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Abstract

The parameter redundancy problem in Trans-
former models has been widely acknowledged
in the literature. To address this weakness, we
introduce PartialFormer, a parameter-efficient
Transformer architecture for machine transla-
tion. Compared to previous parameter-efficient
Transformer architecture, PartialFormer modi-
fies the modeling strategy of the feed-forward
network to allow it to spare tremendous pa-
rameters while maintaining large hidden di-
mension. Additionally, PartialFormer applies
two efficient scaling strategies, namely depth
scaling and width scaling, to improve perfor-
mance within a given parameter budget. To
efficiently benefit from these scaling strategies,
PartialFormer is further enhanced by two cost-
effective modifications: 1) a head scaling strat-
egy for efficient width scaling and 2) a residual-
like attention calculation for better depth scal-
ing. Extensive experiments on 9 translation
tasks validate the effectiveness of our Partial-
Former approach.

1 Introduction

The Transformer model (Vaswani et al., 2017) has
emerged as a cornerstone in the natural language
processing (NLP) domain, overshadowing convo-
Iutional neural networks (Gehring et al., 2017) and
recurrent neural networks (Sutskever et al., 2014)
by virtue of its minimal inductive bias, superior
scalability, and proficiency in modeling extended
sequences. Nonetheless, its substantial computa-
tional and parametric requisites pose significant
challenges to its deployment and training, warrant-
ing an ongoing trend in the research community to-
ward eliminating redundant parameters and compu-
tations in the Transformer model (Dehghani et al.,
2019; Lan et al., 2020; Reid et al., 2021; Li et al.,
2022; Ahmed et al., 2017; Yan et al., 2020; Wu
et al., 2020; Mehta et al., 2019, 2021).

Despite their success in improving the paramet-
ric and computational efficiency of the Transformer,
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Figure 1: Illustration of our idea.

it is noteworthy that these approaches ignore the
importance of feed-forward networks (FFN). Feed-
forward networks consume significant parametric
and computational overhead due to the inherent
large feature space and hidden dimension. To cut
down FFNs’ overhead, previous studies (Mehta
et al., 2021; Wu et al., 2020; Ge et al., 2022) just
adopt smaller hidden dimension, e.g., equal to or
even lower than the size of feature space. That
leads to a question: Are current lightweight FFNs
optimal?

To address this concern, we turn to the insights
provided by Geva et al. (2021), who depicted FFNs
as a collection of key-value memories, where the
number of memories is equal to the number of
hidden dimensions in FFNs. This finding under-
scores the significance of hidden dimension in
FFNs. Drawing inspiration from this finding and
the successful application of large hidden sizes
in FFNs as evidenced by Meta’s 4B model (Tran
et al., 2021)!, we postulate that a truly efficient
lightweight FFN should maintain, if not enlarge,
the hidden dimension while reducing parameters.

To this end, we propose PartialFormer, an inno-
vative approach to Transformer architecture. The
central design of PartialFormer is the Partial-Level
Gated Feed-Forward Networks (PG-FFN). We de-
signed the PG-FFN as a set of smaller FFNs in

!They have shown enlarging the hidden size of FFNs to

16384 delivers significant BLEU improvements.



unison, each producing lower-dimensional hid-
den features, yet collectively matching or exceed-
ing the hidden dimension of a conventional larger
FFN. Moreover, we further equipped PartialFormer
with two cost-effective operations: a head scal-
ing strategy for efficient width scaling, and a
residual-like attention calculation for stable op-
timization. These techniques empower Partial-
Former to achieve deeper layer stacking or in-
creased width within the same parameter budget.

The strength of PartialFormer has been affirmed
through rigorous empirical evaluations on 9 ma-
chine translation tasks. Remarkably, even while
maintaining similar parameter consumption, our
PartialFormer consistently surpasses the vanilla
Transformer, employing the same layer depth and
embedding width, by an average of 1.29 BLEU
points across all 6 WMT’ 17 machine translations.
Furthermore, it achieved a BLEU score of 29.56
on the challenging WMT’ 14 En-De task with only
68 million parameters, showcasing its effectiveness
and efficiency. Our work with PartialFormer thus
marks an important step towards the goal of opti-
mized Transformer architectures, marrying perfor-
mance with efficiency in a manner that has potential
for broad impact in NLP applications.

2 Preliminary: Transformer

In this section, we present some prior knowledge
about the Transformer. Typically, Transformer
block always consists of a multi-head self-attention
and a feed-forward network. Let X € R7*? be a
T x d input matrix of 7" tokens. Each multi-head
self-attention component owns H heads. For sim-
plicity, we ignore the layer-normalization operation
and residual connection.

Multi-Head Self-Attention MHSA aims to
model the global dependency among tokens.
MHSA computes as follows:

i Q(KNT
A Softmax( N ), (1)
head, = AV, 2)
H
X = ) head WP, (3)
=1

where Q%, K*, V' denote the query, key and value
of i-th head, which are derived from input with
three learnable matrics W°, WK WY e RIxdx

as follows: Q' = XWZ-Q,Ki = XWiK,Vi =

X WZ-V, respectively. Wio € R4 ig a learnable
matrix. A® and head® denote the attention matrix
and representation of i-th head, respectively.

Feed-Forward Network Feed-forward network
is responsible for improving the expressiveness
of the whole representation space by adopting an
"expansion-activation-reduction" mapping strategy.
It computes as follows:

X = ReLU(XWj + b)) Wy + by, 4)

where W, € R%&dm W, ¢ Riémxd p ¢
R%m_ by € R? as learnable matrices and dg, de-
notes the hidden dimension in FEN that is usually
set to 4d.

3 PartialFormer

3.1 Overall Architecture

Figure 2 illustrates the overall architecture of Par-
tialFormer, encompassing both an encoder and a de-
coder. Although the foundational structure adheres
to the design of the vanilla Transformer (Vaswani
et al., 2017), there are some notable modifications.

Encoder. Different from vanilla Transformer,
each encoder layer in PartialFormer consists of
a unified sub-layer that integrates the PG-FFNs
into the multi-head self-attention mechanism rather
than separate two sub-layers.

Decoder. Each decoder layer is composed of two
types of sub-layers, both of which integrate the
multi-head attention mechanism with PG-FFNs.
The sub-layers differ based on the type of multi-
head attention mechanisms employed, specifically
whether it’s a decoder self-attention or an encoder-
decoder cross-attention mechanism.

3.2 Information Flow in Unified Sub-Layer

Taking the Encoder as an instance. Each uni-
fied sub-layer first computes the multiple attention
scores via Eq. (5), then obtains the multiple head
features {head’|1 < i < H} via Eq. (2), which is
the same as vanilla Transformer. Then, using mul-
tiple small FFNSs, it processes these head features
and ultimately combines the representations via a
fusion function according to Eq. (7). That is to say,
the PG-FFN is encapsulated into the multihead-
attention mechanism.
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Figure 2: (a) Architecture of Transformer. (b) Architecture of PartialFormer. (c) Details of Self-AFFN Block. All
architecture are based on pre-normalization strategy. We omit the layer normalization operation, residual connection,

softmax operation and scale coefficient for simplicity.
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3.3 Partial-Level Gated FFN

Intuition Previous studies (Wu et al., 2020;
Mehta et al., 2021; Ge et al., 2022) have commonly
reduced the parameters in feed-forward networks
by decreasing the hidden dimension (e.g., 2048
to 256). In contrast, we tackle this issue through
a matrix factorization approach. Our key idea in-
volves utilizing a collection of small FFNs to model
smaller input features, rather than relying on a sin-
gle large FFN.

Assume a FFN with mappings of 1024->4096-
>1024, which consumes around 8.4 million param-
eters. By decomposing this into 8 smaller FFNs
with mappings of 128->512->128, we can retain
the same hidden dimension, such as 8 * 512, while
using only 1.05 million parameters. This approach
significantly reduces parameters while maintaining
the crucial desired hidden dimension, as empha-
sized in previous studies (Geva et al., 2021; Tran
etal., 2021).

Furthermore, we have observed that the Trans-
former architecture inherently consists of multi-
ple smaller subspaces, namely “heads” within the
multi-head attention (MHA) mechanism. These
heads act as sub-components of the original inputs
and retain substantial information from the original
data. As a result, PG-FFNs should naturally be
constructed based on the MHA mechanism.

Calculation of PG-FFNs While group transfor-
mation operations could be used to instantiate our
idea, they are not optimal on GPUs due to their
low 1/O efficiency (Ma et al., 2018), causing signif-
icant inference latency. To address this, we propose
sharing parameters across each FFN within differ-
ent heads, thereby eliminating the need for group
transformation operations.

However, directly sharing weights may result
in homogeneous representations across different
heads, which may potentially hinder the perfor-
mance (Li et al., 2018). To mitigate this, we further
introduce a head-specific gated mechanism. The
core idea is to use a set of diverse masks to filter the
information of different heads so that the head rep-
resentation will be more diverse. Formally, given
a set of smaller features {head’|1 < i < H} and
diverse masks {G?|1 < i < H}, the Eq. (6) can
rewritten as:

O' = G'®FFN(head?), (8)

where FEN(+) is the same as Eq. (4).

Generating {G?|1 < i < H} In our prelimi-
nary experiments, we observed significant diversity
in the features generated by different parameters
from sub-layer inputs, e.g., {V!,..., V). Moti-
vated by this finding, we generate diverse masks in
the following manner:

Gl = o(XWE), )

where W is a learnable matrix and o denotes the
activation function, e.g., ReLLU, Sigmoid and Tanh.
We compare them in Table 8.

3.4 Efficient Scaling Strategy

Though PG-FFN offers the advantage of reduc-
ing lots of parameters when applied directly to the



transformer, it also leads to performance degra-
dation. Thus, a crucial aspect of this study is to
determine how to effectively utilize the spared pa-
rameters. In this work, we adopt a hybrid scaling
strategy, combining both width scaling and depth
scaling, which has been validated in computer vi-
sion, e.g., EfficientNet (Tan and Le, 2019).

3.4.1 Enabling Efficient Depth Scaling for
PartialFormer

Wang et al. (2019); Dong et al. (2021); Wang et al.
(2022) have shown that the original location of
FFNs plays an essential role in optimizing trans-
formers, e.g., alleviating Token Uniformity. Thus,
we need to consider the impact brought by the
change of FFNs. While the densely residual con-
nection is an efficient way to alleviate it, they
are typically either based on feature level (e.g.,
DLCL (Wang et al., 2019)) or coupled with the net-
work structure (e.g., Realformer (He et al., 2021)).

To this end, we design a new variant of the resid-
ual connection integrated into the attention calcu-
lation, while also decoupling from the network ar-
chitecture. Specifically, the calculation of attention
maps consists of two parts: 1) Ag, the global part,
and 2) Ay, the local part. The calculation of Ay, re-
mains the same as in the vanilla Transformer, while
A is computed once by using the original embed-
ding as input through Eq. (1). Inspired by He et al.
(2021), to efficiently fuse these components, we
add them together and apply a Softmax function,
as shown in Eq. (5).

In addition to the benefit of efficient depth scal-
ing (See Appendix F), this approach provides re-
markable flexibility in combining different atten-
tion mechanisms, specifically tailored to address
specific conditions. For instance, it allows for the
utilization of local attention to calculate A when
dealing with small datasets (see Appendix D).

3.4.2 Head Scaling: An Efficient Width
Scaling for PartialFormer

Existing approach to width scaling, which is based
on the embedding size, necessitates the simultane-
ous scaling of both the encoder and decoder for ma-
chine translation tasks. This is primarily because
researchers commonly employ shared encoder and
decoder embedding. However, taking cues from
the achievements of depth scaling, it may be more
advantageous to adopt a distinct method for scal-
ing width, similar to the approach used for scaling
depth. Here we show how PartialFormer has inher-

ent superiority to achieve so.

The width of a Transformer model typically
refers to the widest part of the Transformer. In this
context, both the vanilla Transformer and previous
lightweight Transformer models have widths that
are related to the embedding dimension, such as 4d
or d. Therefore, by increasing the embedding size,
we can effectively enlarge their width. However,
the width definition in PartialFormer is different
and can be expressed as w = H X dg,, where w
denotes the width of model and dg, is associated
with the head dimension dj. Consequently, we can
expand the width by either increasing the number
of heads or enlarging dj. A comparison between
these approaches is presented in Table 7. Notably,
if the head dimension and number of heads are
independent of the embedding dimension, Partial-
Former allows for easy scaling of width in different
ways within the encoder and decoder components.

dp X H=d () di X H=dX)
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Figure 3: Comparison of ways to generate subspaces in
Transformer and PartialFormer.

To this end, we propose a new scaling mecha-
nism, namely head scaling, that scales the width of
PartialFormer by directly adding more heads and
increasing head dimension, as illustrated in Figure
3. Given the head dimension dj, the embedding
dimension d, and the number of heads H, we con-
sider two strategies to generate H attention heads:

(a) Simple strategy: We employ three learnable
matrices, each with a shape of d x (d x H),
to directly obtain the expected number of @),
K,and V.

(b) Complex strategy: we employ a two-step pro-
cess. First, we generate an intermediate quan-
tity of @ and K, and then use a powerful
MLP network to expand the attention maps
to the desired number. This innovative de-
sign draws inspiration from the inherent redun-
dancy found within the attention map (Michel
et al., 2019; Clark et al., 2019; Voita et al.,
2019), allowing for more heads in Partial-
Former under the same parameter budget. We
show the comparisons in Table 6.



Type Model N-M d di H MACs Param BLEU COMET-22

Weighted Transformer (Ahmed et al., 2017) 6-6 1024 - - - 211IM 28.90 -
Multi-Branch Multi-Unit Transformer (Yan et al., 2020) 6-6 - - - - 130M 29.30 -
Architecture MAT (Fan et al., 2020) 6-6 - - - - 206M 29.90 -
Multi-Path Transformer (Lin et al., 2022) 6-6 - - - - 193M 29.68 -
Lightweight Evolved Transformer (So et al., 2019) - - - - - 64M 28.20 -
Architecture Delight (Mehta et al., 2021) - 640 - - - 54M 28.00 -
Universal Transformer (Dehghani et al., 2019) - 1024 - - - 65M 28.90 -
SubFormer (Reid et al., 2021) - - - - - 63M 28.50 -
Weight Sharing SubFormer-big (Reid et al., 2021) - - - - - 197M 29.30 -
ODE Transformer (RK4) (Li et al., 2022) 6-6 512 - - - 62M 29.03 -
ODE Transformer (RK4) (Li et al., 2022) 24-6 512 - - - 118M 29.80 -
Other RealFormer (He et al., 2021) 18-18 512 64 8 - 151IM 29.35 -
Comparisons DMAN (Fan et al., 2021) 6-6 512 64 8 - 63M 29.10 -
Mega-Softmax (Ma et al., 2022) 6-6 512 - 1 - 67M 29.01 -

Transformer 24-6 512 64 88 11.1B 118M 29.05 83.60

PartialFormer (w/o Head Scaling) 24-6 512 64 88 8.8B 66M 28.86 83.35

PartialFormer 24-6 512 64 24-16 12.2B 115M 30.09 84.17

Our System

Transformer 6-6 512 64 88 99B 62M 27.43 82.19

Transformer 24-6 360 45 8-8 63B 62M 28.00 82.72

PartialFormer (w/o Head Scaling) 24-6 360 45 8-8 52B 36M 27.88 82.49

PartialFormer 24-6 360 45 24-16 6.8B 61M 29.23 83.74

PartialFormer 24-6 360 45 30-16 69B 68M 29.56 83.94

Table 1: Results on the WMT’ 14 En-De task. MACs denote the multiplication-addition operations. We compute
them via 20 source and target tokens following Mehta et al. (2021).

4 Experimental Setups

In our evaluation, we assess the performance of
PartialFormer across 9 machine translation tasks?.
More details are given in Appendix A

Dataset. We evaluate our approach on three
widely-used datasets: WMT’ 14 English-German
(En-De), WMT"’ 14 English-French (En-Fr), and
WMT’ 16 English-Romanian (En-Ro). Besides, to
further validate the effectiveness of PartialFormer,
we also evaluate PartialFormer on six translation
tasks from WMT’ 17 benchmark. We preprocess
the raw data following the standard strategy.

Architectures and Selected Baselines. We use
a 24-6 encoder-decoder PartialFormer architec-
ture for its strong performance, on all 9 machine
translation tasks. Detailed configurations are pro-
vided in the results tables. We compare our ap-
proach with various baselines, including vanilla
Transformer models, multi-branch architecture,
lightweight architecture, weight-sharing methods,
and other strong baselines.

Training & Evaluation. We train all the mod-
els on GeForce RTX 3090 cards via Fairseq (Ott
et al., 2019) toolkit. For evaluation, we utilized

2We also tested the efficacy of PartialFormer on the lan-
guage modeling task. Results are shown in Appendix.

multi-BLEU (Papineni et al., 2002) and COMET-
22 (Rei et al., 2022) scores. Beam sizes were 4, 4,
and 5 for En-De, En-Fr, and En-Ro tasks respec-
tively. Length_penalty of 0.6, 0.8, and 1.3 were
applied to En-De, En-Fr, and En-Ro tasks respec-
tively. For the WMT’ 17 benchmark, beam size and
Length_penalty were set to 4 and 1, respectively.
We used an ensemble of the last ten checkpoints.

S Experiments

Results of WMT’14 En-De Table 1 presents the
results for the WMT’ 14 En-De task. Note that we
also provide a “strong” baseline which also ben-
efits from deep model stacking. Even though the
performance of PartialFormer (w/o Head Scaling)
is slightly inferior to that of the Transformer model
(27.88 vs. 28.00 and 28.86 vs. 29.05), it outshines
the latter in terms of parameter efficiency, consum-
ing significantly fewer parameters (36M vs. 62M,
66M vs. 118M). We attribute this phenomenon to
our PG-FFN, which leverages a group of compact
FFNs. This approach enables PG-FFN to maintain
high hidden dimension, while drastically reducing
parameter consumption.

Upon utilizing our head scaling technique to
amplify the capacity, our Partialformer delivers a
BLEU score 29.56 and 30.09 on two configurations,
respectively. This surpasses the standard Trans-
former by 1.56 BLEU points (29.56 vs. 28.00) and



Model N dd;, H Param BLEU Model N ddix H Param BLEU
Weighted Transformer (2017) 6 - - - 211M 41.40 Delight (Mehta et al., 2021) - 640 - - 53M 34.70
Evolved Transformer (2019) - - - 64M 40.60 Subformer (Reid et al., 2021) - - - - 48M 34.70
Delight (2021) -640 - 54M 40.50 ODE Transformer (Li et al., 2022) 6 1024 64 16-16 226M 35.28
ODE Transformer (2022) 6 - - OOM 42.56  yansformer 24 51264 88 I1IM 35.00
ODE Transformer (2022) 24 - - - 123M 4328 p,ialFormer (wio Head Scaling) 24 512 64 88 S9M 35.07
Multi-Path Transformer (2022) - - - - 168M 42.44 PartialFormer 24 300 4024-24  48M 35.30
Transformer 24512 64 8-8 120M 42.33

PartialFormer (w/o Head Scaling) 24 512 64 8-8 68M 41.68 Table 3: Results on the WMT’ 16 En-R k
PartialFormer 24512 6424-18 119M 43.10 able 3: Results on the 6 o task.

PartialFormer 24512 64 24-24 127M 43.29

Transformer 6512 64 8-8 63M 40.79
Transformer 24360 45 8-8 64M 40.96
PartialFormer (w/o Head Scaling) 24 360 45 8-8 38M 40.44
PartialFormer 24360 4524-18 63M 42.16
PartialFormer 24 360 4524-24 67M 42.39

Table 2: Results on the WMT’ 14 En-Fr task.

1.04 BLEU points (30.09 vs. 29.05) within a simi-
lar model capacity. The enhancement here can be
attributed to the head scaling method, which allows
PartialFormer to possess a larger hidden dimen-
sion, thereby bolstering its capacity for memory
storage (Geva et al., 2021). These observations are
further confirmed by the COMET-22 scores.
Moreover, PartialFormer can even surpass all
selected multi-branch Transformers while using
fewer parameters. Notably, PartialFormer (N =
24,d = 512) outperforms the latest multi-path
Transformer (Lin et al., 2022) by 0.41 BLEU points
with 78M fewer parameters. This highlights the ef-
ficiency of building a multi-branch network based
on inherent subspaces. Additionally, PartialFormer
excels over previous lightweight approaches and
outperforms state-of-the-art weight-sharing meth-
ods, e.g., ODE Transformer (Li et al., 2022), and
other strong baselines, e.g., Mega (Ma et al., 2022).
Notably, both ODE Transformer and Mega utilize
relative position encoding (Shaw et al., 2018).

Results of WMT’14 En-Fr Table 2 presents the
results of PartialFormer on the WMT’ 14 En-Fr
task. Similar to the findings in the En-De task,
PartialFormer demonstrates a similar phenomenon.
Notably, PartialFormer achieves comparable re-
sults to Transformer (N = 24,d = 512) (42.39
vs. 42.33) while utilizing 53M fewer parameters
(67M vs. 120M). This highlights the remarkable
parameter efficiency of PartialFormer.

Results of WMT’16 En-Ro Table 3 presents the
results on the test set of the WMT 16 En-Ro task.
Notably, PartialFormer achieves the highest BLEU
points among all selected baselines. It is particu-
larly remarkable that PartialFormer achieves sim-

Fi<—En De<—En Lv<—En
Model Avg.
Fi— EnEn— FiDe— EnEn— DeLv— EnEn— Lv
Transformer 26.07 22.14 3504 28.59 17.59 16.23 24.27
PartialFormer 27.48 23.35 35.60 2991 19.65 17.37 25.56

Table 4: Results on the WMT’ 17 benchmark. Partial-
Former has the same depth and d as the Transformer but
consumes 1M fewer parameters on average.

ilar results to ODE Transformer while utilizing
178M fewer parameters. This highlights the excep-
tional efficiency of PartialFormer.

Results of WMT’17 Benchmark Table 4
presents the WMT’ 17 benchmark results, showing
that PartialFormer consistently outperforms Trans-
former by an average of 1.29 BLEU points in all
six translation tasks. This finding is consistent with
the observed performance in the En-De task.

6 Analysis
6.1 Ablation Studies

Table 5 presents an ablation study of PartialFormer
on the WMT’14 En-De task, demonstrating the
critical role of each component. Omitting any ele-
ment causes performance decline, underscoring the
holistic design. The PG-FFN removal (#3 vs. #4)
results in a large performance drop of 2.05 BLEU
points, despite a mere 16 million parameters re-
duction. This evidence corroborates previous find-
ings (Dong et al., 2021) on the subpar performance
of pure attention networks sans FFN, highlighting
the essential role of PG-FFN in PartialFormer.

Besides, Table 5 shows the results of differ-
ent PartialFormer configurations on the WMT’ 14
En-De task. The encoder-decoder PartialFormer
achieves the highest performance, reaching 29.56
BLEU points, indicating the effectiveness of our
approach in enhancing both the encoder and the
decoder. Employing our concept to either the en-
coder or the decoder individually also improves per-
formance, yet the encoder-decoder configuration
persistently surpasses others, marking the greatest
performance improvement.



# Model Param BLEU Model | Setting | H d dp Param BLEU
1 Transformer (N = 24, d = 360) 62M 28.00 ‘ Basic ‘30—16 360 45 68M  29.56
2 Pure Attention (N = 24, d = 360) 31M 25.70 -
Varying [24-16 360 45 61M  29.23
3 PartialFormer 68M 29.56 Encoder H |16-16 360 45 5IM  29.02
4 w/o Partial-level Gated FFN 52M 27.51
5  w/o Residual-like Attention Calculation 66M 29.26 Varying |16-24 360 45 56M  28.85
6  w/lo Head Scaling 36M 27.88 Decoder H|16-30 360 45 60M  29.20
7 PartialFormer (encoder only) 67M 29.15 PartialFormer 30-16 360 30 49M  28.70
8 PartialFormer (decoder only) 63M 28.80 Varying d" [30-16 360 60 86M  29.68
30-16 360 90 124M 30.00
Table 5: Ablation studies on WMT’ 14 En-De task. 30-16 180 45 35M 27.61
Varying d |30-16 270 45 51M  28.80
30-16 450 45 84M  29.41
Model Param BLEU
PartialFormer (w/o Head Scaling) 36M 27.88 Table 7: Comparison of different width scaling strategy
+ Simple Head Scaling 68M 29.33 on the En-De task.
+ Complex Head Scaling 68M 29.56

Table 6: Comparison of head scaling strategy on
WMT’ 14 En-De task.

6.2 Comparison of Head Scaling Strategy

Table 6 presents the results of PartialFormer on
the En-De task test set with varying head scaling
techniques. Both simple and complex strategies
effectively utilize additional parameters to enhance
PartialFormer’s performance. Notably, the com-
plex head scaling technique, allowing for more
parameters allocated to additional heads, demon-
strates superior performance.

6.3 Discussions on Width Scaling Strategies

Table 7 presents the results of analyzing three key
ways to increase the width in PartialFormer: 1)
di, 2) H, and 3) d, on the En-De task’s test set.
Notably, the findings indicate that both increasing
H and adding dj, can effectively enhance the ca-
pacity of PartialFormer. Additionally, enlarging d
can be beneficial for performance improvements
when it is small, e.g., less than 360. However, be-
yond a certain threshold, further increments of d
become redundant and do not lead to performance
gains. This aligns with previous studies (Mehta
et al., 2021; Baevski and Auli, 2019) highlighting
redundant information in the embedding layer.

6.4 Comparison of Gating Strategy

Table 8 presents a comparison of various activation
functions used in PG-FFN. The results indicate
that the default choice, ReLU activation, yields
the best performance. One explanation is that the
ReLU activation provides hard masks for filtering
the information of different heads, compared to

other activation functions. Such hard masks can
make different heads more diverse.

6.5 Efficiency Analysis

Table 9 exhibits the inference efficiency on the
test set of En-De task. It is evident that Partial-
Former incurs a reasonable increase in inference
cost, which remains within acceptable limits.

6.6 Analysis on Behaviours of FFN

Metric. Following Zhang et al. (2022), we exam-
ine FFN behaviors across four aspects: activation
neuron count (namely n,c¢.), FFNs’ hidden dimen-
sion, activation-neuron ratio (activations divided
by hidden dimension, namely R, ), and FFN effi-
ciency (activations divided by parameters, namely
Nen)- Notably, for PartialFormer, the hidden di-
mension represents the concatenation of hidden
dimensions from all smaller FFNs.

Results. Figure 4(a-c) exhibits the results on the
En-De test set. It is evident that PartialFormer has a
lower activation ratio than the vanilla Transformer,
as shown in Figure 4(b). This indicates that PG-
FFNs based on matrix factorization present lower
utilization of the hidden dimension compared to the
vanilla FFNs. However, our PG-FFN is parameter
consumption friendly, enabling larger hidden layer
dimensions with the same parameter budget (e.g.,
5400 vs. 1440). Despite lower utilization of hidden
dimension, it can still own more activated neurons,
as depicted in Figure 4(a). Additionally, our PG-
FFN exhibits higher efficiency compared to vanilla
FFNs, as shown in Figure 4(c). Multiple small
FFNs, like “Swarm Intelligence” (Bonabeau et al.,
1999), outperform large FFNs by leveraging the
collective strength of weak individuals.



Model Param BLEU
PG-FFNs 68M  29.56
PG-FFNs with Sigmoid activation 68M  29.21
PG-FFNs with Tanh activation 68M  29.03

Table 8: Comparison of activation functions in PG-
FEFNs.

Model Param Speed (Tok./s) Memory BLEU
Transformer 62M 4325 3.0G 28.00
PartialFormer (w/o head scaling) 66M 3634 32G 28.86
PartialFormer 68M 3023 33G  29.56

Table 9: Efficiency comparison between Transformer
and PartialFormer in inference.

6.7 Analysis on Head Diversity

Metric. We select the same metric, namely
Dutput, as that in Li et al. (2018) to measure the
diversity among head features. In this metric, a
larger value indicates a higher level of diversity.

Results. From Figure 4(d), we can observe that
PartialFormer exhibits more diverse head features
compared to the vanilla Transformer, even though
the vanilla Transformer already demonstrates di-
verse features. This aligns with previous study (Li
et al., 2018), which demonstrates the positive im-
pact of head feature diversity on the Transformer
model’s performance. Thus, we conclude that the
insertion of FFNs into attention mechanism may
be a more optimal design.

7 Related Work

Lightweight Transformers Many methods have
been proposed to improve the parameter efficiency
of Transformer architecture. The first line is to di-
rectly cut down redundant computations and param-
eters via a more efficient design such as adopting
more efficient transformation operations (Mehta
et al., 2019, 2021), integrating different but com-
plementary patterns (Wu et al., 2020) and neural
architecture search (So et al., 2019). Another re-
search direction for improving parameter efficiency
in the Transformer is weight sharing. The popular
cross-layer sharing method is utilized by the Uni-
versal Transformer (Dehghani et al., 2019). Reid
et al. (2021) propose better performance by free-
ing the first and last encoder layers and widening
the intermediate layers. Li et al. (2022) introduce
an ordinary differential equation-inspired weight-
sharing method for more precise results. Different
from these work, our study focus on the design of

Transformer (BLEU: 28.00; Hidden Dimension: 1440)
PartialFormer (BLEU: 29.58; Hidden Dimension: 5400) ——
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Figure 4: Analysis on behaviours of FFNs and head
diversity in Transformer and PartialFormer.

efficient lightweight FFN.

Multi-Branch Transformer The multi-branch
strategy is widely used in Transformer design.
Weighted Transformer (Ahmed et al., 2017) em-
ploys a multi-branch FFN, while Multi-attentive
Transformer (Fan et al., 2020), Multi-units Trans-
former (Yan et al., 2020), and Multi-Path Trans-
former (Lin et al., 2022) extend this concept to dif-
ferent components of the Transformer. Our work
introduces a pure multi-branch architecture based
on natural subspaces.

Scaling Strategy in Transformer Deepen-
ing (Bapna et al., 2018; Wang et al., 2019) and
widening (Vaswani et al., 2017; Wu et al., 2021)
Transformer have been well-acknowledged as two
strategies to improve the capacity of Transformer
in literature. In this work, PartialFormer adopts two
alternative strategies to improve capacity, adding a
number of heads and head dimensions.

8 Conclusion

In this paper, we present PartialFormer, a new
parameter-efficient Transformer architecture that
offers an alternative approach to the design of the
lightweight FFN. By employing multiple small
FFNs and leveraging matrix factorization tech-
niques, PartialFormer effectively reduces the num-
ber of parameters in the FFN. Moreover, we pro-
pose two innovative operations to further efficiently
enhance the model capabilities. Experimental re-
sults across various machine translation tasks show-
case the significant performance improvements
achieved by PartialFormer, while maintaining com-
parable parameter consumption.



Limitations

Despite the potential advantages of Partialformer
in terms of parameter utilization and performance
within a limited parameter budget, it is important
to note that the existing conclusions regarding its
effectiveness have not been thoroughly examined
in the context of large-scale datasets and a higher
number of parameters. Further research is needed
to validate the claims and assess the scalability of
Partialformer in more challenging scenarios.
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A Detailed Setups of Experiments

A.1 Dataset

Table 10 displays the statistics of all the 9 transla-
tion task.

A.2 Training Details

Table 11 and 12 exhibits the training details on all
translation tasks.

B Metric Definition

B.1 Measurement of Head Diversity

Following Li et al. (2018), we measure the head
diversity as follows:

0" 0!
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QZZ
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Doutput

During evaluation, we calculate the metric on all
samples and average the values to obtain the final
result.

C More Comparison with Previous
Lightweight Transformer

Table 13 presents a comprehensive comparison of
previous lightweight Transformer models on the
En-De task’s test set, with a specific focus on op-
erating within a smaller parameter budget. The
results prominently showcase the outstanding per-
formance of PartialFormer, even when faced with
constraints on model capacity. This outcome fur-
ther emphasizes the superior capabilities of Partial-
Former in scenarios with limited resources.

D PartialFormer with Different A for
Small Dataset

Table 14 showcases the results of PartialFormer on
the WMT’ 16 En-Ro task, a small-scale translation
dataset, specifically when Ag is calculated using
local attention (Shaw et al., 2018). Notably, these
results reveal that by adopting such an approach,
PartialFormer achieves an impressive BLEU score
of 35.76. We hope this can shed lights on the area
of model integration.

E PartialFormer with GLU and Weight
Sharing

In this section, we investigate the integration of
PartialFormer with two prominent techniques to
enhance parameter efficiency: 1) the weight shar-
ing method (Lan et al., 2020), and 2) gated linear
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Sentence

Dataset

BPE Vocab

Train

Dev Test

WMT’14 En-De  4.5M
WMT’14 En-Fr  36M
WMT’16 En-Ro  0.6M
WMT’17 En-De  5.9M
WMT’17 De-En  5.9M
WMT’ 17 En-Fi  2.7M
WMT’17 Fi-En  2.7M
WMT’17 En-Lv  4.5M
WMT’17 Lv-En  4.5M

2999 3003 32K 34040
26815 3003 32K 37288
1999 1999 20K 19064
7998 3004 32K 35488
7998 3004 32K 35448
4225 3002 32K 32584
4225 3002 32K 32584
2003 2001 20K 32368
2003 2001 20K 32368

Table 10: The details of datasets of 9 translation tasks.

Hyper-parameter WMT’14 En-De WMT’16 En-Ro WMT’14 En-Fr

GPUs 8
Batch Size 4096
Update Frequency 2
Optimer Adam
Adamg (0.9,0.997)
LR 0.0020
LR scheduler inverse sqrt
Initial LR le™"
Total updates 50K
Warmup updates 16000
Weight decay 0.0000
Label smoothing 0.1
Dropout 0.1
Attention dropout 0.1
ReLU dropout 0.1

4 8
4096 4096
1 8
Adam Adam
(0.9, 0.997) (0.9, 0.997)
0.0020 0.0020
inverse sqrt inverse sqrt
le™” le™”
25K 100K
8000 16000
0.0000 0.0000
0.1 0.1
0.1 0.1
0.1 0.1
0.1 0.1

Table 11: The training setups of WMT’ 14 En-De, WMT’ 16 En-Ro and WMT"’ 14 En-Fr tasks.

Hyper-parameter En-{De, Lv} {De, Lv}-En  En-Fi Fi-En

GPUs 8 8 8 8
Batch Size 4096 4096 4096 4096
Update Frequency 2 1 1 4
Optimer Adam Adam Adam Adam
Adamg (0.9,0.997) (0.9,0.997) (0.9,0.997) (0.9, 0.997)
LR 0.0020 0.0020 0.0020 0.0020
LR scheduler inverse sqrt  inverse sqrt inverse sqrt inverse sqrt
Initial LR le™” le™” le™” le™”
Total updates 50K/17K 50K/17K 40K 10K
Warmup updates 16000 16000 16000 16000
Weight decay 0.0000 0.0000 0.0000 0.0000
Label smoothing 0.1 0.1 0.1 0.1
Dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1
ReL.U dropout 0.1 0.1 0.1 0.1

Table 12: The training setups of WMT’17 benchmark.

units (Dauphin et al., 2017). To ensure the uti-
lization of the latest advancements, we employ a
state-of-the-art weight sharing method called ODE
Transformer (Li et al., 2022), known for its effec-
tiveness in promoting parameter efficiency in Trans-
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former architectures. Additionally, we incorporate
Swi-GLU (Shazeer, 2020), a widely adopted GLU-
variant that has served as a foundational component
in numerous expressive Transformer architectures.

Table 15 displays the results of combining Par-



Model Param BLEU
DELIGHT (Mehta et al., 2021) 23M 26.70
EdgeFormer (Ge et al., 2022) - 26.90
Lite Transformer (Wu et al., 2020) - 26.50
PartialFormer 27M 27.50
Evolved Transformer (So et al., 2019) 48M 27.70
DELIGHT (Mehta et al., 2021) 37M 27.60
ODE Transformer (Li et al., 2022) 37M 28.24
PartialFormer 36M 28.35

Table 13: Comparison with state-of-the-art models of
smaller capacities on the En-De task.

Param BLEU
35.76

Ac Ap
RPR MHSA 62M

Table 14: Results of several PartialFormer variants on
the En-De task.

Model Param BLEU
PartialFormer 67TM  29.56
PartialFormer + Weight Sharing 67M  29.71
GLU-based PartialFormer 67TM  29.67

Table 15: Results of PartialFormer variants on the En-
De task.

tialFormer with weight sharing and gated linear
units. Despite the integration of these two tech-
niques, the performance gains are marginal. This
could be attributed to the fact that PartialFormer al-
ready possesses high parameter efficiency, leaving
little room for additional enhancements from other
technologies. In other words, PartialFormer is in-
herently a high parameter efficiency architecture.

F Analysis on Token Uniformity

Following (Dong et al., 2021; Wang et al., 2022),
we measure the token uniformity among token rep-
resentations. We use pearson correlation to com-
pute it.

From Figure 5, we can observe that Partial-
Former owns a lower token uniformity among to-
ken representations than the vanilla Transformer,
revealing that PartialFormer can benefit from depth
scaling efficiently (Dong et al., 2021; Wang et al.,
2022).

G Preliminary Experiments on Language
Modeling

We also evaluate the effectiveness of PartialFormer
on the language modeling task. We can see that
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Figure 5: Comparison of token uniformity (lower is
better) in Transformer and PartialFormer.

PartialFormer can also show better results com-
pared to strong baseline, e.g., Adaptive Input Trans-
former (Baevski and Auli, 2019). We will present
more comprehensive experiments in the future.

Model Depth 6 (M) Test PPL
Adaptive Input 8 147M  21.11
PartialFormer 16 143M 19.87

Table 16: Results on the WikiText-103 dataset.



