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Abstract
Streaming speech recognition architectures are
employed for low-latency, real-time applications.
Such architectures are often characterized by their
causality. Causal architectures emit tokens at each
frame, relying only on current and past signal,
while non-causal models are exposed to a window
of future frames at each step to increase predic-
tive accuracy. This dichotomy amounts to a trade-
off for real-time Automatic Speech Recognition
(ASR) system design: profit from the low-latency
benefit of strictly-causal architectures while ac-
cepting predictive performance limitations, or re-
alize the modeling benefits of future-context mod-
els accompanied by their higher latency penalty.
In this work, we relax the constraints of this
choice and present the Adaptive Non-Causal At-
tention Transducer (ANCAT). Our architecture is
non-causal in the traditional sense, but executes
in a low-latency, streaming manner by dynami-
cally choosing when to rely on future context and
to what degree within the audio stream. The re-
sulting mechanism, when coupled with our novel
regularization algorithms, delivers comparable ac-
curacy to non-causal configurations while improv-
ing significantly upon latency, closing the gap
with their causal counterparts. We showcase our
design experimentally by reporting comparative
ASR task results with measures of accuracy and la-
tency on both publicly accessible and production-
scale, voice-assistant datasets.

1. Introduction
Modern speech recognition applications have leveraged the
benefits afforded by fully-neural architectures to drive en-
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hanced user experiences. For example, these architectures
allow popular virtual assistants such as Amazon Alexa,
Google Assistant, and Apple Siri to rely on robust, far-field
speech recognition as their primary medium of real-time
interaction. Similarly, offline services such as recorded
call transcription and video caption generation apply these
architectures as well. The dominant techniques like Neural-
Transducers, Listen-Attend-Spell, and Transformers are all
principally sequence-to-sequence models consisting of an
audio encoder mapping acoustic input to high-level repre-
sentations for autoregressive decoding (Graves, 2012; Chan
et al., 2016; Mohamed et al., 2019; Chorowski et al., 2015;
Han et al., 2020). And while each neural ASR architecture
has its individual design elements, generally speaking, each
is categorized or implemented as a causal or non-causal
model.

Causal ASR models are streamable designs which emit pre-
dictions for each frame as they arrive from the audio signal,
without access to future frames (He & al., 2019; Yu et al.,
2021a; Radfar et al., 2022). These models are referred to
as causal in the sense that each frame prediction is only
dependent on its left (past) context. Causal configurations
are particularly attractive for real-time processing applica-
tions where fast response times are essential for the user
experience, such as virtual assistants or live stream caption
generation. Non-causal models, on the other hand, have ac-
cess to information from future frames. Non-causal models
can be either streaming with a bounded number of looka-
head frames or full-context with access to the entirety of the
audio signal, before beginning to decode (Zhang et al., 2020;
Moritz et al., 2020; Yeh et al., 2019; Tripathi et al., 2020).
Naturally, these models can deliver significantly improved
accuracy over their causal counterparts by leveraging future
information to disambiguate predictions holistically. The
accuracy gains of non-causal processing typically are ac-
companied by a steep price of higher latency in real-time
applications however, which can hinder these models for
production deployment.

In this paper, we introduce the Adaptive Non-Causal Atten-
tion Transducer (ANCAT), a neural ASR architecture which
has the accuracy improvements witnessed by non-causal
models, while yielding a latency that is more comparable
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to streaming causal architectures. ANCAT achieves this
improvement by providing flexibility to the model to rely
on variable future context at each frame. However, it is
trained to be selective about how and when it does so, tak-
ing into account both the accuracy and latency implications
to poll for future context only where necessary to make accu-
rate predictions. The resulting behavior is that the model’s
latency costs for adaptively ingesting lookahead context,
when aggregated over the entire frame sequence, is com-
paratively minimal. Our model is trained fully end-to-end,
jointly learning how and where to apply non-causal context
in tandem with its traditional token prediction objectives.

After summarizing motivating related work in Section 2, the
remainder of the paper is organized according to our contri-
butions: Section 3 introduces the ANCAT design and key
architectural concepts, Section 4 derives novel loss functions
developed for training our architecture and regularizing fu-
ture context in connection with different notions of latency
commonly applied in the literature, and Section 5 presents
empirical results which justify our design elements and
showcase the modeling capabilities of ANCAT for stream-
ing ASR tasks on both open-source and industrial data.

2. Related Work
Causal, Non-causal, and Streamable ASR. Bridging the
accuracy benefits of non-causality with the low-latency de-
ployability of causal models has been the focus of many
prior studies. Several works (Audhkhasi et al., 2021; Moritz
et al., 2021; Yu et al., 2021b) find that distillation techniques
leveraging non-causal right context benefit the training of
fully causal models. For instance, “dual-mode” ASR, where
a single end-to-end model is jointly trained with full-context
mode using shared weights, improves causal ASR accu-
racy (Yu et al., 2021b).

Other approaches enable more accurate streaming by permit-
ting ingestion of a finite amount of frame-wise lookahead
context at the cost of a latency penalty. For example, using
a fixed right-context window of lookahead frames at each
layer is common (Zhang et al., 2020). Chunking approaches
are also effective for non-causality (Tsunoo et al., 2019;
Dong et al., 2019; Shi et al., 2021; Chen et al., 2021). With
chunking, the stream is broken down into fixed-sized group-
ings of non-overlapping, adjacent frames. Within a chunk,
all frames have access to one another and possibly frames
from prior chunks. Similar to dual-mode training, (Swi-
etojanski et al., 2022) also extends in-place distillation to
chunking of variable sizes, training a single model but al-
lowing different chunk sizes to be configured at inference
to match hardware specifications. Scout-networks (Wang
et al., 2020), meanwhile, use word boundaries to define the
position and sizes of chunks and use a separate network
trained on forced alignment data to predict boundaries at

inference time.

Another set of approaches unify causal and non-causal con-
text into one system by training streaming and full-context
encoders and stacking them. (Narayanan et al., 2021) and (Li
et al., 2021) propose “cascaded” audio encoders where a
causal first-pass encoder is followed by a stacked non-causal
encoder operating on the first encoder’s outputs. These mod-
ules are jointly learned to produce accuracy improvements,
but accept the latency impact from the full-context second-
pass encoder.

Adaptive Neural Compute. Adaptive compute, also re-
ferred to commonly as variable or dynamic compute, is a
technique that adjusts the amount of neural computation
a model executes during inference as a function of each
individual input. The motivating intuition of the approach is
that since each instance has different characteristics, the cor-
responding amount of computation expended should reflect
this variety, conditioning for more resources and operations
only where necessary. Researchers have explored these
ideas extensively across machine learning areas, including
NLP (Graves, 2016; Jernite et al., 2017; Dehghani et al.,
2019; Elbayad et al., 2020), vision (Bolukbasi et al., 2017;
Figurnov et al., 2017), speech (Macoskey et al., 2021a;b;
Xie et al., 2022; Peng et al., 2023) and recommendation
systems (Song et al., 2019). We refer readers to (Han et al.,
2021) for a comprehensive survey. While (Sukhbaatar et al.,
2020; Chang et al., 2020) also propose learning static at-
tention span adjustment, our mechanism will vary the span
across inputs and frames adaptively for streaming. Addi-
tionally, all adaptive techniques effectively tie their compute
to a particular cost metric, such as floating point operations.
For our application, we will show how to link our dynamic
compute mechanism to key latency measures for real-time
speech recognition.

Latency Measures. There are intricacies to assessing the
latency of a streaming ASR architecture, and as a result,
numerous metrics have been proposed to encapsulate its
various facets. User-perceived latency (UPL), endpointer la-
tency, first token emission delay, algorithmic latency, mean
alignment delay, and partial recognition latency are all
among those measures which are considered in the liter-
ature (Shangguan et al., 2021; Sainath & al., 2020; Inaguma
et al., 2020; Yu et al., 2021a). While each definition at-
tempts to capture a different latency driver, for models using
non-causal context, it is natural to use algorithmic latency,
and therefore, we also adopt this measure to inform the
design of our adaptive non-causal streaming architecture.
Algorithmic latency reports the time required processing the
input to produce the output of an audio frame – frame length
combined with the amount of lookahead frames used (Shi
et al., 2021). Since our algorithm is nondeterministic, we
adjust to reporting a statistical version of the metric. We
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also consider a compute-induced UPL metric in our design,
detailed in Section 4.3, which jointly accounts for process-
ing speed and additional work scheduled by our non-causal
mechanism to derive their combined impact on UPL.

3. Adaptive Non-causal Design
In this work we focus on the Neural Transducer architec-
ture consisting classically of three modules: an encoder
network, a prediction network, and a joint network. The en-
coder network takes a sequence of T feature frame vectors
(x1, . . . , xT ) extracted from the audio signal and maps it to
a corresponding sequence of high-level acoustic represen-
tations. The prediction network operates autoregressively
over a sequence of U labels (y1, . . . , yU ). The joint net-
work combines the outputs from the encoder and prediction
networks to model the likelihood for the next label emitted.

The transducer architecture is a popular choice for real-time
applications because the encoder network can be trained
for streaming, allowing the joint network to emit its pre-
diction on the i-th frame relying on a bounded number of
future frames; however, full-context encoders can be ap-
plied to yield additional accuracy for non-streaming sce-
narios. Our design utilizes Transformer-based encoders
which are constructed from L stacked blocks (a.k.a. lay-
ers, terms which we use interchangeably), each of which
accepts the output from the previous block and produces
hidden vector hℓ

i for frame i and layer ℓ. Transformer-based
blocks consist of various compositions of sublayers such as
feed-forwards, layer-norms, and even convolutions in the
case of Conformer (Gulati et al., 2020), but all contain the
multi-headed self-attention (MHSA) sublayer.

3.1. Compute DAGs and Attention Masking

Transformer-based attention architectures define a natural
compute graph of input dependencies for each output of
each layer. Under this directed acyclic graph (DAG) repre-
sentation, each vertex vℓi (or node) represents the compute
on frame i of layer ℓ, and a directed edge

(
vℓ−1
j , vℓi

)
be-

tween vertices of adjacent layers indicates the reliance on
the output of vℓ−1

j for computing vℓi , namely that hℓ−1
j (or

a mapping thereof) is attended over when computing hℓ
i .

Our ANCAT architecture is designed to dynamically and
strategically fill in the edges of this compute DAG, balancing
both accuracy and latency considerations. To accomplish
this, we train the traditional encoder weights while introduc-
ing jointly trainable schedulers Sℓ into the architecture, one
for each layer ℓ. Each scheduler Sℓ accepts the prior layer’s
result hℓ−1

i and determines the future, non-causal inputs
to attend over to compute hℓ

i . Hence, Sℓ(hℓ−1
i ) predicts

the non-causal edges from vertices vℓ−1
j to vertex vℓi for

positions j > i.

Figure 1. Adaptive Non-Causal Attention Transducer (ANCAT).
The architecture is a neural transducer with an acoustic encoder
of L stacked Transformer-based blocks where each layer is aug-
mented with an attention scheduler. Each scheduler learns to fill
in the right context attention connections and passes the resulting
mask to the multi-headed self-attention.

During training, we leverage a series of attention masks
M ℓ ∈ [0, 1]

T×T to represent these edges, where M ℓ
i,j = 1

indicates the full presence of the (vℓ−1
j , vℓi ) edge and 0

indicates its absence:

M ℓ
i,j =

{
1 j ≤ i

Sℓ(hℓ−1
i )j otherwise

1 ≤ i, j ≤ T

The mask is applied for computing attention scores across
each of the attention heads in the MHSA sublayer. Namely,
for a scaled dot product value matrix P computed from
query matrix Xquery and key matrix Xkey for a particular
head

P =
XqueryX

⊤
key√

d
,

the masked attention scores can be computed as

Ai,j =
exp (Pi,j)M

ℓ
i,j∑T

t exp (Pi,t)M ℓ
i,t

1 ≤ i, j ≤ T

for each attention head of layer ℓ or using method of (Xie
et al., 2022).

3.2. Learned Schedulers

The role of the scheduler is to fill in the forward (right of the
main diagonal) values of its corresponding attention mask.
To simplify the learning process, instead of predicting each
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connection individually, we view each scheduler S as esti-
mating the length of the non-causal attention span to apply
at its layer (i.e., the number of future frames to consider)
on a particular input. We employ a smooth, differentiable,
reverse “S”-shaped function decreasing from 1 to 0 with an
adjustable parameter τ to control the sharpness of the curve.
The schedulers learn where to shift the center o of this curve
over a span of K maximum lookahead frames. Specifically,
Sℓ is computed as

oℓi = σ
(
FFNℓ(hℓ−1

i )
)
(K + ϵ)

Sℓ(hℓ
i)j =

{
1− σ

((
j − i− oℓi

)
/τ

)
j ≤ K

0 otherwise,

where σ is the standard sigmoid function and FFNℓ is a
learnable feed-forward network consisting of two linear
transforms with a non-linear activation in between, with the
second transform projecting to a single scalar. The small
constant ϵ is used for enabling the Kth lookahead frame to
potentially have a near-full connection while maintaining
numeric stability during training.

Note that the design permits “soft edges” during the learning
process with mask values between 0 and 1. However, τ can
be annealed towards 0 to gradually morph all soft edges
into definitive binary ones. Our loss function design will
leverage this property as well.

4. Regularizing Future Context
Complementing the design of the ANCAT architecture, we
craft several loss functions which regularize the decisions
of the schedulers to explicitly account for different notions
of latency for streaming systems.

4.1. Naive Regularization

To balance both the primary training objective of the neural
transducer with the incurred impact of the schedulers’ in-
gestion of non-causal frames, one can modify the training
loss function to the form

L = Ltransducer + λLsched.

A first attempt would be to simply regularize over all looka-
head connections, with the intuition that attending over the
fewest possible future frames across layers will yield lower
latency

LL1 =
1

T

∑
ℓ

∑
j>i

M ℓ
i,j

This L1-type regularization will serve as a baseline for our
experiments. However, indiscriminately regularizing in this
manner does not account for a connection’s non-local effects
on latency. For example, a forward edge present in a lower
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Figure 2. Compute graph example of ANCAT for three layers.
Non-causal edges (blue) are provided by the learned schedulers.
Dependency nodes (gray) of vLi (cyan) determine the algorithmic
latency. The difference δ(i) between the final dependency frame
(red) and vLi determines the algorithmic latency for frame i.

level can dramatically impact the prediction delay over many
frames because of the propagating effects layer over layer.
Furthermore, the simple regularization above is not directly
tied to an explicit latency measure.

4.2. Algorithmic Latency

Here, we formulate how to regularize with respect to the
notion of algorithmic latency. Recall that traditionally, algo-
rithmic latency would refer to the minimal theoretic amount
of time the model needs to wait before it can emit a symbol
at a particular frame, resulting from the number of non-
causal future frames relied upon δ(i) for prediction at each
timestep i along with the frame length (which is a constant).1

This delay is a deterministic value for standard architectures.
In contrast, with our ANCAT architecture, the algorithmic
latency can vary from frame to frame, and we therefore
adopt a time-averaged mean definition:

algorithmic latency =
1

T

∑
i

(frame length)δ(i)

We derive an algorithm below to directly integrate the al-
gorithmic latency stemming from the schedulers’ decisions
and aggregate the result into a regularization loss we apply
during training.

To do so, we first define the notion of a dependency func-
tion. We define Dℓ

i,j ∈ [0, 1] to represent the (fractional)
dependency for computing hℓ

i on the input node v0j . In other
words, Dℓ

i,j represents if v0j is connected to vℓi by some

1It is common to include the “current” i-th frame in this calcula-
tion; however, for clarity of presentation under our setup, we omit
it. But since this singular frame amounts to an additive constant,
one can easily translate any result to account for it.
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pathway through the compute DAG. The dependency values
can be fractional because the edges will be fractional during
training.

For the ANCAT architecture, we propose the following
memoized dynamic programming formulation using the
attention masks to recursively compute the dependency ma-
trices at each layer

Dℓ
i,j =

{
M ℓ

i,j ℓ = 1

max
t

M ℓ
i,t ·D

ℓ−1
t,j ℓ > 1

This algorithm can be viewed as computing the maximum
fractional strength of a pathway between an input frame
and a compute node. Interestingly, this algorithm be-
comes a special case reduction of a classic shortest path
in a graph problem using edge weight from vℓ−1

j and vℓi
as − lnM ℓ

i,j and with the final Dℓ
i,j values extracted as

exp
{
−distance

(
v0j , v

ℓ
i

)}
.

Importantly, for our application, the algorithm produces
dependency matrices for each layer ℓ that has Dℓ

i,j as mono-
tonically decreasing in j. The following argument by in-
duction proves this fact: The base case is straight forward
because D1

i,j = M1
i,j and by scheduler function mono-

tonicity. Now let Dℓ
i,j = M ℓ

i,t · D
ℓ−1
t,j for some t. Since

Dℓ−1
t,j−1 ≥ Dℓ−1

t,j by induction hypothesis, there exists at
least one t′, namely t′ = t, over which a maximum is taken
such that Dℓ

i,j−1 ≥ M ℓ
i,t′ ·D

ℓ−1
t′,j−1 ≥ M ℓ

i,t ·D
ℓ−1
t,j = Dℓ

i,j .

As a result of this monotonicity, we treat Dℓ
i,j as an approxi-

mate, inverse cumulative distribution function over j where
P̂ (last dependency frame of vℓi ≤ t) = 1−Dℓ

i,t. Therefore,
the corresponding density function F ℓ

i,j = Dℓ
i,j−1 − Dℓ

i,j

provides a natural weighting for the position of the final
lookahead frame required to compute node vℓi .

Observe that indeed
∑

j F
ℓ
i,j = 1 for all i, ℓ and that the

distribution turns into a strictly one-hot vector coding which
indicates the exact position of the last frame dependency of
vℓi as τ is annealed to produce binary connections from the
schedulers.

We now can use this algorithm to directly regularize mean
(fractional) algorithmic latency over all frames of the utter-
ance

LAlg.Lat. =
1

T

∑
i

δ̂(i) =
1

T

∑
j>i

(j − i)FL
i,j

using FL
i,: to indicate (weight) the last frame dependencies

of the top layer L at each frame.

4.3. Compute-Induced UPL

While algorithmic latency as a metric provides perspective
on the minimum delay a streaming ASR model is to ex-

pect, it operates under the assumption that all compute is
instantaneous, and therefore, only serves as a lower bound
of the model’s response UPL. To more realistically model
and regularize with respect to UPL, we propose a loss which
also accounts for processing speed.

We denote µ as the effective processor speed in terms of
compute nodes (encoder layers) which can be processed
each second and ρ as the feature frame rate in frames per
second. We use these constants and the algorithm presented
in Section 4.2 to compute at which timestep each node
becomes available to establish an accounting of the compute
backlog. The final amount of work remaining (nodes left
to compute) in the backlog on the final frame will then be
used to regularize the UPL.

Letting qi to be the number of nodes which have their input
dependencies met on frame i, we have

qi =
∑
ℓ

∑
t<i

F ℓ
t,i

which is the amount of new work to be added to the back-
log at i. Defining bi to be the buffered node backlog (lag
accumulated at the i-th timestep), using a method simi-
lar to that of (Macoskey et al., 2021b), we express the
compute-induced UPL loss as the response delay in sec-
onds LUPL = bT /µ with bi derived recursively as

bi =

{
0 i = 0

max {bi−1 + qi − µ/ρ, 0} i > 0

where µ/ρ is the compute throughput in terms of how many
nodes per timestep can be burned down in the backlog.
Figure 3 illustrates how this UPL computation is carried
out.
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Figure 3. Example of the UPL algorithm in action. Work which
cannot be completed on the current frame under a specified
throughput is carried over to the subsequent frame. The remaining
work at the end of the utterance defines the UPL.

5. Experimental Results
We organize our results in this section to demonstrate AN-
CAT’s combined accuracy and algorithmic latency improve-
ments on publicly available ASR data, supplemented with a
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Table 1. Results on LibriSpeech test “clean” for Conformer and T-T encoder backbones. The models are trained with different streaming
settings for maximum lookahead frames K on each layer, while the full context model is also reported. Layerwise and Chunked represent
standard lookahead attention structures and chunked-aware attention methods of prior literature. ANCAT models trained with L1
regularization and our novel loss are shown as ANCAT-L1 and ANCAT-Alg.Lat., respectively. ANCAT-Alg.Lat. improves WER by
significant margins over nearest competitors with comparable mean algorithmic latency and likewise for 50th and 90th percentiles.
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WER (%) 6.66 4.58 6.27 5.68 5.31 4.23 5.68 5.43 5.13 4.12 5.15 5.13 4.76 4.09
Alg.Latency (ms) 0.00 2240 63.2 60.5 60.1 3240 235 235 202 3520 518 495 498 -

Alg.Latency@50 (ms) 0.00 2380 59.9 61.6 58.8 2940 236 223 237 2940 518 488 489 -
Alg.Latency@90 (ms) 0.00 2920 62.4 86.4 76.7 5680 241 310 274 6650 541 705 623 -

ℓ1-norm (frames) 0.00 27.1 6.94 1.78 8.12 65.3 27.3 7.04 16.5 122 60.3 16.2 59.1 -

Transformer

WER (%) 6.90 4.88 6.56 5.92 5.57 4.63 5.74 5.67 5.36 4.42 5.65 5.27 5.11 4.55
Alg.latency (ms) 0.00 2240 63.2 61.2 60.5 3240 235 232 229 3520 518 512 496 -

Alg.Latency@50 (ms) 0.00 2380 59.9 60.4 55.8 2940 236 230 228 2940 518 508 484 -
Alg.Latency@90 (ms) 0.00 2920 62.4 88.6 80.2 5680 241 269 305 6650 541 701 613 -

ℓ1-norm (frames) 0.00 27.1 6.94 1.89 7.93 65.3 27.3 5.47 21.5 122 60.3 18.5 36.3 -

summary of findings on industry data, model dynamics, and
compute-induced UPL studies while referring the reader to
corresponding appendices for their full results.

5.1. LibriSpeech Experimental Setup

We investigate our architectures using the LibriSpeech cor-
pus (Panayotov et al., 2015) comprised of 960 hours of
training data collected from read audio books. Our evalua-
tions report on the associated “clean” test data. Audio clips
are preprocessed with a 64-dimensional log-filterbank en-
ergy feature extractor, and these feature vectors are stacked
with a stride size of 2 and downsampled by 3 before be-
ing processed by a small convolution front-end to produce
120ms frames as input for the transformer-based blocks.

We conduct our experiments on two popular transformer-
based architectures: Conformer (Gulati et al., 2020) and
Transformer-Transducer (T-T) (Zhang et al., 2020). For
both Conformer and T-T, we use encoders consisting of
14 stacked blocks, one-layer 640-unit LSTM prediction
networks, and a 512-unit feed-forward joint network. For
our ANCAT variants, we augment each block with learn-
able schedulers of 64-dimension hidden units. The detailed

model configurations are listed in Appendix G.

For LibriSpeech, all the models are trained for 150 epochs
of 1k steps with the Transformer-based encoder backbone
and schedulers trained end-to-end jointly using the Adam
optimizer (Kingma & Lei Ba, 2015) using the same hy-
perparameters settings specified by (Gulati et al., 2020).
During training, we also apply SpecAugment (Park et al.,
2019) with mask parameter (F = 27) and 20 time masks
with maximum time mask ratio (pS = 0.04), where the
maximum-size of the time mask is set to pS times the length
of the utterance. We use a vocabulary of 4097 word pieces
and the standard RNN-T beam search decoding with a width
of 16. Further specifications on model configurations and
training hyperparameters are shared in Appendix G.

5.2. Baselines

We establish baseline models for Conformer and T-T mod-
els using causal and full-context attention. We also build
baselines for non-causal streaming mechanisms proposed in
prior studies. These include streaming attention which in-
gests K lookahead frames at each layer (Zhang et al., 2020),
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denoted here as Layerwise, and chunking transformer atten-
tion (Shi et al., 2021; Chen et al., 2021), denoted as Chunked,
which is a popular and efficient approach for comparison.
Additionally, we present ANCAT models with basic L1-type
regularization over the amount of future frames as described
in Section 4.1, marked as ANCAT-L1.

5.3. Algorithmic Latency Results

Our main empirical result showcases the significant im-
provements on each operating point of the latency-accuracy
trade-off curve that ANCAT produces when trained with our
novel regularization loss, and thereby, shifting the Pareto
frontier over existing methods. Namely, for each fixed ac-
curacy target, our ANCAT model produces significant de-
creases in algorithmic latency over the nearest baseline, and
conversely, for a desired algorithmic latency, ANCAT also
yields significant improvements in accuracy. We establish
this result by training the baseline and ANCAT models under
various hyperparameter settings for the maximum per-layer
lookahead span K (i.e., 2, 5, and 10). We report Word Error
Rate (WER) (%) and the statistical algorithmic latency (ms)
of test utterances. We also report on latency with median
algorithmic latency and 90th percentile metrics, denoted
as Alg.Latency@50 and Alg.Latency@90. Included is the
ℓ1-norm of the accessible future frames in attention maps
to characterize the additional total amount of forward atten-
tion calculations (additional computation over causal). The
aggregation means are taken across all utterances in the test
set.

Results for LibriSpeech are arranged in Table 1. While
the algorithmic latency values for the non-adaptive models
are static for a given K, the WER and latency trade-off
can be tuned by setting different penalty degrees on the
regularizing term λ for ANCAT models. To make clear
comparisons of WER in Table 1, we choose λ values so
that under each setting of K the Alg.Latency approximately
matches that of the most efficient comparable baselines. As
can be seen, training with our proposed ANCAT using our
novel algorithmic latency loss as the regularizer, ANCAT-
Alg.Lat., consistently yields lower WER over the approaches
for equivalent latency operating points. This holds for both
Conformer and T-T encoders and all settings K, seeing
an average of 11% (and upwards of 18% for the lower
latency scenarios) relative WER improvement over non-
adaptive models. Observe also, that compared with naive L1
regularization, for a given algorithmic latency budget, our
ANCAT-Alg.Lat. models allow for a greater total amount
of future frame attention based on ℓ1-norm measures. So
while ANCAT-Alg.Lat. uses overall higher compute, it is
more strategic in how it expends it to deliver better WER
for matching latency.

To further highlight the improvements in the trade-off be-

Figure 4. WER vs. algorithmic latency on LibriSpeech test “clean”
data for four different types of Conformer models: Layerwise (K
at 0, 1, and 2 frames of right context per layer), Chunked (K at 2,
5, 10, 15, and 20 frames), ANCAT-L1 (K = 10) varying λ, and
ANCAT-Alg.Lat. (K = 10) varying λ. ANCAT-Alg.Lat. provides
a more optimal accuracy-latency trade-off over other models.

tween WER and algorithmic latency, we record Conformer
ANCAT model performance at multiple levels of training
regularization in Figure 4. The plot shows that ANCAT-
Alg.Lat. consistently outperforms all other architectures at
each operating point, and therefore fully defines the Pareto
frontier of efficient solutions, providing the most optimal
trade-offs of those models under consideration. Further-
more, the plot emphasizes that non-causal adaptivity alone
does not provide this improvement since ANCAT-L1 closely
matches static Chunked performance; rather, ANCAT adap-
tivity paired with the proper choice of our novel regulariza-
tion method is critical to the success of the approach under
latency considerations.

For further insight into the behavior of our proposed algo-
rithmic latency loss and its impact on scheduling, we visu-
alize the attention masks of an utterance from the test set
in Figure 5 and compare against the static approaches. The
attention masks are generated with the final training epoch
where τ = 1e − 4. The darker areas indicate the absence
of attention. We depict the maps from the 3rd block and
the 13th block in the Conformer models. One can observe
that ANCAT-Alg.Lat. learns to structure its attention in step-
wise patterns which effectively operates like a chunking
strategy of varying sizes and locations conditioned on the
input. In contrast, ANCAT-L1 attention patterns are jagged
and emphasizes more localized decisions of the schedulers
as opposed to the better coordinated decisions of ANCAT-
Alg.Lat. accounting for the global impact on latency. We
also show masks of an ANCAT model trained with higher
latency penalization to demonstrate greater toggling-off of
future attention connections, bordering being a fully causal
model.
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Figure 5. Attention mask visualization for the 3rd and 13th blocks of Conformer models. All the attention masks are generated with the
same test example utterance. This utterance has a total number of 41 frames after downsampling in the front-end. The max number of
lookahead frames is K = 10. The darker regions signal toggled-off attention. We select (a), (b), and (c) models to have comparable
algorithmic latency performance, and (d) shows a model that is optimized with a higher latency penalty. Notice the deliberate, structured
stepwise patterns ANCAT-Alg.Lat. emits (c,e) compared to the jagged schedules produce by L1 regularization (d).

5.4. Industrial Voice Assistant

We repeat our algorithmic latency experiments on a de-
identified large, industrial voice assistant dataset for again
Conformer and T-T to verify robustness of our modeling
approach both across architectures and data compositions.
We find similar results to that of LibriSpeech with ANCAT-
Alg.Lat. consistently outperforming Layerwise, Chunked,
and ANCAT-L1 models at each operating point and improv-
ing upon WER by often greater than 5% relative. Appendix
C details this analogous experimental setup and its results.

5.5. Compute-Induced UPL

In addition to applying our algorithmic latency loss as the
regularization method, we also conduct experiments to reg-
ularize with respect to compute-induced UPL, both for Lib-
riSpeech and industrial data. These results are presented
in Appendix D and mirror our findings with algorithmic
latency, with ANCAT regularized with the backlog latency
method presented in Section 4.3 outperforming the base-
lines. We find that for all compute throughput settings on
which we experimented, for a given UPL budget, ANCAT
delivers superior accuracy, with typically ANCAT-UPL im-
proving WER by over 8% relative on LibriSpeech and 7%
on industrial data over the nearest baselines.

5.6. Additional Findings and Analysis

We present supplemental visualizations and observations of
the approach in further appendices. Appendix A demon-
strates that ANCAT promotes superior performance over
baselines when comparing with other common latency met-
rics. Appendix B shows that ANCAT also performs well

(10% WER relative improvement compared with baselines)
in more challenging conditions using LibriSpeech “other”
data and additive noise. We further show how the difficulty
of an utterance correlates to the degree of lookahead em-
ployed. Appendix E highlights and expands upon additional
attention plot examples while Appendix F depicts how the
characteristics of ANCAT evolve over the course of train-
ing by temperature annealing. The figures show that our
“soft” attention connections and latency measures smoothly
converge throughout training with the binary edge runtime
latency calculations.

6. Conclusion
In this work, we introduce an adaptive non-causal architec-
ture for streaming speech recognition. The model learns
to dynamically adjust the future context attention span for
each individual frame of the audio stream, balancing both
accuracy and latency considerations. We accompanied our
architecture construction with novel regularizing loss func-
tions which tie the frame-wise lookahead decisions of the
model with key latency measures important for speech appli-
cations. The resulting mechanism provides a better Pareto
frontier of trade-offs against baselines, in many cases with
over 15% relative WER improvements for matching latency.
Our experiments on public and large, production datasets
and different architectures reinforce the robustness and ap-
plicability of our approach. We hope that future work will
build on these contributions to propose adaptive non-causal
approaches for other applications, measures of latency, and
models of computation.

The authors would like to thank Gautam Tiwari for his expert
guidance and recommendations.
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A. Emission Latency and Endpointer Latency
To conduct a more comprehensive investigation into the improved latency performance resulting from the ANCAT architec-
ture, we carry out measurements on additional emission/transcript (EM) latency and endpointer (EP) latency in this section.
EM.Latency refers to the mean difference between the frame in which a token is produced by decoding (accounting for
future lookahead) and when the token is spoken given by alignment data. EP.Latency refers specifically to the difference
between when an end-of-speech token is emitted and the final word is spoken (again, accounting for future lookahead). In
Table 2, the numbers show comparable (or better) EM.Latency and EP.Latency to the best baseline, while the WER of our
proposed ANCAT-Alg.Lat.is superior.

Table 2. Results on LibriSpeech test “clean” for Conformer. The models in this table are identical with the models in Table 1 in main body
of the paper. We report the average emission/transcript (EM) latency and endpointer latency (EP) in this table.
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WER (%) 6.66 4.58 5.68 6.27 5.31 4.23 5.68 5.43 5.13 4.12 5.15 5.13 4.76
EM.Latency (ms) 235 2130 305 296 290 3125 395 315 282 3418 622 560 551
EP.Latency (ms) 74 1992 141 116 116 2992 252 172 139 3286 490 402 408

B. LibriSpeech “Other” and Noise Impact
The LibriSpeech corpus also provides the more difficult test “other” dataset comprised of 5.1 hours of speech signals chosen
from more a challenging speaker cohort. Results of our ANCAT and baseline models are presented in Figure 6. Besides
the naturally higher error rates for all models, we observe a very similar plot to that of test “clean” with ANCAT-Alg.Lat.
providing the most optimal accuracy-latency trade-offs. Again, ANCAT-Alg.Lat. defines the Pareto frontier with respect to
algorithmic latency and WER for those models considered while yielding upwards of 10% relative WER improvements for
several operating points.

Figure 6. WER vs. algorithmic latency on LibriSpeech test “other” data for four different types of Conformer models: Layerwise (K
at 0, 1, and 2 frames of right context per layer), Chunked (K at 2, 5, 10, 15, and 20 frames), ANCAT-L1 (K = 10) varying λ, and
ANCAT-Alg.Lat. (K = 10) varying λ. ANCAT-Alg.Lat. provides a more optimal accuracy-latency trade-off over other models.
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One observes that while WER increases for test “other” data, the algorithmic latency also increases noticeably as well. This
leads us to examine for a specified ANCAT model, the relationship between WER and algorithmic latency. Do naturally
more difficult utterances (producing higher WER) correlate with inflated algorithmic latency driven by ANCAT schedulers?
Figure 7 (left) answers this in the affirmative. The visualization is constructed by grouping all individual test “clean” and
“other” utterance WERs into five percentiles. The WER of each of these groups is then compared with its mean latency
to observe a positive association between the two quantities. This finding suggests that for more challenging utterances,
ANCAT indeed will resort to using more lookahead attention. We also show a simple experiment in Figure 7 (right)
which adds different degrees of noise to LibriSpeech test “clean” data and illustrates a smooth trend between latency and
WER/noise. This finding supports the notion that under more challenging conditions, ANCAT-Alg.Lat. models will opt to
use more lookahead attention to compensate for the added ambiguity.

Figure 7. WER vs. algorithmic latency for single ANCAT-Alg.Lat. model. The left sub-figure is LibriSpeech test “clean” and “other”
utterances are grouped into five percentiles based on individual WER with the aggregate WER within each group then plotted against its
mean latency. The right sub-figure shows this same model performing on the test “clean” dataset with different levels of white noise added
over the audio signals. There is a clear trend between the difficulty of the utterance and the amount of lookahead employed resulting in
higher latency for more challenging examples.

C. Voice Assistant Data
In this section we discuss the experimental setup for Voice Assistant data and algorithmic latency results mirroring those
of LibriSpeech. Further appendices will present additional findings and figures inclusive of both LibriSpeech and Voice
Assistant experiments.

C.1. Experimental Setup

Our in-house datasets consist of de-identified, far-field, voice assistant utterances. The training dataset consists of approxi-
mately 150k hours of transcribed audio. We used model architectures identical to those we built for LibriSpeech, with just a
couple of configuration differences better fitting for the voice assistant data. Specifically, we used a slightly larger word
piece tokenization model of size 4k and the two layer convolutional front-end had stride sizes of 2 and 1 (resulting in 60 ms
ANCAT frames) as opposed to 2 and 2 stride sizes for LibriSpeech. All our accuracy numbers for internal data we report as
Word Error Rate Relative (WERR) with respect to the baseline fully causal model (below 7.5% WER absolute).

C.2. Algorithmic Latency

Plots for Conformer results pertaining to algorithmic latency are presented in the following figures. We couple figures
with a final table in Appendix H for reference. Figure 8 visualizes how WER and algorithmic latency vary between the
different types of models and different regularization factors. As done for Figure 4, we adjust the lookahead span for the
static models Layerwise and Chunked while fixing K at 10 frames per layer for the ANCAT models and adjusting their
regularization penalty. These results match closely with those of LibriSpeech with ANCAT-Alg.Lat. providing the most
optimal accuracy-latency operating points. In many cases, ANCAT-Alg.Lat. outperforms its nearest competitor by 5%
relative in WER for matching latency budgets. Again, one finds that ANCAT-L1 performs comparable with Chunked and
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demonstrates that the novel latency regularization algorithm is vital to the adaptive approach’s success over that of a more
naive regularization scheme.

Figure 8. WERR vs. algorithmic latency on Voice Assistant data for four different types of Conformer models: 1) Layerwise (K at 0, 1, 2,
and 10 frames of right context per layer), Chunked (K at 5, 10, 20, and 30 frames), ANCAT-L1 (K = 10) varying regularization term λ,
and ANCAT-Alg.Lat. (K = 10) varying λ.

To complement Figure 8 above and emphasise the tuneability of ANCAT, Figure 9 shows how WER and latency behave
as a function of the regularization constant λ for Conformer ANCAT-Alg.Lat. model on Voice Assistant data. From this
figure, one can see that the WERR and latency curves are relatively smooth over the weights, so it is easy to select a desired
accuracy-latency operating point. Finally, note that ANCAT models with zero to high regularization are indeed close to
the operating points expected: near zero latency for high regularization and significant accuracy improvements similar to
maximal right context models for minimal regularization.

Figure 9. WERR and algorithmic latency vs. ANCAT regularization weight λ for a Conformer ANCAT-Alg.Lat. model on Voice Assistant
data.
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D. Compute-Induced UPL Results
Section 4.3 provides a novel regularization method to account for both the processing power of executing hardware along
with the schedulers’ decisions in order to reduce the approximate UPL an application might expect with an ANCAT model.
Using this notion of latency, we experiment with LibriSpeech and Voice Assistant data to build ANCAT-UPL models with
UPL regularization. For our 14-block model architecture and frame rate ρ, the experiments consider compute throughput
values µ of 1.5, 2, and 3 (×14ρ). The values represent the number of nodes in the compute DAG which can be processed per
second and intuitively are equivalent to the speed of 1.5, 2 and 3 forward passes through the model per frame (i.e. real-time
multipliers).

In Figures 10 and 11, we see how WER and compute UPL vary between models with different regularization weights
and compute throughput. We see that for a fixed throughput value, as the regularization is decreased, the UPL smoothly
increases, analogous to our algorithmic latency results. Further we find that for both LibriSpeech and Voice Assistant,
ANCAT-UPL provides the most efficient trade-off between accuracy and latency by a significant margin. ANCAT-UPL
consistently outperforms the other architectures at each operating point, and fully defines the Pareto frontier of efficient
solutions. It is typical for ANCAT-UPL to improve WER by over 8% relative on LibriSpeech and 7% on Voice Assistant of
the nearest competitor for fixed UPL budgets.

These figures also show that providing ANCAT-UPL models with more compute power naturally leads to better trade-offs
between UPL and WER. The higher throughput enables the models to apply lookahead attention to a greater degree without
paying as high of a latency penalty since when the compute does become available (all DAG dependencies met), it executes
quicker. Furthermore, under this definition of latency, as long as the backlog of compute remaining is minimal on the final
frame of each utterance, models have the ability to attend to future context as much as they want as long as the work can be
burned down before the end of the utterance. As the figures highlight, the more compute throughput the model is given, the
better it can take advantage of this property to improve its WER.

Figure 10. LibriSpeech test “clean”: Compute UPL vs. WER. (Left) For a fixed throughput, UPL from the compute backlog comparing
four different types of Conformer models: 1) Layerwise attention models (K at 0, 1, and 2 frames of right context per layer), 2) Chunked
(K at 2, 5, 10, 15 and 20 frames of right context per layer), ANCAT-L1, and 4) ANCAT-UPL with ANCAT models having K = 10 and
varying regularization term λ. With respect to perceived latency, ANCAT-UPL provides the superior accuracy-latency trade-off. (Right)
ANCAT-UPL models trained with a fixed regularization factor but with different throughputs. Faster compute power gives the model more
lookahead flexibility, resulting in better accuracy-latency operating points for ANCAT-UPL models. From our empirical observations, the
UPL loss behaves sensitively time masking patterns and is prone to overfitting on small datasets. Thereby, for UPL results we only apply
frequency masking of the SpecAugmentation which leads a slightly higher WER over our other LibriSpeech experiments.
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Figure 11. Voice Assistant: Compute UPL vs. WERR. (Left) For a fixed throughput, UPL from the compute backlog comparing four
different types of Conformer models: 1) Layerwise attention models (K at 0, 1, and 2 frames of right context per layer), 2) ANCAT-L1,
3) ANCAT-Alg.Lat., and 4) ANCAT-UPL with ANCAT models having K = 10 and varying regularization term λ. With respect to
perceived latency, ANCAT-UPL provides the superior accuracy-latency trade-off. (Right) ANCAT-UPL models trained with a fixed
regularization factor but with different throughputs. Faster compute power gives the model more lookahead flexibility, resulting in better
accuracy-latency operating points for ANCAT-UPL models.

E. Attention Dynamics
Plots are presented for frame-wise latency measures through an example utterance in Figure 12, and full attention masks for
all layers on both LibriSpeech and Voice Assistant data examples are also displayed in Figures 13 and 14. Figure 12 shows
that algorithmic latency can vary greatly over each frame of an utterance with spikes occurring in places where the model is
less confident and desires further future context. We see similar spikes for the accumulation and burn down of compute
backlog throughout the utterance. Note, however, that the rise and fall of the backlog is steadier throughout since progress
completing nodes can more consistently occur as dependencies for intermediate layer nodes are met. Also observe, that in
this 46-frame example (2.76 seconds long), because there should be no forward attention past the end of the utterance, the
algorithmic latency is rightfully 0 at the utterance boundary and beyond. Likewise, because compute backlog defines the
amount of work remaining and there is a non-zero backlog at the final frame, this utterance will observe a positive UPL.
Minimizing this backlog at the utterance boundary (frame index 45) is the objective of our UPL loss algorithm.

Figure 12. Voice Assistant Conformer ANCAT model frame-wise algorithmic latency (left) and the compute backlog present at each
frame for an utterance (right). The utterance is 46 frames in length and a throughput of 2 is used for the compute backlog evaluations.
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Figure 13. LibriSpeech example utterance block-wise attention masks for Conformer ANCAT-Alg.Lat. model. One observes the distinctive
stepwise patterns of ANCAT-Alg.Lat. with large amounts of clustered lookahead at particular segments within the utterance.
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Figure 14. Voice Assistant example utterance block-wise attention masks for Conformer ANCAT-Alg.Lat. model. One observes the
distinctive stepwise patterns of ANCAT-Alg.Lat. with large amounts of clustered lookahead at particular segments within the utterance.

F. Training Characteristics
Throughout training, the temperature parameter τ is annealed from 1 to near 0, which transitions the soft DAG edges
(and attention mask) into binary ones. This appendix shows how the changes of τ throughout training impacts various
components of the ANCAT architecture.

Figure 15 shows the various future frame scheduler masking values at different temperatures. Notice how the curve sharpens
from a reverse “S” shape into a step function.
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Figure 15. Scheduler values for different predicted curve centers o with a maximum span of K = 10 at various temperatures. These
values mask the forward attention positions and represent the presence of a forward edge in the compute DAG. As temperature decreases,
the edges become binarized.

During training, ANCAT has soft edges. The loss function therefore computes a corresponding “soft latency”. Meanwhile,
the “hard latency”, where all non-zero edge values are treated as 1, is used to evaluate the true run-time latency at test
time. Naturally these two measures are different at the start of training. We show in Figure 16 however, that as temperature
anneals over time, hard and soft latency measures smoothly converge to the ultimate final algorithmic latency, with the hard
always an upper bound on soft.

Figure 16. Temperature, soft latency, and hard latency over training. Model checkpoints were evaluated every 10k steps with a Conformer
ANCAT-Alg.Lat. model.

Figures 17 and 18 visualize per-frame attention, algorithmic latency, and compute backlog for an ANCAT model at three
checkpoints during training for the same 46-frame utterance from the test set. Figure 17 shows the evolution of the lookahead
attention masking values for the utterance and how they evolve to their final position. One observes how the training begins
with many fractional attention mask values but becomes more polarized (closer to 0 or 1) due to temperature annealing. For
the last checkpoint, where the temperature τ is 0.01, attention masking is nearly binary.
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Figure 17. Per-frame non-causal attention mask values of an utterance for a Conformer ANCAT-UPL model. The mask values are derived
from checkpoints evaluated at step 50k where temperature is 0.548 (left), at step 160k where temperature is 0.105 (center), and at step
500k, the final step, where temperature is 0.01 (right). The utterance consists of a far-field user speaking “[Voice Assistant], play Christmas
music.” The max forward span K of each layer is 10, and the figure shows only the 10 forward mask values right of the main diagonal of
the full mask. The 10 forward mask values ascend from bottom to top. Layers are labeled on the left vertical axes. Throughout training,
the attention masks shift from fractional to nearly binary. Most of the attention structure is preserved but with definite differences as the
model converges and adjusts itself to the annealing temperature.

Next, we visualize the characteristics of per-frame soft and hard latency throughout training in Figure 18. First, observe
that although per-frame soft and hard algorithmic latency patterns differ greatly at earlier epochs, they converge to nearly
the same values at the final checkpoint as expected. See also in the first checkpoint that hard algorithmic latency is at
its maximum, matching what one would expect from a full-context attention model, and similarly at this checkpoint, the
backlog gradually builds over time as more work than can be executed in real-time is added frame over frame.

Next, comparing frame-wise latency between checkpoints, we see soft algorithmic latency keeping a similar shape, but
the amplitude increases slightly over the course of training. This suggests that earlier in training, the model can learn to
keep important attention weights small, yet non-zero, to minimize the soft penalty term. As temperature decreases however,
these non-zero weights become increasingly polarized where the now stronger weighted forward connections cause higher
algorithmic latency. This matches Figure 16 findings.

Finally, we discuss the per-frame compute backlog. Similar to the trends we saw with algorithmic latency, we see soft
and hard latency converge over the epochs. Soft backlog maintains the same shape but increases in amplitude. The hard
backlog starts at a maximum and then decreases to converge with the soft backlog calculation. Taking a closer examination
of the hard backlog in the first checkpoint, one notices the backlog continues to grow frame by frame due to the large hard
algorithmic latency. Close examination reveals that at every 10 frames, there is a slight decrease in slope. This phenomenon
occurs because after 10 frames, the nodes for the first layer start to become available, since the max per-layer right context is
10 frames. After 20 frames, the second layer starts to become available, and so on every 10 frames. If the utterance were
long enough, we would see that the hard compute backlog would reach its maximum value at 140 frames (14 layers × 10
lookahead).
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Figure 18. Voice Assistant Conformer ANCAT model frame-wise algorithmic latency (top) and the compute backlog present at each
frame (bottom) for an utterance evaluated at three checkpoints during training: step 50k where temperature is 0.548 (left), step 160k
where temperature is 0.105 (center), and step 500k the final step, where temperature is 0.01 (right). A throughput of 2 is used for the
compute backlog evaluations.

G. Training Configuration Specifics
All the models presented in this paper on LibriSpeech and Voice Assistant data are trained on 6 × 8 NVIDIA Tesla V100
GPUs with a per-core bucket batch size of [32, 16, 12, 4] according to different utterance lengths. For our LibriSpeech
ANCAT models, we initially set the temperature for schedulers as τ = 1 and anneal it to 1e−4 with an exponential decay
rate of 0.99996 beginning at epoch 40. Voice Assistant uses a longer decay annealing over 320k steps to a temperature of
0.01. We also list the detailed encoder configuration of the Conformer model in Table 3. The T-T architecture we use in the
experiments has the same hyperparameters except those of the convolutions models which do not apply. The scheduler
networks consist of a total of 0.2M parameters which are considerably lightweight compared to our main Transformer-based
encoder.

Table 3. Encoder Model Hyperparameters for Conformer.
Conformer Encoder Setup

Num of Params (M) 27.5
Encoder Layers 14
Encoder Dim 256

Num of Attention Heads 4
Feed-Forward Dim 1024

Point-wise-1 Conv Kernel Size (512, 256, 1, 1)
Depth-wise Conv Kernel Size (32, 1, 1, 1)

Point-wise-2 Conv Kernel Size (256, 512, 1, 1)
Output Size 512
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H. Voice Assistant Result Tables
For completeness, we also construct a table for Voice Assistant data as done with LibriSpeech for both Conformer and T-T
baselines and ANCAT models. We provide model label names for ease of reference.

Label

Attention
(right context

frames)
Regularization

Term
Reg.

weight Throughput WERR

Alg.
Latency

(ms)
UPL
(ms)

Baseline Causal N/A N/A 2.0 0.0 0.0 0.0
Layer1 Layerwise (1) N/A N/A 2.0 -9.2 797.3 224.2
Layer2 Layerwise (2) N/A N/A 2.0 -11.9 1399.7 446.7
Layer10 Layerwise (10) N/A N/A 2.0 -21.1 2323.0 1160.8
Chunked5 Chunked (5) N/A N/A 2.0 -3.9 122.1 82.8
Chunked10 Chunked (10) N/A N/A 2.0 -8.2 277.5 194.7
Chunked20 Chunked (20) N/A N/A 2.0 -11.2 583.2 402.3
Chunked30 Chunked (30) N/A N/A 2.0 -12.0 871.4 681.6
L1-A ANCAT (10) L1 1.00e-04 2.0 -16.8 1519.0 772.5
L1-B ANCAT (10) L1 2.50e-04 2.0 -14.4 1177.9 606.8
L1-C ANCAT (10) L1 5.00e-04 2.0 -12.9 825.2 361.4
L1-D ANCAT (10) L1 7.50e-04 2.0 -11.2 619.4 239.8
L1-E ANCAT (10) L1 1.00e-03 2.0 -9.4 587.5 236.7
L1-F ANCAT (10) L1 1.25e-03 2.0 -8.7 412.7 150.0
L1-G ANCAT (10) L1 1.50e-03 2.0 -7.0 266.0 33.4
L1-H ANCAT (10) L1 1.75e-03 2.0 -5.8 242.1 21.9
L1-I ANCAT (10) L1 2.00e-03 2.0 -6.6 188.1 11.2
L1-J ANCAT (10) L1 2.50e-03 2.0 -5.2 206.8 22.4
AL-A ANCAT (10) Alg. Latency 1.25e-03 2.0 -17.1 1007.9 712.5
AL-B ANCAT (10) Alg. Latency 2.50e-03 2.0 -13.9 884.8 628.0
AL-C ANCAT (10) Alg. Latency 3.75e-03 2.0 -14.3 657.1 467.4
AL-D ANCAT (10) Alg. Latency 5.00e-03 2.0 -11.7 503.4 344.4
AL-E ANCAT (10) Alg. Latency 7.50e-03 2.0 -9.5 256.7 46.6
AL-F ANCAT (10) Alg. Latency 1.00e-02 2.0 -8.9 176.3 12.0
AL-G ANCAT (10) Alg. Latency 1.50e-02 2.0 -6.5 88.2 3.1
AL-H ANCAT (10) Alg. Latency 1.75e-02 2.0 -4.8 81.8 2.5
CB01.5-A ANCAT (10) UPL 8.75e-05 1.5 -14.8 888.1 264.5
CB01.5-B ANCAT (10) UPL 1.30e-04 1.5 -14.9 725.2 154.4
CB01.5-C ANCAT (10) UPL 1.93e-04 1.5 -14.0 611.8 107.6
CB01.5-D ANCAT (10) UPL 4.38e-04 1.5 -10.0 526.5 58.5
CB01.5-E ANCAT (10) UPL 9.77e-04 1.5 -9.9 455.9 22.8
CB2-A ANCAT (10) UPL 1.17e-04 2.0 -16.9 814.9 174.4
CB2-B ANCAT (10) UPL 1.73e-04 2.0 -17.9 796.0 125.6
CB2-C ANCAT (10) UPL 2.57e-04 2.0 -14.3 642.2 72.0
CB2-D ANCAT (10) UPL 5.83e-04 2.0 -13.4 585.2 47.6
CB2-E ANCAT (10) UPL 1.30e-03 2.0 -12.4 482.2 17.1
CB3-A ANCAT (10) UPL 1.75e-04 3.0 -17.4 890.0 108.4
CB3-B ANCAT (10) UPL 2.59e-04 3.0 -17.1 722.6 51.9
CB3-C ANCAT (10) UPL 3.85e-04 3.0 -14.7 673.6 48.2
CB3-D ANCAT (10) UPL 8.75e-04 3.0 -13.8 594.5 24.2
CB3-E ANCAT (10) UPL 1.95e-03 3.0 -12.3 550.6 12.2

Table 4. Voice Assistant Conformer Experimental Results.
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Label

Attention
(right context

frames)
Regularization

Term
Reg.

weight Throughput WERR

Alg.
Latency

(ms)
UPL
(ms)

Baseline Causal N/A N/A 2.0 0.0 0.0 0.0
Layer10 Layerwise (10) N/A N/A 2.0 -18.1 2322.7 1160.9
Chunked10 Chunked (10) N/A N/A 2.0 -5.5 277.5 194.7
Chunked20 Chunked (20) N/A N/A 2.0 -9.5 583.3 402.4
L1 ANCAT (10) L1 5.00e-04 2.0 -15.6 967.6 310.5
AL ANCAT (10) Alg. Latency 5.00e-03 2.0 -16.4 563.8 292.0

Table 5. Voice Assistant Transformer-Transducer Experimental Results.
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