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Abstract

The parameter redundancy problem in Trans-001
former models has been widely acknowledged002
in the literature. To address this weakness, we003
introduce PartialFormer, a parameter-efficient004
Transformer architecture for machine transla-005
tion. Compared to previous parameter-efficient006
Transformer architecture, PartialFormer modi-007
fies the modeling strategy of the feed-forward008
network to allow it to spare tremendous pa-009
rameters while maintaining large hidden di-010
mension. Additionally, PartialFormer applies011
two efficient scaling strategies, namely depth012
scaling and width scaling, to improve perfor-013
mance within a given parameter budget. To014
efficiently benefit from these scaling strategies,015
PartialFormer is further enhanced by two cost-016
effective modifications: 1) a head scaling strat-017
egy for efficient width scaling and 2) a residual-018
like attention calculation for better depth scal-019
ing. Extensive experiments on 9 translation020
tasks validate the effectiveness of our Partial-021
Former approach.022

1 Introduction023

The Transformer model (Vaswani et al., 2017) has024

emerged as a cornerstone in the natural language025

processing (NLP) domain, overshadowing convo-026

lutional neural networks (Gehring et al., 2017) and027

recurrent neural networks (Sutskever et al., 2014)028

by virtue of its minimal inductive bias, superior029

scalability, and proficiency in modeling extended030

sequences. Nonetheless, its substantial computa-031

tional and parametric requisites pose significant032

challenges to its deployment and training, warrant-033

ing an ongoing trend in the research community to-034

ward eliminating redundant parameters and compu-035

tations in the Transformer model (Dehghani et al.,036

2019; Lan et al., 2020; Reid et al., 2021; Li et al.,037

2022; Ahmed et al., 2017; Yan et al., 2020; Wu038

et al., 2020; Mehta et al., 2019, 2021).039

Despite their success in improving the paramet-040

ric and computational efficiency of the Transformer,041
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Figure 1: Illustration of our idea.

it is noteworthy that these approaches ignore the 042

importance of feed-forward networks (FFN). Feed- 043

forward networks consume significant parametric 044

and computational overhead due to the inherent 045

large feature space and hidden dimension. To cut 046

down FFNs’ overhead, previous studies (Mehta 047

et al., 2021; Wu et al., 2020; Ge et al., 2022) just 048

adopt smaller hidden dimension, e.g., equal to or 049

even lower than the size of feature space. That 050

leads to a question: Are current lightweight FFNs 051

optimal? 052

To address this concern, we turn to the insights 053

provided by Geva et al. (2021), who depicted FFNs 054

as a collection of key-value memories, where the 055

number of memories is equal to the number of 056

hidden dimensions in FFNs. This finding under- 057

scores the significance of hidden dimension in 058

FFNs. Drawing inspiration from this finding and 059

the successful application of large hidden sizes 060

in FFNs as evidenced by Meta’s 4B model (Tran 061

et al., 2021)1, we postulate that a truly efficient 062

lightweight FFN should maintain, if not enlarge, 063

the hidden dimension while reducing parameters. 064

To this end, we propose PartialFormer, an inno- 065

vative approach to Transformer architecture. The 066

central design of PartialFormer is the Partial-Level 067

Gated Feed-Forward Networks (PG-FFN). We de- 068

signed the PG-FFN as a set of smaller FFNs in 069

1They have shown enlarging the hidden size of FFNs to
16384 delivers significant BLEU improvements.
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unison, each producing lower-dimensional hid-070

den features, yet collectively matching or exceed-071

ing the hidden dimension of a conventional larger072

FFN. Moreover, we further equipped PartialFormer073

with two cost-effective operations: a head scal-074

ing strategy for efficient width scaling, and a075

residual-like attention calculation for stable op-076

timization. These techniques empower Partial-077

Former to achieve deeper layer stacking or in-078

creased width within the same parameter budget.079

The strength of PartialFormer has been affirmed080

through rigorous empirical evaluations on 9 ma-081

chine translation tasks. Remarkably, even while082

maintaining similar parameter consumption, our083

PartialFormer consistently surpasses the vanilla084

Transformer, employing the same layer depth and085

embedding width, by an average of 1.29 BLEU086

points across all 6 WMT’17 machine translations.087

Furthermore, it achieved a BLEU score of 29.56088

on the challenging WMT’14 En-De task with only089

68 million parameters, showcasing its effectiveness090

and efficiency. Our work with PartialFormer thus091

marks an important step towards the goal of opti-092

mized Transformer architectures, marrying perfor-093

mance with efficiency in a manner that has potential094

for broad impact in NLP applications.095

2 Preliminary: Transformer096

In this section, we present some prior knowledge097

about the Transformer. Typically, Transformer098

block always consists of a multi-head self-attention099

and a feed-forward network. Let X ∈ RT×d be a100

T × d input matrix of T tokens. Each multi-head101

self-attention component owns H heads. For sim-102

plicity, we ignore the layer-normalization operation103

and residual connection.104

Multi-Head Self-Attention MHSA aims to105

model the global dependency among tokens.106

MHSA computes as follows:107

Ai = Softmax(
Qi(Ki)T√

dk
), (1)108

headi = AiV i, (2)109

X =

H∑
i=1

headiW
O
i , (3)110

where Qi,Ki, V i denote the query, key and value111

of i-th head, which are derived from input with112

three learnable matrics WQ
i ,WK

i ,W V
i ∈ Rd×dk113

as follows: Qi = XWQ
i ,Ki = XWK

i , V i =114

XW V
i , respectively. WO

i ∈ Rdk×d is a learnable 115

matrix. Ai and headi denote the attention matrix 116

and representation of i-th head, respectively. 117

Feed-Forward Network Feed-forward network 118

is responsible for improving the expressiveness 119

of the whole representation space by adopting an 120

"expansion-activation-reduction" mapping strategy. 121

It computes as follows: 122

X = ReLU(XW1 + b1)W2 + b2, (4) 123

where W1 ∈ Rd×dffn ,W2 ∈ Rdffn×d, b1 ∈ 124

Rdffn , b2 ∈ Rd as learnable matrices and dffn de- 125

notes the hidden dimension in FFN that is usually 126

set to 4d. 127

3 PartialFormer 128

3.1 Overall Architecture 129

Figure 2 illustrates the overall architecture of Par- 130

tialFormer, encompassing both an encoder and a de- 131

coder. Although the foundational structure adheres 132

to the design of the vanilla Transformer (Vaswani 133

et al., 2017), there are some notable modifications. 134

Encoder. Different from vanilla Transformer, 135

each encoder layer in PartialFormer consists of 136

a unified sub-layer that integrates the PG-FFNs 137

into the multi-head self-attention mechanism rather 138

than separate two sub-layers. 139

Decoder. Each decoder layer is composed of two 140

types of sub-layers, both of which integrate the 141

multi-head attention mechanism with PG-FFNs. 142

The sub-layers differ based on the type of multi- 143

head attention mechanisms employed, specifically 144

whether it’s a decoder self-attention or an encoder- 145

decoder cross-attention mechanism. 146

3.2 Information Flow in Unified Sub-Layer 147

Taking the Encoder as an instance. Each uni- 148

fied sub-layer first computes the multiple attention 149

scores via Eq. (5), then obtains the multiple head 150

features {headi|1 ≤ i ≤ H} via Eq. (2), which is 151

the same as vanilla Transformer. Then, using mul- 152

tiple small FFNs, it processes these head features 153

and ultimately combines the representations via a 154

fusion function according to Eq. (7). That is to say, 155

the PG-FFN is encapsulated into the multihead- 156

attention mechanism. 157
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Figure 2: (a) Architecture of Transformer. (b) Architecture of PartialFormer. (c) Details of Self-AFFN Block. All
architecture are based on pre-normalization strategy. We omit the layer normalization operation, residual connection,
softmax operation and scale coefficient for simplicity.

Ai = Softmax(
Qi(Ki)T√

dk
+Ai

G), (5)158

Oi = PG-FFN(headi), (6)159

X =
H∑
i=1

OiWO
i (7)160

3.3 Partial-Level Gated FFN161

Intuition Previous studies (Wu et al., 2020;162

Mehta et al., 2021; Ge et al., 2022) have commonly163

reduced the parameters in feed-forward networks164

by decreasing the hidden dimension (e.g., 2048165

to 256). In contrast, we tackle this issue through166

a matrix factorization approach. Our key idea in-167

volves utilizing a collection of small FFNs to model168

smaller input features, rather than relying on a sin-169

gle large FFN.170

Assume a FFN with mappings of 1024->4096-171

>1024, which consumes around 8.4 million param-172

eters. By decomposing this into 8 smaller FFNs173

with mappings of 128->512->128, we can retain174

the same hidden dimension, such as 8 * 512, while175

using only 1.05 million parameters. This approach176

significantly reduces parameters while maintaining177

the crucial desired hidden dimension, as empha-178

sized in previous studies (Geva et al., 2021; Tran179

et al., 2021).180

Furthermore, we have observed that the Trans-181

former architecture inherently consists of multi-182

ple smaller subspaces, namely “heads” within the183

multi-head attention (MHA) mechanism. These184

heads act as sub-components of the original inputs185

and retain substantial information from the original186

data. As a result, PG-FFNs should naturally be187

constructed based on the MHA mechanism.188

Calculation of PG-FFNs While group transfor- 189

mation operations could be used to instantiate our 190

idea, they are not optimal on GPUs due to their 191

low I/O efficiency (Ma et al., 2018), causing signif- 192

icant inference latency. To address this, we propose 193

sharing parameters across each FFN within differ- 194

ent heads, thereby eliminating the need for group 195

transformation operations. 196

However, directly sharing weights may result 197

in homogeneous representations across different 198

heads, which may potentially hinder the perfor- 199

mance (Li et al., 2018). To mitigate this, we further 200

introduce a head-specific gated mechanism. The 201

core idea is to use a set of diverse masks to filter the 202

information of different heads so that the head rep- 203

resentation will be more diverse. Formally, given 204

a set of smaller features {headi|1 ≤ i ≤ H} and 205

diverse masks {Gi|1 ≤ i ≤ H}, the Eq. (6) can 206

rewritten as: 207

Oi = Gi ⊙ FFN(headi), (8) 208

where FFN(·) is the same as Eq. (4). 209

Generating {Gi|1 ≤ i ≤ H} In our prelimi- 210

nary experiments, we observed significant diversity 211

in the features generated by different parameters 212

from sub-layer inputs, e.g., {V 1, . . . , V H}. Moti- 213

vated by this finding, we generate diverse masks in 214

the following manner: 215

Gi = σ(XWG
i ), (9) 216

where WG
i is a learnable matrix and σ denotes the 217

activation function, e.g., ReLU, Sigmoid and Tanh. 218

We compare them in Table 8. 219

3.4 Efficient Scaling Strategy 220

Though PG-FFN offers the advantage of reduc- 221

ing lots of parameters when applied directly to the 222
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transformer, it also leads to performance degra-223

dation. Thus, a crucial aspect of this study is to224

determine how to effectively utilize the spared pa-225

rameters. In this work, we adopt a hybrid scaling226

strategy, combining both width scaling and depth227

scaling, which has been validated in computer vi-228

sion, e.g., EfficientNet (Tan and Le, 2019).229

3.4.1 Enabling Efficient Depth Scaling for230

PartialFormer231

Wang et al. (2019); Dong et al. (2021); Wang et al.232

(2022) have shown that the original location of233

FFNs plays an essential role in optimizing trans-234

formers, e.g., alleviating Token Uniformity. Thus,235

we need to consider the impact brought by the236

change of FFNs. While the densely residual con-237

nection is an efficient way to alleviate it, they238

are typically either based on feature level (e.g.,239

DLCL (Wang et al., 2019)) or coupled with the net-240

work structure (e.g., Realformer (He et al., 2021)).241

To this end, we design a new variant of the resid-242

ual connection integrated into the attention calcu-243

lation, while also decoupling from the network ar-244

chitecture. Specifically, the calculation of attention245

maps consists of two parts: 1) AG, the global part,246

and 2) AL, the local part. The calculation of AL re-247

mains the same as in the vanilla Transformer, while248

AG is computed once by using the original embed-249

ding as input through Eq. (1). Inspired by He et al.250

(2021), to efficiently fuse these components, we251

add them together and apply a Softmax function,252

as shown in Eq. (5).253

In addition to the benefit of efficient depth scal-254

ing (See Appendix F), this approach provides re-255

markable flexibility in combining different atten-256

tion mechanisms, specifically tailored to address257

specific conditions. For instance, it allows for the258

utilization of local attention to calculate AG when259

dealing with small datasets (see Appendix D).260

3.4.2 Head Scaling: An Efficient Width261

Scaling for PartialFormer262

Existing approach to width scaling, which is based263

on the embedding size, necessitates the simultane-264

ous scaling of both the encoder and decoder for ma-265

chine translation tasks. This is primarily because266

researchers commonly employ shared encoder and267

decoder embedding. However, taking cues from268

the achievements of depth scaling, it may be more269

advantageous to adopt a distinct method for scal-270

ing width, similar to the approach used for scaling271

depth. Here we show how PartialFormer has inher-272

ent superiority to achieve so. 273

The width of a Transformer model typically 274

refers to the widest part of the Transformer. In this 275

context, both the vanilla Transformer and previous 276

lightweight Transformer models have widths that 277

are related to the embedding dimension, such as 4d 278

or d. Therefore, by increasing the embedding size, 279

we can effectively enlarge their width. However, 280

the width definition in PartialFormer is different 281

and can be expressed as w = H × dffn, where w 282

denotes the width of model and dffn is associated 283

with the head dimension dk. Consequently, we can 284

expand the width by either increasing the number 285

of heads or enlarging dk. A comparison between 286

these approaches is presented in Table 7. Notably, 287

if the head dimension and number of heads are 288

independent of the embedding dimension, Partial- 289

Former allows for easy scaling of width in different 290

ways within the encoder and decoder components. 291

(a) Dependent Mode

dk ×H = d (✔)

(b) Independent Mode

dk ×H = d (✗)

Figure 3: Comparison of ways to generate subspaces in
Transformer and PartialFormer.

To this end, we propose a new scaling mecha- 292

nism, namely head scaling, that scales the width of 293

PartialFormer by directly adding more heads and 294

increasing head dimension, as illustrated in Figure 295

3. Given the head dimension dk, the embedding 296

dimension d, and the number of heads H , we con- 297

sider two strategies to generate H attention heads: 298

(a) Simple strategy: We employ three learnable 299

matrices, each with a shape of d× (dk ×H), 300

to directly obtain the expected number of Q, 301

K, and V . 302

(b) Complex strategy: we employ a two-step pro- 303

cess. First, we generate an intermediate quan- 304

tity of Q and K, and then use a powerful 305

MLP network to expand the attention maps 306

to the desired number. This innovative de- 307

sign draws inspiration from the inherent redun- 308

dancy found within the attention map (Michel 309

et al., 2019; Clark et al., 2019; Voita et al., 310

2019), allowing for more heads in Partial- 311

Former under the same parameter budget. We 312

show the comparisons in Table 6. 313
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Type Model N -M d dk H MACs Param BLEU COMET-22

Multi-Branch
Architecture

Weighted Transformer (Ahmed et al., 2017) 6-6 1024 - - - 211M 28.90 -
Multi-Unit Transformer (Yan et al., 2020) 6-6 - - - - 130M 29.30 -
MAT (Fan et al., 2020) 6-6 - - - - 206M 29.90 -
Multi-Path Transformer (Lin et al., 2022) 6-6 - - - - 193M 29.68 -

Lightweight
Architecture

Evolved Transformer (So et al., 2019) - - - - - 64M 28.20 -
Delight (Mehta et al., 2021) - 640 - - - 54M 28.00 -

Weight Sharing

Universal Transformer (Dehghani et al., 2019) - 1024 - - - 65M 28.90 -
SubFormer (Reid et al., 2021) - - - - - 63M 28.50 -
SubFormer-big (Reid et al., 2021) - - - - - 197M 29.30 -
ODE Transformer (RK4) (Li et al., 2022) 6-6 512 - - - 62M 29.03 -
ODE Transformer (RK4) (Li et al., 2022) 24-6 512 - - - 118M 29.80 -

Other
Comparisons

RealFormer (He et al., 2021) 18-18 512 64 8 - 151M 29.35 -
DMAN (Fan et al., 2021) 6-6 512 64 8 - 63M 29.10 -
Mega-Softmax (Ma et al., 2022) 6-6 512 - 1 - 67M 29.01 -

Our System

Transformer 24-6 512 64 8-8 11.1B 118M 29.05 83.60
PartialFormer (w/o Head Scaling) 24-6 512 64 8-8 8.8B 66M 28.86 83.35
PartialFormer 24-6 512 64 24-16 12.2B 115M 30.09 84.17

Transformer 6-6 512 64 8-8 9.9B 62M 27.43 82.19
Transformer 24-6 360 45 8-8 6.3B 62M 28.00 82.72
PartialFormer (w/o Head Scaling) 24-6 360 45 8-8 5.2B 36M 27.88 82.49
PartialFormer 24-6 360 45 24-16 6.8B 61M 29.23 83.74
PartialFormer 24-6 360 45 30-16 6.9B 68M 29.56 83.94

Table 1: Results on the WMT’14 En-De task. MACs denote the multiplication-addition operations. We compute
them via 20 source and target tokens following Mehta et al. (2021).

4 Experimental Setups314

In our evaluation, we assess the performance of315

PartialFormer across 9 machine translation tasks2.316

More details are given in Appendix A317

Dataset. We evaluate our approach on three318

widely-used datasets: WMT’14 English-German319

(En-De), WMT’14 English-French (En-Fr), and320

WMT’16 English-Romanian (En-Ro). Besides, to321

further validate the effectiveness of PartialFormer,322

we also evaluate PartialFormer on six translation323

tasks from WMT’17 benchmark. We preprocess324

the raw data following the standard strategy.325

Architectures and Selected Baselines. We use326

a 24-6 encoder-decoder PartialFormer architec-327

ture for its strong performance, on all 9 machine328

translation tasks. Detailed configurations are pro-329

vided in the results tables. We compare our ap-330

proach with various baselines, including vanilla331

Transformer models, multi-branch architecture,332

lightweight architecture, weight-sharing methods,333

and other strong baselines.334

Training & Evaluation. We train all the mod-335

els on GeForce RTX 3090 cards via Fairseq (Ott336

et al., 2019) toolkit. For evaluation, we utilized337

2We also tested the efficacy of PartialFormer on the lan-
guage modeling task. Results are shown in Appendix.

multi-BLEU (Papineni et al., 2002) and COMET- 338

22 (Rei et al., 2022) scores. Beam sizes were 4, 4, 339

and 5 for En-De, En-Fr, and En-Ro tasks respec- 340

tively. Length_penalty of 0.6, 0.8, and 1.3 were 341

applied to En-De, En-Fr, and En-Ro tasks respec- 342

tively. For the WMT’17 benchmark, beam size and 343

Length_penalty were set to 4 and 1, respectively. 344

We used an ensemble of the last ten checkpoints. 345

5 Experiments 346

Results of WMT’14 En-De Table 1 presents the 347

results for the WMT’14 En-De task. Note that we 348

also provide a “strong” baseline which also ben- 349

efits from deep model stacking. Even though the 350

performance of PartialFormer (w/o Head Scaling) 351

is slightly inferior to that of the Transformer model 352

(27.88 vs. 28.00 and 28.86 vs. 29.05), it outshines 353

the latter in terms of parameter efficiency, consum- 354

ing significantly fewer parameters (36M vs. 62M, 355

66M vs. 118M). We attribute this phenomenon to 356

our PG-FFN, which leverages a group of compact 357

FFNs. This approach enables PG-FFN to maintain 358

high hidden dimension, while drastically reducing 359

parameter consumption. 360

Upon utilizing our head scaling technique to 361

amplify the capacity, our Partialformer delivers a 362

BLEU score 29.56 and 30.09 on two configurations, 363

respectively. This surpasses the standard Trans- 364

former by 1.56 BLEU points (29.56 vs. 28.00) and 365
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Model N d dk H Param BLEU

Weighted Transformer (2017) 6 - - - 211M 41.40
Evolved Transformer (2019) - - - - 64M 40.60
Delight (2021) - 640 - - 54M 40.50
ODE Transformer (2022) 6 - - - 69M 42.56
ODE Transformer (2022) 24 - - - 123M 43.28
Multi-Path Transformer (2022) - - - - 168M 42.44

Transformer 24 512 64 8-8 120M 42.33
PartialFormer (w/o Head Scaling) 24 512 64 8-8 68M 41.68
PartialFormer 24 512 64 24-18 119M 43.10
PartialFormer 24 512 64 24-24 127M 43.29

Transformer 6 512 64 8-8 63M 40.79
Transformer 24 360 45 8-8 64M 40.96
PartialFormer (w/o Head Scaling) 24 360 45 8-8 38M 40.44
PartialFormer 24 360 45 24-18 63M 42.16
PartialFormer 24 360 45 24-24 67M 42.39

Table 2: Results on the WMT’14 En-Fr task.

1.04 BLEU points (30.09 vs. 29.05) within a simi-366

lar model capacity. The enhancement here can be367

attributed to the head scaling method, which allows368

PartialFormer to possess a larger hidden dimen-369

sion, thereby bolstering its capacity for memory370

storage (Geva et al., 2021). These observations are371

further confirmed by the COMET-22 scores.372

Moreover, PartialFormer can even surpass all373

selected multi-branch Transformers while using374

fewer parameters. Notably, PartialFormer (N =375

24, d = 512) outperforms the latest multi-path376

Transformer (Lin et al., 2022) by 0.41 BLEU points377

with 78M fewer parameters. This highlights the ef-378

ficiency of building a multi-branch network based379

on inherent subspaces. Additionally, PartialFormer380

excels over previous lightweight approaches and381

outperforms state-of-the-art weight-sharing meth-382

ods, e.g., ODE Transformer (Li et al., 2022), and383

other strong baselines, e.g., Mega (Ma et al., 2022).384

Notably, both ODE Transformer and Mega utilize385

relative position encoding (Shaw et al., 2018).386

Results of WMT’14 En-Fr Table 2 presents the387

results of PartialFormer on the WMT’14 En-Fr388

task. Similar to the findings in the En-De task,389

PartialFormer demonstrates a similar phenomenon.390

Notably, PartialFormer achieves comparable re-391

sults to Transformer (N = 24, d = 512) (42.39392

vs. 42.33) while utilizing 53M fewer parameters393

(67M vs. 120M). This highlights the remarkable394

parameter efficiency of PartialFormer.395

Results of WMT’16 En-Ro Table 3 presents the396

results on the test set of the WMT’16 En-Ro task.397

Notably, PartialFormer achieves the highest BLEU398

points among all selected baselines. It is particu-399

larly remarkable that PartialFormer achieves sim-400

Model N d dk H Param BLEU

Delight (Mehta et al., 2021) - 640 - - 53M 34.70
Subformer (Reid et al., 2021) - - - - 48M 34.70
ODE Transformer (Li et al., 2022) 6 1024 64 16-16 226M 35.28

Transformer 24 512 64 8-8 111M 35.00
PartialFormer (w/o Head Scaling) 24 512 64 8-8 59M 35.07
PartialFormer 24 320 40 24-24 48M 35.30

Table 3: Results on the WMT’16 En-Ro task.

Model Fi←→En De←→En Lv←→En Avg.
Fi→ En En→ Fi De→ En En→ De Lv→ En En→ Lv

Transformer 26.07 22.14 35.04 28.59 17.59 16.23 24.27
PartialFormer 27.48 23.35 35.60 29.91 19.65 17.37 25.56

Table 4: Results on the WMT’17 benchmark. Partial-
Former has the same depth and d as the Transformer but
consumes 1M fewer parameters on average.

ilar results to ODE Transformer while utilizing 401

178M fewer parameters. This highlights the excep- 402

tional efficiency of PartialFormer. 403

Results of WMT’17 Benchmark Table 4 404

presents the WMT’17 benchmark results, showing 405

that PartialFormer consistently outperforms Trans- 406

former by an average of 1.29 BLEU points in all 407

six translation tasks. This finding is consistent with 408

the observed performance in the En-De task. 409

6 Analysis 410

6.1 Ablation Studies 411

Table 5 presents an ablation study of PartialFormer 412

on the WMT’14 En-De task, demonstrating the 413

critical role of each component. Omitting any ele- 414

ment causes performance decline, underscoring the 415

holistic design. The PG-FFN removal (#3 vs. #4) 416

results in a large performance drop of 2.05 BLEU 417

points, despite a mere 16 million parameters re- 418

duction. This evidence corroborates previous find- 419

ings (Dong et al., 2021) on the subpar performance 420

of pure attention networks sans FFN, highlighting 421

the essential role of PG-FFN in PartialFormer. 422

Besides, Table 5 shows the results of differ- 423

ent PartialFormer configurations on the WMT’14 424

En-De task. The encoder-decoder PartialFormer 425

achieves the highest performance, reaching 29.56 426

BLEU points, indicating the effectiveness of our 427

approach in enhancing both the encoder and the 428

decoder. Employing our concept to either the en- 429

coder or the decoder individually also improves per- 430

formance, yet the encoder-decoder configuration 431

persistently surpasses others, marking the greatest 432

performance improvement. 433
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# Model Param BLEU

1 Transformer (N = 24, d = 360) 62M 28.00
2 Pure Attention (N = 24, d = 360) 31M 25.70

3 PartialFormer 68M 29.56
4 w/o Partial-level Gated FFN 52M 27.51
5 w/o Residual-like Attention Calculation 66M 29.26
6 w/o Head Scaling 36M 27.88

7 PartialFormer (encoder only) 67M 29.15
8 PartialFormer (decoder only) 63M 28.80

Table 5: Ablation studies on WMT’14 En-De task.

Model Param BLEU

PartialFormer (w/o Head Scaling) 36M 27.88
+ Simple Head Scaling 68M 29.33
+ Complex Head Scaling 68M 29.56

Table 6: Comparison of head scaling strategy on
WMT’14 En-De task.

6.2 Comparison of Head Scaling Strategy434

Table 6 presents the results of PartialFormer on435

the En-De task test set with varying head scaling436

techniques. Both simple and complex strategies437

effectively utilize additional parameters to enhance438

PartialFormer’s performance. Notably, the com-439

plex head scaling technique, allowing for more440

parameters allocated to additional heads, demon-441

strates superior performance.442

6.3 Discussions on Width Scaling Strategies443

Table 7 presents the results of analyzing three key444

ways to increase the width in PartialFormer: 1)445

dk, 2) H , and 3) d, on the En-De task’s test set.446

Notably, the findings indicate that both increasing447

H and adding dk can effectively enhance the ca-448

pacity of PartialFormer. Additionally, enlarging d449

can be beneficial for performance improvements450

when it is small, e.g., less than 360. However, be-451

yond a certain threshold, further increments of d452

become redundant and do not lead to performance453

gains. This aligns with previous studies (Mehta454

et al., 2021; Baevski and Auli, 2019) highlighting455

redundant information in the embedding layer.456

6.4 Comparison of Gating Strategy457

Table 8 presents a comparison of various activation458

functions used in PG-FFN. The results indicate459

that the default choice, ReLU activation, yields460

the best performance. One explanation is that the461

ReLU activation provides hard masks for filtering462

the information of different heads, compared to463

Model Setting H d dk Param BLEU

PartialFormer

Basic 30-16 360 45 68M 29.56

Varying
Encoder H

24-16 360 45 61M 29.23
16-16 360 45 51M 29.02

Varying
Decoder H

16-24 360 45 56M 28.85
16-30 360 45 60M 29.20

Varying dh
30-16 360 30 49M 28.70
30-16 360 60 86M 29.68
30-16 360 90 124M 30.00

Varying d
30-16 180 45 35M 27.61
30-16 270 45 51M 28.80
30-16 450 45 84M 29.41

Table 7: Comparison of different width scaling strategy
on the En-De task.

other activation functions. Such hard masks can 464

make different heads more diverse. 465

6.5 Efficiency Analysis 466

Table 9 exhibits the inference efficiency on the 467

test set of En-De task. It is evident that Partial- 468

Former incurs a reasonable increase in inference 469

cost, which remains within acceptable limits. 470

6.6 Analysis on Behaviours of FFN 471

Metric. Following Zhang et al. (2022), we exam- 472

ine FFN behaviors across four aspects: activation 473

neuron count (namely nact.), FFNs’ hidden dimen- 474

sion, activation-neuron ratio (activations divided 475

by hidden dimension, namely Ract.), and FFN effi- 476

ciency (activations divided by parameters, namely 477

ηffn). Notably, for PartialFormer, the hidden di- 478

mension represents the concatenation of hidden 479

dimensions from all smaller FFNs. 480

Results. Figure 4(a-c) exhibits the results on the 481

En-De test set. It is evident that PartialFormer has a 482

lower activation ratio than the vanilla Transformer, 483

as shown in Figure 4(b). This indicates that PG- 484

FFNs based on matrix factorization present lower 485

utilization of the hidden dimension compared to the 486

vanilla FFNs. However, our PG-FFN is parameter 487

consumption friendly, enabling larger hidden layer 488

dimensions with the same parameter budget (e.g., 489

5400 vs. 1440). Despite lower utilization of hidden 490

dimension, it can still own more activated neurons, 491

as depicted in Figure 4(a). Additionally, our PG- 492

FFN exhibits higher efficiency compared to vanilla 493

FFNs, as shown in Figure 4(c). Multiple small 494

FFNs, like “Swarm Intelligence” (Bonabeau et al., 495

1999), outperform large FFNs by leveraging the 496

collective strength of weak individuals. 497
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Model Param BLEU

PG-FFNs 68M 29.56
PG-FFNs with Sigmoid activation 68M 29.21
PG-FFNs with Tanh activation 68M 29.03

Table 8: Comparison of activation functions in PG-
FFNs.

Model Param Speed (Tok./s) Memory BLEU

Transformer 62M 4325 3.0G 28.00
PartialFormer (w/o head scaling) 66M 3634 3.2G 28.86
PartialFormer 68M 3023 3.3G 29.56

Table 9: Efficiency comparison between Transformer
and PartialFormer in inference.

6.7 Analysis on Head Diversity498

Metric. We select the same metric, namely499

Doutput, as that in Li et al. (2018) to measure the500

diversity among head features. In this metric, a501

larger value indicates a higher level of diversity.502

Results. From Figure 4(d), we can observe that503

PartialFormer exhibits more diverse head features504

compared to the vanilla Transformer, even though505

the vanilla Transformer already demonstrates di-506

verse features. This aligns with previous study (Li507

et al., 2018), which demonstrates the positive im-508

pact of head feature diversity on the Transformer509

model’s performance. Thus, we conclude that the510

insertion of FFNs into attention mechanism may511

be a more optimal design.512

7 Related Work513

Lightweight Transformers Many methods have514

been proposed to improve the parameter efficiency515

of Transformer architecture. The first line is to di-516

rectly cut down redundant computations and param-517

eters via a more efficient design such as adopting518

more efficient transformation operations (Mehta519

et al., 2019, 2021), integrating different but com-520

plementary patterns (Wu et al., 2020) and neural521

architecture search (So et al., 2019). Another re-522

search direction for improving parameter efficiency523

in the Transformer is weight sharing. The popular524

cross-layer sharing method is utilized by the Uni-525

versal Transformer (Dehghani et al., 2019). Reid526

et al. (2021) propose better performance by free-527

ing the first and last encoder layers and widening528

the intermediate layers. Li et al. (2022) introduce529

an ordinary differential equation-inspired weight-530

sharing method for more precise results. Different531

from these work, our study focus on the design of532
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Figure 4: Analysis on behaviours of FFNs and head
diversity in Transformer and PartialFormer.

efficient lightweight FFN. 533

Multi-Branch Transformer The multi-branch 534

strategy is widely used in Transformer design. 535

Weighted Transformer (Ahmed et al., 2017) em- 536

ploys a multi-branch FFN, while Multi-attentive 537

Transformer (Fan et al., 2020), Multi-units Trans- 538

former (Yan et al., 2020), and Multi-Path Trans- 539

former (Lin et al., 2022) extend this concept to dif- 540

ferent components of the Transformer. Our work 541

introduces a pure multi-branch architecture based 542

on natural subspaces. 543

Scaling Strategy in Transformer Deepen- 544

ing (Bapna et al., 2018; Wang et al., 2019) and 545

widening (Vaswani et al., 2017; Wu et al., 2021) 546

Transformer have been well-acknowledged as two 547

strategies to improve the capacity of Transformer 548

in literature. In this work, PartialFormer adopts two 549

alternative strategies to improve capacity, adding a 550

number of heads and head dimensions. 551

8 Conclusion 552

In this paper, we present PartialFormer, a new 553

parameter-efficient Transformer architecture that 554

offers an alternative approach to the design of the 555

lightweight FFN. By employing multiple small 556

FFNs and leveraging matrix factorization tech- 557

niques, PartialFormer effectively reduces the num- 558

ber of parameters in the FFN. Moreover, we pro- 559

pose two innovative operations to further efficiently 560

enhance the model capabilities. Experimental re- 561

sults across various machine translation tasks show- 562

case the significant performance improvements 563

achieved by PartialFormer, while maintaining com- 564

parable parameter consumption. 565
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Limitations566

Despite the potential advantages of Partialformer567

in terms of parameter utilization and performance568

within a limited parameter budget, it is important569

to note that the existing conclusions regarding its570

effectiveness have not been thoroughly examined571

in the context of large-scale datasets and a higher572

number of parameters. Further research is needed573

to validate the claims and assess the scalability of574

Partialformer in more challenging scenarios.575
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A Detailed Setups of Experiments 821

A.1 Dataset 822

Table 10 displays the statistics of all the 9 transla- 823

tion task. 824

A.2 Training Details 825

Table 11 and 12 exhibits the training details on all 826

translation tasks. 827

B Metric Definition 828

B.1 Measurement of Head Diversity 829

Following Li et al. (2018), we measure the head 830

diversity as follows: 831

Doutput = exp(− 1

H2

H∑
i=1

H∑
j=1

|Oi ·Oj |
∥Oi∥∥Oj∥

) (10) 832

During evaluation, we calculate the metric on all 833

samples and average the values to obtain the final 834

result. 835

C More Comparison with Previous 836

Lightweight Transformer 837

Table 13 presents a comprehensive comparison of 838

previous lightweight Transformer models on the 839

En-De task’s test set, with a specific focus on op- 840

erating within a smaller parameter budget. The 841

results prominently showcase the outstanding per- 842

formance of PartialFormer, even when faced with 843

constraints on model capacity. This outcome fur- 844

ther emphasizes the superior capabilities of Partial- 845

Former in scenarios with limited resources. 846

D PartialFormer with Different AG for 847

Small Dataset 848

Table 14 showcases the results of PartialFormer on 849

the WMT’16 En-Ro task, a small-scale translation 850

dataset, specifically when AG is calculated using 851

local attention (Shaw et al., 2018). Notably, these 852

results reveal that by adopting such an approach, 853

PartialFormer achieves an impressive BLEU score 854

of 35.76. We hope this can shed lights on the area 855

of model integration. 856

E PartialFormer with GLU and Weight 857

Sharing 858

In this section, we investigate the integration of 859

PartialFormer with two prominent techniques to 860

enhance parameter efficiency: 1) the weight shar- 861

ing method (Lan et al., 2020), and 2) gated linear 862
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Dataset Sentence BPE Vocab
Train Dev Test

WMT’14 En-De 4.5M 2999 3003 32K 34040
WMT’14 En-Fr 36M 26815 3003 32K 37288
WMT’16 En-Ro 0.6M 1999 1999 20K 19064
WMT’17 En-De 5.9M 7998 3004 32K 35488
WMT’17 De-En 5.9M 7998 3004 32K 35448
WMT’17 En-Fi 2.7M 4225 3002 32K 32584
WMT’17 Fi-En 2.7M 4225 3002 32K 32584
WMT’17 En-Lv 4.5M 2003 2001 20K 32368
WMT’17 Lv-En 4.5M 2003 2001 20K 32368

Table 10: The details of datasets of 9 translation tasks.

Hyper-parameter WMT’14 En-De WMT’16 En-Ro WMT’14 En-Fr

GPUs 8 4 8
Batch Size 4096 4096 4096
Update Frequency 2 1 8
Optimer Adam Adam Adam
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997)
LR 0.0020 0.0020 0.0020
LR scheduler inverse sqrt inverse sqrt inverse sqrt
Initial LR 1e−7 1e−7 1e−7

Total updates 50K 25K 100K
Warmup updates 16000 8000 16000
Weight decay 0.0000 0.0000 0.0000
Label smoothing 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1

Table 11: The training setups of WMT’14 En-De, WMT’16 En-Ro and WMT’14 En-Fr tasks.

Hyper-parameter En-{De, Lv} {De, Lv}-En En-Fi Fi-En

GPUs 8 8 8 8
Batch Size 4096 4096 4096 4096
Update Frequency 2 1 1 4
Optimer Adam Adam Adam Adam
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997) (0.9, 0.997)
LR 0.0020 0.0020 0.0020 0.0020
LR scheduler inverse sqrt inverse sqrt inverse sqrt inverse sqrt
Initial LR 1e−7 1e−7 1e−7 1e−7

Total updates 50K/17K 50K/17K 40K 10K
Warmup updates 16000 16000 16000 16000
Weight decay 0.0000 0.0000 0.0000 0.0000
Label smoothing 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1 0.1

Table 12: The training setups of WMT’17 benchmark.

units (Dauphin et al., 2017). To ensure the uti-863

lization of the latest advancements, we employ a864

state-of-the-art weight sharing method called ODE865

Transformer (Li et al., 2022), known for its effec-866

tiveness in promoting parameter efficiency in Trans-867

former architectures. Additionally, we incorporate 868

Swi-GLU (Shazeer, 2020), a widely adopted GLU- 869

variant that has served as a foundational component 870

in numerous expressive Transformer architectures. 871

Table 15 displays the results of combining Par- 872
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Model Param BLEU

DELIGHT (Mehta et al., 2021) 23M 26.70
EdgeFormer (Ge et al., 2022) - 26.90
Lite Transformer (Wu et al., 2020) - 26.50
PartialFormer 27M 27.50

Evolved Transformer (So et al., 2019) 48M 27.70
DELIGHT (Mehta et al., 2021) 37M 27.60
ODE Transformer (Li et al., 2022) 37M 28.24
PartialFormer 36M 28.35

Table 13: Comparison with state-of-the-art models of
smaller capacities on the En-De task.

AG AL Param BLEU

RPR MHSA 62M 35.76

Table 14: Results of several PartialFormer variants on
the En-De task.

Model Param BLEU

PartialFormer 67M 29.56
PartialFormer + Weight Sharing 67M 29.71
GLU-based PartialFormer 67M 29.67

Table 15: Results of PartialFormer variants on the En-
De task.

tialFormer with weight sharing and gated linear873

units. Despite the integration of these two tech-874

niques, the performance gains are marginal. This875

could be attributed to the fact that PartialFormer al-876

ready possesses high parameter efficiency, leaving877

little room for additional enhancements from other878

technologies. In other words, PartialFormer is in-879

herently a high parameter efficiency architecture.880

F Analysis on Token Uniformity881

Following (Dong et al., 2021; Wang et al., 2022),882

we measure the token uniformity among token rep-883

resentations. We use pearson correlation to com-884

pute it.885

From Figure 5, we can observe that Partial-886

Former owns a lower token uniformity among to-887

ken representations than the vanilla Transformer,888

revealing that PartialFormer can benefit from depth889

scaling efficiently (Dong et al., 2021; Wang et al.,890

2022).891

G Preliminary Experiments on Language892

Modeling893

We also evaluate the effectiveness of PartialFormer894

on the language modeling task. We can see that895
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Figure 5: Comparison of token uniformity (lower is
better) in Transformer and PartialFormer.

PartialFormer can also show better results com- 896

pared to strong baseline, e.g., Adaptive Input Trans- 897

former (Baevski and Auli, 2019). We will present 898

more comprehensive experiments in the future. 899

Model Depth θ (M) Test PPL

Adaptive Input 8 147M 21.11
PartialFormer 16 143M 19.87

Table 16: Results on the WikiText-103 dataset.
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