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Abstract

We study multi-agent reinforcement learning (MARL) in a stochastic network of
agents. The objective is to find localized policies that maximize the (discounted)
global reward. In general, scalability is a challenge in this setting because the size
of the global state/action space can be exponential in the number of agents. Scalable
algorithms are only known in cases where dependencies are static, fixed and local,
e.g., between neighbors in a fixed, time-invariant underlying graph. In this work,
we propose a Scalable Actor Critic framework that applies in settings where the
dependencies can be non-local and stochastic, and provide a finite-time error bound
that shows how the convergence rate depends on the speed of information spread
in the network. Additionally, as a byproduct of our analysis, we obtain novel
finite-time convergence results for a general stochastic approximation scheme and
for temporal difference learning with state aggregation, which apply beyond the
setting of MARL in networked systems.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has achieved impressive performance in a wide
array of applications including multi-player game play [42, 31], multi-robot systems [13], and
autonomous driving [25]. In comparison to single-agent reinforcement learning (RL), MARL poses
many challenges, chief of which is scalability [57]. Even if each agent’s local state/action spaces are
small, the size of the global state/action space can be large, potentially exponentially large in the
number of agents, which renders many RL algorithms such as Q-learning not applicable.

A promising approach for addressing the scalability challenge that has received attention in recent
years is to exploit application-specific structures, e.g., [18, 35, 38]. A particularly important example
of such a structure is a networked structure, e.g., applications in multi-agent networked systems
such as social networks [7, 27], communication networks [60, 51], queueing networks [34], and
smart transportation networks [59]. In these networked systems, it is often possible to exploit static,

local dependency structures [16, 17, 1, 32], e.g., the fact that agents only interact with a fixed set of
neighboring agents throughout the game. This sort of dependency structure often leads to scalable,
distributed algorithms for optimization and control [16, 1, 32], and has proven effective for designing
scalable and distributed MARL algorithms, e.g. [35, 38].
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However, many real-world networked systems have inherently time-varying, non-local dependencies.
For example, in the context of wireless networks, each node can send packets to other nodes within a
fixed transmission range. However, the interference range, in which other nodes can interfere the
transmission, can be larger than the transmission range [53]. As a result, due to potential collisions,
the local reward of each node not only depends on its own local state/action, but also depends on
the actions of other nodes within the interference range, which may be more than one-hop away. In
addition, a node may be able to observe other nodes’ local states before picking its local action [33].
Things become even more complex when mobility and stochastic network conditions are considered.
These lead to dependencies that are both stochastic and non-local. Although one can always fix and
localize the dependence model, this leads to considerably reduced performance. Beyond wireless
networks, similar stochastic and non-local dependencies exists in epidemics [30], social networks
[7, 27], and smart transportation networks [59].

A challenging open question in MARL is to understand how to obtain algorithms that are scalable in
settings where the dependencies are stochastic and non-local. Prior work considers exclusively static
and local dependencies, e.g., [35, 38]. It is clear that hardness results apply when the dependencies
are too general [24]. Further, results in the static, local setting to this point rely on the concept of
exponential decay [35, 16], meaning the agents’ impact on each other decays exponentially in their
graph distance. This property relies on the fact that the dependencies are purely local and static, and
it is not clear whether it can still be exploited when the interactions are more general. This motivates
an important open question: Is it possible to design scalable algorithms for stochastic, non-local

networked MARL?

Contributions. In this paper, we introduce a class of stochastic, non-local dependency structures
where every agent is allowed to depend on a random subset of agents. In this context, we propose
and analyze a Scalable Actor Critic (SAC) algorithm that provably learns a near-optimal local policy
in a scalable manner (Theorem 2.5). This result represents the first provably scalable method for
stochastic networked MARL. Key to our approach is that the class of dependencies we consider leads
to a µ-decay property (Definition 2.1). This property generalizes the exponential decay property
underlying recent results such as [35, 16], which does not apply to stochastic non-local dependencies,
and enables the design of an efficient and scalable algorithm for settings with stochastic, non-local
dependencies. Our analysis of the algorithm reveals an important trade-off: as deeper interactions
appear more frequently, the “information” can spread more quickly from one part of the network to
another, which leads to the efficiency of the proposed method to degrade. This is to be expected,
as when the agents are allowed to interact globally, the problem becomes a single-agent tabular
Q-learning problem with an exponentially large state space, which is known to be intractable since
the sample complexity is polynomial in the size of the state/action space [12, 24].

The key technical result underlying our analysis of the Scalable Actor Critic algorithm is a finite-time
analysis of a general stochastic approximation scheme featuring infinite-norm contraction and state
aggregation (Theorem 3.1). We apply this result to networked MARL using the local neighborhood of
each agent to provide state aggregation (SA). This result also applies beyond MARL. Specifically, we
show that it yields finite-time bounds on Temporal Difference (TD)/Q learning with state aggregation
(Theorem 3.2). To the best of our knowledge the resulting bound is the first finite-time bound on
asynchronous Q-learning with state aggregation. Additionally, it yields a novel analysis for TD-
learning with state aggregation (the first error bound in the infinity norm) that sheds new insight
into how the error depends on the quality of state abstraction. These two results are important
contributions in their own right. Due to space constraints, we discuss asynchronous Q-learning with
state aggregation in Appendix D.4.

Related literature. The prior work that is most related to our paper is [38], which also studies
MARL in a networked setting. The key difference is that we allow the dependency structure among
agents to be non-local and stochastic, while [38] requires the dependency structure to be local and
static. The generality of setting means techniques from [38] do not apply and adds considerable
complexity to the proof in two aspects. First, instead of analyzing the algorithm directly like [38],
we derive a finite-time error bound for TD learning with state aggregation (Section 3.1 and 3.2), and
then establish its connection with the algorithm (Section 2.3). Second, we need a more general decay
property (Definition 2.1) than the exponential one used in [38]. Defining and establishing this general
decay property for the non-local and stochastic setting is highly non-trivial (Section 2.1).
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More broadly, MARL has received considerable attention in recent years, see [57] for a survey. The
line of work most relevant to the current paper focuses on cooperative MARL. In the cooperative
setting, each agent can decide its local actions but share a common global state with other agents.
The objective is to maximize a global reward by working cooperatively. Notable examples of this
approach include [6, 10] and the references therein. In contrast, we study a situation where each
agent has its own state that it acts upon. Despite the differences, like our situation, cooperative
MARL problems still face scalability issues since the joint-action space is exponentially large. A
variety of methods have been proposed to deal with this, including independent learners [8, 29],
where each agent employs a single-agent RL policy. Function approximation is another approach
that can significantly reduce the space/computational complexity. One can use linear functions
[58] or neural networks [28] in the approximation. A limitation of these approaches is the lack of
theoretical guarantees on the approximation error. In contrast, our technique not only reduces the
space/computational complexity significantly, but also has theoretical guarantees on the performance
loss in settings with stochastic and non-local dependencies.

The mean-field approach [45, 56, 19] provides another way to address the scalability issue, but under
very different settings compared to ours. Specifically, the mean-field approach typically assumes
homogeneous agents with identical local state/action space and policies, and each agent depends
on other agents through their population or “mean” behavior. In contrast, our approach considers a
local-interaction model, where there is an underlying graph and each agent depends on neighboring
agents in the graph. Further, our approach allows heterogeneous agents, which means that the local
state/action spaces and policies can differ among the agents.

Another related line of work uses centralized training with decentralized execution, e.g., [28, 15],
where there is a centralized coordinator that can communicate with all the agents and keep track of
their experiences and policies. In contrast, our work only requires distributed training, where we
constrain the scale of communication in training within the -hop neighborhood of each agent.

More broadly, this paper contributes to a growing literature that uses exponential decay to derive
scalable algorithms for learning in networked systems. The specific form of exponential decay that
we generalize is related to the idea of “correlation decay” studied in [16, 17], though their focus is on
solving static combinatorial optimization problems whereas ours is on learning policies in dynamic
environments. Most related to the current paper is [38], which shows an exponential decay property
in a restricted networked MARL model with purely local dependencies. In contrast, we show a more
general µ-decay property holds for a general form of stochastic, non-local dependencies.

The technical work in this paper contributes to the analysis of stochastic approximation (SA), which
has received considerable attention over the past decade [54, 44, 11, 55]. Our work is most related
to [37], which uses an asynchronous nonlinear SA to study the finite-time convergence rate for
asynchronous Q-learning on a single trajectory. Beyond [37], there are many other works that use
SA schemes to study TD learning and Q-learning, e.g. [44, 52, 20]. The finite-time error bound for
TD learning with state aggregation in our work is most related to the asymptotic convergence limit
given in [49] and the application of SA scheme to asynchronous Q-learning in [37]. Beyond these
papers, other related work in the broader area of RL with state aggregation includes [26, 23, 22, 9, 43].
We add to this literature with a novel finite-time convergence bound for a general SA with state
aggregation. This result, in turn, yields the first finite-time error bound in the infinity norm for both
TD learning with state aggregation and Q-learning with state aggregation.

2 Networked MARL

We consider a network of agents that are associated with an underlying undirected graph G = (N , E),
where N = {1, 2, · · · , n} denotes the set of agents and E ✓ N ⇥ N denotes the set of edges.
The distance dG(i, j) between two agents i and j is defined as the number of edges on the shortest
path that connects them on graph G. Each agent is associated with its local state si 2 Si and
local action ai 2 Ai where Si and Ai are finite sets. The global state/action is defined as the
combination of all local states/actions, i.e., s = (s1, · · · , sn) 2 S := S1 ⇥ · · · ⇥ Sn, and a =
(a1, · · · , an) 2 A := A1 ⇥ · · ·⇥An. We use N

i
to denote the -hop neighborhood of agent i on G,

i.e., N

i
:= {j 2 N | dG(i, j)  }. Let f() := sup

i
|N

i
|. For a subset M ✓ N , we use sM/aM

to denote the tuple formed by the states/actions of agents in M .
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Before we define the transitions and rewards, we first define the notion of active link sets, which are
directed graphs on the agents N and they characterize the interaction structure among the agents.
More specifically, an active link set is a set of directed edges that contains all self-loops, i.e., a subset
of N ⇥N and a super set of {(i, i) | i 2 N}. Generally speaking, (j, i) 2 L means agent j can affect
agent i in the active link set L. Given an active link set L, we also use Ni(L) := {j 2 N | (j, i) 2 L}
to denote the set of all agents (include itself) who can affect agent i in the active link set L. In this
paper, we consider a pair of active link sets (Ls

t
, Lr

t
) that is independently drawn from some joint

distribution D at each time step t,1 where the distribution D will be defined using the underlying
graph G later in Section 2.1. The role of Ls

t
/Lr

t
is that they define the dependence structure of state

transition/reward at time t, which we detail below.

Transitions. At time t, given the current state, action s(t), a(t) and the active link set Ls

t
, the next

individual state si(t + 1) is independently generated and only depends on the state/action of the
agents in Ni(Ls

t
). In other words, we have,

P (s(t+ 1)|s(t), a(t), Ls

t
) =

Y

i2N
Pi(si(t+ 1)|sNi(Ls

t )
(t), aNi(Ls

t )
(t), Ls

t
). (1)

Rewards. Each agent is associated with a local reward function ri. At time t, it is a function of Lr

t

and the state/action of agents in Ni(Lr

t
): ri(Lr

t
, sNi(Lr

t )
(t), aNi(Lr

t )
(t)). The global reward r(t) is

defined to be the summation of the local rewards ri(t).

Policy. Each agent follows a localized policy that depends on its �-hop neighborhood, where � � 0
is a fixed integer. Specifically, at time step t, given the global state s(t), agent i adopts a local policy
⇣i parameterized by ✓i to decide the distribution of ai(t) based on the the states of agents in N�

i
.

Our objective is for all the agents to cooperatively maximize the discounted global reward, i.e.,

J(✓) = Es⇠⇡0

P1
t=0 �

tr(s(t), a(t)) | s(0) = s

�
, where ⇡0 is a given distribution on the initial

global state, and we recall r(s(t), a(t)) is the global stage reward defined as the sum of all local
rewards at time t.

Examples. To highlight the applicability of the general model, we include two examples of networked
systems that feature the dependence structure captured by our model in Appendix A: a wireless
communication example and an example of controlling a process that spreads over a network.

Note that a limitation of our setting is that the dependence structure we consider is stationary, in the
sense that dependencies are sampled i.i.d. from the distribution D. It is important to consider more
general time-varying forms (e.g. Markovian) in future research.

Background. Before moving on, we review a few key concepts in RL which will be useful in
the rest of the section. We use ⇡✓

t
to denote the distribution of s(t) under policy ✓ given that

s(0) ⇠ ⇡0. A well-known result [47] is that the gradient of the objective rJ(✓) can be computed
by 1

1��
Es⇠⇡✓,a⇠⇣✓(·|s)Q

✓(s, a)r log ⇣✓(a | s), where distribution ⇡✓(s) = (1 � �)
P1

t=0 �
t⇡✓

t
(s)

is the discounted state visitation distribution. Evaluating the Q-function Q✓(s, a) plays a key role
in approximating rJ(✓). The local Q-function for agent i is the discounted local reward, i.e.

Q✓

i
(s, a) = E⇣✓

P1
t=0 �

tri(t) | s(0) = s, a(0) = a

�
, where we use ri(t) to denote the local reward

of agent i at time step t. Using local Q-functions, we can decompose the global Q-function as
Q✓(s, a) = 1

n

P
n

i=1 Q
✓

i
(s, a), which allows each node to evaluate its local Q-function separately.

A key challenge in our MARL setting is that directly estimating the Q-functions is not scalable since
the size of the Q-functions is exponentially large in the number of agents. Therefore, in Section 2.1,
we study structural properties of the Q-functions resulting from the dependence structure in the
transition (1), which enables us to design a scalable RL algorithm in Section 2.2.

2.1 µ-decay Property

One of the core challenges for MARL is that the size of the Q function is exponentially large in the
number of agents. The key to our algorithm and its analysis is the identification of a novel structural

1Here, correlations between Ls

t and Lr

t are possible
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decay property for the Q-function, which says that the local Q-function of each agent i is mainly
decided by the states of the agents who are near i. This property is critical for the design of scalable
algorithms because it enables the agents to reduce the dimension of the Q-function by truncating
its dependence of the states and actions of far away agents. Recently, exponential decay has been
shown to hold in networked MARL when the network is static [38, 36], which is exploited to design a
scalable RL algorithm. However, in stochastic network settings it is too much to hope for exponential
decay in general [14], and so we introduce the more general notion of µ-decay here, where µ is a
function that converges to 0 as  tends to infinity. The case of exponential decay that has been studied
previously corresponds to µ() = �/(1 � �). The formal definition of µ-decay is given below,
where for simplicity, we use i

L�! j to denote (i, j) 2 L and denote N

�i
:= N \N

i
.

Definition 2.1. For a function µ : N ! R+
that satisfies lim!+1 µ() = 0, the µ-decay property

holds if for any policy ✓ and any i 2 N , the local Q function Q✓

i
satisfies

��Q✓

i
(s, a)�Q✓

i
(s0, a0)

�� 
µ() for any (s, a), (s0, a0) that are identical within N

i
, i.e. sN

i
= s0

N

i
, aN

i
= a0

N

i

.

Intuitively, if the µ-decay property holds and µ() decays quickly as  increases, we can approxi-
mately decompose the global Q function as Q✓(s, a) = 1

n

P
n

i=1 Q
✓

i
(s, a) ⇡ 1

n

P
n

i=1 Q̂
✓

i
(sN

i
, aN

i
),

where Q̂i only depends on the states and actions within the -hop neighborhood of agent i. Before
our work, [46] empirically showed that such a value decomposition allows efficient training of
MARL. Under the assumption that such decomposition exists, [46] propose an approach to learn this
decomposition. In contrast, as we prove in this section, the µ decay property holds provably and
therefore, the global Q function can be directly decomposed in the networked MARL model and that
the error of such decomposition is provably small.

Our first result is Theorem 2.1 which shows the relationship between the random active link sets and
the µ-decay property. The proof of Theorem 2.1 is deferred to Appendix B.1.
Theorem 2.1. Define La

as the static active link set that contains all pairs (i, j) whose graph

distance on G is less than or equal to �, which is the dependency of local policy. Let random variable

Xi() denote the smallest t 2 N such that there exists a chain of agents

ja0
L

s
0��! js1

L
a

��! ja1
L

s
1��! · · ·

L
s
t�1���! jst

L
a

��! jat ,

that satisfies ja0 2 N

�i
and ja

t

L
r
t��! i. The µ-decay property holds for µ() = 1

1��
E
⇥
�Xi()

⇤
.

To make the µ-decay result more concrete, we provide several scenarios that yield different upper
bounds on the term E

⇥
�Xi()

⇤
. In the first scenario, we study the case where long range links do

not exist in Corollary 2.2. In this case, we obtain an exponential decay property that generalizes the
result in [38]. A proof is in Appendix B.2.
Corollary 2.2 (Exponential Decay). Consider a distribution D of active link sets that satisfies

P(Ls,Lr)⇠D{(i, j) 2 Ls} = 0, for all i, j 2 N s.t. dG(i, j) � ↵1,

P(Ls,Lr)⇠D{(i, j) 2 Lr} = 0, for all i, j 2 N s.t. dG(i, j) � ↵2.

Then, E
⇥
�Xi()

⇤
 C⇢, where ⇢ = �1/(↵1+�), C = ��↵2/(↵1+�)

.

In the second scenario, long range active links can occur, but with exponentially small probability
with respect to their distance. In this case, we can obtain a near-exponential decay property where
µ() = O(⇢/ log )) for some ⇢ 2 (0, 1). A proof can be found in Appendix B.3.
Theorem 2.3 (Near-Exponential Decay). Suppose the distribution D of active link sets satisfies

P(Ls,Lr)⇠D{(i, j) 2 Ls [ Lr}  c�dG(i,j), for all i, j 2 N ,

where c � 1, 1 > � > 0 are constants. If the largest size of the  neighborhood in the underlying

graph G can be bounded by a polynomial of , i.e., there exists some constants c0 � 1, n0 2 N such

that |{j 2 N | dG(i, j) = }|  c0(+ 1)n0 holds for all i, then E
⇥
�Xi(�1)

⇤
 C⇢/(1+ln(+1))

for some positive constant C and decay rate ⇢ < 1.
2

It is interesting to compare the result above with models of the so-called “small world phenomena" in
social networks, e.g., [14]. In these models, a link (i, j) occurs with probability 1/poly(dG(i, j)),

2The explicit expression of C and ⇢ can be found in Appendix B.3.
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Algorithm 1 Scalable Actor Critic
1: for m = 0, 1, 2, · · · do
2: Sample initial global state s(0) ⇠ ⇡0.
3: Each node i takes action ai(0) ⇠ ⇣✓i(m)

i
(· | s

N
�
i
(0)) to obtain the global state s(1).

4: Each node i records sN
i
(0), aN

i
(0), ri(0) and initialize Q̂0

i
to be all zero vector.

5: for t = 1, · · · , T do
6: Each node i takes action ai(t) ⇠ ⇣✓i(m)

i
(· | s

N
�
i
(t)) to obtain the global state s(t+ 1).

7: Each node i update the local estimation Q̂i with step size ↵t�1 = H

t�1+t0
,

Q̂t

i

�
sN

i
(t� 1), aN


i
(t� 1)

�
=

(1� ↵t�1)Q̂
t�1
i

�
sN

i
(t� 1), aN


i
(t� 1)

�
+ ↵t�1

⇣
ri(t) + �Q̂t�1

i

�
sN

i
(t), aN


i
(t)

�⌘
,

Q̂t

i

�
sN

i
, aN


i

�
= Q̂t�1

i

�
sN

i
, aN


i

�
for

�
sN

i
, aN


i

�
6=

�
sN

i
(t� 1), aN


i
(t� 1)

�
.

8: Each node i approximate r✓iJ(✓) by
ĝi(m) =

P
T

t=0 �
t 1
n

P
j2N


i
Q̂T

j

�
sN

j
(t), aN


j
(t)

�
r✓i log ⇣

✓i(m)
i

�
ai(t) | s

N
�
i
(t)

�
.

9: Each node i conducts gradient ascent by ✓i(m+ 1) = ✓i(m) + ⌘mĝi(m).

as opposed to the exponential dependence in Lemma 2.3. In this case, one can see function µ()
is lower bounded by 1/poly(), which leads us to conjecture that µ() is also upper bounded by
O(1/poly()). Thus, when information spreads “slowly” it helps a localized algorithm to learn
efficiently.

2.2 A Scalable Actor Critic Algorithm

Motivated by the µ-decay property of the Q-functions, we design a novel Scalable Actor Critic
algorithm (Algorithm 1) for networked MARL problem, which exploits the µ-decay result in the
previous section. The Critic part (from line 2 to line 7) uses the local trajectory {(sN

i
, aN

i
, ri)} to

evaluate the local Q-functions under parameter ✓(m). Intuitively, the µ-decay property guarantees
that we can achieve good approximation error even when  is not large. The Actor part (from line
8 to line 9) computes the estimated partial derivative using the estimated local Q-functions, and
uses the partial derivative to update local parameter ✓i. The step size sequence {⌘m} will be defined
in Theorem B.2. Compared with the Scalable Actor Critic algorithm proposed in [38], Algorithm
1 extends the policy dependency structure considered. No longer is the dependency completely
local; it now extends to all agents within the �-hop neighborhood. Interestingly, the time-varying
dependencies do not add complexity into the algorithm (though the analysis is more complex).

Algorithm 1 is highly scalable. Each agent i needs only to query and store the information within its
-hop neighborhood during the learning process. The parameter  can be set to balance accuracy and
complexity. Specifically, as  increases, the error bound becomes tighter at the expense of increasing
computation, communication, and space complexity.

2.3 Convergence

We now present our main result, a finite-time error bound for the Scalable Actor Critic algorithm
(Algorithm 1) that holds under general (non-local) dependencies. To that end, we first describe the
assumption needed in our result. It focuses on the Markov chain formed by the global state-action
pair (s, a) under a fixed policy parameter ✓ and is standard for finite-time convergence results in RL,
e.g., [44, 5, 37].
Assumption 2.1. Under any fixed policy ✓, {z(t) := (s(t), a(t))} is an aperiodic and ir-

reducible Markov chain on state space Z := S ⇥ A with a unique stationary distribution

d✓ = (d✓
z
, z 2 Z), which satisfies d✓

z
> 0, 8z 2 Z . Define d✓(z0) =

P
z2Z:zN

i
=z0 d✓(z)

and �0() := infz02ZN
i
d✓(z0). There exists positive constants K1,K2 such that K2 � 1 and

8z0 2 Z, 8t � 0, supK✓Z
��P

z2K d✓
z
�
P

z2K P(z(t) = z | z(0) = z0)
��  K1e�t/K2 .
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We next analyze the Critic part of Algorithm 1 within a given outer loop iteration m. Since the policy
is fixed in the inner loop, the global state/action pair (s, a) in the original MDP can be viewed as the
state of a Markov chain. We observe that each local estimate Q̂t

i

�
sN

i
, aN

i

�
can be viewed as a form

of state aggregation, where the global state (s, a) is “compressed” to h(s, a) := (sN
i
, aN

i
). Broadly

speaking, the technique of state aggregation is one of the easiest-to-deploy schemes for state space
compression [21, 43], while its final performance relies heavily on whether the state aggregation map
h only aggregates “similar” states. To have a good approximate equivalence, we need to find a good
h, i.e., if two states are mapped to the same abstract state, their value functions are required to be
close (to be discussed in Theorem 3.2). In the context of networked MARL, the µ decay property
(Definition 2.1) provides a natural mapping for state aggregation h(s, a) := (sN

i
, aN

i
) which we

defined earlier. This mapping h maps the global state/action to the local states/actions in agent i’s
-hop neighborhood and the µ-decay property guarantees that if h(s, a) = h(s0, a0), the difference in
their Q-functions is upper bounded by µ(), which is vanishing as  increases. This shows that the
mapping h we used is “good” in the sense it aggregates very similar global state-action pairs. This
idea leads to the following theorem about the Critic part of Scalable Actor Critic (Algorithm 1).
Theorem 2.4. Suppose Assumption 2.1 and µ-decay property (Definition 2.1) hold. Let the step

size be ↵t = H

t+t0
with t0 = max(4H, 2K2 log T ), and H � 2

(1��)�0() . Define constant Cb :=

4K1(1 + 2K2 + 4H). Then, inside outer loop iteration m, for each i 2 N , with probability

at least 1 � �, we have sup(s,a)2S⇥A

���Q✓(m)
i

(s, a)� Q̂T

i
(sN

i
, aN

i
)
���  Cap

T+t0
+ C

0
a

T+t0
+ µ()

1��
,

where the constants are given by Ca = 40H
(1��)2

r
K2 log T

⇣
log

⇣
4f()K2T

�

⌘
+ log log T

⌘
and C 0

a
=

8
(1��)2 max{ 144K2H log T

�0() + Cb, 2K2 log T + t0}.

The proof of Theorem 2.4 can be found in Appendix B.4. The most related result in the literature to
Theorem 2.4 is Theorem 7 in [38]. In comparison, Theorem 2.4 applies for more general, potentially
non-local, dependencies and, also, improves the constant term by a factor of 1/(1� �).

To analyze the Actor part of Algorithm 1, we make the following additional boundedness and
Lipschitz continuity assumptions on the gradients. These are standard assumptions in the literature.

Assumption 2.2. For any i, ai, sN�
i

and ✓i, we assume

���r✓i log ⇣
✓i
i
(ai | sN�

i
)
���  Wi. Then, for

any La

t
,

��r✓ log ⇣✓(a | s)
��  W :=

pP
n

i=1 W
2
i

. We further assume rJ(✓) is W 0
-Lipschitz in ✓.

Intuitively, since the quality of the estimated policy gradient depends on the quality of the estimation
of Q-functions, if every agent i has learned a good approximation of its local Q-function in the Critic
part of Algorithm 1, the policy gradient can be approximated well. Therefore, the Actor part can
obtain a good approximation of a stationary point of the objective function. We state the sample
complexity result in Theorem 2.5 and defer the detailed bounds and a proof to Appendix B.5.
Theorem 2.5. Under Assumption 2.2, to reach an O(✏)-approximate stationary point with probability

at least 1� �, we need to choose  such that µ() = O
�
W�2(1� �)4✏

�
. The number of required

iterations of the outer loop should satisfy M = ⌦̃
�
✏�2poly(W,W 0, 1

1��
)
�

and the number of required

iterations of the inner loop is T = ⌦̃
�
✏�2poly(W, 1

�0() ,K2,
1

1��
, log f(), log(1/�))

�
.

Note that W scales with the number of agents n. Thus, Theorem 2.5 shows that the complexity of our
algorithm scales with the largest state-action space size of any -hop neighborhood and the number
of agents n, which avoids the exponential blowup in n when the graph is sparse and achieves scalable
RL for networked agents even under stochastic, non-local settings.

3 Proof Idea: Stochastic Approximation and State Aggregation

In this section, we present the key technical innovation underlying our results on MARL in Theorem
2.4: a new finite-time analysis of a general asynchronous stochastic approximation (SA) scheme. As
we mention in Section 2, the truncation enabled by µ-decay provides a form of state aggregation,
which we analyze via a general SA scheme in Section 3.1. Further, this SA scheme is of interest more
broadly, e.g., to the settings of TD learning with state aggregation (Section 3.2) and asynchronous
Q-learning with state aggregation (Appendix D.4).
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3.1 Stochastic Approximation

Consider a finite-state Markov chain whose state space is given by N = {1, 2, · · · , n}. Let {it}1t=0
be the sequence of states visited by this Markov chain. Our focus is generalizing the following
asynchronous stochastic approximation (SA) scheme, which is studied in [48, 41, 52]: Let parameter
x 2 RN , and F : RN ! RN be a �-contraction in the infinity norm. The update rule of the SA
scheme is given by

xit(t+ 1) = xit(t) + ↵t(Fit(x(t))� xit(t) + w(t)),

xj(t+ 1) = xj(t) for j 6= it, j 2 N ,
(2)

where w(t) is a noise sequence. It is shown in [37] that parameter x(t) converges to the unique fixed
point of F at the rate of O

�
1/
p
t
�
.

While general, in many cases, including networked MARL, we do not wish to calculate an entry for
every state in N in parameter x, but instead, wish to calculate “aggregated entries.” Specifically, at
each time step, after it is generated, we use a surjection h to decide which dimension of parameter x
should be updated. This technique, referred to as state aggregation, is one of the easiest-to-deploy
schemes for state space compression in the RL literature [21, 43]. In the generalized SA scheme, our
objective is to specify the convergence point as well as obtain a finite-time error bound.

Formally, to define the generalization of (2), let N = {1, · · · , n} be the state space of {it} and
M = {1, · · · ,m}, (m  n) be the abstract state space. The surjection h : N ! M is used
to convert every state in N to its abstraction in M. Given parameter x 2 RM and function
F : RN ! RN , we consider the generalized SA scheme that updates x(t) 2 RM starting from
x(0) = 0,

xh(it)(t+ 1) = xh(it)(t) + ↵t

�
Fit(�x(t))� xh(it)(t) + w(t)

�
,

xj(t+ 1) = xj(t) for j 6= h(it), j 2 M,
(3)

where the feature matrix � 2 RN⇥M is defined as

�ij =

⇢
1 if h(i) = j
0 otherwise

, 8i 2 N , j 2 M. (4)

In order to state our main result characterizing the convergence of (3), we must first state a few
definitions and assumptions. To begin, we define the weighted infinity norm as in [37], except that
we extend its definition so as to define the contraction of function F . The reason we use the weighted
infinity norm as opposed to the standard infinity norm is that its generality can be used in certain
settings for undiscounted RL, as shown in [48, 2].
Definition 3.1 (Weighted Infinity Norm). Fix a positive vector v 2 RM

. For x 2 RM
, we define

kxk
v
:= sup

i2M
|xi|
vi

. For x 2 RN
, we define kxk

v
:= sup

i2N
|xi|
vh(i)

.

Next, we state our assumption on the mixing rate of the Markov chain {it}, which is common in the
literature [50, 44]. It holds for any finite-state Markov chain which is aperiodic and irreducible [5].
Assumption 3.1 (Stationary Distribution and Geometric Mixing Rate). {it} is an aperiodic and

irreducible Markov chain on state space N with stationary distribution d = (d1, d2, · · · , dn). Let

d0
j
=

P
i2h�1(j) di and �0 = infj2M d0

j
. There exists positive constants K1,K2 which satisfy that

supS✓N
��P

i2S di �
P

i2S P(it = i | i0 = j)
��  K1 exp(�t/K2), 8j 2 N , 8t � 0 and K2 � 1.

Our next assumption ensures contraction of F . It is also standard, e.g., [48, 52, 37], and ensures that
F has a unique fixed point y⇤.
Assumption 3.2 (Contraction). Operator F is a � contraction in k·k

v
, i.e., for any x, y 2 RN

, we

have kF (x)� F (y)k
v
 �kx� yk

v
. Further, there exists some constant C > 0 such that for any

x 2 RN
, we have kF (x)k

v
 �kxk

v
+ C.

In Assumption 3.2, notice that the first sentence directly implies the second with C = (1 + �)ky⇤k
v
,

where y⇤ 2 RN is the unique fixed point of F . Further, while Assumption 3.2 implies that F has
a unique fixed point y⇤, we do not expect our stochastic approximation scheme to converge to it.
Instead, we show that the convergence is to the unique x⇤ that solves

⇧F (�x⇤) = x⇤, where ⇧ :=
�
�>D�

��1
�>D. (5)
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Here D = diag(d1, d2, · · · , dn) denotes the steady-state probabilities for the process {it}. Note that
x⇤ is well-defined because the operator ⇧F (�·), which defines a mapping from RM to RM, is also
a contraction in k·k

v
. We state and prove this as Proposition C.1 in Appendix C.1.

Our last assumption is on the noise sequence w(t). It is also standard, e.g., [41, 37].
Assumption 3.3 (Martingale Difference Sequence). wt is Ft+1 measurable and satisfies Ew(t) |
Ft = 0. Further, |w(t)|  w̄ almost surely for constant w̄.

We are now ready to state our finite-time convergence result for stochastic approximation.
Theorem 3.1. Suppose Assumptions 3.1, 3.2, 3.3 hold. Further, assume there exists constant

x̄ � kx⇤k
v

such that 8t, kx(t)k
v
 x̄ almost surely.

3
Let the step size be ↵t = H

t+t0
with t0 =

max(4H, 2K2 log T ), and H � 2
�0(1��) . Let x⇤

be the unique solution of equation ⇧F (�x⇤) = x⇤
,

and define constants C1 := 2x̄+C+ w̄

v
, C2 := 4x̄+2C+ w̄

v
, C3 := 2K1(2x̄+C)(1+2K2+4H).

Then, with probability at least 1� �,

kx(T )� x⇤k
v
 Cap

T + t0
+

C0
a

T + t0
= Õ

✓
1p
T

◆
,

where the constants are given by Ca = 4HC2
1��

q
K2 log T

�
log

�
4mK2T

�

�
+ log log T

�
and C 0

a
=

4max{ 48K2C1H log T+�
0
C3

(1��)�0 , 2x̄(2K2 log T+t0)
1��

}.

A proof of Theorem 3.1 can be found in Appendix C.2. Compared with Theorem 4 in [37], Theorem
3.1 holds for a more general SA scheme where state aggregation is used to reduce the dimension
of the parameter x. The proof technique used in [37] does not apply to our setting because our
stationary point x⇤ has a more complex form (4). To do the generalization, we need to use a different
error decomposition method compared to [37] that leverages the stationary distribution D rather than
the distribution of it condition on it�⌧ (see Appendix C.2 for details). Because of this generality,
Theorem 3.1 requires a stronger but standard assumption on the mixing rate of the Markov chain
{it}.

3.2 State Aggregation

To illustrate the impact of our analysis of SA (Theorem 3.1) beyond the network setting, we study a
simpler application to the cases of TD-learning and Q-learning with state aggregation in this section.
Understanding state aggregation methods is a foundational goal of analysis in the RL literature and it
has been studied in many previous works, e.g., [26, 23, 22, 9, 43]. Further, the result is extremely
useful in the analysis in networked MARL that follows since the µ-decay property we introduce
(Definition 2.1) provides a natural state aggregation in the network setting (see Corollary 2.4). Due
to space constraints, in this section we only introduce the results on TD-learning; the results on
Q-learning are given in Appendix D.4.

In TD learning with state aggregation [43, 49], given the sequence of states visited by the Markov
chain is {it}, the update rule of TD(0) is given by

✓h(it)(t+ 1) = ✓h(it)(t) + ↵t

�
rt + �✓h(it+1)(t)� ✓h(it)(t)

�
,

✓j(t+ 1) = ✓j(t) for j 6= h(it), j 2 M,
(6)

where h : N ! M is a surjection that maps each state in N to an abstract state in M and rt is the
reward at time step t such that E[rt] = r(it, it+1).

Taking F as the Bellman Policy Operator, i.e., the i’th dimension of function F is given by
Fi(V ) = Ei0⇠P(·|i)[r(i, i

0) + �Vi0 ], 8i 2 N , V 2 RN .

The value function (vector) V ⇤ is defined as V ⇤
i
= E[

P1
t=0 �

tr(it, it+1) | i0 = i], i 2 N [49]. By
defining the feature matrix � as (4) and the noise sequence as

w(t) = rt + �✓h(it+1)(t)� Ei0⇠P(·|it)[r(it, i
0) + �✓h(i0)(t)],

we can rewrite the update rule of TD(0) in (6) in the form of an SA scheme (3). Therefore, we can
apply Theorem 3.1 to obtain a finite-time error bound for TD learning with state aggregation. A proof
of Theorem 3.2 can be found in Appendix D.2.

3The assumption on x̄ follows from Assumptions 3.2 and 3.3. See Proposition C.2 in Appendix C.3.
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Theorem 3.2. Let Assumption 3.1 hold for the Markov chain {it} and let the stage reward rt be

upper bounded by r̄ almost surely. Assume that if h(i) = h(i0) for i, i0 2 N , we have |V ⇤
i
� V ⇤

i0 |  ⇣
for a constant ⇣ . Consider TD(0) with the step size ↵t =

H

t+t0
, where t0 = max(4H, 2K2 log T ) and

H � 2
�0(1��) . Define constant C4 := 4K1(1 + 2K2 + 4H). Then, with probability at least 1� �,

k� · ✓(T )� V ⇤k1  Cap
T + t0

+
C0

a

T + t0
+

⇣
1� �

,

where the constants are given by Ca = 40Hr̄

(1��)2

q
K2 log T

�
log

�
4mK2T

�

�
+ log log T

�
and C0

a =
8r̄

(1��)2
max{ 144K2H log T

�0 + C4, 2K2 log T + t0}.

The most related prior results to Theorem 3.2 are [44, 4]. In contrast to these, Theorem 3.2 considers
the infinity norm, which is more natural for measuring error when using state aggregation. Further,
our analysis is different and extends to the case of Q-learning with state aggregation (see Appendix
D.4), where we obtain the first finite-time error bound. Moreover, unlike [4], our TD-learning
algorithm does not require a projection step.

4 Concluding Remarks

In this paper, we propose and analyze the Scalable Actor Critic Algorithm that provably learns a
near-optimal local policy in a setting where every agent is allowed to interact with a random subset of
agents. The µ-decay property, which enables the decentralized approximation of local Q functions, is
the key to our approach.

There are a number of future directions motivated by the results in this paper. For example, we
allow the interaction structure among the agents to change in a stochastic way in this work. It is
interesting to see if such structure can be time-varying in more general ways (e.g., Markovian or
adversarial). Besides, although our Scalable Actor Critic algorithm consumes much less memory
than a centralized tabular approach, the memory space required by each agent i to store Q̂i grows
exponentially with respect to f(), which denotes the size of the largest -hop neighborhood. Thus,
memory problems may still arise if f grows quickly as  increases. Therefore, an interesting open
problem is whether we can apply additional function approximations on truncated state/action pair
(sN

i
, aN

i
), and obtain similar finite-time convergence guarantees as Scalable Actor Critic.
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