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ABSTRACT

Offline reinforcement learning (RL) presents distinct challenges as it relies solely
on observational data. A central concern in this context is ensuring the safety
of the learned policy by quantifying uncertainties associated with various actions
and environmental stochasticity. Traditional approaches primarily emphasize mit-
igating epistemic uncertainty by learning risk-averse policies, often overlooking
environmental stochasticity. In this study, we propose an uncertainty-aware distri-
butional offline RL method to simultaneously address both epistemic uncertainty
and environmental stochasticity. We propose a model-free offline RL algorithm
capable of learning risk-averse policies and characterizing the entire distribution
of discounted cumulative rewards, as opposed to merely maximizing the expected
value of accumulated discounted returns. Our method is rigorously evaluated
through comprehensive experiments in both risk-sensitive and risk-neutral bench-
marks, demonstrating its superior performance.

1 INTRODUCTION

In the domain of safety-critical applications, the practicality of implementing online RL is con-
strained due to the imperative for extensive random exploration, which may incur potential hazards
or substantial costs. In response to this predicament, offline RL (Levine et al., 2020) endeavors to
discern the most optimal policy based on pre-collected data. In safety-critical settings, there is a pro-
nounced emphasis on cultivating uncertainty-averse decision-making while factoring in the inherent
variability in performance. Regrettably, contemporary research in offline RL predominantly fixates
on objectives associated with expected value, thereby neglecting the consideration of performance
variability across distinct episodes.

There are two different types of uncertainties in offline RL: epistemic and aleatoric. Epistemic
uncertainty is caused by model itself and aleatoric uncertainty is caused by the environment (i.e.,
pre-collected data). Previous works address the epistemic uncertainty by using the risk-averse offline
RL. The common approach is to use variational autoencoders (VAEs) to reconstruct the behavior pol-
icy, which can also help reduce bootstrapping errors (Urpı́ et al., 2021; Lyu et al., 2022). However,
these approaches heavily rely on imitation learning to align the learned policy with the empirical
behavior policy, potentially leading to sub-optimal performance due to the presence of sub-optimal
trajectories and the risk-neutral nature of the dataset (Ma et al., 2021). Offline RL leverages large
datasets, but incorporating data from multiple behavioral policies presents challenges in maintaining
fidelity to a high-quality policy (Ma et al., 2021; Wang et al., 2023; Kumar et al., 2022). Another
alternative involves refining behavior policies (Ma et al., 2021), yet it lacks versatility for different
environments or tasks. Additionally, the collected offline trajectories consist of a mixture of trajec-
tories from various behavior policies. VAE-based methods struggle to distinguish these trajectories,
resulting in sub-optimal performance. Furthermore, recent findings highlight VAE’s constraints in
modeling complicated distributions (Pearce et al., 2023; Wang et al., 2023).

In terms of the aleatoric uncertainty, it is caused by the environment stochasticity. It will affect the
policy learning via the accumulated discounted returns. Previous works (Bellemare et al., 2017;
Barth-Maron et al., 2018) propose to use the distributional offline RL to formulate the randomness
where the distribution of the discounted cumulative reward is used instead of maximizing the expec-
tation of accumulated discounted returns.
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In this study, we address the challenge of handling both uncertainties simultaneously within the
context of risk-averse offline RL. As discussed before, existing epistemic-aware methods (i.e., risk-
averse offline RL) have the limitation of expressiveness caused by VAE. Inspired by the recent
advancement of the diffusion model, which has a strong expressiveness when imitating human be-
haviors (Pearce et al., 2023), we design a novel off-policy RL algorithm method named Uncertainty-
aware offline Distributional Actor-Critic (UDAC). UDAC leverages the diffusion model as a key
component in behavior policy modeling, offering several advantages: i). Elimination of Manual
Behavior Policy Specification: UDAC eliminates the need for manually defined behavior policies,
making it adaptable to a wide range of risk-sensitive RL tasks. ii). Accurate Modeling of the be-
havior policy: UDAC enhances the precision of modeling the full distribution of behavior policy
through the diffusion model, improving robustness in the face of environmental stochasticity. iii).
Incorporation of Perturbation Model: UDAC goes beyond simple imitation learning by incorporat-
ing a perturbation model tailored to meet the requirements of risk-sensitive settings.

We conducted extensive experiments in different benchmarks covering both risk-sensitive and risk-
neutral scenarios: risk-sensitive D4RL, risky robot navigation, and risk-neutral D4RL. Our results
demonstrate that UDAC outperforms most baselines in risk-sensitive D4RL and risky robot navi-
gation. Moreover, UDAC achieves comparable performance to existing state-of-the-art methods in
risk-neutral D4RL.1

2 RELATED WORKS

Pearce et al. (2023) suggest that the imitation of human behaviors can be improved through the use of
expressive and stable diffusion models. Janner et al. (2022) employ a diffusion model as a trajectory
generator in their Diffuser approach, where a full trajectory of state-action pairs forms a single sam-
ple for the diffusion model. Singh et al. (2020) utilize a distributional critic in their algorithm, but it
is restricted to the CVaR and limited to the online reinforcement learning (RL) setting. Furthermore,
their use of a sample-based distributional critic renders the computation of the CVaR inefficient. To
enhance the computational efficiency of the CVaR, Urpı́ et al. (2021) extend the algorithm to the
offline setting. Ma et al. (2021) replace normal Q-learning with conservation offline Q-learning and
an additional constant to penalize out-of-distribution (OOD) behaviors. However, Lyu et al. (2022)
observe that the introduced extra constant is excessively severe and propose a more gentle penalized
mechanism that uses a piecewise function to control when should apply the extra penalization.

Differences between existing works. There are two similar works that also apply the diffusion
model in offline reinforcement learning: Diffusion-QL (Wang et al., 2023) and Diffuser (Janner
et al., 2022). Diffuser (Janner et al., 2022) is from the model-based trajectory-planning perspective,
while Diffusion-QL (Wang et al., 2023) is from the offline model-free policy-optimization perspec-
tive. But our work is from the risk-sensitive perspective and extends it into the distributional offline
reinforcement learning settings.

3 BACKGROUND

In this work, a Markov Decision Process (MDP) is considered with states s ∈ S and actions a ∈ A
that may be continuous. It includes a transition probability P (·|s, a) : S × A × S → [0, 1], reward
function R(·|s, a) : S × A → R, and a discount factor γ ∈ [0, 1). A policy π(·|s) is defined as a
mapping from states to the distribution of actions. RL aims to learn π(·|s) such that the expected cu-
mulative long-term rewards Es0,at∼π(·|st),st+1∼P (·|st,at)[

∑∞
t=0 γ

tR(·|st, at)] are maximized. The
state-action function Qπ(s, a) measures the discounted return starting from state s and action a un-
der policy π. We assume the reward function R(·|s, a) is bounded, i.e., |R(·|s, a)| ≤ rmax. Now,
consider the policy π(·|s), the Bellman operator T π : R|S||A| → R|S||A| is introduced by Riedmiller
(2005) to update the corresponding Q value,

T πQ(s, a) := E[R(s, a)] + γEP (s′|s,a)π(a′|s′)[Q(s′, a′)]. (1)

In offline RL, the agent can only access a fixed dataset D := {(s, a, r, s′)}, where r ∼ R(·|s, a), s′ ∼
P (·|s, a). D comes from the behavior policies. We use πb to represent the behavior policy, and
(s, a, r, s′) ∼ D represents the uniformly random sampling.

1Code is available at https://anonymous.4open.science/r/UDAC-0241.
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In distributional RL (Bellemare et al., 2017), the aim is to learn the distribution of discounted cumu-
lative rewards, represented by the random variable Zπ(s, a) =

∑∞
t=0 γ

tR(·|st, at). Similar to the
Q function and Bellman operator mentioned earlier, we can define a distributional Bellman operator
as follows,

T πZ(s, a) :=D R(s, a) + γZ(s′, a′). s′ ∼ P (·|s, a), a′ ∈ π(·|s′). (2)

The symbol :=D is used to signify equality in distribution. Thus, Zπ can be obtained by applying
the distributional Bellman operator T π iteratively to the initial distribution Z . In offline settings,
T π can be approximated by T̂ π using D. Then, we can compute Zπ by starting from an arbitrary
Ẑ0, and iteratively minimizing the p-Wasserstein distance between Z and T̂ πẐπ (To simplify, we
will use the Wp(·) to represent the p-Wasserstein distance). And the measure metric dp over value
distributions is defined as,

dp(Z1, Z2) = sup
s,a

Wp(Z1(s, a), Z2(s, a)), Z1, Z2 ∈ Z.

4 METHODOLOGY

Our proposed method, UDAC, is based on the quantile-based distributional RL framework, compris-
ing three parts: quantile value network, policy network πθ(s) and the behavior policy network πdb.
The overall framework for UDAC is outlined in Section 4.1. The loss of the actor is defined as the
risk-distortion operator2 applied to the learned return distribution and optimized through gradient-
based methods. With this actor-critic setup, a risk-averse criterion can be optimized. However, in
the offline setting, controlling the bootstrapping error is crucial. To address this, a diffusion policy
is incorporated in the actor to learn a generative model of the behavior policy, which is described
in Section 4.2. Finally, all components are combined in Section 4.3 to implement the algorithm for
a given risk distortion D.

4.1 OVERVIEW OF UDAC

In the critic network of UDAC, our aim is policy evaluation, and we rely on Equation (2) to achieve
this objective. Following the approaches of Dabney et al. (2018a); Urpı́ et al. (2021); Ma et al.
(2021), we implicitly represent the return through its quantile function, as demonstrated by Dabney
et al. (2018a). In order to optimize the Z, we utilise a neural network with a learnable parameter θ
to represent the quantile function. We express such implicit quantile function as F−1

Z (s, a; τ) for Z,
where τ ∈ [0, 1] is the quantile level. Notice that, the original quantile function can only be used
for discrete action. We can extend it into a continuous setting by considering all s, a, and τ as the
inputs and only the quantile value as the output. To learn the θ, the common strategy is the fitted
distributional evaluation using a quantile Huber-loss LK Huber (1992). Our optimizing objective
for the critic network is,

L(T̂ πẐπ, Z) =Wp(T̂ πẐπ, Z) ≃ LK(δ; τ), with δ = r + γF−1
Z′ (s

′, a′; τ ′)− F−1
Z (s, a; τ), (3)

where (s, a, r, s′) ∼ D and a′ ∼ π(·|s′). The δ is also known as the distributional TD error (Dabney
et al., 2018b). And the quantile Huber-loss LK is represented as,

LK(δ; τ) =

{
|1δ<0 − τ | · δ2/(2K) if |δ| < K,
|1δ<0 − τ | · (δ −K/2) otherwise

(4)

where K is the threshold. Notice that there is a hyper-parameter τ which may affect our objective
function. Here, we use a simple strategy to control the τ : Uniformly random sampling τ ∼ U(0, 1).
It is worth mentioning that there is an alternative way for controlling τ , which is a quantile level
proposal network Pψ(s, a) Yang et al. (2019). To simplify the overall model and reduce the number
of hyperparameters, we just use the simplified random sampling approach and leave the quantile
proposal network for future work. The overall loss function for the critic is

E(s,a,r,s′)∼D,a′∼π(·|s′)

[
1

N ∗K

N∑
i=0

K∑
j=0

LK(δτi,τ ′
j
; τi)

]
, (5)

2risk-distortion operator is a class of distortion function that also considers the risk Wang (2000).
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where N,K are the numbers of quantile levels. In the risk-sensitive setting, deterministic policies
are favoured over stochastic policies due to the latter’s potential to introduce additional randomness,
as noted by Pratt (1978). Moreover, in offline settings, there is no benefit to exploration commonly
associated with stochastic policies. Therefore, the focus is on parameterized deterministic policies,
represented by πϕ(s) : S → A. Given the risk-distortion function D, the loss function of actor is
written as,

−Es∼ρb [D(F
−1
Z (s, πϕ(s); τ))] (6)

with the marginal state distribution ρb from the behavior policy. To optimize it, we can backpropa-
gate it through the learned critic at the state that sampled from the behavior policy. It is equivalent to
maximising risk-averse performance. Then, combining the above process with the SAC (Haarnoja
et al., 2018) leads to our novel UDAC model.

4.2 GENERALIZED BEHAVIOR POLICY MODELING

We separate the actor into two components: an imitation component (Fujimoto et al., 2019) and a
conditionally deterministic perturbation model ξ,

πϕ(s) = λξ(·|s, β) + β, β ∼ πb, (7)

where ξ(·|s, β) can be optimized by using the actor loss function(i.e., −Es∼ρb [D(F
−1
Z (s, a; τ))])

that was defined previously, and β is the action that sampled from behavior policy πb, λ is a scale
that used to control the magnitude of the perturbation. As aforementioned, we prefer the deter-
ministic policy over the stochastic policy because of the randomness. However, the bootstrapping
error will appear on the offline RL setting. Existing works (Urpı́ et al., 2021; Wu et al., 2019; Ma
et al., 2021; Lyu et al., 2022) use policy regularization to regularize how far the policy can deviate
from the behavior policy. But the policy regularization will adversely affect the policy improve-
ment by limiting the exploration space, and only suboptimal actions will be observed. Moreover,
the fixed amount of data from the offline dataset may not be generated by a single, high-quality
behaviour policy and thus affect the imitation learning performance (i.e., the logged data may come
from different behavior policies). Hence, behavioral cloning (Pomerleau, 1991) would not be the
best choice. Moreover, behavioral cloning suffers from mode-collapse, which will affect actor’s
optimization. Here, we attempt to use the generative method to model the behaviour policy from
the observed dataset. The most popular approach is the cVAE which leverages the capability of the
auto-encoder to reconstruct the behavior policy. But the behavior policies on the offline dataset are
normally collected from different agents and may have different modalities. It implies that some
behavior policies may be sub-optimal. In this work, we treat these sub-optimal policies as noisy
policies. Inspired by recent work of denoising in computer vision related tasks (Ho et al., 2020), we
employ the diffusion model instead of cVAE to model the behavior policy.

We represent the behavior policy by using the reverse process of a conditional diffusion model,
which is denoted by the parameter ψ, as follows,

π(a|s) = p(a0:N |s) = N (aN ; 0, I)

N∑
i=1

p(ai−1|ai, s), (8)

where p(ai−1|ai, s) can be represented as a Gaussian distribution
N (ai−1;µψ(a

i, s, i),
∑
ψ(a

i, s, i)), where
∑
ψ(a

i, s, i) is a covariance matrix. To parameter-
ize p(ai−1|ai, s) as a noise prediction model, we fix the covariance matrix as

∑
ψ(a

i, s, i) = βiI
and construct the mean as,

µψ(a
i, s, i) =

1
√
αi

(
ai − βi√

1− αi
ϵψ(a

i, s, i)

)
. (9)

To obtain a sample, we begin by sampling aN from a normal distribution with mean 0 and identity
covariance matrix, N (0, I). We then sample from the reverse diffusion chain, which is parameter-
ized by ψ, to complete the process,

ai−1|ai = ai
√
αi

− βi
αi
√
1− αi

ϵψ(a
i, s, i) +

√
βiϵ, ϵ ∼ N (0, I), for i = N, · · · , 1. (10)
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Following the approach of Ho et al. (2020), we set ϵ to 0 when i = 1 to improve the sampling
quality. The objective function used to train the conditional ϵ-model is,

Ld(ψ) = Ei∼U,ϵ∼N (0,I),(s,a)∼D
[
∥ϵ− ϵψ(

√
αia+

√
1− αiϵ, s, i)∥2

]
, (11)

where U is a uniform distribution over the discrete set, denoted as {1, · · · , N}. This diffusion model
loss Ld(ψ) aims to learn from the behavior policy πb instead of cloning it. Ld(ψ) can be optimized
by sampling from single diffusion step i for each data point. However, it will be affected significantly
by N , which is known as the bottleneck of the diffusion (Kong & Ping, 2021). We add this term to
the actor loss and construct the final loss function. We then replace the term πb in the Equation (7)
with dψ(s, a) (i.e., the diffusion behavior policy representation).

4.3 TRAINING ALGORITHM

By combing all of the components mentioned in previous sections, the overall training algorithm
can be described in Algorithm 1. The critic seeks to learn the return distribution, while the diffu-

Algorithm 1: UDAC with U(0, 1)

1 Initialize critic parameter θ, actor parameter ϕ, perturbation model ξ, quantile huber loss
threshold K, number of generated quantiles N,K, diffusion parameter ψ, distortion D,
learning rate η;

2 Sample quantile τi, τj , where i = {0, · · · , N}, j = {0, · · · ,K} from U(0, 1);
3 for t = 1, · · · do
4 Sample B transitions (s, a, r, s′) from the offline dataset;
5 Compute the δ based on Equation (3);
6 Sample β from dψ(s, a) and compute the policy πϕ based on Equation (7);
7 Compute critic loss by using Equation (5);
8 Compute the loss for ξ by using Equation (6);
9 Compute the diffusion loss by using Equation (11);

10 Compute the loss of actor by adding the loss of ξ and the diffusion model;
11 Update θ, ϕ, ψ accordingly;
12 end

sion model aims to comprehend the behavioral policy, serving as a baseline action for the actor to
implement risk-averse perturbations. As aforementioned, the distortion operator D is required. It
can be any distorted expectation objective, such as CVaR, Wang, CPW etc. In this work, we focus
on CVaRα=0.1, which is the majority distorted measure used in recent literature (Rigter et al., 2022;
Urpı́ et al., 2021; Ma et al., 2021).

5 EXPERIMENTS

In this section, we show that UDAC achieves state-of-the-art results on risk-sensitive offline RL
tasks, including risky robot navigation and D4RL, and comparable performance with SOTAs in
risk-neutral offline RL tasks.

5.1 RISK-SENSITIVE D4RL

Tasks Firstly, we test the performance of the proposed UDAC in risk-sensitive D4RL environ-
ments. Hence, we turn our attention to stochastic D4RL (Urpı́ et al., 2021). The original D4RL
benchmark (Fu et al., 2020) comprises datasets obtained from SAC agents that exhibit varying de-
grees of performance (Random, Medium, and Expert) on the Hopper, Walker2d, and HalfCheetah in
MuJoCo environments (Todorov et al., 2012). Stochastic D4RL modifies the rewards to reflect the
stochastic damage caused to the robot due to unnatural gaits or high velocities; please refer to Ap-
pendix D.1 for details. The Expert dataset consists of rollouts generated by a fixed SAC agent trained
to convergence; the Medium dataset is constructed similarly, but the agent is trained to attain only
50% of the expert agent’s return. We have selected several state-of-the-art risk-sensitive offline RL
algorithms as well as risk-neutral algorithms. It includes: O-RAAC (Urpı́ et al., 2021), CODAC (Ma
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et al., 2021), O-WCPG (Tang et al., 2020), Diffusion-QL (Wang et al., 2023), BEAR (Kumar et al.,
2019) and CQL (Kumar et al., 2020). Note that, the O-WCPG is not originally designed for of-
fline settings. We follow the same procedure as described in Urpı́ et al. (2021) to transform it into
an offline algorithm. Among them, ORAAC, CODAC and O-WCPG are risk-sensitive algorithms,
Diffusion-QL, BEAR and CQL are risk-natural. Moreover, ORAAC and CODAC are distributional
RL algorithms.

Results In Table 1, we present the mean and CVaR0.1 returns on test episodes, along with the
duration for each approach. These results are averaged over 5 random seeds. Additionally, we
report the results on the median dataset in Appendix D.3, where UDAC also achieves the strongest
performance. As shown, UDAC outperforms the baselines on most datasets. It is worth noting that
CODAC contains two different variants that optimize different objectives. In this task, we select
CODAC-C as the baseline since it targets risk-sensitive situations. Furthermore, we observe that the
performance of CQL varies significantly across datasets. Under the risk-sensitive setting, it performs
better than two other risk-sensitive algorithms, O-RAAC and TeCODAC, in terms of CVaR0.1. One
possible explanation for this observation is that CQL learns the full distribution, which helps to
stabilize the training and thus yields a better CVaR0.1 than O-RAAC and CODAC.

Table 1: Performance of the UDAC algorithm on risk-sensitive offline D4RL environments using
medium and expert datasets

Algorithm Medium Expert
CVaR0.1 Mean Duration CVaR0.1 Mean Duration

H
al

f-
C

he
et

ah

O-RAAC 214(36) 331(30) 200(0) 595(191) 1180(78) 200(0)
CODAC -41(17) 338(25) 200(0) 687(152) 1255(101) 200(0)

O-WCPG 76(14) 316(23) 200(0) 248(232) 905(107) 200(0)
Diffusion-QL 84(32) 329(20) 200(0) 542(102) 728(104) 200(0)

BEAR 15(30) 312(20) 200(0) 44(20) 557(15) 200(0)
CQL -15(17) 33(36) 200(0) -207(47) -75(22.6) 200(0)

Ours(UDAC) 276(29) 417(18) 200(0) 732(104) 1352(100) 200(0)

W
al

ke
r-

2D

O-RAAC 663(124) 1134(20) 397(18) 1172(71) 2006(56) 432(11)
CODAC 1159(57) 1537(78) 403(19) 1298(98) 2102(102) 402(18)

O-WCPG -15(41) 283(37) 185(12) 362(33) 1372(160) 301(31)
Diffusion-QL 31(10) 273(20) 230(9) 621(49) 1202(63) 365(12)

BEAR 517(66) 1318(31) 400(8) 1017(49) 1783(32) 407(4)
CQL 1244(128) 1524(99) 405(55) 1301(78) 2018(65) 404(43)

Ours(UDAC) 1368(89) 1602(85) 406(24) 1398(67) 2198(78) 462(20)

H
op

pe
r

O-RAAC 1416(28) 1482(4) 499(1) 980(28) 1385(33) 494(6)
CODAC 976(30) 1014(16) 486(5) 990(19) 1398(29) 490(12)

O-WCPG -87(25) 69(8) 100(0) 720(34) 898(12) 301(1)
Diffusion-QL 981(28) 1001(11) 339(3) 406(31) 583(18) 262(3)

BEAR 1252(47) 1575(8) 481(2) 852(30) 1180(12) 431(4)
CQL 1344(40) 1524(20) 478(9) 1289(30) 1402(30) 495(5)

Ours(UDAC) 1502(19) 1602(18) 480(6) 1302(28) 1502(27) 494(8)

5.2 RISKY ROBOT NAVIGATION

Tasks We now aim to test the risk-averse performance of our proposed method. Following the
experimental setup detailed in Ma et al. (2021), we will conduct experiments on two challenging
environments, namely Risky Ant and Risky PointMass. In these environments, an Ant robot must
navigate from a randomly assigned initial state to the goal state as quickly as possible. However, the
path between the initial and goal states includes a risky area, which incurs a high cost upon passing
through. While a risk-neutral agent may pass through this area, a risk-sensitive agent should avoid
it. For further information on the experimental setup, including details on the environments and
datasets, refer to D.1. We perform the comparison with the same baselines as the previous section.
We present a detailed comparison between CODAC and ORAAC, two state-of-the-art distributional
risk-sensitive offline RL algorithms, as well as other risk-neutral algorithms. Our discussion covers
a detailed analysis of their respective performance, strengths, and weaknesses.
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Results The effectiveness of each approach is evaluated by running 100 test episodes and measuring
various metrics, including the mean, median, and CVaR0.1 returns, as well as the total number of
violations (i.e., the time steps spent inside the risky region). To obtain reliable estimates, these met-
rics are averaged over 5 random seeds. Moreover, we also provide a visualization of the evaluation
trajectories on the Risky Ant environment on Figure 1, and we can see that the CODAC and ORAAC
do have some risk-averse action, while UDAC successfully avoids the majority of the risk area. We
also note that the Diffusion-QL failed to avoid the risk area as it is not designed for risk-sensitive
tasks.

Table 2: Risky robot navigation quantitative evaluation.

Algorithm Risky PointMass Risky Ant
Mean Median CVaR0.1 Violations Mean Median CVaR0.1 Violations

CODAC -6.1(1.8) -4.9(1.2) -14.7(2.4) 0(0) -456.3(53.2) -433.4(47.2) -686.6(87.2) 347.8(42.1)
ORAAC -10.7(1.6) -4.6(1.3) -64.1(2.6) 138.7(20.2) -788.1(98.2) -795.3(86.2) -1247.2(105.7) 1196.1(99.6)

CQL -7.5(2.0) -4.4(1.6) -43.4(2.8) 93.4(10.5) -967.8(78.2) -858.5(87.2) -1887.3(122.4) 1854.3(130.2)
O-WCPG -12.4(2.5) -5.1(1.7) -67.4(4.0) 123.5(10.6) -819.2(77.4) -791.5(80.2) -1424.5(98.2) 1455.3(104.5)

Diffusion-QL -13.5(2.2) -5.7(1.3) -69.2(4.6) 140.1(10.5) -892.5(80.3) -766.5(66.7) -1884.4(133.2) 1902.4(127.9)
BEAR -12.5(1.6) -5.3(1.2) -64.3(5.6) 110.4(9.2) -823.4(45.2) -772.5(55.7) -1424.5(102.3) 1458.9(100.7)
Ours -5.8(1.4) -4.2(1.3) -12.4(2.0) 0(0) -392.5(33.2) -399.5(40.5) -598.5(50.2) 291.5(20.8)

Performance of UDAC Our experimental findings indicate that UDAC consistently outperforms
other approaches on both the CVaR0.1 return and the number of violations, suggesting that UDAC
is capable of avoiding risky actions effectively. Furthermore, UDAC exhibits competitive perfor-
mance in terms of mean return, attributed to its superior performance in CVaR0.1. A noteworthy
observation is that in the Risky PointMass environment, UDAC learns a safe policy that avoids the
risky region entirely, resulting in zero violations, even in the absence of such behavior in the training
dataset. In addition, in Section 5.5, we demonstrate that UDAC is effective in optimizing alternative
risk-sensitive objectives such as Wang and CPW. Our results illustrate that UDAC can achieve com-
parable performance to UDAC on CVaR0.1 return and the number of violations in the presence of
distorted rewards.

UDAC CODAC ORAAC Diffusion-QL

Figure 1: A 2D visualization was created to represent evaluation trajectories on the Risky Ant en-
vironment. The risky region is highlighted in red, while the initial states are represented by solid
green circles, and the trajectories are shown as grey lines. The results indicate that UDAC consis-
tently approaches the goal while demonstrating the most risk-averse behavior.

Comparison to ORAAC ORAAC and UDAC both optimize the CVaR objective, but ORAAC em-
ploys imitation learning to constrain the learned policy to the empirical behavior policy. However,
this approach may result in suboptimal performance due to the presence of many suboptimal tra-
jectories in the dataset and the risk-neutral nature of the dataset. This issue is particularly relevant
in offline RL, where the goal is to leverage large datasets for training that are often heterogeneous
in terms of the quality of the behavior policy. In contrast, UDAC is better suited to learn from
such datasets by using the diffusion approach, as demonstrated in our results, which show that it
outperforms ORAAC in these settings.

Comparison to CODAC CODAC employs a strategy that is similar to ORACC by introducing
a penalty constant to discourage out-of-distribution actions. Additionally, CODAC adopts a pre-
defined behavior policy to avoid using low-quality behavioral policies in the datasets. However, this
approach may lead to suboptimal performance due to the absence of some edge cases. In contrast,
UDAC aims to learn to model the behavior policy from the datasets directly via denoising, which
has better generalizability. The results suggest that the UDAC can avoid most of the risky areas.
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Comparsion to Diffusion-QL In environments with significant risks, Diffusion-QL tends to learn
policies that exhibit poor tail-performance, which is evident from its low CVaR0.1 performance
despite the high median performance. Additionally, the mean performance of Diffusion-QL is not
satisfactory since it can be heavily influenced by outliers that are not represented in the training
dataset. On the other hand, in the Risky Ant environment, Diffusion-QL performs poorly on all
metrics but achieves a higher median value than ORAAC. Specifically, Diffusion-QL fails to reach
the goal and avoid risky behavior. The majority reason is that the behavior policy used in these
environments is risk-neutral and Diffusion-QL shows a strong capability to learn the risk-neutral
policy.

5.3 RISK-NEUTRAL D4RL

Tasks Next, we demonstrate the effectiveness of UDAC even in scenarios where the objective is
to optimize the standard expected return. For this purpose, we evaluate UDAC on the widely used
D4RL Mujoco benchmark and compare its performance against state-of-the-art algorithms previ-
ously benchmarked in Wang et al. (2023). We include ORAAC and CODAC as offline distributional
RL baselines. In our evaluation, we report the performance of each algorithm in terms of various
metrics, including the mean and median returns, as well as the CVaR0.1 returns.

Table 3: Normalized Return on the risk-neutral D4RL Mujoco Suite.

Dataset DT IQL CQL Diffusion-QL ORAAC CODAC Ours
halfcheetah-medium 42.6(0.3) 47.4(0.2) 44.4(0.5) 51.1(0.3) 43.6(0.4) 48.4(0.4) 51.7(0.2)

hopper-medium 67.6(6.2) 66.3(5.7) 53.0(28.5) 80.5(4.5) 10.4(3.5) 72.1(10.2) 73.2(8.8)
walker2d-medium 74.0(9.3) 78.3(8.7) 73.3(17.7) 87.0(9.7) 27.3(6.2) 82.0(12.3) 82.7(10.3)

halfcheetah-medium-r 36.6(2.1) 44.2(1.2) 45.5(0.7) 47.8(1.5) 38.5(2.0) 48.6(1.8) 49.0(1.5)
hopper-medium-r 82.7(9.2) 94.7(8.6) 88.7(12.9) 101.3(7.7) 84.2(10.2) 95.6(9.7) 97.2(8.0)

walker2d-medium-r 66.6(4.9) 73.8(7.1) 81.8(2.7) 95.5(5.5) 69.2(7.2) 88.2(9.3) 95.7(6.8)
halfcheetah-med-exp 86.8(4.3) 86.7(5.3) 75.6(25.7) 96.8(5.8) 24.0(4.3) 70.4(10.4) 94.2(8.0)

hopper-med-exp 107.6(11.7) 91.5(14.3) 105.6(12.9) 111.1(12.6) 28.2(4.5) 106.0(10.4) 112.2(10.2)
walker2d-med-exp 108.1(1.9) 109.6(1.0) 111.0(1.6) 110.1(2.0) 18.2(2.0) 112.0(6.5) 114.0(2.3)

Results As per Wang et al. (2023), we directly report results for non-distributional approaches. To
evaluate CODAC and ORAAC, we follow the same procedure as Wang et al. (2023), training for
1000 epochs (2000 for Gym tasks) with a batch size of 256 and 1000 gradient steps per epoch.
We report results averaged over 5 random seeds. Our experimental results, presented in Table 3,
demonstrate that UDAC achieves remarkable performance across all 9 datasets, outperforming the
state-of-the-art on 5 datasets (halfcheetah-medium, halfcheetah-medium-replay, walker2d-medium-
replay, hopper-medium-expert, and walker2d-medium-expert). Although UDAC performs similarly
to Diffusion-QL in risk-neutral tasks, it is designed primarily for risk-sensitive scenarios, and its
main strength lies in such situations. In contrast, UDAC leverages diffusion inside the actor to
enable expressive behavior modeling and enhance performance compared to CODAC and ORAAC.

5.4 HYPERPARAMETER STUDY IN RISK-SENSITIVE D4RL

We intend to investigate a crucial hyperparameter within the actor network, namely λ, in our ongoing
research. In Figure 6, we present an ablation study on the impact of this hyperparameter in risk-
sensitive D4RL. Our findings indicate that selecting an appropriate value of λ is critical to achieving
high performance as it balances pure imitation from the behavior policy with pure reinforcement
learning. Specifically, as λ→ 0, the policy becomes more biased towards imitation and yields poor
risk-averse performance, while as λ → 1, the policy suffers from bootstrapping errors leading to
lower performance. Our experiments suggest that values of λ in the range of [0.05, 0.5] tend to
perform the best, although the optimal value may vary depending on the specific environment. In
all MuJoCo experiments, we set the λ parameter, which modulates the action perturbation level, to
0.25 except for the HalfCheetah-medium experiment, where it was set to 0.5. However, as illustrated
in Figure 6, our results indicate that these values are not the best for all environments, but instead
perform well across most. Due to the page limit, the remaining hyperparameter studies on Risky
robot navigation can be found in Appendix D.2.
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Figure 2: The effect of the hyperparameter λ on the CVaR of returns varies across risk-sensitive
D4RL environments. When λ approaches 0, the policy imitates the behavior policy, resulting in
poor risk-averse performance. On the other hand, when λ approaches 1, the policy suffers from
the bootstrapping error, which leads to low performance. The optimal value of λ depends on the
environment.

5.5 DIFFERENT DISTORTED OPERATORS

In order to demonstrate the performance of UDAC in different distorted operators, we have selected
the risky environment - Risky PointMass and Risky Ant to conduct the experiments. We conduct
the experiments using a similar setting as mentioned in previous parts. And the results can be found
on Table 4. We can find that, the UDAC-Wang achieves similar performance with UDAC in the
Risky PointMass but slightly worse on Risky Ant. Based on the conclusions of previous studies (Ma
et al., 2021; Dabney et al., 2018a), it can be inferred that Wang’s risk preferences are marginally
more inclined towards risk-seeking when compared to the CVaR approach. This inference can be
attributed to the fact that Wang assigns a non-zero weight (although negligible) to quantile values
that exceed the risk cutoff threshold. On the other hand, the CPW approach can be regarded as being
similar to a risk-neutral strategy. This is because the CPW approach is designed to model human
game-play behavior, and thus does not explicitly incorporate risk preferences into its framework.

Table 4: Various distorted expectation

Algorithm Risky PointMass Risky Ant
Mean Median CVaR0.1 Violations Mean Median CVaR0.1 Violations

UDAC-Wang -6.1(2.2) -4.4(1.2) -15.2(2.4) 10(3) -407.5(38.5) -400.2(41.2) -653.5(58.2) 402.5(38.6)
UDAC-CPW -9.4(3.4) -6.6(2.5) -56.2(10.6) 104(22) -592.5(43.2) -489.2(47.7) -726.6(70.4) 501.6(45.6)

UDAC-Neutral -9.4(3.3) -4.8(1.5) -55.2(8.9) 99(14) -580.7(55.6) -458.5(50.5) -759.6(80.2) 592.9(57.5)
UDAC-CVaR -5.8(1.4) -4.2(1.3) -12.4(2.0) 0(0) -392.5(33.2) -399.5(40.5) -598.5(50.2) 291.5(20.8)

6 CONCLUSION AND FUTURE WORK

In this study, we propose a novel model-free offline RL algorithm, namely the Uncertainty-aware
offline Distributional Actor-Critic (UDAC). The UDAC framework leverages the diffusion model to
enhance its behavior policy modeling capabilities. Our results demonstrate that UDAC outperforms
existing risk-averse offline RL methods across various benchmarks, achieving exceptional perfor-
mance. Moreover, UDAC also achieves comparable performance in risk-natural environments with
the recent state-of-the-art methods. Future research directions may include optimizing the sampling
speed of the diffusion model (Salimans & Ho, 2022) or other directions related to the optimization
of the risk objectives.
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A SOME THEORETICAL ANALYSIS OF THE UDAC

We can observe that the distribution offline RL relies on the Bellman operator T π and the behavior
policy, we have the following important proposition of the UDAC.

Proposition 1. Assume that Qπ is the unique fixed point acquired by the T π as per Theorem 1, then
in the support region of the behavior policy πb, we denote the Q function of the behavior policy πb
as Qb and the Q function of the learned optimal policy Q∗

b . We have Qb ≤ Qπ ≤ Q∗
b .

Proposition 2. (Policy Improvement) For all (s, a) ∈ S × A, let Qπ(s, a) = E(Zπ(s, a)), we
have Qπold(s, a) ≤ Qπnew(s, a) when minimizing the difference between the policy distribution and
exponential form of soft action-value function. Where the π is defined in Equation (7).

Proposition 1 guarantees that the learned policy will perform at least as well as behavior policy,
and Proposition 2 shows that the soft policy improvement works under the distributional offline RL
setting. The proof can be found on the Appendix B.

B PROOFS

In order to prove the Proposition 1, we need the following theorem first.

Theorem 1. (Introduced by Bellemare et al. (2017)) The operator T π is a γ-contraction in dp,
which can converge to the optimal action-state value Q∗ by taking expectation E[Z].

B.1 PROOF OF THE PROPOSITION 1

Proof. According to the Theorem 1, we can find that Qb is the fixed point of the bellman operator
T Q(s, a) = R(s, a) + γEs′Ea′∼πb(·|s′)Q(s′, a′). Similarly, Q∗

b is the fixed point of the optimal
bellman operator T ∗(s, a) = R(s, a) + γEs′ [maxa′∼πb(·|s′)Q(s′, a′)]. Then, recall the definition,
T πQ(s, a) = R(s, a) + γEP (s′|s,a)π(a′|s′)[Q(s′, a′)]. It’s clear that T π ≥ T and T π ≤ T ∗. And it
leads to Qb ≤ Qπ ≤ Q∗

b

B.2 PROOF OF THE PROPOSITION 2

Proof. For any policy π (it was defined in Equation (7)) and its distribution Zπ , we define the
Qπ(s, a) as,

Qπ(s, a) = E(Zπ(s, a)) = E[R(s, a)] + γEP (s′|s,a)π(a′|s′)[Q(s′, a′)]. (12)

Now we have the old policy πold and its Q value Qπold . We obtain the new policy πnew by mini-
mizing the following difference (i.e.,the KL-divergence),

πnew(·|s) = argmin
π′

DKL

(
π′(·|s)∥exp (Q

πold(s, ·))
∆old(s))

)
. (13)

The ∆old is used to normalize the distribution. It can be transformed into the following,

πnew(·|s) = argmin
π′

DKL

(
π′(·|s)∥ exp (Qπold(s, ·))− log∆old(s))

)
. (14)

Since, πnew is the solution of the above equation, we have,

Ea∼πnew(·|s)

[
log πnew(a|s)−Qπold(s, a) + log∆old(s)

]
(15)

≤ Ea∼πold(·|s)

[
log πold(a|s)−Qπold(s, a) + log∆old(s)

]
. (16)

And we can further remove the ∆old(s) as it only related to s,

Ea∼πnew(·|s)

[
log πnew(a|s)−Qπold(s, a)

]
≤ Ea∼πold(·|s)

[
log πold(a|s)−Qπold(s, a)

]
. (17)
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Then, we extend it into the Bellman equation,

Qπold(st, at) = E(R(st, at)) + γEst+1∼P (·|st,at),at+1∼πold(·|st+1)[Q
πold(st+1, at+1)] (18)

≤ E(R(st, at)) + γEst+1∼P (·|st,at),at+1∼πnew(·|st+1)[Q
πold(st+1, at+1)] (19)

... (20)
≤ Qπnew(st, at) (21)

(22)

C IMPLEMENTATION DETAILS

In this section, we will describe the implementation details of the proposed UDAC.

Actor As mentioned in the main text, the architecture of the actor is,

πϕ(s) = λξ(·|s, β) + β, β ∼ πb,

where ξ : A → R∥A∥ (i.e., the traditional Q-learning component). And β is the output of the
behavioral model (i.e., the diffusion component).

If we want to integrate the proposed UDAC into an online setting, we can effortlessly remove the
β and set λ = 1. For our experiments, we construct the behavioral policy as an MLP-based condi-
tional diffusion model, drawing inspiration from Ho et al. (2020); Nichol & Dhariwal (2021). We
employ a 3-layer MLP with Mish activations and 256 hidden units to model ϵψ . The input of ϵψ is a
concatenation of the last step’s action, the current state vector, and the sinusoidal positional embed-
ding of timestep i. The output of ϵψ is the predicted residual at diffusion timestep i. Moreover, we
build two Q-networks with the same MLP setting as our diffusion policy, with 3-layer MLPs with
Mish activations and 256 hidden units for all networks. Moreover, as mentioned in the main body,
we set N to be small to relieve the bottleneck caused by the diffusion. In practice, we use the noise
schedule obtained under the variance preserving SDE (Song et al., 2020).

Critic For the critic architecture, we just follow the instruction on the ORAAC (Urpı́ et al., 2021)
with continuous action.

We use Adam optimizer to optimize the proposed model. The learning rate is set to 0.001 for
the critic and the diffusion, 0.0001 for the actor model. The target networks for the critic and the
perturbation models are updated softly with µ = 0.005.

D EXPERIMENTS DETAILS AND EXTRA RESULTS

D.1 EXPERIMENTS SETUP

The stochastic MuJoCo environments are set as follows with a stochastic reward modification. It
was proposed by Urpı́ et al. (2021), and the following description is adapted:

• Half-Cheetah: Rt(s, a) = rt(s, a)− 70Iv>v · B0.1. where rt(s, a) is the original environ-
ment reward, v is the forward velocity, and v is a threshold velocity (v = 4 for Medium
datasets and v = 10 for the Expert dataset). The maximum episode length is reduced to
200 steps.

• Walker2D/Hopper: Rt(s, a) = rt(s, a) − pI|θ|>θ · B0.1, where rt(s, a) is the original en-
vironment reward, θ is the pitch angle, and θ is a threshold velocity (θ = 0.5 for Walker2D
and θ = 0.1 Hopper). And p = 30 for Walker2D and p = 50 for Hopper. When |θ| > 2θ
the robot falls, the episode terminates. The maximum episode length is reduced to 500
steps.

The risky robot navigation is proposed by Ma et al. (2021), we just provide an illustration here
(see Figure 3) to better understand the goal of this task.

13



Under review as a conference paper at ICLR 2024

The experiments are conducted on a server with two Intel Xeon CPU E5-2697 v2 CPUs with 6
NVIDIA TITAN X Pascal GPUs, 2 NVIDIA TITAN RTX, and 768 GB memory.

Figure 3: Risky robot navigation

D.2 HYPERPARAMETERS

As the UDAC builds on top of ORAAC, we just keep ORAAC-specific hyperparameters identical to
the original work. For the remaining hyperparameters such as the learning rate and whether to use
max Q backup, please refers to our source code which is provided. Moreover, here we also provide
the hyperparameters study on the risky robot tasks.

Figure 4: The effect of the hyperparameter λ on the CVaR of returns varies across risky robot
navigation environments.

D.3 EXTRA EXPERIMENTS

We also conduct the experiments on the mixed datasets.
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Table 5: Performance of the UDAC algorithm on risk-sensitive offline D4RL environments using
medium, expert and mixed datasets. We compare the CVaR0.1 and mean of the episode returns, and
report the mean (standard deviation) of each metric. Our results indicate that across all environ-
ments, UDAC outperforms benchmarks with respect to CVaR0.1. Furthermore, in environments that
terminate, UDAC achieves longer episode durations as well.

Algorithm Medium Expert Mixed
CVaR0.1 Mean CVaR0.1 Mean CVaR0.1 Mean

H
al

f-
C

he
et

ah

O-RAAC 214(36)* 331(30) 595(191) 1180(78) 307(6) 119(27)
CODAC -41(17) 338(25) 687(152)* 1255(101)* 396(56)* 238(59)*

O-WCPG 76(14) 316(23) 248(232) 905(107) 217(33) 164(76)
Diffusion-QL 84(32) 329(20)* 542(102) 728(104) 199(43) 143(77)

BEAR 15(30) 312(20) 44(20) 557(15) 24(30) 324(59)
CQL -15(17) 33(36) -207(47) -75(23) 214(52) 12(24)
Ours 276(29) 417(18) 732(104) 1352(100) 462(48) 275(50)

W
al

ke
r-

2D

O-RAAC 663(124) 1134(20) 1172(71) 2006(56) 222(37) -70(76)
CODAC 1159(57) 1537(78)* 1298(98)* 2102(102)* 450(193)* 261(231)*

O-WCPG -15(41) 283(37) 362(33) 1372(160) 201(33) -77(54)
Diffusion-QL 31(10) 273(20) 621(49) 1202(63) 302(154) 102(88)

BEAR 517(66) 1318(31) 1017(49) 1783(32) 291(90) 58(89)
CQL 1244(128)* 1524(99) 1301(78) 2018(65) 74(77) -64(-78)
Ours 1368(89) 1602(85) 1398(67) 2198(78) 498(91) 299(194)

H
op

pe
r

O-RAAC 1416(28)* 1482(4) 980(28) 1385(33) 876(87) 525(323)
CODAC 976(30) 1014(16) 990(19) 1398(29) 1551(33)* 1450(101)*

O-WCPG -87(25) 69(8) 720(34) 898(12) 372(100) 442(201)
Diffusion-QL 981(28) 1001(11) 406(31) 583(18) 1021(102) 1010(59)

BEAR 1252(47) 1575(8)* 852(30) 1180(12) 758(128) 462(202)
CQL 1344(40) 1524(20) 1289(30)* 1402(30)* 189(63) -21(62)
Ours 1502(19) 1602(18) 1302(28) 1502(27) 1620(42) 1523(90)
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