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ABSTRACT

Practitioners have become aware that self-supervised learning techniques using
multiple views (created through augmentation) outperform reconstruction-based
methods on downstream tasks. Intuitive arguments suggest this is due to the di-
mensionality of the observation space. Another theoretical line of attack is through
work on provable disentanglement under the assumption original image is recov-
erable from each view. We extend these arguments to the case where the assump-
tions are dropped. To do this we connect to traditional statistical theory by casting
SSL as a method for learning sufficient statistics. This allows us to show when
exact recoverability is not possible SSL representations are (information theo-
retically) equivalent to posterior distributions. We demonstrate, in a toy model
with known data generating process, even as the original data becomes corrupted
by noise the SSL representations remain correlated with the posterior distribu-
tion. We further demonstrate that the representations specifically correlate with
the posterior variance, indicating uncertainty is being encoded. We believe this
viewpoint can shed new light on the question on when reconstruction-methods
fail, for example, when likelihoods are difficult to represent but sampling is cheap
and sufficient statistics are simple.

1 INTRODUCTION

One of the main goals of representation learning is to encode the latent structure causing the data-
generation process. In recent years, self-supervised learning (SSL) has emerged as the main ap-
proach to learning useful representations in unsupervised settings (Assran et al., 2023; Bardes et al.,
2022; Ermolov et al., 2021; Liu et al., 2022; Zbontar et al., 2021; Chen et al., 2020). SSL represen-
tations can generalize well across multiple downstream tasks, even reaching the supervised baseline
in some cases.

As opposed to reconstruction-based methods, SSL doesn’t encode an explicit generative model; in-
stead, it leverages some underlying structure in the data to create a supervisory signal that highlights
certain features over others. One popular strategy is to generate multiple views from the same ob-
servation to learn a joint representation that captures the redundant information while discarding
view-specific information (Federici et al., 2020; Hjelm et al., 2019; Oord et al., 2019). In this pro-
cess, multi-view SSL exploits the invariant information across views to make some part of the input
predictable from another part.

The failure of reconstruction-based models is often attributed to the difficulty of building “good-
enough” generative models of high-dimensional data. Balestriero & LeCun (2024); Shwartz-Ziv
et al. argue that a main challenge in generative modelling is to capture the relevant directions of
variance in the data, or “perceptual features”, which often misalign with those in service of recon-
struction. In the context of variational inference, it has been shown that maximizing the ELBO is
not a guarantee of learning good posterior approximations (Zhao et al. (2018; 2017)). This posits
some doubts about the role of reconstruction in learning useful representations. Similarly, it has
been suggested that reconstruction-based objectives are ill-posed when the data is generated from
a lower-dimensional manifold Loaiza-Ganem et al. (2024). More generally, constraints such as
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limited encoding capacity or misspecified likelihood models can hinder the learning of useful repre-
sentations in latent variable models.

In this work, we rely on traditional statistical theory to cast SSL as a method for learning sufficient
statistics. We formalize the concept of minimal sufficient statistics in the context of multiple views
and their relation to traditional sufficiency. We show theoretically how in unconstrained scenarios
multi-view SSL methods recover the full posterior distribution up to a deterministic transformation.
Finally, we design two toy models to illustrate these theoretical claims.

1.1 RELATED WORK

SSL and inversion of the data-generation process. We build up on previous work on contrastive
learning and implicit data modelling. They show that under certain assumptions, SSL recovers
the data-generation process (Zimmermann et al., 2022). Similarly, (Kügelgen et al., 2022) demon-
strate that SSL can disentangle irrelevant from relevant information by implicitly inverting the data-
generation process. This line of work shows that SSL learn an implicit generative model of the
data.

Likelihood-free inference and contrastive learning. Likelihood-free inference rely on a simulator
to approximate the posterior distribution when the likelihood is intractable (Thomas et al. (2020);
Gutmann et al. (2018); Hermans et al. (2020); Greenberg et al. (2019)). Zimmermann et al. (2022)
unify different likelihood-free inference methods under a contrastive learning framework.

Bayesian Inference and SSL. Recent work has examined the relation between Bayesian inference
and contrastive learning. Walker et al. (2023); Aitchison & Ganev (2023) rely on a recognition
parametrized to learn a latent variable model without explicitly defining a generative model.

Multi-view SSL. Federici et al. (2020) explore multi-view SSL from an information theory perspec-
tive. In particular, they extend the information bottleneck hypothesis to the multi-view setting and
define minimal sufficient statistics as superfluous and predictive information respectively.
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Figure 1: Schematic representation of the correspondence between multiview self-supervised learn-
ing and Bayesian Inference. The multiview representation can be converted to the local latent vari-
able model by marginalising over augmentations, while in the other direction we can produce multi-
ple views by sampling with the latent variable fixed. Our main result uses the notion of sufficiency to
show there exists a deterministic mapping between the representation t and the posterior parameters
λ.

2 BACKGROUND

2.1 SUFFICIENCY

Classically, sufficient statistics are functions of the data which maximally preserve the ability to
discriminate between a set of hypotheses, while minimal sufficient statistics aim to discard any
information not useful for this task. Formally, for a set of models {pθ(x) | θ ∈ Θ} a function t(x)
is sufficient if p(x | t, θ) = p(x | t) for every θ ∈ Θ. While t is minimal if for any other statistic
s there exists a function f(s) = t. This definition immediately implies that minimal sufficient
statistics satisfy a type of uniqueness or universal property which we will apply to show there must
be a mapping between SSL representations and posterior parameters.
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There is a tight link between information theory and sufficiency. Indeed Kullback & Leibler (1951),
building on Halmos & Savage (1949), introduced their eponymous divergence to give an alternate
characterisation of sufficiency. They showed, in modern notation, that t is sufficient iff I[X; θ] =
I[T ; θ]. Which follows from an application of the data processing inequality. Similar arguments
show that if t is sufficient and I[X;T ] = I[X; θ] then T is minimal.

These qualities are useful for analysing modern self-supervised techniques. For example, it has
previously pointed out by Shamir et al. (2010) that the Information Bottleneck method:

LIB [t] = I[X;T ]− βI[T ; θ] (1)

generalises classical sufficient statistics. Intuitively, the term I[T ; θ] chooses functions that capture
information about the parameter of interest, while I[X;T ] favours compression, or minimality.

2.2 SSL OBJECTIVES

Self-supervised methods that use augmentations are often related to either the information bottleneck
or to the infomax principle. Most prominently the Multiview-IB (Federici et al., 2020):

LmIB [t] = I[X;T | X ′]− βI[T ;X ′] (2)

which aim to capture the notion of sufficiency through views X , X ′ of the data. Federici et al.
(2020) showed under the assumption each view is ‘redundant’ with respect to the other and T is
sufficient for (X,X ′) (i.e. I[X;X ′ | T ] = 0) then T is sufficient for θ.

More generally infomax methods simply aim to maximise I[T ; θ], in this paper we will mainly
consider the InfoNCE objective (Oord et al., 2019; Chen et al., 2020): z for some kernel function k,
where pos samples are drawn from a common latent and neg samples are drawn independently from
the joint, which is a lower bound on the the mutual information I[T ; θ] ≥ −LNCE . Finally Shwartz-
Ziv et al. also studied how VICReg (Bardes et al., 2022) can be seen as approximate infomax under
certain assumptions.

2.3 BAYES OPTIMALITY

On the other hand optimality properties of the bayesian posterior in information processing (Zellner,
1988), optimal control (Striebel, 1965), point estimation (Lehmann & Casella, 1998) and decision
theory (Bernardo & Smith, 2009) often rely on the notion the posterior distribution contains the
‘optimal’ amount of information about the data with respect to the prior. Here we show a similar
result specialised to the setting of finite dimensional variational inference. We show Lemma 1 that
if Q = {qλ(θ)}λ∈Λ is a variational family, and t : X → Λ is the amortised posterior mapping, then
t is a minimal sufficient statistic.

To connect these notions, similarly to Kügelgen et al. (2022); Zimmermann et al. (2022), we intro-
duce a correspondence between latent variable models and self-supervised learning with augmenta-
tions Figure 1. Specifically, we identify the underlying distribution before augmentations with draws
from a prior distribution θ1:n ∼ π, while the views are samples from a likelihood xi, x′i ∼ l(x | θi).
This likelihood function can be explicitly related to an augmentation process. We assume there is a
conditional density s ∼ f(x | θ, s) indexed by an augmentation parameter s, where s is also sampled
from some distribution Ps. The likelihood function can then be identified with the marginalised
distribution l(x | θ) = Eps [f(x | θ, s)].

3 THEORY

Our main result is to show in certain situations multi-view SSL methods recover the posterior distri-
bution up to a deterministic transformation. We need the following assumptions:

Assumption 1. For any θ1, θ2 ∈ Θ there exists x, x′ ∈ X such that the likelihood ratio’s are not
equal:

l(x′ | θ1)
l(x′ | θ2)

̸= l(x | θ1)
l(x | θ2)
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Assumption 2. There is a statistical manifold Q = {qλ(θ) | λ ∈ Λ}, with Λ ⊂ Rd and a unique
continuous amortisation map x 7→ λ such that p(θ | x) = qλ(θ)

Proposition 1 (Multiview Posteriors). Given the assumptions, suppose tβ minimises Equation (2)
for some prior and augmentation procedure (π, f) there exists β and an invertible function gπ :
T → Λ such that p(θ | x) = qgπ(tβ(x))(θ).

Proof Sketch First, Assumption 2 guarantees that the amortisation map is a minimal sufficient
statistic. So if we can show tβ is also a minimal sufficient statistic then we can gaurantee the
existence of fπ . Minimal sufficiency of tβ for the other view,X ′, follows from the fact the Multiview
Bottleneck Equation (2) is a generalisation of the information bottleneck. Assumption 1 guarantees
that any information useful for predicting X ′ is also useful for discriminating θ hence tβ is minimal
sufficient for θ.

We extend this result to InfoNCE by exploiting the equality condition of Donsker-Varadhan rep-
resentation which shows that the optimal t is again (X,X ′) sufficient. This allows us to use the
majority of the previous argument, however since we do not have minimality, the function is not
invertible. This reflects a limitation of infomax methods, which do not penalise superfluous infor-
mation, as discussed by Federici et al. (2020). In the case of exact recoverability (Kügelgen et al.,
2022), this reflects the assumption that the dimension of the latent variable is known a-priori.

Proposition 2 (InfoNCE Posteriors). Given the assumptions, suppose t minimises Equation (12)
for some prior and augmentation procedure (π, f), there exists a function gπ : T → Λ such that
p(θ | x) = qgπ(tβ(x))(θ).

4 EXPERIMENTS
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Figure 2: Generative process toy models.

We based our toy models on Kügelgen et al. (2022) to show that InfoNCE approximates, up to a
linear transformation, the sufficient statistics learned by stochastic variational inference (SVI) with
access to the ground truth generative model. We choose a multivariate normal Gaussian with an
identity covariance matrix as our mean-field variational posterior. Figure 2 describes the multi-
view generative process. We assume that the parameter of interest is c, and both s and s′ contain
the irrelevant (or view-specific) information to be discarded by InfoNCE. Following Figure 1, SVI
marginalizes over s and s′ to get rid of the irrelevant information in the observations, similarly as
InfoNCE does. Thus, the aim is to infer c from noisy observations x and x′. Throughout both
experiments, we set the dimensionality of c, s, and s′ to 5 and we define fθ as an MLP (see B for
details).

4.1 TOY MODEL 1

In the first experiment, we set the latent dimension of our InfoNCE model to the same size as µ in
SVI (5). For different noise scales σ, we measure the R2, up to linear transformation, between: i)
SV Iµ and c; ii) InfoNCE and c; and iii) SV Iµ and InfoNCE. By gradually increasing the noise, we
expect i) and ii) to degrade accordingly, while iii) remains constant. This would indicate that both
InfoNCE and SVI converge to the same parameter estimates, thus encoding the same information.
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Figure 3: Linear R2 between the true relevant parameter c and InfoNCE and SV Iµ (orange and
green lines respectively). The blue line shows the linear R2 between InfoNCE and SV Iµ. We test
this for different fθ: a) the identity; b) a linear transformation; c) linear transformation plus a tanh
function; d) linear transformation plus a leaky relu function. The same pattern emerges across all
configurations: the predictability between SV Iµ and InfoNCE remains stable as the noise scales up.

Indeed, Figure 3 shows that the predictability between InfoNCE and SV Iµ is noise-robust as their
predictability remains fairly stable. In addition, their predictability of c degrades at a similar rate.
This result suggests that both methods capture similar information about c.

4.2 TOY MODEL 2

In the next experiment, we test the ability of SSL to encode uncertainty. This is key
to evaluate whether SSL learns to model uncertainty as part of the process of recover-
ing sufficient statistics. For this purpose, we introduce uncertainty in the generative pro-
cess by partially collapsing information in the observation space through a bottleneck in fθ.

Figure 4: R2 score between SVI and
SSL as the number of SSL latent dimen-
sions increases. We include the σ pa-
rameters of the SVI to test whether extra
SSL latent variables encode any uncer-
tainty.

In particular, we first sample an observation x ∼
N (z, Iσ) which is then non-linearly transformed into a 5-
dimensional space (instead of 10): dim(fθ) = 5. We set
σ = 0.001 to reduce the noise interference and ease the
task. Since this data-generation process creates some in-
trinsic uncertainty about the true parameters, we measure
the R2, up to linear transformation, between the whole
set of parameters learned by SV Iµσ (means and vari-
ances) and the latent variables of InfoNCE. In particular,
we sweep across different latent sizes to see whether ex-
tra latent dimensions encode any uncertainty modelled by
SVI.

Figure 4 shows that as the number of latent dimensions
increases, SSL predicts more accurately the full poste-
rior distribution learned by SVI (green line). This result
suggests that SSL can encode a richer representation by
modelling uncertainty. As there are no disentanglement
guarantees in the SSL latent space, it is expected to see
an increase in the mean estimates as well (i.e., a latent di-
mension might encode mean and variance information), shown by the blue line. We speculate that
the increased complexity introduced by the bottleneck in the MLP is the reason why, for a latent di-
mension of 5, the difference in R2 between SVI and InfoNCE is significant (blue lines in Figure 3d
and Figure 4 respectively).

5 LIMITATIONS AND DISCUSSION

While we aimed to elucidate the connection between SSL, sufficient statistics and posteriors, we
required several restrictive assumptions. Importantly, we assumed that the task was simple enough
i.e. finite dimensional posteriors exist, and that the encoders were expressive enough to recover
sufficient statistics. We realise the true advantage of SSL based methods might be in the case where
neither of these assumptions hold. On the other hand, a useful feature of Bayesian inference is it’s
sensitivity to different priors. This could be particularly important in control tasks where epistemic
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uncertainty is constantly updated in the face of new data. Finally, our experiments were limited
to toy models where we could extract ground truth posterior estimates, it is an unclear, but poten-
tially interesting question, how one would extract uncertainty estimates without access to the data
generating process.
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A APPENDIX

You may include other additional sections here.

A.1 BAYESIAN INFERENCE AS SUFFICIENT STATISTICS

General setup and notations, we will work with a statistical manifold P = {pθ(x) | θ ∈ Θ} of
densities with respect to a common measure space (X,ΣX , µ), and Θ is assumed to be a lebesgue
measurable subset of euclidean space. Often we will also have a π which we assume to be abso-
lutely continuous with respect to the lebesgue measure. We will be considering functions t : X → Y
which are (X ,Σx) measurable. Finally as in variational inference we will consider a second statis-
tical manifold Q = {qλ(θ) | λ ∈ Λ} we again assume Λ is lebesgue measurable.

For our purposes we will start from the conclusion of the neyman pearson factorisation theorem
(Neyman et al., 1997).
Definition A.1. Let P = {pθ(x) | θ ∈ Θ} be a set of density functions with respect to a
common measure µ on X . Then a µ measurable function t : X → Y is sufficient for P if
pθ(x) = fθ(t(x))g(x) for all pθ ∈ P

Definition A.2. A sufficient statistic is minimal if for any other sufficient statistic, s : X → Z there
exists f : Z → Y , such that t = f ◦ s, i.e. T = f(S)

As a straightforward consequence the posterior density pπ(θ | x) = pπ(θ | t(x)), which we assume
exists.
Lemma 1. Suppose Q = {qλ(θ) : λ ∈ Λ} is a statistical manifold indexed by Λ and given a prior
π define the map

t :X → Λ

x 7→ λ : pπ(θ | x) = qλ(θ) π a.s.

if it exists and is continuous (e.g. a neural network), then t is a sufficient statistic, further if for any
x there is a unique λ then t is minimal.

8

https://proceedings.mlr.press/v206/walker23a.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://www.jstor.org/stable/2685143
https://www.jstor.org/stable/2685143
http://arxiv.org/abs/1702.08658
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/2102.08850
http://arxiv.org/abs/2102.08850


Published as a conference paper at ICLR 2025

Proof. Measurability follows from continuity. Next for sufficency, note pπ(x, θ) = pπ(θ | x)p(x) =
qλ(θ)p(x) where pπ(x) =

∫
pπ(x | θ)dπ therefore p(x | θ) = 1

π(θ)qλ(θ)pπ(x)

For minimality, suppose s is sufficient so that pπ(θ | x) = pπ(θ | s(x)), by assumption there exists
a unique λ : qλ(θ) = p(θ | s) so fπ : s 7→ λ is well defined.

Lemma 2 (Information theoretic equivalents). Suppose P is a convex set TFAE:

1. t is a sufficient statistic

2. I[X; θ] = I[T ; θ] for all π

3. I[X; θ | T ] = 0 for all π

and t is minimal sufficient iff I[X;T ] = mint′∈S I[X;T ′], where S is the class of sufficient statistics.

Proof. For sufficiency 1. ⇐⇒ 2.: Kullback & Leibler (1951) We have DKL[p(x | θ1) || p(x |
θ2)] = DKL[p(t | θ1) || p(t | θ2)] for all θ1, θ2 iff t is sufficient. Then note pπ(x) =

∫
p(x | θ)dπ ∈

P by convexity so there exists θ′ such that pπ(x) = p(x | θ′). This means I[X; θ] = Eπ[DKL[p(x |
θ) || p(x | θ′)]] = Eπ[DKL[p(t | θ) || p(t | θ′)]] z t is sufficient.

2 ⇐⇒ 3. is an application of the d.p.i. I[X; θ | T ] = I[θ; (T,X)]− I[θ;T ] = I[X;T ]− I[X; θ]

The minimality statement, due to Shamir et al. (2010).

Lemma 3 (IB, Shamir et al. (2010)). Suppose

t(β) ∈ argmin
t∈F

I[X;T ]− βI[θ;T ] (3)

and the class F is large enough, there exists βc s.t. t(β) is minimal sufficient on supp(π) for any
β ≥ βc.

A.2 MULTIVIEW SUFFICIENCY

For the multiview environment we suppose we have an underlying data distribution π(θ) and a
markov kernel (produced by augmentations) l(x | θ) =

∫
p(x | s, θ)p(s)ds. On a single draw

θ′ ∼ π(θ) we assume access to a set of views x1:n ∼ l(x | ·)
Assumption 3. For any θ1, θ2 ∈ Θ there exists x, x′ ∈ X such that the likelihood ratio’s are not
equal:

l(x′ | θ1)
l(x′ | θ2)

̸= l(x | θ1)
l(x | θ2)

(4)

Or in multiview terms:
Eps [f(x | θ1, s)]
Eps

[f(x | θ2, s)]
̸= Eps [f(x

′ | θ1, s)]
Eps

[f(x′ | θ2, s)]
(5)

Definition A.3 (Multiview Sufficiency). We call t : X → Y multiview sufficient for (X,X ′) if for
any π(θ) the induced distribution pπ(x, x′) =

∫
l(x | θ)l(x′ | θ)π(θ)dθ factorises pπ(x, x′) =

f(t(x), x′)h(x) and minimal if for any other multiview sufficient s, ∃f such that f(s) = t.

Lemma 4 (Multiview sufficiency). Under Assumption 3. If t is multiview sufficient then it is also
sufficient for θ.

Proof. First note for dominated sets of measures pairwise sufficiency implies sufficiency Halmos &
Savage (1949). So it is sufficient to consider whether t is sufficient for l(x | θ1), l(x | θ2) and hence
any discrete prior over this set. Then since t is sufficient for x′ we have:∑

i=1,2

[p(θi | x)− p(θi | t)]l(x′ | θi) = 0 (6)
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Let ϵ(θi) = p(θi | x)− p(θi | t), then Equation (6) implies either ϵ(θi) = 0 for i = 1, 2 or:

−ϵ(θ1)
ϵ(θ2)

=
l(x′ | θ1)
l(x′ | θ2)

∀x′ (7)

Since the l.h.s is independent of x′ we can rule this out by Assumption 3, hence ϵ(θi) = 0 and
p(θi | x) = p(θi | t).

Lemma 5 (Minimal multiview sufficiency). If t is multiview minimal sufficient for (X,X ′) and
Assumption 3 holds then t is minimal sufficient for θ

Proof. First note if t is sufficient for θ then it is also multiview sufficient. Since X − T − θ −X ′

forms a markov chain. Now if S is an (X, θ) sufficient statistic then it is an (X,X ′) sufficient
statistic by Lemma 4, so there exists T = f(S), hence T is minimal.

Proposition 3 (Multiview IB). Suppose Assumption 3 holds and (given a distribution π),

t(β) ∈ argmin
t∈F

I[T ;X | X ′]− βI[X ′;T ] (8)

there exists βc s.t. t(β) is minimal sufficient on supp(π) for any β > βc.

Proof. By Lemma 5 we just need to show minimal sufficiency for (X,X ′) however this holds
by first noting I[T ;X] = I[T ;X | X ′] − I[X ′;T ], so for fixed I[X ′;T ] minimising I[T ;X] is
equivalent to minimising I[T ;X | X ′] so we can apply the logic of Lemma 3.

Corollary 1 (Multiview Posteriors). Suppose the conditions of Proposition 3 with β > βc and
a statisitical manifold Q = {qλ(θ) : λ ∈ Λ} there exists a function fπ : T → Λ such that
p(θ | x) = qfπ(tβ(x))(θ).

Proof. By Proposition 3 tβ is sufficient for (X, θ), and by Lemma 1, the map ψ to the parameter
manifold is a minimal sufficient statistic, so there exists ψ = f ◦ tβ

A.3 OTHER FUNCTIONALS

A.3.1 VICREG

Lemma 6 (Invariance Term). E[ 12 (t(X)− t(X ′))
2 | θ] = V ar[T | θ] and hence

E[ 12 (t(X)− t(X ′))
2
] = Eπ[V ar[T | θ]]

Proof. Let µ = E[T (X) | θ then:

E[(t(X)− t(X ′))
2 | θ] = E[(t(X)− µ+ µ− t(X ′))

2 | θ] (9)

= E[(t(X)− µ)
2
+ (t(X ′)− µ)

2
+ (t(X)− µ)T (µ− t(X ′)) | θ] (10)

= 2V ar[T | θ] + E[E[(t(x)− µ)T (µ− t(X ′)) | X = x] | θ]︸ ︷︷ ︸
0

(11)

(Intuition) Note for conditionally gaussian random variables (T, θ) we have Eπ[lnV ar[T | θ]] =
H[T | θ] + C. Next supposing the regulariser can be satisfied exactly E[t(X)t(X)T ] = I , and
that T is also marginally gaussian then we have H[T ] = C and I[T ; θ] ∝ −Eπ[lnV ar[T | θ]] ≤
− lnEπ[V ar[T | θ]] and so under these assumptions we are in the infomax case, see Zbontar et al.
(2021).
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A.3.2 INFONCE

Lemma 7. Suppose Assumption 3 holds and for some π,

t ∈ argmin
t∈F

−Ep[t(X)tt(X ′)] + lnEq[e
−t(X)tt(X′)] (12)

Then t is sufficient for θ on supp(π).

Proof.

L(t) = EX′

−Ep[t(X)tt(x′) | X ′ = x′] + lnEq[e
−t(X)tt(x′) | X ′ = x′]︸ ︷︷ ︸

f(t,X′)

 (13)

then −f(t,X ′) ≤ DKL[Px′ || Q] and −L(t) ≤ I[X;X ′] where Px′(dx) = p(x | x′)dx and
Q(dx) = p(x) by Donsker-Varadhan representation. Further equality is achieved iff p(x|x′)

p(x) =

et(x)tt(x′)

Z where Z = Ep[e
t(x)tt(x′)] therefore p(x | x′) = p(x)f(t(x), t(x′)) which is the factorisa-

tion condition for sufficiency on (X,X ′) then applying Lemma 4.

Corollary 2 (InfoNCE Posteriors). Suppose the conditions of Proposition 3 there exists a function
fπ : T → Λ such that p(θ | x) = qfπ(tβ(x))(θ).

Proof. By Lemma 7 tβ is sufficient for (X, θ), and by Lemma 1, the map ψ to the parameter mani-
fold is a minimal sufficient statistic, so there exists ψ = f ◦ tβ

B EXPERIMENT DETAILS

For the first task, we define three types of fMLP : identity, fully connected layer (10,10), and two
fully connected layers (10,10) with an intermediate nonlinear activation function. For the InfoNCE
encoder, we chose between 2 different architectures depending on whether the MLP includes a non-
linearity. In the identity or linear case the architecture is defined as: Dense(10, 1024), Dense(1024,
10). For the nonlinear scenario we do the following: Dense(10, 1024), nonlinearity, Dense(1024,
1024), nonlinearity, Dense(1024, 1024), nonlinearity, Dense(1024, 10).

For the second task, we collapse the second MLP weight matrix by creating a mapping from 10 to 5
dimensions. The schematic architecture here is the following: Dense(10, 10) - leaky relu - Dense(10,
5). The encoder here uses a leaky relu and has the same structure as in the first task.

Across all experiments we trained the SSL for 20k steps, with a learning rate of 0.0001 using Adam
optimizer. To train the SVI model we rely on the SVI class of Numpyro and we use build in loss
function Trace ELBO. We set the learning rate to 0.0005 using the Adam optimizer. Then we do
10k inference steps on a data point per data point basis for over 1k datapoints. Similarly, we get the
latent representations of the SSL for that same data to compute theR2 score between each approach.

To make sure extra latent dimensions learn to capture uncertainty and it’s not due to a byproduct
of increasing latent size, we measure the R2 for an untrained InfoNCE network. As can be seen in
Figure 5, the SSL encodings obtained with random weights is significantly lower than the one we
report in Figure 4.
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Figure 5: Baseline comparison for the second toy model.
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