓ Pbias ↓ covrate ↑

GaussianCopula 2.60 (0.58) 2.86 (0.63) 0.20 (0.04) 0.43 (0.05) 0.20 (0.18) 0.48 (0.06) 0.60 (0.04) 2.31 (1.00) 0.21 (0.08)
TVAE 2.17 (0.60) 2.40 (0.65) 0.32 (0.04) 0.63 (0.04) -0.66 (0.95) 0.55 (0.08) 0.45 (0.01) 4.04 (2.30) 0.29 (0.09)
Stasy 3.40 (1.37) 3.67 (1.40) 0.38 (0.05) 0.63 (0.06) 0.27 (0.28) 0.64 (0.06) 0.46 (0.02) 1.09 (0.22) 0.36 (0.10)
TabDDPM 4.36 (1.89) 4.80 (1.90) 0.72 (0.06) 0.71 (0.06) 0.58 (0.11) 0.61 (0.10) 0.42 (0.02) 1.16 (0.35) 0.56 (0.10)
Forest-VP 1.84 (0.51) 2.14 (0.56) 0.53 (0.04) 0.78 (0.03) 0.53 (0.10) 0.71 (0.04) 0.42 (0.01) 1.16 (0.30) 0.43 (0.12)
Forest-Flow 1.82 (0.51) 2.12 (0.56) 0.67 (0.03) 0.84 (0.03) 0.55 (0.11) 0.69 (0.04) 0.43 (0.01) 1.16 (0.32) 0.50 (0.10)
MissScore-Langevin 1.85 (0.52) 2.15 (0.57) 0.65 (0.04) 0.82 (0.03) 0.54 (0.11) 0.68 (0.04) 0.44 (0.02) 1.18 (0.33) 0.49 (0.11)
MissScore-Ozaki 1.79 (0.50) 2.11 (0.55) 0.70 (0.03) 0.83 (0.03) 0.58 (0.10) 0.70 (0.04) 0.43 (0.02) 1.15 (0.30) 0.52 (0.10)

The full quantitative results are presented in Table 8. MissScore-Ozaki achieves the lowest Wasserstein distance on both
training and test distributions, indicating that the generated samples closely match the real data in distributional geometry.
It also performs competitively on downstream metrics such as R2

fake and F1fake, which measure how well synthetic
data supports regression and classification tasks. Across most metrics, both MissScore-Langevin and MissScore-Ozaki
demonstrate performance comparable to or better than strong baselines, including TabDDPM and Forest-Flow, while
maintaining robustness under missing data.

While MissScore does not outperform all baselines across every individual metric, we observe that it excels in several
recurring settings. First, on datasets with well-separated class structures and moderate sample sizes (e.g., seeds), MissScore
is able to model the score field accurately and generate high-quality data that supports effective downstream classification.
Second, on datasets with balanced but complex class relationships (e.g., parkinsons), it captures nuanced inter-feature
dependencies better than methods relying on shallow generative priors. Finally, in moderate-to-high dimensional datasets
(e.g., qsar biodegradation), the use of second-order score matching enables MissScore to model non-linear feature
interactions more effectively than first-order methods.

However, the method’s limitations emerge in data-scarce regimes. On very small datasets like concrete slump (with only
103 samples), high model flexibility can induce overfitting, undermining score stability. Similarly, for datasets with many
classes and few samples per class, such as libras, the variance in score estimation grows substantially, leading to degraded
generation quality. These limitations point to directions for future work, including lightweight score architectures and
adaptive regularization under low-data conditions. Overall, this extensive evaluation suggests that MissScore offers a strong
and principled approach to learning from incomplete tabular data, especially in regimes where capturing higher-order
structure is crucial.
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D. Additional Information on Causal Discovery
D.1. Related Work

Causal Discovery with Complete data. Causal discovery aims to uncover the underlying causal relationships among
variables of interest from purely observational data, specifically identifying a causal Directed Acyclic Graph (DAG) for a
given dataset. This problem lies at the heart of causal inference, as knowledge of the causal graph enables prediction of the
effects of interventions. However, causal discovery from observational data is inherently ill-posed, necessitating additional
assumptions, such as imposing functional assumptions on the data-generating process. We adopt the notion of structural
causal model (SCM) to characterize the causal relations among variables. Each SCMM = ⟨Z,X ,F⟩ consists of the
exogenous variable set Z = {Z1, Z2, . . . , Zd}, the endogenous variable set X = {X1, X2, . . . , Xd}, and the function set
F = {f1, f2, . . . , fd}. Here, each function fi computes the variable Xi from its parents (or causes) XPAi

and an exogenous
variable Zi, i.e., Xi = fi(XPAi

, Zi). We focus on a specific class of SCMs, called the additive noise models (ANMs),
given by Xi = fi(XPAi

) + Zi, i = 1, 2, . . . , d, where Zi, interpreted as the additive noise variable, is assumed to be
independent of variables in XPAi

and mutually independent with variables in Z \ Zi.

Rolland et al. (2022) proposed an order-based algorithm for this model, further assuming that fi is a twice-differentiable
nonlinear function and Zi is Gaussian noise. This method enables the identification of leaf nodes based on the diagonal
of the Hessian of the log-likelihood. Before proceeding to the method for identifying leaves, we first derive an analytical
expression for the score following Lemma 2 in Rolland et al. (2022). The score is written as follows:

∇xj log p(x) = ∇xj log

d∏
i=1

p(xi | xPAi)

= ∇xj

d∑
i=1

log p(xi | xPAi
)

= ∇xj

d∑
i=1

log p(xi − fi) (where zi = xi − fi(xPAi))

=
∂ log p(xj − fj(xPAj ))

∂xj
−
∑

i∈CHj

∂fi
∂xj

∂ log p(xi − fi(xPAi
))

∂x
.

where CHj represents the children of the variable j. As a result, ∂
∂xj
∇xj

log p(x) = a, where a is a constant, Consequently,
the variance of the diagonal elements of the Hessian is zero (i.e. VarX[Hj,j(log p(x))] = 0) if and only if node j is a leaf
node.

However, existing computational methods for calculating the Hessian struggle to scale efficiently as the number of variables
and samples increases, limiting the scalability of Rolland et al. (2022). To address this, Sanchez et al. (2022) introduced a
diffusion-based model that efficiently computes the Hessian, enabling the method to scale to larger datasets, both in terms of
sample size and number of variables, while maintaining comparable performance to Rolland et al. (2022).

Causal Discovery with Incomplete Data. Several extensions of the PC algorithm have been developed to learn causal graphs
from incomplete data (Tu et al., 2019; Gain & Shpitser, 2018), utilizing only the fully observed samples while mitigating
biases in conditional independence tests. Another prominent family of methods relies on Expectation-Maximization
(Dempster et al., 1977), where missing values are iteratively inferred while simultaneously learning the causal structure.
Building on the continuous optimization techniques introduced by NOTEARS (Zheng et al., 2018), MissDAG (Gao et al.,
2022) extends this approach to continuous identifiable Additive Noise Models (ANMs), using approximate posterior
inference via Monte Carlo and rejection sampling when the exact posterior is unavailable. MissOTM (Vo et al., 2024)
introduces a score-based method that leverages optimal transport to learn causal structures from incomplete data. A distinct
approach is taken by VISL (Morales-Alvarez et al., 2022), which employs amortized variational inference in a Bayesian
framework. Unlike MissOTM and MissDAG, VISL assumes a latent low-dimensional factor that captures the essential
structure of the data based on observed variables. The latent factors are then used to reconstruct the complete data and
discover the underlying causal graph.
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D.2. Evaluation Metrics

For each method, we compute the

SHD. Structural Hamming distance between the output and the true causal graph, which counts the number of missing,
falsely detected, or reversed edges.

Order Divergence. (Rolland et al., 2022) propose this quantity for measuring how well the topological order is estimated.
For an ordering π, and a target adjacency matrix A, we define the topological order divergence Dtop(π,A) as

Dtop(π,A) =

d∑
i=1

∑
j:πi>πj

Aij (18)

D.3. Model Architecture

We apply a perturbation of σ = 0.1 and jointly optimize Eq. (7) and Eq. (8). The model is a simple MLP with 5 Linear
layers, LeakyReLU activation, Layer Normalization, and a Dropout rate of 0.2 in the first layer. The learning rate is set to
0.001. The first two layers have a latent size of max(128, 3× d), while the last three use a latent size of max(1024, 5× d).
Training is conducted with a batch size of 128 for 150 epochs. The time efficiency is shown in the figure 4 with ER graph
model across various dimensions. All experiments are executed on an Intel(R) Xeon(R) Gold 6448H CPU. The algorithm is
presented in Algorithm D.3.

Algorithm 3 MissScore for Causal Discovery with Missing Data

1: Input: Observed data xobs; score models s1(·;θ), s2(·;θ)
2: Initialize: π = []; nodes = {1, . . . , d}
3: n, d← shape of xobs
4: for k = 1 to d do
5: Jointly train the score models s1(θ) and s2(θ) using xobs with Algorithm 1
6: Generate n samples x̃new using Algorithm 2 with bootstrapping
7: Estimate the second-order score s2(x̃new) using s2(θ)
8: Vj = VarX [diag(s2(x̃new))]
9: ℓ← argminj∈nodes Vj The leaf node

10: π ← [ℓ, π]Update topological order
11: nodes← nodes− {ℓ}Remove node ℓ
12: Remove the ℓ-th column from xobs
13: end for
14: Obtain the final DAG using CAM pruning associated with the topological order π.

D.4. Experimental Results

To evaluate MissScore in the context of causal discovery under missing data, we compare it with several state-of-the-art
methods. These include MissDAG (Gao et al., 2022) and MissOTM (Vo et al., 2024), which are specifically designed
for causal structure learning with incomplete data. In contrast, we also include two imputation-based pipelines that rely
on MissForest (Stekhoven & Bühlmann, 2012) to complete the data prior to structure learning: DiffAN (Sanchez et al.,
2022) (denoted as MissDiffAN), a diffusion-based score matching approach, and DAGMA (Bello et al., 2022) (denoted
as MissForest), a continuous optimization method. Together, these baselines represent a broad range of causal discovery
strategies, including continuous optimization, optimal transport, score-based methods, and imputation-then-learn pipelines.

We begin by conducting experiments using complete data, evaluating our approach alongside various missing mechanisms
and different missing ratios. Additionally, we include order divergence in the Table. Our findings reveal that, with complete
data, MissScore performs on par with DiffAN, as illustrated in Figure 6. Notably, among all settings, MissScore achieves
performance similar to current state-of-the-art approaches while offering superior computational efficiency in terms of
memory and time. This scalability is a key advantage where other methods may struggle.
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Figure 6. The data is generated using an ER graph model with different dimensions d = {10, 20, 50} and an equal number of edges. Each
dataset consists of 1000 samples. Left: fi is an MLP; Right: fi corresponds to MIM.
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Figure 7. The data is generated under MCAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.
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Figure 8. The data is generated under MCAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.
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Figure 9. The data is generated under MAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.

10 20 50
Dimension (d)

10

0

10

20

30

40

50

60

70

SH
D

MissScore MissOTM MissDAG MissDiffAN MissForest

10 20 50
Dimension (d)

5

0

5

10

15

20

25

30

35

SH
D

MissScore MissOTM MissDAG MissDiffAN MissForest

Figure 10. The data is generated under MAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.
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Figure 11. The data is generated under MNAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MLP. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.
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Figure 12. The data is generated under MNAR with missing ratios of 0.1 and 0.3, using an ER graph model with different dimensions
d = {10, 20, 50} and an equal number of edges. Each dataset consists of 1000 samples. fi corresponds to MIM. Left: SHD with missing
ratio 0.1; Right: SHD with missing ratio 0.3.

Table 9. Order divergence with missing ratios of α = {0.1, 0.3} across different missing data mechanisms. The ER graph model is
considered with varying dimensions d = {10, 20, 50}, and an equal number of edges. Each dataset consists of 1000 samples and fi
corresponds to MLP. Lower order divergence indicating better performance.

Dimensions Methods MCAR MAR MNAR
α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3

d=10 MissScore 1.62± 0.99 1.60± 0.66 1.33± 0.47 1.89± 0.75 1.33± 0.47 1.44± 0.50
MissDiffAN 2.00± 1.18 2.90± 1.87 2.75± 1.30 3.60± 1.28 2.60± 1.20 2.30± 1.35

d=20 MissScore 2.10± 0.94 2.67± 2.00 2.70± 1.85 1.94± 0.29 1.70± 1.78 0.70± 0.46
MissDiffAN 4.30± 2.00 4.22± 2.35 4.33± 2.11 3.00± 1.00 2.00± 0.89 3.40± 1.20

d=50 MissScore 3.40± 2.33 4.00± 3.10 3.10± 1.70 4.60± 2.91 2.80± 0.98 4.10± 3.30
MissDiffAN 4.50± 2.91 3.60± 3.32 8.33± 3.65 7.40± 2.84 3.50± 1.75 3.20± 3.28

Table 10. Order divergence with missing ratios of α = {0.1, 0.3} across different missing data mechanisms. The ER graph model is
considered with varying dimensions d = {10, 20, 50}, and an equal number of edges. Each dataset consists of 1000 samples and fi
corresponds to MIM. Lower order divergence indicating better performance.

Dimensions Methods MCAR MAR MNAR
α = 0.1 α = 0.3 α = 0.1 α = 0.3 α = 0.1 α = 0.3

d=10 MissScore 1.60± 1.20 1.20± 0.60 1.35± 0.47 1.88± 0.93 1.62± 0.99 1.38± 0.48
MissDiffAN 2.22± 2.10 1.50± 0.67 2.50± 1.36 3.70± 1.10 2.40± 2.20 2.20± 1.40

d=20 MissScore 1.70± 0.90 2.20± 1.33 1.82± 1.29 1.90± 1.30 1.56± 0.68 0.56± 0.83
MissDiffAN 2.70± 1.49 3.8± 1.47 3.70± 1.35 3.10± 2.21 2.44± 1.07 2.70± 1.68

d=50 MissScore 4.90± 2.12 4.00± 1.41 4.56± 2.27 4.60± 2.24 4.20± 1.66 4.40± 1.85
MissDiffAN 5.56± 2.45 4.40± 1.56 7.90± 2.39 7.50± 2.69 5.00± 1.61 6.20± 2.68
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