
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACHIEVING EXACT FEDERATED UNLEARNING WITH
IMPROVED POST-UNLEARNING PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning is a machine learning paradigm that allows multiple clients
to train aggregated model via sharing model updates to a central server without
sharing their data. Even though the data is not shared, it can indirectly influence
the aggregated model via the shared model updates. In many real-life scenarios, we
need to completely remove a client’s influence (unlearning) from the aggregated
model, such as competitive clients who want to remove their influence from the
aggregated model after leaving the coalition to ensure other clients do not benefit
from their contributions. The influence removal is also needed when the adversarial
client negatively affects the aggregated model. Though the aggregated model can
be retrained from scratch to ensure exact unlearning (completely removing the
client’s influence from the aggregated model), it performs poorly just after the
unlearning, which is undesirable during deployment. To overcome this challenge,
this paper proposes federated unlearning algorithms that ensure exact unlearning
while achieving better performance post-unlearning. Our experimental results on
different real datasets validate the performance of the proposed algorithms.

1 INTRODUCTION

An individual user may have insufficient data to train a state-of-the-art machine learning model. Yet,
we can significantly improve the model performance by leveraging the combined data from multiple
users. Federated learning (FL) (Zhang et al., 2021) is one of the most prevalent paradigms to perform
such collaboration today, especially in sectors with strong privacy demands such as finance and health
care (Li et al., 2020; Xu et al., 2021). In the FL setting, collaborative clients train local models on
their own data, and a central server model is obtained by aggregating these local model updates for
multiple communication rounds. FL is well-suited for many commercial applications as it eliminates
the need to share users’ private data during training. For example, multiple companies from the same
industrial sector (e.g., banking, insurance, or healthcare) often possess diverse user data. To leverage
all available data, these companies can collaborate and train a more accurate model using suitable FL
algorithms (Aledhari et al., 2020).

Although FL algorithms do not directly access users’ data, the aggregated model is still influenced by
the local models trained on each client’s data. When a client leaves the collaboration, it is necessary
to update the aggregated model to remove the influence of its data–a process known as federated
unlearning (FU),1 e.g., a company leaving the collaboration of many companies may demand the
removal of their contributions to ensure their competitors do not benefit from them. FU techniques
are also desirable to remove the influence of adversarial clients, i.e., the adversary behaves like a
client and degrades the model performance by contributing contaminated updates (Fang et al., 2020).
Additionally, the development of FU techniques facilitates the exercise of the right to be forgotten
formalized in many regional or government data regulations such as GDPR (2016) and CCPA (2018).

We can trivially achieve FU by retraining the collaboration from scratch without the target client’s
data (Liu et al., 2023). Despite its simplicity, the new server model suffers from low performance as
it is restarted with random initialization. As a result, it slows down the deployment of the unlearned
model, as training large models on the collaboration of many users can be time-consuming. Due to

1This differs from the typical FL setting, where clients may be intermittently active or inactive during the
training process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

these shortcomings, it is natural to consider the following question: How can we guarantee the exact
federated unlearning while ensuring better post-unlearning performance?

This paper proposes two novel methods for achieving exact FU with improved post-unlearning
performance. The first method, Bi-Models Training (BMT) (Section 3.1), preserves isolated copies
of local models and reuses clients’ existing knowledge residing in these models during unlearning
for better aggregation. Despite being unlearning-friendly, these local models fail to capture the joint
influence of multiple clients on the global model. Training the power set of clients can capture the
influence of all possible influences of the clients but is computationally expensive and may lead
to double influence, where a client affects multiple sub-FL models. As a result, we propose the
second method, Multi-Models Training (MMT) (Section 3.2), that trains each sub-FL model on disjoint
subsets of clients to avoid double influence and aggregates the best sub-FL models upon unlearning to
achieve improved initialization of the aggregated model. We empirically justify the effectiveness of
BMT and MMT through multiple experiments on real-world vision and language datasets (Section 4).

1.1 RELATED WORKS

In this section, we now review the relevant work, especially in federated learning, machine unlearning,
and federated unlearning, to our problem setting.

Federated Learning (FL). FL emerges from the industrial needs to train centralized models on
large, decentralized data residing on users’ device (McMahan et al., 2017) and is particularly favored
in sectors requiring strong privacy guarantees, such as finance and health care (Li et al., 2020; Xu
et al., 2021). Based on the characteristics of the decentralized data, Yang et al. (2019) divided FL into
three categories: horizontal FL, vertical FL, and federated transfer learning. To optimize the federated
models, McMahan et al. (2017) proposed the FedAvg algorithm that averages local updates from
contributing clients and works well on independent and identically distributed (i.i.d.) data. However,
as real-world data is often heterogeneous (e.g., users with different demographics), subsequent works
have proposed new methods that target model architecture or algorithm design to alleviate model drift
that can degrade model performance (Zeng et al., 2023; Mu et al., 2023; Idrissi et al., 2021; Li et al.,
2021; Karimireddy et al., 2020). We refer the readers to Zhang et al. (2021) for a detailed survey of
various works covering different settings of federated learning.

Machine Unlearning (MU). MU aims to remove the influence of a selected subset of data from
the trained ML model. Based on the guarantee of removal, MU methods are broadly categorized
into exact unlearning and approximate unlearning (Nguyen et al., 2022; Wang et al., 2024). In
exact unlearning, we aim for an identical model to one that would have been obtained by retraining
without that data to be erased. Retraining is a method that trivially achieves exact unlearning but is
computationally expensive with large models and datasets. Existing works can exactly unlearn for
support vector machines (Cauwenberghs & Poggio, 2000), k-means (Ginart et al., 2019), random
forests (Brophy & Lowd, 2021). Bourtoule et al. (2021) partitions the entire training data set into a
few disjoint subsets and trains one base model with each of these subsets. Since each base model
is only trained with a subset of the original training data, the performance may be sub-optimal.
Approximate unlearning aims for a model whose distribution closely resembles that of the retrained
model. Guo et al. (2020) proposed a certified removal method to approximately unlearn linear model
by Newton-like update. Nguyen et al. (2020) minimizes the KL divergence between the approximate
posterior of the unlearned model and the retrained model under the variational inference framework.

Federated Unlearning (FU). Many recent works adapt machine unlearning to the federated learning
settings (Liu et al., 2020; Wang et al., 2021; Gong et al., 2021). Liu et al. proposed FedEraser, which
involves using historical updates from the server and local calibration training on the unlearned client.
The federated unlearning protocol proposed in this work can be used to unlearn an arbitrary subset of
clients without any constraint on the type of data each client possesses. At the same time, it requires
no participation of the unlearned client. Wang et al. proposed a channel pruning-based method to
selectively forget a specific class from the trained ML model. Such an approach has limited scope as
it is impractical to assume that each participant in the FL setting possesses precisely one class of data.
Gong et al. concerned with the setting where no centralized party/server is present, which does not
apply to the centralized FL setting. In terms of exact federated unlearning, Xiong et al. (2023) and
Tao et al. (2024) use quantization and sampling strategies, respectively, to get a checkpoint during
the FL training where the unlearned client’s data have not made a quantifiable impact and use it

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as initialization for model retraining and since speed up the retraining process. On the other hand,
Qiu et al. (2023) proposed to cluster the clients and train a few intermediate FL models and then
subsequently obtain the global FL model through one-shot aggregation. At the unlearning stage, only
the intermediate FL model where the unlearning client is present is retrained (and hence reducing the
retraining cost). Our proposed method touches on both ideas and uses aggregation of a few sub-FL
models to obtain a good initialization for much more efficient retraining. The way we obtained our
sub-FL models trades-off between computation budget and post-unlearning performance, played an
essential role in ensuring its effectiveness.

2 PROBLEM SETTING

Federated Learning. This paper considers the centralized federated learning (FL) setting with a
trusted central server and multiple clients. In this setting, a central server shared an aggregated model
with the clients and then each client trains this model on his dataset and send model updates (weights
or gradients) to the central server, which then aggregates these updates to get a better aggregated
model. In our setting, we assume that the number of clients participating in FL process varies over
time. Let Ct denote the set of participating clients at the beginning of the FL communication round
t. An FL communication round (communication round for brevity) represents one cycle of model
sharing by the central server with clients and then receiving the updated aggregated model.

Each client c ∈ Ct has training dataset Dc,t with nc,t labeled samples, where each sample is drawn
from the distribution νc over X × Y . Here, X represents the input space, and Y represents the label
space. The learning model is denoted by hθ : X → Y for model parameters θ ∈ Rd, where d is the
number of model parameters. The loss incurred by the learning model hθ on a sample (x, y) ∈ X ×Y
is denoted by l(hθ(x), y), which can be the root mean squared error (for regression problems) or
cross-entropy loss (for classification problems).

After the communication round t, the loss incurred by the client c for model parameters θ is the average
loss of the model hθ on the samples in Dc,t and defined by fc,t(θ) :=

1
nc,t

∑nc,t

s=1 l(hθ(xc,s), yc,s),
where (xc,s, yc,s) is the s-th sample in Dc,t. The central server aims to find a learning model with the
minimum average loss for each client. The server achieves this by finding a model θ that minimizes
the average clients’ loss weighted by their respective number of samples, which is given by solving
the following optimization problem in the communication round t:

argmin
θ

1

nt

∑
c∈Ct

nc,tfc,t(θ) =
1

nt

∑
c∈Ct

nc,t∑
s=1

l(hθ(xc,s), yc,s), (1)

where nt =
∑Ct

c=1 nc,t. Since the clients cannot share their local data Dc,t with the server (due to
communication or privacy constraints), the optimization problem given in Eq. (1) must be solved in a
federated manner by using the suitable FL algorithm (e.g., FedAvg (McMahan et al., 2017)).

Exact Federated Unlearning. Let client c influence be completely removed from the aggregated
model. Exact federated unlearning is the process of completely removing the influence of client c
training data from the aggregated model, resulting in a model that is equivalent to the models trained
without the training data of client c. However, the aggregated model resulting from retraining without
the data of client c may have a poor performance in the initial round, which may not be expected
when these models are deployed in practice. Therefore, our goal is to design methods that ensure
exact federated unlearning while leading to an aggregated model with as high accuracy as possible.

3 EXACT FEDERATED UNLEARNING METHODS

Due to multiple communication rounds of the FL training, it becomes impossible to completely
remove a client’s data influence from the trained aggregated model. Therefore, the most
straightforward way to achieve the exact federated unlearning is to restart the federated learning
process from scratch with the remaining clients. This method of retraining the aggregated model from
scratch is called retraining from scratch (RfS) (Bourtoule et al., 2021; Liu et al., 2023). Although
RfS is a simple method, the new model may have very low accuracy in the initial rounds after
unlearning compared to the aggregated model before unlearning due to restarting the FL process with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

random initialization of the aggregated model. Such performance reduction of the aggregated model
may not be desirable during deployment in practice involving critical applications such as healthcare
(Prayitno et al., 2021; Dhade & Shirke, 2024) and finance (Long et al., 2020). This shortcoming of
RfS raises a natural question: How can we guarantee the exact federated unlearning while ensuring
better post-unlearning performance? To answer this question, we propose two novel methods for
achieving exact federated unlearning that completely remove the client’s influence while giving better
post-unlearning performance than RfS.

3.1 BI-MODELS TRAINING

To get a better performing aggregated model post-unlearning, we must design a new FL training
process that allows exact federated unlearning while having a better initialization than random
initialization. One way to achieve better initialization is to design methods that can exploit the
remaining clients’ existing knowledge. To do this, we propose a method named Bi-Models Training
(BMT) that can be incorporated into any existing federated learning framework. The main idea of
BMT is to have an additional model for each client that is only trained on its data, making these
models unaffected by other clients’ training data. We refer to this model as local model. We use the
term global model for referring to the aggregated model, which is trained using all client’s data and
used for deployment. Next, we discuss how BMT can be incorporated into the different stages of any
existing federated learning framework (as depicted in Fig. 1), namely: Initialization, FL Training,
Unlearning, and New Client joining the FL process, whose details are given as follows.

Initialization. The central server starts the standard FL training process by randomly initializing
the global aggregated model. This randomly initialized global model is then shared with all clients.
Each client updates the global model using its local training data and then shares the model update
(updated model or gradients) with the central server. As compared to the standard initialization in any
FL training process, each client makes a copy of the locally updated global model2 (i.e., local model).
Since the initial global model is randomly initialized, these local models are, by design, isolated from
the influence of other clients’ training data.

FL Training. After receiving the first model updates, the central server aggregates them to get the
aggregated global model as per the underlying FL algorithm (McMahan et al., 2017; Shlezinger et al.,
2020; Zhang et al., 2021). In each subsequent communication round, each client receives the updated
global model from the central server and then trains it using its training data. After updating the
global model, each client shares the model update with the central server. Besides the standard FL
training process, each client also updates their local model using their training data.

All Clients

Generate random Global
model and save it’s copy

Update Global model
and save its copy
(i.e., Local model)

Aggregate model updates and continue FL Training

Initialization
Central Server

Initial G
lobal M

odel

 FL Training

M
od

el
 U

pd
at

es

A
ggregated G

lobal M
odel

Update Global and
Local models

M
od

el
 U

pd
at

es

Unlearning

R
equest for Local M

odels
R

ep
ea

t

Remaining
Clients

Initialize Global model using Local
models and restart FL Training

Lo
ca

l M
od

el
s

 New ClientInitial and Current G
lobal M

odels

M
od

el
 U

pd
at

e

Share initial and current Global model
with new client and continue FL training

Update current Global
model and save copy of

initial Global model

Figure 1: Bi-Models Training (BMT) in the different stages of any federated learning framework.

Unlearning. Let c be the client whose influence needs to be completely removed from the global
model after a communication round t and Ct,r be the set of remaining clients, i.e., Ct,r = Ct \ {c}.
The central server first discards the current global model and requests each client to share their current
copy of local models. Once the central server receives the local models from all remaining clients, the
central server aggregates them to get the new initialization for the global model as per the underlying

2The locally updated global model in the first communication rounds is the same as the model that is a copy
of the initial global model and trained on client’s training data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

FL algorithm, e.g., for FedAvg, the central server performs weighted aggregation on the remaining
client’s local models, where each client’s weight is proportional to their respective training data. Our
extensive experimental results (in Section 4) show that the resulting initialized global model performs
better than random model initialization as done in RfS. Lastly, the central server restarts the FL
training process with the newly initialized global model, which is completely free from the influence
of the unlearned client’s data.

New Client. When a new client wants to join the ongoing FL collaboration, the central server waits
until the end of the ongoing communication round. Once it is over, the central server starts the FL
training process with the new client by sharing the current global model with the new client, who then
updates the current global model using its training data and shares the model update with the central
server. Apart from this, the central client also shares the randomly initialized global model with the
new client, who updates it, which then acts as the local model of the new client for subsequent rounds.
Other clients do not influence this local model, as the initial global model is randomly initialized.

In summary, BMT has two models for each client: global and local. All clients train their local
model on their data in isolation, whereas the global model is trained using the underlying FL training
protocol. To completely remove a client influence from the global model, the central server first
discards the global model and then uses the local models of the remaining clients to re-initialize the
global model, which is further updated via FL training. This process ensures that BMT, by design,
guarantees the exact federated unlearning. Further, using the remaining clients’ local models leads to
an initialization of the global model that is already influenced by the remaining clients to some extent,
leading to a better performance than RfS, as corroborated by our experiments in Section 4. The price
for this improved post-unlearning performance is the cost of pre-training the local models in advance.
Such a trade-off is worthwhile for applications that require exact unlearning and an unlearned model
with good performance as quickly as possible for deployment.

3.2 MULTI-MODELS TRAINING

The key insight of the previous section is that BMT achieves a better initial global model because it
is influenced by the clients’ local models. However, the local model only contains influence from
an individual client and has no joint influence of multiple clients. Since all clients influence the
global model, we should capture the joint influence of different clients and then use it to get a better
initialization of the global model. To capture the joint influence, we can train FL models using only a
subset of clients. We refer to these FL models as sub-FL models. Formally, a sub-FL model is an FL
model that is trained via FL protocol using a subset of clients, where the size of the subset varies
from 2 to N − 1. One can train all possible sub-FL models (power set of clients excluding global
model) to capture the influence of all possible interactions of different subsets of clients. However,
this approach is not computationally feasible as these sub-FL models increase exponentially with
the number of clients (i.e., 2n − n− 2 for n clients). Another problem of training arbitrary sub-FL
models leads to a situation of double influence, which is defined as follows:

Definition 1. Let Si be the set of clients whose data are used in training the i-th sub-FL model. The
sub-models i and j leads to double influence if Si ∩ Sj ̸= ∅, Si \ Sj ̸= ∅, and Sj \ Si ̸= ∅.

When one client data is used to train two sub-FL models, it can lead to double influence if both are
also trained using data from different clients, e.g., one is trained on clients {1, 2} and another on
clients {1, 3}; the client 1 data is used in both sub-FL models and hence having the double influence.

To avoid the double influence, each sub-FL model should be trained on disjoint subsets of clients,
or the set of clients used for training sub-FL models is a proper superset of the set of clients used
for another sub-FL model. One possible way to achieve this is to organize sub-FL models in a
hierarchical tree structure. In this tree, the root node represents the global model while the leaf nodes
correspond to the local models, and intermediate nodes represent sub-FL models, with each child
node having disjoint sets of clients compared to its siblings. As we move from the root node to the
leaf nodes, each sub-FL model branches into further subsets, maintaining either disjoint relationships
or superset relations, thus ensuring a clear and systematic flow of influence throughout the hierarchy.
We refer to this hierarchical tree structure as an influence tree. After unlearning a client, we should
aggregate the sub-FL models with higher influence (those influenced by a larger number of clients)
and local models to get the initialization for the global model. If the number of models to aggregate
is less, it implies that the initialization of the global model contains the most joint influence of clients.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

This relationship inspires our proposed metric influence degradation score, which measures how
good is an influence tree. Next, we formally define the influence degradation score.
Definition 2 (Influence Degradation Score (IDS)). Let T be any influence tree structure. The
influence degradation score for T , denoted by s(T), is defined as the average number of sub-FL and
local models that are aggregated to get the initial global modal after unlearning any client.

Though the tree structure, by design, eliminates double influence, we do not know which tree structure
gives the lowest IDS for given clients’ different likelihood of requesting unlearning (as the probability
of requesting unlearning may vary across the clients). As our goal is to construct an influence tree
with minimum IDS, our following result shows that the binary influence tree constructed using
Huffman coding has the lowest IDS among all n-ary influence tree structures, where n > 2.
Theorem 1. Given an n-ary influence tree T , there exists a binary influence tree T2 that has smaller
IDS, i.e., s(T2) < s(T). Let pc be the unlearning probability of the client c. Then, Huffman coding
with n symbols representing clients and weights {pc}nc=1 gives the optimal binary influence tree such
that s(THuffman) ≤ s(T2) for any influence tree T2 for the same group of clients.

With Theorem 1, we can use Huffman coding (Huffman, 1952) to construct an influence tree that
has the lowest IDS among all types of influence trees. In some real-life applications, the client’s
unlearning probability can be unknown. In such cases, we can assume that each client is equally
likely to be unlearned, hence having the same unlearning probability. We show the influence tree for
8 clients having the same unlearning probability in Fig. 3a. A client (on the leaf node) influences the
sub-FL model if there is a path from a sub-FL model to the leaf node representing that client. We
next propose a method named Multi-Models Training (MMT) that uses the sub-FL models to get better
initialization for the global model. MMT can be easily incorporated into the different stages of any
existing federated learning framework (as depicted in Fig. 1), whose details are given as follows.

Initialization. Similar to BMT, the central server starts the standard FL training process by randomly
initializing the global aggregated model. This randomly initialized global model is then shared with
all clients. Each client updates the global model using its local training data and then shares the
model update (updated model or gradients) with the central server. Each client makes a copy of the
locally updated global model. Compared to BMT, MMT also initializes the sub-FL models using the
model updates of clients corresponding to the sub-FL models.

All Clients

Generate random Global
model and save it’s copy

Update Global model
and save its copy
(i.e., Local model)

Initialization
Central Server

Initial G
lobal M

odel

 FL Training

M
od

el
 U

pd
at

es

A
ggregated G

lobal and Sub-FL M
odels

G
lo

ba
l a

nd
 S

ub
-F

L
M

od
el

 U
pd

at
es

Unlearning

R
equest for Local M

odels

R
ep

ea
t

Remaining
Clients

Initialize Global model using unaffected Sub-FL
and Local models and restart FL Training

Lo
ca

l M
od

el
s

 New ClientInitial and Current G
lobal M

odels, Sub-FL m
odels

G
lo

ba
l a

nd
 S

ub
-F

L
M

od
el

 U
pd

at
es

Aggregate model
updates and create

Sub-FL models

Aggregate global and Sub-FL
model updates

Share initial and current Global model with Sub-FL
models with new client and continue FL training

Update Global,
Sub-FL, and Local

models

Update current Global,
Sub-FL models and save

copy of initial Global model

Figure 2: Multi-Models Training (MMT) in the different stages of any federated learning framework.

FL Training. After receiving the first model updates, the central server aggregates them to get
the aggregated global and sub-FL models. In each subsequent communication round, each client
receives the updated global and its sub-FL models from the central server and then trains them using
its training data. After updating these models, each client shares the global and its sub-FL model
updates with the central server. Apart from this, each client also updates their local model.

Unlearning. For unlearning a client, the central server first discards the current global model and
related sub-FL models (as shown in Fig. 3b after unlearning client 2) and then requests all clients not
in any of the remaining sub-FL models to share their current copy of local models. Once the central
server receives all requested local models, it aggregates them with sub-FL models (choosing only the
most influential unaffected sub-FL model over its descendants) to get the new initialization for the
global model as per the underlying FL algorithm. After removing the sub-FL models related to the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Local Models

 Global Model

Sub-FL Models

1 3 5 72 4 6 8

S S S S

S
S

G

(a) Influence tree

Local Models

 Global Model

Sub-FL Models

1 3 5 72 4 6 8

S S S S

S
S

G

(b) Affected nodes

Local Models

 Global Model

Sub-FL Models

1 3 5 74 6 8

S S S

S
S

G

(c) Initialization

Local Models

 Global Model

Sub-FL Models

1 3 5 74 6 8

S S S

S
S

G

(d) New influence tree

Figure 3: Fig. 3a: Influence Tree for 8 clients having the same unlearning probability. Fig. 3b:
Showing the global and all sub-FL models affected after unlearning client 2 by the node’s red cross
and red outline. Fig. 3c: Initialization of global and new sub-FL models, where a dotted blue line
shows the the models used to initialized them. Fig. 3d: Final influence tree after unlearning the client.

unlearned client, the remaining influence tree may no longer have the lowest IDS for the remaining
clients. It leads to two options: create a new influence tree while using earlier sub-FL models as
much as possible (as shown in Fig. 3c) or keep using the existing influence tree, which may not be
the best but retains the sub-FL models trained over time. Lastly, the central server restarts the FL
training process with the newly initialized global and sub-FL (if any) models (as shown in Fig. 3d),
which are completely free from the influence of the unlearned client’s data.

New client. Adding a new client to the ongoing FL collaboration can worsen the existing influence
tree compared to the influence tree created using a new client. Like BMT, when a new client wants to
join, the central server waits until the end of the ongoing communication round. Once it is over, the
central server can create a new influence tree while using earlier sub-FL models as much as possible
or keep using the existing influence tree to retain the existing sub-FL models, which are trained over
time by adding new sub-FL models. After that, the central server starts the FL training process with
the new client by sharing the current global and corresponding sub-FL models with the new client,
who then updates the current models using its training data and shares the model updates with the
central server. The central client also shares the randomly initialized global model with the new client,
who updates it, which then acts as the local model of the new client for subsequent rounds.

Overall, the initialization of the global model in MMT has the joint influence of multiple clients, which
makes it better than BMT and hence leads to better post-unlearning performance, as corroborated by
our experiments in Section 4. However, note that there is an additional computational cost for this
improved performance over BMT as we need to train multiple sub-FL models in parallel.

4 EXPERIMENTS

In this section, we empirically verify the effectiveness of the proposed methods in two important
settings: (1) sequential unlearning setting, where multiple clients sequentially leave the federation,
and (2) continual learning and unlearning setting, where clients can join and/or leave the federation at
will. Subsequently, we analyze the impact of data heterogeneity and the branching factor in the MMT
structure on the model performance. Then, we consider special scenarios when the clients follow
a fixed unlearning order (e.g., according to their subscription plans) and clients with non-uniform
unlearning probabilities (e.g., clients from different demographics).

4.1 EXPERIMENTAL SETTING

Datasets. We conduct our experiments on four popular vision datasets: MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky
et al., 2009). We also consider language tasks with large language models in Section 4.5. To simulate
clients with realistic non-IID data, we let the client i receives the most data from the i-th class and the
same amount of data from the remaining classes. We use ρ to denote the ratio between the majority
class and minority class for all clients. Each client contains 200 training/test samples and ρ = 0.02
for MNIST and FashionMNIST; 1000 training samples, 300 test samples, ρ = 0.2 for CIFAR-10;
400 training samples, 100 test samples, ρ = 0.1 for CIFAR-100.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Models. For MNIST and FashionMNIST, we use simple MLP networks with 30 and 80 hidden units,
respectively. For CIFAR-10, we use a CNN network with 5 × 5 convolutional layers followed by
2× 2 max pool layer for feature extraction and two fully connected layers with 32 hidden units and
ReLU for classification. For CIFAR-100, we use a VGG-16 model (Simonyan, 2014).

Training. We use FedAvg (McMahan et al., 2017) to train FL models for 100 rounds with 1 local
epoch on MNIST and FashionMNIST, 300 rounds with 1 local epoch on CIFAR-10 and 100 rounds
with 10 local epoch on CIFAR-100. We use the SGD optimizer with a learning rate 0.01, weight decay
0.1, batch size 20, and gradient clipping 10 for MNIST and FashionMNIST. We use the AdamW
optimizer with batch size 64 and the same hyperparameters for CIFAR-10. We use the SGD optimizer
with a learning rate 0.005, momentum 0.9, weight decay 10−5, and batch size 64 for CIFAR-100.
Our experiments are conducted on NVIDIA L40 46GB and NVIDIA H100 80GB GPUs.

Metrics. We report test accuracy measured on a fixed test set that combines local test sets of all
possible clients, including those that join/leave the federation in later stages. The combined test set
allows us to observe the visible trend of the performance after one client is removed.

Comparison Methods. We compare BMT and MMT against the following baselines: Standalone,
where the centralized model trains on aggregated data from all remaining clients; Retraining from
Scratch (RfS), where the federated model is retrained excluding data from the leaving client; FedCIO
(Qiu et al., 2023); Exact-Fun (Xiong et al., 2023); and FATS (Tao et al., 2024).

4.2 SEQUENTIAL UNLEARNING

This experiment simulates a practical scenario when clients gradually leave the federation. After
each client leaves, we continue training the federated model on the remaining clients. Particularly,
we simulate the leaving of 3 clients {1, 3, 5}. It is noteworthy that this unlearning order is to MMT’s
disadvantage as none of the sub-FL models can completely replace the server model. Hence, the
server parameters must be aggregated from the parameters of other sub-FL models.

(a) MNIST (b) FashionMNIST (c) CIFAR-10 (d) CIFAR-100

Figure 4: Test accuracy in the sequential unlearning setting for different datasets.

Fig. 4 shows performance in the sequential unlearning setting on different datasets. As can be seen,
BMT and MMT consistently outperform other methods by a large margin with better initialization
and faster convergence after unlearning3. These results highlight the effectiveness of BMT and MMT,
especially the advantage of sub-FL models in MMT for faster recovery after unlearning. Therefore, it
is infeasible for large-scale experiments like CIFAR-100.

4.3 CONTINUAL LEARNING AND UNLEARNING

This experiment aims to simulate a continual setting in which new clients can join, and existing clients
can leave the federation at any time during training. We will consider three settings corresponding to
varying learning and unlearning order: 1) 2U1N: Unlearn - New client - Unlearn; 2) 2U2N: Unlearn -
New client - Unlearn - New client; 3) 3U2N: Unlearn - New client - Unlearn - New client - Unlearn.
For a fixed number of communication rounds k, a new client will be introduced at round k/2, and
an existing client will leave after every k round. We use the same k as the previous experiment.
Fig. 5 shows performance in the continual learning and unlearning setting on the MNIST dataset. As
can be seen, both BMT and MMT can seamlessly accommodate new clients and demonstrate general
frameworks that can learn and unlearn rapidly.

3We did not include Exact-Fun baseline for CIFAR-100, as it has enormous GPU memory requirement to
save all the intermediate model checkpoints, which is not feasible even with a H100 80GB GPU.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) 2U1N (b) 2U2N (c) 3U2N

Figure 5: Test accuracy in the continual learning and unlearning setting on MNIST.

4.4 ABLATION STUDIES

Data heterogeneity. As mentioned earlier, the data heterogeneity ratio ρ defines the ratio between the
number of samples in the majority and minority classes within a client’s dataset. ρ = 1 indicates an
IID dataset while ρ ≈ 0 indicates an extremely non-IID dataset. As shown in Fig. 6, MMT consistently
obtains the best performance across different heterogeneity ratios. The gap to other methods is more
pronounced with lower ρ, suggesting MMT is more favorable when we have extremely non-IID data.

Figure 6: The effect of data heterogeneity on sequential unlearning performance on MNIST.

Branching factor in MMT structure. Recall that the default MMT uses a binary structure, i.e.,
a branching factor of b = 2 at each node in the tree of sub-FL modes. Therefore, we conduct
experiments to analyze the impact of varying branching factors in MMT structure on the model
performance. Particularly, for a federation consisting of n clients, the branching factor can range
from 1 to n where b = 1 indicates a traditional setting with no sub-FL models while b = n coincides
with BMT, in which an auxiliary local model is maintained for each client. It is worth noting that we
do not compare with b = 1 because it is equivalent to RfS.

(a) Branching factor (b) Subscription models (c) Unlearning probabilities

Figure 7: Left: The effect of branching factor b in MMT structure. Middle: Performance of greedily
constructed MMT given fixed unlearning order. Right: Performance of various tree construction
methods given non-uniform unlearning probabilities.

As can be seen in Fig. 7a, a smaller branching factor generally results in higher test accuracy. This
improvement occurs because MMT with a smaller branching factor aggregates fewer sub-FL models
during unlearning. Furthermore, each sub-FL model is more likely to converge to the global optimum
due to training on more local datasets. Thus, MMT with the default binary structure is the most suitable
configuration for unlearning.

Subscription models. The unlearning order can be fixed in certain circumstances, e.g. clients may
subscribe to the service that allows them to participate in the federated process for a fixed duration
and will leave once their subscription expires. In such scenarios, it is possible to construct an optimal
MMT structure that maximizes learning performance when clients leave the federation in a fixed order.
Particularly, the optimal structure is the one that arranges the clients by their expiration date, with the
soon-to-expire client at the top and greedily building the tree until reaching those with the farthest
expiration. As observed in Fig. 7b, the greedy implementation of MMT achieves the best unlearning

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

performance and outperforms the default MMT that assumes uniform probabilities of unlearning for
all clients. Therefore, the greedy structure is preferable if the unlearning order of the clients is known
in advance, e.g., in subscription models.

Non-uniform unlearning probabilities. The default MMT implementation assumes uniform
unlearning probabilities for all clients. However, it is practical to consider the case where these
probabilities are non-uniform. In fact, we will demonstrate that given the unlearning probabilities
of each client, it is possible to construct improved MMT structures that achieve better unlearning
performance through two strategies based on Shannon-Fano coding (Shannon, 1948) and Huffman
coding (Huffman, 1952). Fig. 7c shows the performance for different tree construction methods. This
result is obtained by sampling the client to be removed for 100 times according to pre-defined
non-uniform unlearning probabilities of all clients. MMT structures that follow Shannon-Fano
coding and Huffam coding obtain visibly improved results over the default MMT. Furthermore,
Huffman-MMT obtains slightly better results than the Shannon-Fano counterpart, which aligns with
the classical information theory results that Huffman coding is more optimal than Shannon-Fano
coding for prefix-free code (Thomas & Joy, 2006).

4.5 LANGUAGE TASKS

We also compare the performances of the proposed methods on two language tasks: 1) language
identification, where the goal is to detect the language of the given text (Conneau, 2019), and 2)
multilingual sentiment analysis, where the goal is to identify the sentiment of the given text using.
We use the Huggingface papluca/language-identification dataset for the former task and Huggingface
tyqiangz/multilingual-sentiments for the latter. We then randomly sample 200 and 500 data points
separately for each class from top-8 classes with the most data. For both datasets, we finetune a
pretrained GPT-2 Radford et al. (2019) model with the 200 data points set and Llama-3.2-3B model
with the 500 data points set4 to predict which language the input sequences belong to, with next-token
prediction as the objective of getting the correct label. Fig 8 shows performance in unlearning settings
for different NLP tasks. In all cases, MMT improves the fastest after unlearning, followed by BMT.
In particular, for the larger model, both methods significantly outperformed other baselines, which
corroborates our methods’ scalability.5 This experiment validates our method is effective across
different modalities and model architectures.

(a) GPT-2 Language
Identification

(b) GPT-2 Multilingual
Sentiment Analysis

(c) Llama-3.2 Language
Identification

(d) Llama-3.2 Multilingual
Sentiment Analysis

Figure 8: Sequential unlearning setting on two language tasks for GPT-2 and Llama-3.2-3B.

5 CONCLUSION

In this work, we propose two methods, BMT and MMT, for exact federated unlearning in the ongoing
federated learning collaboration. Our methods ensure the complete removal of an unlearned client’s
data while having better performance post-unlearning with the remaining clients than retraining
from scratch. Our methods are particularly useful in practical scenarios where model updation
in collaborative environments cannot afford long delays, with minimal tolerance for interruptions.
Our extensive experimental results demonstrate the effectiveness of the proposed methods. A few
interesting future research directions include proposing a principal approach to design an influence
tree under a resource constraint (i.e., the number of sub-FL models that can be trained is limited) and
how to change the influence tree post-unlearning or after a client joins the collaboration while having
the lowest IDS value and maximizing the use the existing trained sub-FL models.

4Due to the high computation and memory requirements to train multiple LLMs, we opted for GPT-2 and
Llama-3.2-3B instead of the more popular and larger LLMs to show the performance of BMT and MMT.

5We did not include Exact-Fun for both LLM models and FATS for LLama-3.2-3B, as both methods have poor
scalability w.r.t. model size due to their GPU memory requirement to save all intermediate model checkpoints.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohammed Aledhari, Rehma Razzak, Reza M. Parizi, and Fahad Saeed. Federated Learning: A
Survey on Enabling Technologies, Protocols, and Applications. IEEE Access, pp. 140699–140725,
2020.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In Proc. IEEE SSP, pp.
141–159, 2021.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proc. ICML, pp.
1092–1104, 2021.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. In Proc. NeurIPS, pp. 409–415, 2000.

CCPA. California consumer privacy act of 2018, 2018. California Civil Code Title 1.81.5.

A Conneau. Unsupervised cross-lingual representation learning at scale. arXiv:1911.02116, 2019.

Pallavi Dhade and Prajakta Shirke. Federated learning for healthcare: A comprehensive review.
Engineering Proceedings, pp. 230, 2024.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to
byzantine-robust federated learning. In Proc. USENIX Security, pp. 1605–1622, 2020.

GDPR. General data protection regulation, article 17: Right to erasure (‘right to be forgotten’).
Official Journal of the European Union, 2016. Regulation (EU) 2016/679.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y. Zou. Making AI forget you: Data
deletion in machine learning. In Proc. NeurIPS, pp. 3518–3531, 2019.

Jinu Gong, Osvaldo Simeone, and Joonhyuk Kang. Bayesian Variational Federated Learning and
Unlearning in Decentralized Networks. arXiv:2104.03834, 2021.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In Proc. ICML, pp. 3832–3842, 2020.

David A Huffman. A method for the construction of minimum-redundancy codes. IRE, pp. 1098–1101,
1952.

Meryem Janati Idrissi, Ismail Berrada, and Guevara Noubir. Fedbs: Learning on non-iid data in
federated learning using batch normalization. In Proc. IEEE ICTAI, pp. 861–867, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Proc.
ICML, pp. 5132–5143, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, pp. 2278–2324, 1998.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv:2102.07623, 2021.

Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan. A blockchain-based
decentralized federated learning framework with committee consensus. IEEE Network, pp.
234–241, 2020.

Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federated Unlearning.
arXiv:2012.13891, 2020.

Ziyao Liu, Yu Jiang, Jiyuan Shen, Minyi Peng, Kwok-Yan Lam, Xingliang Yuan, and Xiaoning Liu.
A survey on federated unlearning: Challenges, methods, and future directions. ACM Computing
Surveys, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
Federated learning: privacy and incentive, pp. 240–254. Springer, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proc. AISTATS,
pp. 1273–1282, 2017.

Xutong Mu, Yulong Shen, Ke Cheng, Xueli Geng, Jiaxuan Fu, Tao Zhang, and Zhiwei Zhang.
Fedproc: Prototypical contrastive federated learning on non-iid data. Future Generation Computer
Systems, pp. 93–104, 2023.

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning.
Proc. NeurIPS, pp. 16025–16036, 2020.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and
Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv:2209.02299, 2022.

Prayitno, Chi-Ren Shyu, Karisma Trinanda Putra, Hsing-Chung Chen, Yuan-Yu Tsai, KSM Tozammel
Hossain, Wei Jiang, and Zon-Yin Shae. A systematic review of federated learning in the healthcare
area: From the perspective of data properties and applications. Applied Sciences, pp. 11191, 2021.

Hongyu Qiu, Yongwei Wang, Yonghui Xu, Lizhen Cui, and Zhiqi Shen. Fedcio: Efficient exact
federated unlearning with clustering, isolation, and one-shot aggregation. In Proc. IEEE BigData,
pp. 5559–5568, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019.

Claude Shannon. A mathematical theory of communication. The Bell system technical journal, pp.
379–423, 1948.

Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang Cui. Uveqfed:
Universal vector quantization for federated learning. IEEE Trans. Signal Process, pp. 500–514,
2020.

Karen Simonyan. Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

Youming Tao, Cheng-Long Wang, Miao Pan, Dongxiao Yu, Xiuzhen Cheng, and Di Wang.
Communication efficient and provable federated unlearning. arXiv:2401.11018, 2024.

MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-Interscience, 2006.

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated Unlearning via Class-Discriminative
Pruning. arXiv:2110.11794, 2021.

Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey.
arXiv:2405.07406, 2024.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

Zuobin Xiong, Wei Li, Yingshu Li, and Zhipeng Cai. Exact-fun: An exact and efficient federated
unlearning approach. In Proc. IEEE ICDM, pp. 1439–1444, 2023.

Xiaohang Xu, Hao Peng, Md Zakirul Alam Bhuiyan, Zhifeng Hao, Lianzhong Liu, Lichao Sun, and
Lifang He. Privacy-preserving federated depression detection from multisource mobile health data.
IEEE TII, pp. 4788–4797, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM TIST, pp. 1–19, 2019.

Yan Zeng, Yuankai Mu, Junfeng Yuan, Siyuan Teng, Jilin Zhang, Jian Wan, Yongjian Ren, and
Yunquan Zhang. Adaptive federated learning with non-iid data. The Computer Journal, pp.
2758–2772, 2023.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, pp. 106775, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Proof. We first define the k-split influence node, which is a node in an influence tree with k > 2 leaf
nodes. We first consider the influence tree T , where k-split influence node only has leaf nodes as
children. We denote this node as d, and the set of its leaf nodes is denoted by C. We now follow the
following procedure. First, we remove the edge between the node d and any two of its leaf nodes
(siblings), denoted by i and j. We create a sub-FL model with these two removed nodes and then add
the node for this sub-FL model as a child to the node d, as shown in Fig. 9. We denote the resulting
tree as T ′. Let f(T , c) represent the number of sub-FL and local models that are aggregated to get
the initial global modal after unlearning client c in the given influence tree T .

Node d

child 1 ... child i child j ... child n

(a) Influence tree T before making any change.

Node d

child 1 ... sub-FL

child i child j

... child n

(b) Influence tree T ′ after making the change.

Figure 9: Changes in influence tree structure.

Note that f(T ′, c) = f(T , c)− 1 for c ∈ C \ {i, j} as one less leaf node to aggregate due to sub-FL
model for {i, j} leaf nodes, and f(T ′, c) = f(T , c) for c ∈ {i, j} as sub-FL model is no longer
useful due to influence of leaf node i or j. With this, we have following IDS due to the node d:

sd(T) =
∑
c∈C

pcf(T , c) =
∑

c∈C\{i,j}

pc(f(T ′, c) + 1) +
∑

c∈{i,j}

pc(f(T ′, c)

= k − 2 +
∑

c∈C\{i,j}

pcf(T ′, c) +
∑

c∈{i,j}

pc(f(T ′, c) (node d had k leaf nodes)

= k − 2 +
∑
c∈C

pcf(T ′, c)

= sd(T ′)

=⇒ sd(T) > sd(T ′). (as k > 2) (2)

Iteratively apply the same procedure on the rest of the child nodes until every node only has two
children. After this, we obtain a binary tree. Since each operation strictly reduces IDS, sd(T2) <
sd(T). When the original tree already has some child nodes L that already belong to a binary subtree
TL, we treat this subtree as a single child node c′k and apply the aforementioned operations on the
child nodes that do not yet belong to a binary subtree. If all the child nodes belong to some binary
subtree, we check from bottom-up to find the largest binary subtrees and treat them as a single
child node to apply the aforementioned operations. Following this procedure, we can transform any
arbitrary tree into a binary tree. In general,

f(T ′, l) = f(TL, l) + f(T ′, c′) = f(TL, l) + f(T , c′)− 1 = f(T , l)− 1

for c′ ∈ C \ {i, j}, l ∈ L and

f(T ′, l) = f(TL, l) + f(T ′, c′) = f(TL, l) + f(T , c′) = f(T , l)

for c′ ∈ {i, j}, l ∈ L. Notice that f(T ′, l) = f(TL, l) + f(T ′, c′) always holds. Therefore, the
inequality in Eq. (2) generalizes for any tree structure with the generalized operation. After applying
this procedure on any arbitrary tree T with at least one k-split influence node, the resulting binary
tree T2 always has a strictly smaller value of IDS, i.e., s(T2) < s(T).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Now we will proof the second part of theorem. Assume N is the number of non-root nodes, qd is
the probability of reaching a non-root node d starting from the root node, and Ns

d is the number of
siblings of a non-root node i. Note that for a node d, qd =

∑
c∈Cd

pc where Cd is the set of all the
client nodes (i.e., leaf nodes) that are descendants of node d and pc is the probability of unlearning
of the c-th descendant. Given an influence binary tree T2 having n clients with known unlearning
probability of each client, the IDS is given as follows:

s(T) =

n∑
c=1

pcf(S, c) =

N∑
d=1

qd ∗Ns
d . (3)

For
∑n

c=1 pcf(S, c), we can group all leaf nodes that share some common ancestor node d into a
collection, with Cd denoting this set. Since the same node has the same Ns

c , we can sum pc of all
such leaf nodes and rewrite

∑n
c=1 pcf(S, c) as

∑N
d=1

∑
c∈Cd

pc ∗Ns
d =

∑N
d=1 qd ∗Ns

d . Since each
node of the binary tree has only one sibling, we have

N∑
d=1

qd ∗Ns
d =

N∑
d=1

qd ∗ 1 =
N∑

d=1

∑
c∈Cd

pc =
n∑

c=1

pc ∗ lc (4)

where n is the number of leaf nodes, lc is the depth of the c-th leaf node, and pc is the probability of
reaching a non-root node c starting from the root node. As splitting the qd of each non-leaf node into
Cd = {p1, p2, ..., pτ}, where qd =

∑
c∈Cd

pc and each element in Cd corresponds to a pc of a leaf
node, which is a descendant of that non-leaf node.

Root

q9 = p5 + p6

q5 = p1 + p2

q1 = p1 q2 = p2

q6 = p3

q10 = p7 + p8

q7 = p5 + p6

q3 = p4 q4 = p5

q8 = p6

Figure 10: Visualization for
∑N

d=1 qd ∗ 1 =
∑n

c=1 pc ∗ lc. One can easily see the equality holds.

Therefore, we can write
∑N

d=1 qd ∗ 1 as the sum of pc ∗ lc of all possible branches that reach each
leaf node, as all the ancestor nodes of all leaf nodes have exactly one sibling (refer to Fig 10 for
intuition). Finally, notice that

∑n
c=1 pc ∗ lc is the expected code word length, if the same binary tree

is used to represent a binary prefix-free code encoding scheme. Since Huffman coding is optimal
for minimizing

∑n
c=1 pc ∗ lc, s(THuffman) ≤ s(T2) where THuffman is an influence tree constructed

following Huffman coding and T2 is any binary influence trees for the same set of pc.

B ADDITIONAL EXPERIMENTAL RESULTS

Benchmarking against SISA. SISA is a model-agnostic exact unlearning method proposed in
Bourtoule et al. (2021). It involves partitioning the training dataset into disjoint subsets and training
isolated models on each subset, whose predictions are aggregated during inference time. In our

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

context, we can train isolated models on each client’s data and remove only the influenced model
when a client leaves the collaboration to achieve exact unlearning. Fig. 11a shows SISA performance
in the sequential unlearning setting on MNIST. Even though SISA obtains a better initialization
than RfS, it incurs the worst post-unlearning performance compared to FL methods. This result
suggests that the SISA training paradigm may not be well-suited for collaborative training among
heterogeneous clients with limited data. Therefore, it serves as a less competitive exact FU benchmark.

(a) Benchmarking against SISA (b) Different learning rates

Figure 11: Left: Sequential unlearning benchmark against SISA. Right: Performance for different
learning rates in the sequential unlearning setting.

Varying learning rates. Fig. 11b shows performance for three learning rates {0.001, 0.01, 0.05}
in the sequential unlearning setting on the MNIST dataset. In all cases, MMT converges the fastest,
followed by BMT and RfS. This result validates the effectiveness of BMT and MMT compared to RfS
across varying learning rates.

Converged performance of CNN on CIFAR-100. We increased the communication rounds from
500 to 1000 to analyze the converged performance of CNN trained on CIFAR-100. As seen in Fig. 12,
there is a significant train-test accuracy gap for BMT and MMT starting from the 200th round after
each unlearning request, indicating overfitting has occurred in both methods. This difference is due
to using simple models like a 2-layer CNN when training for a long period. Therefore, we have
included CIFAR-100 results on VGG-16 in Fig. 4(d).

(a) Train accuracy (b) Test accuracy

Figure 12: Performance at convergence on CIFAR-100 using a 2-layer CNN.

Performance on unequal data. In this experiment, we split the original dataset consisting of n
classes into n clients with unequal data sizes. Specifically, each client transfers a portion p ∼ U(0, 0.9)
of their training data to another random client. We set the upper bound to 0.9 to prevent clients with
empty data. As shown in Fig. 13, MMT and BMT consistently outperform RfS across all experiments,
regardless of clients’ data sizes.

(a) MNIST (b) FashionMNIST (c) CIFAR-10

Figure 13: Performance on MNIST, FashionMNIST and CIFAR-10 with unequal clients’ data.

15

	Introduction
	Related Works

	Problem Setting
	Exact Federated Unlearning Methods
	Bi-Models Training
	Multi-Models Training

	Experiments
	Experimental setting
	Sequential unlearning
	Continual learning and unlearning
	Ablation studies
	Language Tasks

	Conclusion
	Proof of Theorem 1
	Additional experimental results

