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Abstract

Quantification of uncertainty is one of the most promising approaches to establish safe
machine learning. Despite its importance, it is far from being generally solved, especially
for neural networks. One of the most commonly used approaches so far is Monte Carlo
dropout, which is computationally cheap and easy to apply in practice. However, it can
underestimate the uncertainty. We propose a new objective, referred to as second-moment
loss (SML), to address this issue. While the full network is encouraged to model the mean,
the dropout networks are explicitly used to optimize the model variance. We intensively
study the performance of the new objective on various UCI regression datasets. Comparing
to the state-of-the-art of deep ensembles, SML leads to comparable prediction accuracies
and uncertainty estimates while only requiring a single model. Under distribution shift, we
observe moderate improvements. As a side result, we introduce an intuitive Wasserstein
distance-based uncertainty measure that is non-saturating and thus allows to resolve quality
differences between any two uncertainty estimates.

1. Introduction

Having attracted great attention in both academia and digital economy, deep neural net-
works (DNNs, Goodfellow et al. (2016)) are about to become vital components of safety-
critical applications. Examples are autonomous driving (Pomerleau, 1989; Bojarski et al.,
2016) or medical diagnostics (Liu et al., 2014), where prediction errors potentially put hu-
mans at risk. These systems require methods that are robust not only under lab conditions
(i.i.d. data sampling), but also under continuous domain shifts, think e.g. of adults on
e-scooters or growing varieties of mobile health sensors. Besides shifts in the data, the data
distribution itself poses further challenges. Critical situations are (fortunately) rare and
thus strongly under-represented in datasets. Despite their rareness, these critical situations
have a significant impact on the safety of operations. This calls for comprehensive self-
assessment capabilities of DNNs and recent uncertainty mechanisms can be seen as a step
in that direction.
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While a variety of uncertainty approaches have been established, stable quantification
of uncertainty is still an open problem. Many recent machine learning applications are
e.g. equipped with Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) that offers
conceptual simplicity and scalability. However, it tends to underestimate uncertainties thus
bearing disadvantages compared to more recent approaches such as deep ensembles (Lak-
shminarayanan et al., 2017). We propose an alternative uncertainty mechanism. It builds
on dropout sub-networks and explicitly optimizes variances (see Fig. 1 for an illustrative
example). Technically, this is realized by a simple additive loss term, the second-moment
loss. To address the above outlined requirements for safety-critical systems, we evaluate
our approach systematically w.r.t. continuous data shifts.

Figure 1: Sampling-based uncertainty mechanisms on toy datasets. The second-moment
loss (right) induces uncertainties that capture aleatoric uncertainty. This is in
contrast to MC dropout (left). Ground truth data is shown in red. Each grey line
represents the outputs of one of 200 sub-networks that are obtained by applying
dropout-based sampling to the trained full network.

In detail, our contribution is the introduction of a novel regression loss for better cali-
brated uncertainties applicable to dropout networks, reaching state-of-the-art performance
in an empirical study and improving on it when considering data shifts.

2. Related work

Approaches to estimate predictive uncertainties can be broadly categorized into three groups:
Bayesian approximations, ensemble approaches and parametric models.

Monte Carlo dropout (Gal and Ghahramani, 2016) and its variants (see e.g. Gal et al.
(2017); Kendall and Gal (2017); Postels et al. (2019)) are prominent representatives of
the first group. They are theoretically well understood (see e.g. Sicking et al. (2020)),
offer a Bayesian motivation, conceptual simplicity and scalability to application-size neural
networks (NNs). This combination distinguishes MC dropout from other Bayesian neural
network (BNN) approximations like Blundell et al. (2015) and Ritter et al. (2018). Note
that dropout training is also used—independent from an uncertainty context—for better
model generalization (Srivastava et al., 2014).
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Ensembles of neural networks, so-called deep ensembles (Lakshminarayanan et al., 2017),
pose another popular approach to uncertainty modelling. Comparative studies of uncer-
tainty mechanisms (Snoek et al., 2019; Gustafsson et al., 2020) highlight their advanta-
geous uncertainty quality, making deep ensembles a state-of-the-art method. Fort et al.
(2019) argue that deep ensembles capture multi-modality of loss landscapes and thus yield
potentially more diverse sets of solutions.

The third group are parametric modelling approaches that extend point estimations by
adding a model output that is interpreted as variance or covariance (Nix and Weigend, 1994;
Heskes, 1997). Typically, these approaches optimize a (Gaussian) negative log-likelihood
(NLL, Nix and Weigend (1994)). A more recent representative of this group is, e.g., Kendall
and Gal (2017), for a review see Khosravi et al. (2011). A closely related model class is
deep kernel learning combining NNs and Gaussian processes (GPs) in various ways (see e.g.
(Wilson et al., 2016; Iwata and Ghahramani, 2017; Garnelo et al., 2018; Qiu et al.)).

The quality of uncertainties is typically evaluated using negative log-likelihood (Blei
et al., 2006; Walker et al., 2016; Gal and Ghahramani, 2016), expected calibration error
(ECE) (Naeini et al., 2015; Snoek et al., 2019), its variants, and by considering relations
between uncertainty estimates and model errors (Sicking et al., 2019).

3. Second-moment loss

Monte Carlo (MC) dropout was proposed as a computationally cheap approximation of
performing Bayesian inference in neural networks (Gal and Ghahramani, 2016). Given a
neural network fθ : Rd → Rm with parameters θ, MC dropout samples sub-networks fθ̃
by randomly dropping nodes from the main model fθ. During MC dropout inference the
prediction is given by the mean estimate over the predictions of a given sample of sub-
networks, while the uncertainty associated with this prediction can be estimated, e.g., in
terms of the sample variance. During MC dropout training the objective function, in our
case the mean squared error (MSE), is applied to the sub-networks separately. Due to
this training procedure, all sub-network predictions are shifted towards the same training
targets, which can result in overconfident predictions, i.e. in an underestimation of prediction
uncertainty.1

Based on this observation, we propose to use the sub-networks fθ̃ in a different way:
they are explicitly not encouraged to fit the data mean directly. This is the task of the
full network fθ. The sub-networks fθ̃ instead model aleatoric uncertainty and prediction
residuals if the prediction of the full network fθ is incorrect. Thus, we deliberately assign
different ‘jobs’ to the main network fθ on the one hand and its sub-networks on the other
hand. Formalizing this idea into an optimization objective yields

L = Lregr + Lsml =
1

M

M∑
i=1

[
(fθ(xi)− yi)2︸ ︷︷ ︸
regression loss

+ β ( |fθ̃(xi)− fθ(xi)| − |fθ(xi)− yi|)
2︸ ︷︷ ︸

second−moment loss

]
, (1)

1. An intuitive explanation is as follows: Let fθ be a NN with one-dimensional output. For MC dropout with
the MSE loss we get

〈
(fθ̃(x)− y)

2
〉
= (〈fθ̃(x)〉− y)

2 +σ2(fθ̃(x)). Therefore, it simultaneously minimizes
the squared error between sub-network mean and target and the variance σ2(fθ̃(x)) = 〈f

2
θ̃
(x)〉−〈fθ̃(x)〉

2

over the sub-networks.
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where the sum runs over a mini-batch of size M<N taken from the set of observed samples
D = {(xi, yi)}Ni=1, xi ∈ Rd denotes the input, yi ∈ Rm the ground-truth label, and β > 0
is a hyper-parameter that weights both terms. The first term, Lregr, is the MSE w.r.t. the
full network fθ. The second term, Lsml, seeks to optimize2 the sub-networks fθ̃. It aims
at finding sub-networks such that the distance |fθ̃ − fθ| matches the aleatoric uncertainty
or the prediction residual which is quantified by |fθ(xi) − yi|.3 This leads to a significant
increase in the variance of the sub-networks, i.e. the second moment of fθ̃, compared to
standard MC dropout, which is why we name Lsml the second-moment loss (SML).4 The
standard deviations σtotal of the predictions of the sub-networks w.r.t. the prediction of
the mean network induced by the SML have two components: the spread σdrop of the sub-
networks and an offset

∣∣fθ − 〈fθ̃〉∣∣ between the full network and the sub-network mean that
our loss might cause, concretely, σtotal = σdrop + |fθ −〈fθ̃〉|. While |fθ −〈fθ̃〉| is reminiscent
of residual matching, σdrop seems to be more closely related to modelling uncertainties. We
show in appendix A.2 that σdrop accounts on average for more than 80% of σtotal in our
experiments.

Note that while we investigate the proposed objective in terms of dropout sub-networks
in this paper, our arguments as well as the actual approach are generally applicable to other
models that allow to formulate sub-networks given some kind of mean model. Besides the
regression tasks considered here our approach could be useful for other objectives which use
or benefit from an underlying distribution, e.g. uncertainty quantification in classification.

4. Experiments

We study uncertainty quality on UCI regression datasets, where we extend the dataset
selection in Gal and Ghahramani (2016) by adding three further datasets: ‘diabetes’, ‘cal-
ifornia’, and ‘superconduct’. Apart from i.i.d. train- and test-data results, we study re-
gression performance and uncertainty quality under data shift. Such distributional changes
and uncertainty quantification are closely linked since the latter ones are rudimentary “self-
assessment” mechanisms that help to judge model reliability. These judgements gain im-
portance for model inputs that are structurally different from train data. Appendix B.2
elaborates on our ways of splitting the data, namely pca-based splits in input space (using
the first principal component) and label-based splits. We assess uncertainty performance
in terms of the expected calibration error (ECE) and Wasserstein distance (WS) and re-
gression performance using root-mean-squared error (RMSE) and negative log-likelihood
(NLL). All measures are described in detail in appendix B.1, where you can also find more
details on the network, the implementation of the methods and the training procedure. For
brevity of exposition, we limit our discussion here largely to the ECE. An evaluation of the
other measures can be found in appendix B.2. All presented results are 5- or 10-fold cross
validated.

2. To avoid unintended optimization of full fθ in direction of fθ̃, we only back-propagate through fθ̃ in
Lsml.

3. As our choice of Lsml removes all directional information of the residual, possible (optimal) solutions for
the fθ̃ are not uniquely determined. For a one-dimensional example based on aleatoric uncertainty see
appendix A.1.

4. For brevity, we also refer to the entire loss objective L as second-moment loss during evaluation.
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Fig. 2 provides ECEs for 13 UCI datasets that are sorted by dataset size on the x-axis.
The top panel shows train- (green) and test-set (blue) ECEs, the bottom panel test-set ECEs
under two pca-based data shifts (yellow-green, orange) and two label-based data splits (red,
light red), for inter- and extrapolation respectively. Uncertainty methods are encoded via
plot markers, e.g. PU-DE as ‘star’ and SML-trained networks (‘ours’) as ‘square’. We
summarize these dataset-specific results on the right hand side of the figure (light grey
background). The columns ‘mean’ and ‘median’ of this summary show that on training
sets, ECEs are smallest for PU, followed by PU-DE and the SML network. On test data,
however, PU, PU-DE and the SML network share the first place. Looking at the stability
w.r.t. data shift, i.e. the ability to extra- or interpolate to “unseen” data, PU loses in
performance while PU-DE and SML reach the smallest calibration errors in three out of
four cases, compare the lower panel in Fig. 2.

Summarizing these evaluations, we find SML to be as strong as the state-of-the-art
method of PU-DEs while using only a single network compared to an ensemble of 5 networks.
We moreover observe advantages for SML under PCA- and label-based data shifts. Three
datasets lead to overestimated uncertainties for the SML, see discussion in appendix B.2.
A visual tool to further inspect uncertainty quality are residual-uncertainty scatter plots as
shown in appendix B.3. For a reflection on NLL and comparisons of the different uncertainty
measures see appendix B.2.

5. Conclusion

We approach dropout-based uncertainty quantification from a new direction: sub-networks
are explicitly not encouraged to model the data mean, they capture aleatoric uncertainties
and potential fitting residuals of the full network instead. Technically, this is realized by
an additional loss term that accompanies the standard regression objective: the second-
moment loss. Our loss enables stable training. Training complexity and runtime behavior
at inference are comparable to MC dropout. Task performances and uncertainty qualities of
these models are on par with (parametric) deep ensembles, the widely used state-of-the-art
for uncertainty quantification. However, unlike deep ensembles, we use single networks. In
practice, this might allow to reduce training effort significantly compared to deep ensembles,
especially for application-scale networks. Moreover, a single network requires only a fraction
of the storage of a deep ensemble, making models with competitive uncertainties more
accessible for mobile or embedded applications.

An extensive study of uncertainties under data shift revealed advantages of SML-trained
models compared to deep ensembles: while both methods on average provide comparable
results, we find a higher stability across a variety of datasets and data shifts for the SML.
Technically, we attribute this gain in stability to our sub-network-based approach: like
MC dropout, we integrate uncertainty estimates into the very structure of the network,
rendering it more robust towards unseen inputs than a parameter estimate.

Moreover, the second-moment loss can serve as a drop-in replacement for MC dropout on
regression tasks. For already trained MC dropout models, post-training with the second-
moment loss might suffice to improve uncertainty quality. As an outlook, our first such
post-training experiments are encouraging. Another interesting variant is the combination
of SML with last-layer dropout (MC-LL) as it enables sampling-free inference (Postels et al.,
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Figure 2: Expected calibration errors (ECEs) for 13 UCI regression datasets under i.i.d.
conditions (top) and under data shift (bottom). Uncertainty methods are encoded
via plot marker, data splits via color. Each plot point corresponds to a cross-
validated trained network. Summarizing statistics (rhs) are indicated by a light
grey background.

2019). Preliminary experiments show clearly improved uncertainty qualities compared to
standard MC-LL. A potentially interesting avenue for near real-time applications.

The simple additive structure of the second-moment loss makes it applicable to a va-
riety of optimization objectives. For classification, we might be able to construct a non-
parametric counterpart to prior networks (Malinin and Gales, 2018). Taking a step back,
we demonstrated an easily feasible approach to influence and train sub-network distribu-
tions. This could be a promising avenue, for distribution matching but also for theoretical
investigations.
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fan Rüping, Peter Schlicht, and Tim Wirtz. Approaching neural network uncertainty
realism. NeurIPS 2019 Workshop on Machine Learning for Autonomous Driving, 2019.

Joachim Sicking, Maram Akila, Tim Wirtz, Sebastian Houben, and Asja Fischer. Char-
acteristics of Monte Carlo dropout in wide neural networks. ICML 2020 Workshop on
Uncertainty and Robustness in Deep Learning, arXiv:2007.05434, 2020.

Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin,
D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. In Advances in Neural
Information Processing Systems, pages 13969–13980, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

Michael A Stephens. EDF statistics for goodness of fit and some comparisons. Journal of
the American Statistical Association, 69(347):730–737, 1974.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain future:
Forecasting from static images using variational autoencoders. In European Conference
on Computer Vision, pages 835–851. Springer, 2016.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370–378, 2016.

9



Non-parametric Regression Uncertainty

Supplementary Material

This part accompanies our paper “A Novel Regression Loss for Non-Parametric Uncertainty
Optimization” and provides further in-depth information. In Section A we provide both
theoretical and numerical insight into the resulting uncertainties of our loss modification.
Large parts of the empirical evaluation can be found in section B, including details on
the setup, data splits as well as further uncertainty measures. As the second-moment loss
couples to the usual MSE regression loss via a hyper-parameter β we test various values
in section C, finding no strong correlation between result and parameter. We close with a
discussion on the relations between uncertainty measures and their respective sensitivity in
section D.

Appendix A. Mechanics of the second-moment loss

We analytically study the optimization landscape evoked by the second-moment loss in
A.1. This analysis provides building blocks to better understand the composition of the
SML-uncertainties as detailed in the remainder of this section.

A.1. Analytical properties of the second-moment loss

In the following, we look closer at the behaviour of the second-moment loss with respect to
aleatoric uncertainty. For this, we assume that the residuals, compare eq. (1), are given by
a Gaussian distribution with, for simplicity, µRes. = 0 and σRes. = 1. We want to determine
the resulting loss for the Lsml term in eq. (1) governing the uncertainty estimation of the
model. It depends on the underling distribution of the effective MC dropout distribution,
which me model as N (µdrop, σdrop) such that:

Lsml =

∫ ∞
−∞

dy1dy2 (|y1| − |y2|)2 p1(y1) p2(y2) , (2)

where p1 and p2 are the Gaussian distributions discussed above. After some calculation this
yields:

Lsml = − 4

π
σdrop exp

(
−1

2

µ2drop
σ2drop

)
−
√

8

π
µdrop Erf

(
µdrop√
2σdrop

)
+ σ2drop + µ2drop + 1 , (3)

which is visualized in Fig. 3. The two global minima can be found for σdrop = 0 and
µdrop = ±

√
2/π. However, as we model a randomized residual y1 these minima do not

reach zero. We find that it is favourable to move µdrop away from the network prediction of
µRes. = 0, the mean of the underlying data distribution. But, this is only the case as long
as the inherent uncertainty in the dropout distribution can be brought below σdrop < 2/π,
which is still smaller than the uncertainty of σRes. = 1 assumed within the training data
distribution. Otherwise, it is more favourable to have µdrop = µRes. = 0. Decomposing the
uncertainty for the UCI datasets in section A.2 showed mixed behaviour with indications
for bi-modal shifts in µdrop as well as improved values of σdrop.

We already showed the effect of this bi-modality in Fig. 1 at the beginning of the
paper, where various sub-networks where sampled. Clearly visible is a stronger variation
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between the networks compared to MC, but also a concentration around the two possible
minima. While this Fig. provides a good visual estimate of σdrop the total uncertainty σtotal
would additionally contain the systematic shift |fθ − 〈fθ̃〉|. Given the roughly symmetric
distribution of the sub-networks we can expect it to be comparatively small.

Figure 3: Shown is the value of the loss component L2 as given by eq. (3) over µdrop and
σdrop describing the implicit dropout ensemble. The blue line shows the position
of the minima of L2 for fixed values of σdrop. Clearly visible are the global minima
at σdrop = 0 and the bifurcation at σdrop = 2/π.

A.2. Composition of the uncertainty estimate

The uncertainty estimate of the second-moment loss is comprised of two parts: σtotal =
σdrop + |fθ − 〈fθ̃〉|. Fig. 4 reveals that σdrop contributes to more than 80% of σtotal for the
three presented datasets and for all applied data splits. A highly similar behavior can be
observed for all other datasets. The analytical consideration in appendix A.1 suggests that
for cases without aleatoric uncertainty the SML provides no incentive for |fθ − 〈fθ̃〉| > 0.
The same holds true in the presence of aleatoric uncertainty as long as σdrop is comparably
large. For aleatoric uncertainty and small σdrop larger |fθ−〈fθ̃〉| are favorable. However, as
our loss is radial symmetric, all directions are equivalent and initialization and randomness
determine the direction of the spread |fθ − 〈fθ̃〉| for each individual sub-network. This
symmetry leads again to a small averaged |fθ − 〈fθ̃〉|. σdrop on the contrary describes the
width of a bi-modal set of sub-networks in these cases.

A.3. Detailed analysis of the two loss components

A deeper look into the structure of the second-moment loss is possible if we investigate its
behaviour component-wise. To clarify the results presented in Fig. 5, we recall the loss
structure as

L = L1 + L2 =

M∑
i=1

[
a2i + β (|bi| − |ai|)2

]
(4)

with ai = fθ(xi) − yi and bi = fθ̃(xi) − fθ(xi). Histograms of the ai (Fig. 5, first column)
enable a detailed view on network performance. The uncertainty quality of the networks can
be judged by studying the L2 loss term more closely, namely by visualizing histograms of
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Figure 4: The second-moment loss induces uncertainties σtotal = σdrop+|fθ−〈fθ̃〉|. The rela-
tive contribution of both components (”fraction dropout std”, ”fraction spread”)
is shown for two exemplary datasets (top: superconduct, bottom: protein) and
i.i.d. (train: blue, test: orange) as well as non-i.i.d. data splits (test-label: red,
test-pca: yellow).

|bi|−|ai| (fourth column). The second and third column zoom into L2 and show histograms
of the bi and scatter plots of (bi,ai), respectively. Only test datasets are visualized and as
we applied 90 : 10 train-test splits, this explains the low resolution of some histograms in
the first column. All quantities involving bi require the sampling of sub-networks. We draw
200 sub-networks. This sampling procedure explains the higher plot resolutions in columns
two to four.

Qualitatively, we observe that both the ai’s and bi’s are centered around zero which hints
at successful optimization of regression performance and of uncertainty quality. Details on
how the optimization is technically realistic, can be gained from the scatter plots. They
show two qualitative shapes: a ‘line’ (first row) and a ‘blob’ (second and third row). For
an in-detail discussion of the uni- and bi-modality of the second-moment loss landscape
see A.1. A ‘line’ shape reflects that all sub-networks occupy the same minimum given a
bi-modal case. Following appendix A.1, a ‘blob’ indicates a uni-modal case that might be
evoked by large standard deviations σdrop.

Appendix B. Extension to the empirical study

Accompanying to the evaluation sketched in the body of the paper, section 4, we provide
more details on the setup, used benchmarks and measures in the following sub-section.
Further information on the experiments are given in section B.2, which we extend by the
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Figure 5: Visualisation of the components (columns) of the second-moment loss for selected
test datasets (rows). The prediction residual fθ(xi) − yi (first column), model
spread fθ̃(xi) − fθ(xi) (second column), a scatter plot of both quantities (third
column) and |fθ̃(xi) − fθ(xi)| − |fθ(xi) − yi| (fourth column) are shown. The
chosen datasets from top to bottom are: wine-red, power and california.

measures skipped in the main text, and include a description on the used label splits. We
close with a look at the predicted uncertainties (per method) via scatter plots in section
B.3.

B.1. Experimental setup

The experimental setup used for the experiments is presented in three parts: the benchmark
approaches we compare with, the evaluation measures we apply to quantify uncertainty, and
a description of the neural networks and training procedures we employ.

Benchmark approaches We compare dropout networks trained with the SML to ar-
chetypes of uncertainty modelling, namely approximate Bayesian techniques, parametric
uncertainty, and ensembling approaches. From the first group, we pick MC dropout (ab-
breviated as MC) and its variant last-layer MC dropout (MC-LL). While these dropout
approaches integrate uncertainty estimation into the very structure of the network, para-
metric approaches model the variance directly as the output of the neural network (Nix and
Weigend, 1994). Such networks typically output mean and variance of a Gaussian distri-
bution (µ, σ) and are trained by likelihood maximization. This approach is denoted as PU
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for parametric uncertainty. Ensembles of PU-networks (Lakshminarayanan et al., 2017),
referred to as deep ensembles, pose a widely used state-of-the-art method for uncertainty
estimation (Snoek et al., 2019). Moreover, we consider ensembles of non-parametric stan-
dard networks. We refer to the latter ones as DEs while we call those using PU PU-DEs.
All considered types of networks provide estimates (µi, σi) where σi is obtained either ana-
lytically (PU), by sampling (MC, MC-LL, SML) or as an ensemble aggregate (DE, PU-DE).

Evaluation measures In all experiments we evaluate both regression performance and
uncertainty quality. Regression performance is quantified by the root-mean-square er-
ror (RMSE),

√
(1/N

∑
i(µi − yi)2 (Bishop, 2006). Another established metric in the

uncertainty community is the (Gaussian) negative log-likelihood (NLL), 1/N
∑

i

(
log σi

+ (µi − yi)2/(2σ2i ) + c
)
, a hybrid between performance and uncertainty measure (Gneit-

ing and Raftery, 2007), see appendix D.2 for a discussion.5 The expected calibration error
(ECE, Kuleshov et al. (2018)) in contrast is not biased towards well-performing models and
in that sense is a pure uncertainty measure. It reads ECE =

∑B
j=1 |p̃j − 1/B| for B equally

spaced bins in quantile space and p̃j = |{ri|qj ≤ q̃(ri) < qj+1}|/N the empirical frequency
of data points falling into such a bin. The normalized prediction residuals ri are defined
as ri = (µi − yi)/σi. Additionally, we propose to consider the Wasserstein distance of nor-
malized prediction residuals (WS). The Wasserstein distance (Villani, 2008), also known
as earth mover’s distance (Rubner et al., 1998), is a transport-based measure denoted by
(dWS) between two probability densities, with Wasserstein GANs (Arjovsky et al., 2017)
as its most prominent application in ML. For ideally calibrated uncertainties, we expect
yi ∼ N (µi, σi) and therefore ri ∼ N (0, 1). Thus we use dWS({ri}i,N (0, 1)) to measure
deviations from this ideal behavior. As ECE, this is a pure uncertainty measure. However,
it does not use binning and can therefore resolves deviations on all scales. For example, two
strongly ill-calibrated uncertainties (r1, r2 � 1, r1 < r2) would result in (almost) identical
ECE values while WS would resolve this difference in magnitude.

Technical details All investigated neural networks have the same architecture, 2 hidden
layers of width 50, and ReLu activations (Glorot et al., 2011). For all dropout-based methods
(MC, MC-LL, SML) we set the drop rate to p = 0.1. Like MC, SML-trained networks apply
Bernoulli dropout to all hidden activations. In the case of MC-LL the dropout is only applied
to the last hidden layer. For ensemble methods (DE, DE-PU) we employ 5 networks. For
PE networks, we normalize the σ value using softplus (Glorot et al., 2011) and optimzie
the NLL instead of the MSE. For the optimization of all NNs we use the ADAM-optimizer
(Kingma and Ba) with a learning rate of 0.001. For ‘california’, the learning rate is reduced
to 0.0001 as training of PU and PU-DE is unstable using the standard setup. Additionally,
we apply standard normalization to the input and output features of all datasets to enable
better comparability.

Number of epochs trained and amount of cross validation differs by the training-set size.
We categorize the datasets as follows: small datasets {yacht, diabetes, boston, energy, con-
crete, wine-red }, large datasets {abalone, power, naval, california, superconduct, protein }
and very large datasets {year }. For small datasets, NNs are trained for 1, 000 epochs using
mini-batches of size 100. All results are 10-fold cross validated. For large datasets, we train

5. Throughout the paper, we ignore the constant c = log
√
2π of the NLL.
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for 150 epochs and apply 5-fold cross validation. We keep this large-dataset setting for the
very large ‘year’ dataset but increase mini-batch size to 500.

All experiments are conducted on Core Intel(R) Xeon(R) Gold 6126 CPUs. Con-
ducting the described experiments with cross validation on one CPU takes 80h.

For SML it turns out that as long as 0<β<1, the actual value of β has only a limited
influence on the optimization result, see appendix C for details. Larger β-values can however
favour uncertainty optimization at an expanse of task performance. Throughout the body
of the paper we use a conservative value of β = 0.5.

B.2. RMSEs, NLLs and systematic evaluation

This sub-section provides further details on our experiments covering: an overview on the
datasets and splits used for the data-shift studies, further uncertainty measure evaluations
(RMSE, NLL, WS), and close with a discussion of the weaker SML results.

Datasets and data splits For the regression data, Table 1 provides details on dataset
references, preprocessing and basic statistics. Extrapolation and interpolation data-shifts
are, technically, introduced by applying non-i.i.d. (independent and identically distributed)
data splits. Natural candidates for such non-i.i.d. splits are splits along the main directions
of data in input and output space, respectively. Here, we consider 1D regression tasks.
Therefore, output-based splits are simply done on a scalar label variable (see Fig. 6, right).
We call such a split label-based (for a comparable split, see, e.g., Foong et al. (2019)).
In input space, the first component of a principal component analysis (PCA) provides a
natural direction (see Fig. 6, left). The actual PCA-split is then based on projections of
the data points onto this first PCA-component.6 Splitting data along such an direction in
input or output space in e.g. 10 equally large chunks, creates 2 outer data chunks and 8
inner data chunks. Training a model on 9 of these chunks such that the remaining chunk
for evaluation is an inner chunk is called data interpolation. If the remaining test chunk
is an outer chunk, it is data extrapolation. We introduce this distinction as extrapolation
is expected to be considerably more difficult than ‘bridging’ between feature combinations
that were seen during training.

Regression quality First, we consider regression performance (see top panel of Fig. 7).
Averaging the RMSE values over the considered 13 datasets (‘mean’ column) yields almost
identical results for all uncertainty methods. The only exceptions pose PU and PU-DE
with larger train data RMSEs which could be due to NLL optimization favoring to adapt
variance rather than mean. However, this regularizing NLL-training comes along with a
smaller generalization gap, leading to competitive test RMSEs. Next, we investigate model
performance under data shift, visualized in the bottom panel of Fig. 7. Again, regression
quality is comparable between all methods. As expected, performances under data shift are
worse compared to those on i.i.d. test sets.

Negative log-likelihoods For NLL, results are less balanced compared to RMSE (see
Fig. 8). PU-DE and the SML-trained network reach comparably small average values,
followed by MC and DE. The average NLL values of MC-LL and PU are above the upper

6. Note that these projections are only considered for data splitting, they are not used for model training.

15



Non-parametric Regression Uncertainty

Table 1: Details on UCI regression datasets. Ground truth (gt) is partially pre-processed
to match the 1D regression setup.

dataset # features # datapoints reference remarks

yacht 6 308 UCI
diabetes 7 442 sklearn
boston 13 506 sklearn
energy 8 768 UCI only ”cooling load” gt used
concrete 8 1030 UCI
wine-red 11 1599 UCI
abalone 7 4176 UCI 1st feature is ignored
power 4 9568 UCI
naval 16 11934 UCI using only ”turbine” gt
california 8 20640 sklearn
superconduct 81 21263 UCI
protein 9 45730 UCI
year 90 515345 UCI

input space output space input space output space

NN NN

Figure 6: Scheme of two non-i.i.d. splits: a PCA-based split in input space (left) and label-
based split in output space (right). While datasets appear to be convex here,
they are (most likely) not in reality.

plot limit indicating a rather weak stability of these methods. On PCA-interpolate and
PCA-extrapolate test sets, again PU-DE and SML-trained networks perform best. On
label-interpolate and label-extrapolate test sets, SML-trained networks take the first place
with a large margin. The mean NLL values of most other approaches are above the upper
plot limit. Note that median results (the column next to ‘mean’) are not as widely spread
and PU-DE and SML perform comparably well. These qualitative differences between
mean and median behavior indicate that most methods perform poorly ‘once in a while’. A
noteworthy observation as stability across a variety of data shifts and datasets can be seen
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Figure 7: Root-mean-square errors (RMSEs) for 13 UCI regression datasets under i.i.d.
conditions (top) and under data shift (bottom). Uncertainty methods are encoded
via plot marker, data splits via color. Each plot point corresponds to a cross-
validated trained network. Summarizing statistics (rhs) are indicated by a light
grey background.
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Figure 8: Negative log-likelihoods (NLLs) for 13 UCI regression datasets under i.i.d. con-
ditions (top) and under data shift (bottom). Uncertainty methods are encoded
via plot marker, data splits via color. Each plot point corresponds to a cross-
validated trained network. Summarizing statistics (rhs) are indicated by a light
grey background.
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as a crucial requirement for an uncertainty method. SML-based models yield the highest
stability in that sense w.r.t. NLL.

Wasserstein distances Studying Wasserstein distances, we again observe equally strong
results for PU-DE and SML on train and test data (see column ‘mean’ in top panel of
Fig. 9). PU in contrast possesses a large generalization gap thus yielding weak test set
performances. MC, MC-LL, and DE behave consistently weak on train and test sets with
MC-LL even falling out of plot range. Under data shift (bottom panel of Fig. 9), the
picture remains similar. PU-DE and SML are in the lead and comparably strong with the
exception of PU-DE on label-interpolate and label-extrapolate test data (‘mean’ column).
As for NLL, we find these mean values of PU-DE to be significantly above the respective
median values indicating again weaknesses in the stability of parametric ensembles.
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Figure 9: Wasserstein distances for 13 UCI regression datasets under i.i.d. conditions (top)
and under data shift (bottom). Uncertainty methods are encoded via plot marker,
data splits via color. Summarizing statistics (rhs) are indicated by a light grey
background.

Slight overestimation of small uncertainties for SML The second-moment loss
yields weak results on ‘yacht’, ‘energy’ and ‘naval’, the three easiest datasets if measured by
test set RMSE, compare Fig. 8. On these datasets neither aleatoric uncertainty nor mod-
elling residuals play a mayor role. In such cases, the second-moment loss seems to cause
slightly overshooting uncertainty estimates (compare edges of Fig. 1 for a visual clue), likely
due to its sub-network ‘repulsion’. Back-propagating not only through fθ̃ but also through
the full network fθ in Lsml might mitigate this effect. In practice, slight overestimations
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of small uncertainties might be acceptable. In contrast, our method performs consistently
strong on all more challenging datasets (‘california’, ‘superconduct’, ‘protein’, ‘year’). A
beneficial characteristic for virtually any real-world task.

B.3. Residual-uncertainty scatter plots

Visual inspection of uncertainties can be helpful to understand their qualitative behaviour.
We scatter model residuals µi−yi (respective x-axis in Fig. 11) against model uncertainties
σi (resp. y-axis in Fig. 11). For a hypothetical ideal uncertainty mechanism, we expect
(yi − µi) ∼ N (0, σi), i.e. model residuals following the predictive uncertainty distribution.
More concretely, 68.3% of all (yi − µi) would lie within the respective interval [−σi, σi]
and 99.7% of all (yi − µi) within [−3σi, 3σi]. Fig. 10 visualizes this hypothetical ideal.
Geometrically, the described Gaussian properties imply that 99.7% of all scatter points,
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Figure 10: Prediction residuals (x-axis) and predictive uncertainty (y-axis) for a hypotheti-
cal ideal uncertainty mechanism. The Gaussian errors are matched by Gaussian
uncertainty predictions at the exact same scale. 68.3% of all uncertainty esti-
mates (plot points) lie above the orange 1σ-lines and 99.7% of them above the
blue 3σ-lines.

e.g. in Fig. 11 should lie above the blue 3σ lines and 68.3% of them above the yellow 1σ
lines. For ‘abalone’ test data (third row of Fig. 11), PU and SML qualitatively fulfil this
requirement while MC and DE tend to underestimate uncertainties. This finding is in
accordance with our systematic evaluation. For abalone and superconduct, we qualitatively
find PU, PU-DE and SML-trained networks to provide more realistic uncertainties compared
to MC, MC-LL and DE (see Fig. 11). The naval dataset poses an exception in this
regard as all uncertainty methods lead to comparably convincing uncertainty estimates.
The small test RMSEs of all methods on naval (see Fig. 7) indicate relatively small aleatoric
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Table 2: Regression performance and uncertainty quality of networks with different uncer-
tainty mechanisms. The scores are calculated on the test sets of 13 UCI datasets.

measure dataset MC MC-LL Ours PU PU-DE DE

RMSE (↓) yacht 0.08 0.07 0.08 0.07 0.07 0.05
NLL (↓) yacht −2.53 −2.68 −2.3 0.05 −3.53 −3.26
ECE (↓) yacht 0.96 0.78 1.10 0.90 0.74 0.63
WS (↓) yacht 0.45 0.36 0.53 1.30 0.30 0.36

RMSE (↓) diabetes 0.79 0.89 0.84 0.82 0.78 0.89
NLL (↓) diabetes 3.93 17.4 1.10 316.53 2.14 1.90
ECE (↓) diabetes 0.99 1.26 0.72 1.15 0.78 0.71
WS (↓) diabetes 1.72 3.90 0.77 9.24 1.06 0.91

RMSE (↓) boston 0.32 0.35 0.33 0.34 0.33 0.33
NLL (↓) boston 0.85 6.15 −0.48 144.2 1.04 2.35
ECE (↓) boston 0.76 1.05 0.53 1.13 0.70 0.69
WS (↓) boston 0.99 2.29 0.37 5.57 0.87 1.15

RMSE (↓) energy 0.10 0.09 0.08 0.21 0.18 0.08
NLL (↓) energy −1.93 −1.7 −1.83 0.26 −2.09 −1.65
ECE (↓) energy 0.54 0.45 0.83 0.68 0.42 0.52
WS (↓) energy 0.25 0.27 0.44 0.93 0.22 0.52

RMSE (↓) concrete 0.25 0.27 0.25 0.29 0.26 0.25
NLL (↓) concrete −0.4 3.86 −0.93 28.47 −0.72 2.45
ECE (↓) concrete 0.48 0.73 0.44 0.75 0.41 0.65
WS (↓) concrete 0.50 1.49 0.20 2.12 0.35 1.17

RMSE (↓) wine-red 0.77 0.87 0.80 0.81 0.77 0.83
NLL (↓) wine-red 2.53 9.76 0.49 14572.96 0.94 0.87
ECE (↓) wine-red 0.73 0.93 0.41 0.61 0.37 0.41
WS (↓) wine-red 1.25 2.52 0.35 10.59 0.38 0.52

RMSE (↓) abalone 0.69 0.68 0.69 0.67 0.68 0.68
NLL (↓) abalone 18.21 59.45 0.24 610.84 −0.07 48.21
ECE (↓) abalone 1.29 1.44 0.38 0.27 0.29 1.39
WS (↓) abalone 3.89 6.85 0.43 0.94 0.16 5.79

RMSE (↓) naval 0.14 0.08 0.09 0.25 0.22 0.04
NLL (↓) naval −1.51 −1.82 −1.45 −2.43 −2.37 −2.86
ECE (↓) naval 0.37 0.64 0.94 0.56 0.98 0.85
WS (↓) naval 0.20 0.62 0.52 0.37 0.52 0.48

RMSE (↓) power 0.23 0.23 0.22 0.23 0.22 0.22
NLL (↓) power 1.77 4.47 −0.87 −0.97 −1.02 21.37
ECE (↓) power 0.79 0.89 0.18 0.17 0.15 1.18
WS (↓) power 1.35 1.81 0.21 0.16 0.09 3.72

RMSE (↓) california 0.44 0.44 0.44 0.64 0.68 0.43
NLL (↓) california 3.21 18.34 −0.28 −0.48 −0.58 8.15
ECE (↓) california 0.77 1.07 0.24 0.24 0.27 0.90
WS (↓) california 1.45 3.20 0.27 0.17 0.17 2.18

RMSE (↓) superconduct 0.32 0.32 0.32 0.36 0.34 0.30
NLL (↓) superconduct 1.13 8.51 −0.96 −0.87 −1.27 3.93
ECE (↓) superconduct 0.59 0.74 0.20 0.15 0.25 0.55
WS (↓) superconduct 1.02 2.01 0.14 0.16 0.16 1.25

RMSE (↓) protein 0.66 0.65 0.66 0.76 0.70 0.62
NLL (↓) protein 4.45 1.4× 106 0.12 0.02 −0.11 6.65
ECE (↓) protein 0.89 1.07 0.24 0.22 0.30 0.84
WS (↓) protein 1.79 7.9× 105 0.18 0.14 0.17 1.91

RMSE (↓) year 0.79 0.80 0.79 0.79 0.78 0.77
NLL (↓) year 19.15 5.7× 105 0.12 0.05 −0.01 18.69
ECE (↓) year 1.33 1.48 0.24 0.27 0.28 1.19
WS (↓) year 3.95 6.7× 105 0.19 0.17 0.17 3.38
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uncertainties and model residuals. Epistemic uncertainty might thus be a key driving factor
and coherently MC, MC-LL and DE perform well.

Figure 11: Prediction residuals (respective x-axis) and predictive uncertainty (respective
y-axis) for different uncertainty mechanisms (columns) and datasets (rows).
Each light blue dot in each plot corresponds to one test data point. Realistic
uncertainty estimates should lie mostly above the blue 3σ-lines. The datasets
naval, abalone and superconduct are shown, from top to bottom.

The hypothetical ideal residual-uncertainty scatter plot we use in Fig. 10 is generated
as follows: We draw 3000 standard deviations σi ∼ U(0, 2) and sample residuals ri from the
respective normal distributions, ri ∼ N (0, σi). The pairs (ri, σi) are visualized. By con-
struction, uncertainty estimates now ideally match residuals in a distributional sense. But
even in this perfect case, Pearson correlation between uncertainty estimates and absolute
residuals is only approximately 55%.

Appendix C. Stability w.r.t. hyper-parameter β

Here, we analyze the impact of the SML-parameter β on the uncertainty quality of ac-
cordingly trained models. For β = 0.1, 0.25, 0.5, 0.75, 0.9, we observe only relatively small
differences in both ECE (see Fig. 12) and Wasserstein distance (see Fig. 13). β = 0.5 pro-
vides (by a small margin) the best average test set performance in both scores. However,
the best-performing β-value for an individual dataset can vary.

Experiments with β � 1 (not shown here) cause non-convergent training in many cases
as primarily uncertainty quality is optimized at the expense of task performance. The
opposite extreme case is β = 0, i.e. network optimization without any dropout mechanism.
Applying dropout at inference will therefore cause uncontrolled random fluctuations around
the network prediction.
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Figure 12: Expected calibration errors (ECEs) for SML-trained networks with hyper-
parameters β = 0.1, 0.25, 0.5, 0.75, 0.9. We consider 13 UCI regression datasets
under i.i.d. conditions (top) and under data shift (bottom). β-values are en-
coded via plot marker, data splits via color. Each plot point corresponds to a
cross-validated trained network. Summarizing statistics (rhs) are indicated by
a light grey background.
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Figure 13: Wasserstein distances for SML-trained networks with hyper-parameters β = 0.1,
0.25, 0.5, 0.75, 0.9. We consider 13 UCI regression datasets under i.i.d. conditions
(top) and under data shift (bottom). β-values are encoded via plot marker, data
splits via color. Each plot point corresponds to a cross-validated trained network.
Summarizing statistics (rhs) are indicated by a light grey background.
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Appendix D. In-depth investigation of uncertainty measures

D.1. Dependencies between uncertainty measures

All uncertainty-related measures (NLL, ECE, Wasserstein distance) relate predicted un-
certainties to actually occurring model residuals. Each of them putting emphasize on dif-
ferent aspects of the considered samples: NLL is biased towards well-performing models,
ECE measures deviations within quantile ranges, Wasserstein distance resolves distances
between normalized residuals. The empirically observed dependencies between these uncer-
tainty measures are visualized in Fig. 14. Additionally to Wasserstein distances, we consider
Kolmogorov-Smirnov (KS) distances (Stephens, 1974) on normalized residuals there. It es-
timates a distance between the sample of normalized residuals and a standard Gaussian.
Different from the Wasserstein distance, the KS-distance is not transport-based but de-
termined by the largest distance between the empirical CDFs of the two samples. It is
therefore bounded to [0, 1] and unable to resolve differences between samples that strongly
deviate from a standard Gaussian one.

While all these scores are expectably correlated, noteworthy deviations from ideal corre-
lation occur. Therefore, we advocate for uncertainty evaluations based on various measures
to avoid overfitting to a specific formalization of uncertainty.

The data splits in Fig. 14 are color-coded as follows: train is green, test is blue, pca-
interpolate is green-yellow, pca-extrapolate is orange-yellow, label-interpolate is red and
label-extrapolate is light red. The mapping between uncertainty methods and plot markers
reads: MC is ‘diamond’, MC-LL is ‘thin diamond’, DE is ‘cross’, PU is ‘point’, PU-DE is
‘pentagon’ and second-moment loss is ‘square’. Some Wasserstein distances lie above the
x-axis cut-off and are thus not visualized.

D.2. Discussion of NLL as a measure of uncertainty

Typically, DNNs using uncertainty are often evaluated in terms of their negative log-
likelihood (NLL). This property is affected not only by the uncertainty, but also by the
DNNs performance. Additionally, it is difficult to interpret, sometimes leading to con-
traintuitive results, which we want to elaborate on here. As a first example, take the
likelihood of two datasets x1 = {0} and x2 = {0.5}, each consisting of a single point, with
respect to a normal distribution N (0, 1). Naturally, we find x1 to be located at the max-
imum of the considered normal distribution and deem it the more likely candidate. But,
if we extend these datasets to more than single points, i.e. x̃1 = {0, 0.1, 0,−0.1, 0} and
x̃2 = {0.5,−0.4, 0,−1.9,−0.7}, it becomes obvious that x̃2 is much more likely to follow the
intended Gaussian distribution. Nonetheless, NLL(x̃2) ≈ 1.4 > 0.9 ≈ NLL(x̃1), where

NLL(y) := log
√

2πσ2 +
1

N

N∑
i=1

(yi − µ)2

2σ2
. (5)

This may be seen as a direct consequence of the point-wise definition of NLL, which does
not consider the distribution of the elements in x̃i. From this observation also follows that a
model with high prediction accuracy will have a lower NLL score as a worse performing one
if uncertainties are predicted in the same way. Independent of whether those reflected the
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Figure 14: Dependencies between the three uncertainty measures ECE, Wasserstein dis-
tance and Kolmogorov-Smirnov distance. Uncertainty methods are encoded via
plot markers, data splits via color. Datasets are not encoded and cannot be
distinguished (see text for more details). Each plot point corresponds to a cross-
validated trained network. The clearly visible deviations from ideal correlations
point at the potential of these uncertainty measures to complement one another.
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“true” uncertainty in either case. This issue can be further substantiated on a second ex-
ample. Consider two other datasets z1, z2 drawn i.i.d. from Gaussian distributions N (0, σi)
with two differing values σ1<σ2. If we determine the NLL of each with respect to its own
distribution the offset term in equation (5) leads to NLL(z2) = NLL(z1) + log (σ2/σ1) with
log (σ2/σ1) > 0. Although both accurately reflect their own distributions, or uncertainties
so to speak, the narrower z1 is more “likely”. This offset makes it difficult to assess re-
ported NLL values for systems with heteroskedastic uncertainty. While smaller is typically
“better”, it is highly data- (and prediction-) dependent which value is good in the sense of
a reasonable correlation between performance and uncertainty.
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