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ABSTRACT

We introduce Horseshoe Splatting, a Bayesian extension of 3D Gaussian Splatting
(3DGS) that jointly addresses structured sparsity in per-splat covariances and
delivers calibrated uncertainty. While neural radiance fields achieve high-fidelity
view synthesis and 3DGS attains real-time rendering with explicit anisotropic
Gaussians, existing pipelines do not explicitly encode structural sparsity in the
covariance—e.g., axis-wise variances or pairwise correlations—leaving noise-
dominated components insufficiently regularized. Uncertainty is likewise essential
for trustworthy and robust novel-view prediction, yet most 3DGS variants remain
deterministic. We place a global-local Horseshoe prior on the covariance scales,
whose spike-at-zero and heavy-tails adaptively shrink irrelevant directions while
preserving the salient structure. We fit the model with a factorized variational
inference scheme that mirrors the Horseshoe’s inverse-Gamma augmentation,
enabling Monte Carlo rendering and pixel-wise posterior uncertainty with minimal
overhead. Theoretically, we establish posterior contraction rates for the scale
parameters and transfer them to the rendered image via a local Lipschitz mapping,
providing guarantees that estimation error and predictive uncertainty diminish
with data. Empirically, Horseshoe Splatting produces high-quality uncertainty
maps while matching state-of-the-art 3DGS visual fidelity and runtime, yielding
a practical, uncertainty-aware renderer that is robust to structured sparsity in the
radiance field. The code is anonymously available athttps://anonymous.
4open.science/r/hs-25C5/README . md.

1 INTRODUCTION

Neural Radiance Fields (NeRFs) deliver high-fidelity novel view synthesis by optimizing a continuous
volumetric scene function (Mildenhall et al.| [2021), but their implicit networks are computation-
ally intensive. The 3D Gaussian Splatting (3DGS) replaces per-ray network queries with explicit
anisotropic Gaussians and a differentiable rasterization pipeline, enabling real-time, high-resolution
rendering while retaining strong visual quality (Kerbl et al., 2023|).

Despite its success, most 3DGS pipelines are deterministic, provides no notion of confidence, which
is crucial under sparse views, occlusions, or out-of-distribution content. Calibrated uncertainty in this
setting can improve robustness by flagging unreliable regions and enable active view selection or
mapping by prioritizing uncertain areas. Furthermore, these methods also do not explicitly encode
structural sparsity in the per-splat covariance (e.g., axis-wise variances or pairwise correlations),
which can leave noise-dominated directions insufficiently regularized (Figure[I). Recent uncertainty-
aware variants quantify aspects of scene ambiguity—e.g., semantic/posterior map variance (Wilson
et al.,|2024) or spatial depth uncertainty fields (Tan et al., 2025)—yet they do not target structured
sparsity of the covariance itself, and hence cannot selectively suppress spurious variance or cross-axis
coupling in the Gaussian footprint. This gap limits both trustworthiness and robustness when signals
are sparse or views are undersampled.

A principled way to address these issues is to bring Bayesian inference into 3DGS. While existing
work has explored post-hoc pruning based on sensitivity (Hanson et al., 2024) or task-specific
uncertainty modeling (Wilson et al.,|2024; [Tan et al., [2025), there remains little on hierarchical priors
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that directly regularize the per-splat covariance structure and yield coherent posterior uncertainty over
rendered images.

To this end, we propose using structured
(global-local) priors on covariance scales. In - 7 -
particular, the Horseshoe prior provides high L4 b B
mass near zero (aggressive shrinkage of uninfor- D4 LS <
mative directions) and heavy tails (retention of Z 7 2
salient structures) (Carvalho et al., [2009b;, [Piiro- & % X

nen and Vehtari, 2017al). Placed on axis-wise A y’ s
scales—and when needed, on low-rank pairWiSC Optimal Representation Unstructured Noise Structured Noise
components—this hierarchy conforms to how  Figure 1: Unstructured and structured noise.
3DGS forms elliptical screen-space footprints, al-

lowing the renderer to suppress noise along irrelevant axes while preserving sharp, data-supported
anisotropy and enabling pixel-wise uncertainty via posterior sampling.

Building upon this, we introduce Horseshoe Splatting, a Bayesian 3DGS framework that imposes
a Horseshoe prior on per-splat covariance scales and fits a factorized variational posterior. The
variational family mirrors the Horseshoe’s inverse-Gamma augmentation, enabling Monte Carlo
rendering from the learned posterior and pixel-wise uncertainty maps at test time. To establish the
theoretical soundness of our approach, we further prove that under a nonlinear observation model and
a local Lipschitz renderer, the posterior over scales contracts at a near-minimax rate and transfers to
image space, certifying that predictive uncertainty decreases with data.

Our contributions are: (1) A novel Bayesian formulation for 3DGS that imposes structural sparsity in
the covariance via a global-local Horseshoe hierarchy; (2) A tractable, factorized variational inference
scheme that supports Monte Carlo (MC)-based rendering and pixel-wise posterior uncertainty with
minimal overhead; (3) Uncertainty estimates that improve reliability and downstream tasks (e.g.,
active view selection) without sacrificing speed; (4) Theoretically establishing posterior contrac-
tion for scales and rendered images under standard smoothness and identifiability conditions; and
(5) State-of-the-art visual fidelity on standard benchmarks, while providing calibrated uncertainty.

2 RELATED WORKS

Novel View Synthesis with NeRF and 3DGS. Novel view synthesis (NVS) has been significantly
advanced by Neural Radiance Fields (NeRFs) (Mildenhall et al.| 2021), which use continuous
volumetric functions to achieve photorealistic rendering. Despite their success, NeRFs suffer from
slow training and high computational costs (Miiller et al.,[2022). Consequently, numerous variants
have emerged to improve rendering quality (Barron et al.,[2021]), accelerate training (Miiller et al.|
2022), or model unbounded scenes (Zhang et al., [2020a). More recently, 3D Gaussian Splatting
(3DGS) (Kerbl et al.,|[2023) has become a highly efficient alternative, enabling real-time rendering
and faster training by representing scenes with explicit Gaussian primitives. These Gaussians are
typically initialized from a sparse structure from motion (SfM) point cloud (Schonberger and Frahm),
2016) and optimized with adaptive density control. Its superior performance has inspired rapid
development, including extensions for dynamic scenes (Luiten et al., 2024} |Sun et al.| 2024; Kim
et al.} 2024), surface reconstruction (Guédon and Lepetit, 2024;|Lyu et al., 2024), and applications in
fields like autonomous driving (Bao et al., 2025).

Uncertainty Estimation for Novel View Rendering. Quantifying prediction uncertainty is critical
for trustworthy rendering in real-world applications (Amini-Naieni et al., [2024), yet it remains a
challenge for most NeRF and 3DGS methods. In the context of NeRF, uncertainty has been explored
via several avenues: Bayesian approaches (Shen et al.,|2021;2022), post-hoc methods (Goli et al.}
2024)), ensembles (Stinderhauf et al.,[2023)), and auxiliary networks (Xue et al.,2024; |/Amini-Naieni
et al.,|2024). However, these techniques often introduce significant computational overhead, complex
training, or calibration difficulties. In contrast, uncertainty estimation for 3DGS is a less explored
area. Recent works include FisherRF (Jiang et al.,|2024), which uses Fisher information to estimate
uncertainty, and several methods that apply variational inference (Savant et al.| 2024; [Li and Cheung]
2024) or uncertainty-aware regularization (Kim et al.| |2024). Despite these advances, effectively
modeling the anisotropic variance of each Gaussian primitive remains a key challenge, motivating
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Figure 2: The framework of our proposed Horseshoe Splatting.

our hierarchical Bayesian approach for more expressive uncertainty in 3DGS. Beyond radiance fields,
non-RF 3D reconstruction routinely uses confidence or uncertainty (e.g., probability-volume variance
or learned confidence in multi-view stereo) to filter unreliable depth and guide fusion; our goals align
with this tradition, but in the explicit 3DGS setting.

Shrinkage Priors for Sparsification. Shrinkage priors are Bayesian regularizers that pull noisy
parameters toward zero while preserving strong signals. A prominent family of such priors is the
global-local shrinkage class (Zhang et al., [2020bj Cadonna et al., [2020; |Bhadra et al., 2017), which
can be expressed as scale mixtures of Gaussians: each parameter 6; is drawn from N (0, 72\7) with a
global scale 7 and individual local scales A;. This hierarchy enables adaptive sparsity: the global
scale sets the overall shrinkage strength, while each local scale finely tunes how aggressively an
individual coefficient is driven toward zero. Effective shrinkage priors exhibit two key properties:
a sharp peak at zero to suppress noises, and heavy tails to avoid over-shrinking important signals.
The Horseshoe prior (Carvalho et al., 2009b) is a prime example, achieving these properties through
a specific hierarchical construction. Despite their success in statistics and machine learning, their
capability in tackling the sparsity issues in 3DGS remains underexplored.

3 METHODOLOGY

We present Horseshoe splatting, which imposes structural sparsity in the covariance via a global-local
Horseshoe hierarchy to suppress the noise along irrelevant axes while preserving sharp, data-supported
anisotropy. Figure [J] presents the overall framework with the detailed algorithm in Appendix [E]

3.1 SPARSITY-INDUCED PRIOR ON 3D GAUSSIAN

3D Gaussian Splatting. In 3D Gaussian Splatting (Kerbl et al.,|2023)), a scene is modeled explicitly
as a set of anisotropic Gaussians (“‘splats”), each parameterized by a center position p; € R3, an
opacity «; € [0, 1], a color ¢; € [0, 1}3 derived from Spherical Harmonics (SH), and a full covariance,
Y, = R;SiS] R], where R; € SO(3) is a rotation matrix and S; = diag(s;1, si2, $i3) = Ois a
diagonal scale matrix. During training, these parameters are optimized to minimize the reconstruction
error of a set of posed input images, using a depth-aware rasterization that projects each 3D Gaussian
to a 2D elliptical splat on the image plane. The rendered color at pixel p is computed by front-to-back
compositing of overlapping splats,

N

f(p) = ZTi(l — exp(—ai)) ¢, T;= exp(— Zaj).

i=1 J<i

This explicit, non-grid representation enables real-time, high-fidelity novel view synthesis without
the discretization artifacts common in voxel or mesh-based methods.
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Horseshoe Prior on the Scaling Matrix. For each splat ¢ and axis j € {1,2,3}, we place a
global-local Horseshoe prior on the diagonal scale s;; of S; = diag(s;1, Si2, Si3). Let 6; > 0 be the
(axis—wise) global shrinkage and \;; > 0 the local shrinkage. We model

Sij’)\ijaej ~ N(ﬁij, o3 2 92)2 )

3N
with learnable mean 3;; and scale o;; = softplus(p;;). The half—Cauchy (C™) Horseshoe priors
Aij ~ CT(0,1) and ; ~ C*(0,b) are expressed via the IG-IG (Inverse-Gamma) augmentation,

A | vig ~1G(1/2, 1/vyg), vy ~1G(1/2, 1), 67| & ~1G(1/2, 1/¢5), & ~1G(1/2, 1/%).
This yields the joint density

N 3
p(D,5,3,60%,v,€) =p(D | {Si}1) TTTT s | B o 0305) fia(¥ 1172, 1)
1o

3
x fia(vig 11/2, 1) [ | fia(67 11/2, 1/&5) fial& | 1/2, 1/6°),

j=1
with ¥; = R;S; R, . This parameterization keeps the prior on s; ; Gaussian (with variance modulated

by )\12] 9]2) while leveraging the Horseshoe’s spike-and-heavy-tail behavior for adaptive shrinkage.

Stochastic Variational Inference. As exact Bayesian inference under the Horseshoe hierarchy is
intractable, we adopt a mean—field variational family that mirrors the IG— IG augmentation. Writing
the stacked variables as s = {s;;}, A> = {\};}, v = {vy;}, 0> = {05}5_,, & = {§;})_,, we use

q(s, A%, v,0% &) :HQN sijs Bij»05;) ic(Ayjs @iz, big) aia(vigs cij, dij)
v 3
X H aic(07; o, B;) (&5 151 05)
with independent factors. The ELBJO_ 1iS
L(q) = Eg[logp(D | {Si})] + Z]Eq[log Fnlsis | Bij» 0 932/\123)}
,J
+ Z]Eq[logfm()\fj 11/2, 1/vi5) + log fia(vij | 1/2, 1)]
1,3]
+ 3 Lo fia(62 | 1/2, 1/6) +1og fia(&; | 1/2, 1/0%)] — B[ log (s, X2, v, 6%,)].
The Gaussij;llprior term has a closed form,

E [log fN(s” | BU,UWQJZ)\Z)} =—1 5 log(2m) — 1 5 log 0»2» — %Eq[log 9?] — %Eq[log )\?j}

 Ellsis — Bu)’] [ 2] Eq[%} 7
2072 7 0 F AZ 7
where for X ~ IG(«, 3) (shape-rate), we use E[log X] = log 5 — ¢(«) and E[1/X] = o/3. We
optimize £(q) by stochastic gradient ascent: s;; is sampled via the reparameterization s;; = 3;; +
oij€, € ~ N(0,1), while the IG factors admit low-variance pathwise gradients via implicit/transport
reparameterizations for Gamma/IG families; the KL terms between IG factors remain analytic.

3.2 INTEGRATING WITH RECONSTRUCTION LOSS

We now combine our variational objective with the 3D Gaussian Splatting reconstruction loss to form
the final training criterion. Let D = {I,})”_; be the set of ground-truth pixel colors, and I,({5:})
the corresponding rendered colors (for a single sample of {.5;}). We define the reconstruction term as
the expected negative log-likelihood under the variational posterior,

| MoP R
Lice = —Eq[lnp(D]{S:})] ~ TP In(Ip | 10, 02),

m=1p=1

N
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where f,(,m) is rendered with El(-m) sampled from ¢, and o is a learnable variance parameter. We

introduce a surrogate parameter p such that o = log(1 + e”) to control the scale of prior variance.

The variational regularizer is the negative ELBO’s KL component,

Ly = —(ﬁELBO — Eq[Inp(D | {51'})]) = KL[q({sij, X}, 03}) I p({545, A%}, 07 })]-
Putting these together, the total loss minimized by stochastic gradient descent is
Liotal = Lrec + Lxr, = —Eq [1np(D | {Si})] + KL [q({s, A20%) I p({s, A2, 92})].

The prior term p(-) of the KL divergence acts as an automatic scaling factor that balances the
regularization power of the Horshoe assumption. In practice we approximate both terms by Monte
Carlo sampling from ¢ and use their analytic KL expressions under the inverse—-Gamma factors.
Minimizing Lot thus jointly drives accurate image reconstruction and enforces the Horseshoe-
induced sparsity and uncertainty regularization on the Gaussian scales.

3.3 POSTERIOR INFERENCE AND UNCERTAINTY ESTIMATION

After training, we generate posterior predictions by sampling ancestrally through the Horseshoe
hierarchy, avoiding any auxiliary Gaussian variance parameters. For each splat ¢ and axis j, let
the learned mean and base scale be (8;;, 0;;), and let the variational factors over the global-local
shrinkage variables be ch,(H?; aj, 3;) and qlg()\%j; a;j,b;j) (with optional IG factors for the aug-

A\2m)
ij

qic (A7), E;W) ~ N(0,1), and set the scale sample 5 = Bij + oij H(m /\(m) (m) , which is
exactly the conditional Gaussian p(s;; | 6] /\%) mtegrated against the varlatlonal posterlors of the
Horseshoe scales (using the standard IG-IG augmentation of the half-Cauchy) (Makalic and Schmidt|
2015; Ghosal et al.,2000). We then form "™ = R, diag(s\7”, 55", s™) R[, render each draw
with the differentiable 3DGS rasterizer, and approximate the posterlor predlctlve as

mentation variables £, v;; when used). For m = 1,. M we draw 92( ~ qr G(92)

M
5 1 3 .
p(I| D) =~ Vi E p(f‘{zz(- )}a{RiaCi;ai})-
m=1

Per—pixel predictive mean, variance, and credible intervals are computed from the rendered samples
{Im)}M_ yielding calibrated uncertainty maps while preserving the real-time rendering pipeline

of 3DGS (Kerbl et al., [2023)).

4 THEORETICAL ANALYSIS

We develop the theoretical properties, in particular the posterior concentration rates of the scaling
matrices and the resulting rendered scenes. Under scene sparsity, only a small subset of diagonal
scale entries in the Gaussian covariances meaningfully contribute to rendering fidelity. Global-local
shrinkage priors such as the Horseshoe concentrate posterior mass by aggressively shrinking noise-
dominated coordinates toward zero while leaving large, signal-bearing coordinates relatively unshrunk.
Consequently, the posterior over the scale vector contracts around the sparse ground truth at a near-
minimax rate. Because the 3DGS renderer is a smooth map of these scales to images, this contraction
propagates to the rendered scenes with (at most) a Lipschitz deformation of the rate.

We model the effective measurements used to infer the per—splat scales as a noisy nonlinear map
y = g(s*) + ¢, where g summarizes how multi-view image evidence responds to changes in the
per-splat scales (e.g., via differentiable rasterization statistics), and y € RP» denotes the observed
data vector we use to infer the per-splat scale s. We carry contraction from the scale space s to image
space via a local Lipschitz renderer R. The Horseshoe prior delivers adaptive sparsification and
heavy—tailed protection, and its near—minimax contraction in sparse normal means extends to our
nonlinear setting by local linearization and standard testing/prior—mass arguments.

Assumption 1 (Nonlinear observation model). Let s* € R3YN be k-sparse. We observe y =
g(s*) + e, where € ~ N(O, %Ipy), g : RN — RPv s twice continuously differentiable on a
neighborhood N (s*).
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Assumption 2 (Local identifiability and curvature). Let J, = Vg(s*). There exist 0 < Kmpin <
Kmax < 00 and H, < oo such that for all s € N (s*),

Fmin |8 = 8%[l2 < [Ju(s = )2 < Fmaxlls = s%ll2.  [V20(8)llop < H,.

. , . . , H .
Consequently, g admits the expansion g(s) = g(s*)+J,(s—s*)+r(s) with ||r(s)||2 < F||s—s* 3.

Assumption 3 (Horseshoe prior). Each coordinate has the global-local Horseshoe hierarchy
(half-Cauchy scales) in an inverse—Gamma mixture form:

se | ve ~ N(0,vy), ve\/\ZNIG(Q,A) >\£|92N1c;(% %) NIG(% %)

Assumption 4 (Growth regime). As N, P — oo, k = 0o(3N) and klog(<3X) = o(P).

Assumption 5 (Local Lipschitz renderer). Fix R;, c;, ;. The renderer R : R3N — RM T = R(s),
is C1 on a neighborhood N (s*) and thus locally Lipschitz:

HR(S)—R(S’)Hz < Lrls—slla, Vs, s €N(s),

8)|lop < 00

Lemma 1 (Horseshoe contraction for the linearized model). Consider the surrogate linear model

y=g(s*)+ J(s—s*)+& &~ N(0, “;Ipy ), with Assumptions@and@ Then there exists C > 0
such that the posterior for s contracts at rate

= 07 ()
' P H?nin

and the posterior mean attains the same rate up to constants.

Under Assumptions [TH2] we linearize g at s* and apply Lemma to obtain Horseshoe posterior
contraction for the scale vector after the variance rescaling 02+ 0%/ P and with ambient dimension
p = 3N; the constants ki, and H, control, respectively, local identifiability and the Taylor
remainder. The rendered—image rate then follows from Assumption [5] by a Lipschitz transfer,
incurring at most a multiplicative factor L. Theorems I|and 2] formalize these two steps precisely.

Theorem 1 (Contraction for sparse scales under nonlinear observations). Under Assumptions
there exist constants C, M > 0 such that if the target radius satisfies Hy e n p = 0(Kmin) (ensuring
the second—order remainder is negligible at that scale), then

o2k log(egN)

S = CF5——", Eo [Tl — 57| > M ek p | 9)] = 0.

Consequently, Eq- ||E[s | y] — s*[|3 = O(e%, p).

Theorem 2 (Contraction for the rendered image). Let I = R(s) and I* = R(s*). Under Assump-
tionE] withén p = Lren,p from Theorem there exists M' > 0 such that

]Es*{H(HI —I[la> M'énp | y)] 0.

Remark 2.1 (Adaptive sparsification of splats). Theorem|l|shows Horseshoe shrinkage automatically
drives near—zero scales to (near) zero at a near—minimax rate depending on k and log(3N). This
Jjustifies pruning redundant splats and stabilizes optimization in sparse regions.

Remark 2.2 (Preservation of large structures). Contraction together with the Horseshoe’s heavy tails
implies negligible bias for large coordinates; salient geometry (large s;;) is preserved while noise is
shrunk (van der Pas et al., | 2014).

Remark 2.3 (Renderer sensitivity). Image—space contraction holds with a Lipschitz loss of at most
Ly, which is finite under the differentiable rasterization/a-compositing used by 3DGS on bounded
neighborhoods.
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5 EXPERIMENTS
5.1 DATASETS AND EXPERIMENTAL SETTING

Datasets. Our experiments are conducted on two datasets: the Light Field LF dataset (Yiicer et al.,
2016) and LLFF dataset (Mildenhall et al.,[2019). For the LF dataset which contains 8 scenes with
dense 360° views, we adopt the setup from CF-NeRF (Shen et al.}[2022) and evaluate on the torch,
basket, africa, and statue scenes. For the LLFF dataset, we use all 8 forward-facing scenes,
including fern, flower, fortress, horns, leaves, orchids, room, and t rex, following
established protocols (Shen et al.l 2022; [Li and Cheung}, |2024)).

Task & Evaluation Metrics. We focus on novel view synthesis (NVS) task, where the objective is
to render photorealistic images from new camera poses given only a sparse set of input views.

We assess model performance using standard metrics for both image reconstruction quality and
uncertainty estimation. To evaluate the fidelity of synthesized views, we employ three metrics: Peak
Signal-to-Noise Ratio (PSNR) for reconstruction accuracy, the Structural Similarity Index Measure
(SSIM) for perceptual similarity, and the Learned Perceptual Image Patch Similarity (LPIPS) for
perceptual distance. We evaluate the quality of our uncertainty predictions using two primary metrics.
First, the Area Under the Sparsification Error (AUSE) curve, which measures the correlation between
the estimated uncertainty and the true prediction error (MAE). Second, the Negative Log-Likelihood
(NLL), which measures the likelihood of ground truth in the predictive distribution.

Comparable Methods. 1) CF-NeRF (Shen et al.| 2022): A NeRF-based method that captures
uncertainty by learning a conditional distribution over radiance values via a normalizing flow model.
2) S-NeRF (Shen et al., 2021): A Bayesian variant of NeRF that performs variational inference on the
model’s weights to derive uncertainty for both rendered color and depth. 3) Bayes’ Ray (Goli et al.,
2024): Introduces a spatial uncertainty field that perturbs input ray coordinates and propagates this
geometric uncertainty through the radiance field using Laplace approximation. 4) FisherRF (Jiang
et al.l2024): A 3DGS method that uses Fisher information to estimate uncertainty; 5) Variational
3DGS (Li and Cheung| [2024)): A variational inference framework for 3DGS that introduces a multi-
scale representation to explicitly model uncertainty. 6) Ensemble GS: Following |Li and Cheung
(2024), 10 3DGS models are trained with different subsets of initialization points from Structure
from motion (SfM) (Schonberger and Frahm, 2016) and different random seeds. The variance of the
predictions between all models is regarded as the predictive uncertainty.

Implementation Details. Our method extends the official 3DGS PyTorch framework (Kerbl et al.,
2023). We use standard SfM initialization and the original training schedules for all base 3DGS
parameters. The learning rates for our variational local and global scale parameters are set to 1 x 104
and 1 x 1075, respectively. At inference, uncertainty is estimated via 10 Monte Carlo samples. All
experiments were run on a single NVIDIA RTX 3090 GPU.

5.2 EXPERIMENTAL RESULTS

Quantitative Results. We evaluate our method’s performance in both uncertainty estimation and
novel view synthesis, with results detailed in Table|l{and Table

Uncertainty Estimation. For depth uncertainty on the LF dataset, our method achieves a state-of-
the-art average AUSE of 0.18, outperforming all baselines. This is highlighted in the basket
scene, where our 0.10 AUSE marks a 23% improvement over the next best method. For RGB image
uncertainty, our method also excels. On the LF dataset, it delivers the best performance with a leading
AUSE of 0.25 and a significantly lower NLL of —0.74. On the more challenging LLFF dataset, it
achieves best NLL of 0.14, indicating a more accurate predictive distribution. These results confirm
our model’s ability to produce well-calibrated uncertainty across different modalities and datasets.

Novel View Synthesis. As shown in Table |2} our method also outperform other methods for rendering
quality. On the LF dataset, it achieves a PSNR of 30.05, surpassing the closest competitor by a
significant margin of over 0.9, while also leading in SSIM and LPIPS. On the more challenging
forward-facing LLFF dataset, our method continues to excel, leading in all image fidelity metrics.
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Figure 3: The visualization of predicted uncertainty map of novel view renderings.

This demonstrates that our approach not only provides superior uncertainty but also produces state-
of-the-art, high-fidelity renderings.

Table 1: Depth uncertainty estimation (AUSE-MAE) performance on the LF dataset. The best result
is in bold, and the second-best is underlined.

LF Dataset | africa basket statue torch | Average
CF-NeRF (Shen et al.|[2022) 0.35 0.31 046 097 0.52
S-NeRF (Shen et al.[[2021) 0.66  0.38 0.67 0.74 0.61
Bayes’ Ray (Goli et al.|[2024) 0.27 0.28 0.17 0.22 0.23
FisherRF (Jiang et al.[[2024) 0.21 0.17 025 0.24 0.22
Variational 3DGS (Li and Cheung!2024) | 0.19 0.13 0.21  0.23 0.19
Ensemble GS (x10) 016 022 017 0.26 0.20
Ours 0.19 010 020 024 0.18

Table 2: NVS and uncertainty estimation results on the LF and LLFF datasets. The best result is in
bold, and the second-best is underlined.

Synthesized View Quality \ Uncertainty Quality
PSNRT SSIMt LPIPS| | AUSE| NLL|

Dataset Method

CF-NeRF (Shen et al.|[2022) 24.32 0.835 0.202 0.49 -0.37
S-NeRF (Shen et al.[[2021) 20.21 0.761 0.248 0.62 1.32
LE FisherRF (Jiang et al.[[2024) 29.13 0.927 0.076 0.54 7.02
Variational 3DGS (Li and Cheung.[2024)  27.39 0.914 0.101 0.26 -0.30
Ensemble GS (x10) 27.64 0.902 0.088 0.29 -0.34
Ours 30.05 0.947 0.064 0.25 -0.74
CF-NeRF (Shen et al.|{[2022) 21.74 0.782 0.190 0.48 0.58
S-NeRF (Shen et al.[[2021) 20.10 0.744 0.221 0.59 091
LLEF FisherRF (Jiang et al.|[[2024) 25.34 0.849 0.125 0.51 7.05
Variational 3DGS (Li and Cheung}[2024) 23.97 0.806 0.172 0.32 0.23
Ensemble GS (x10) 24.54 0.810 0.157 0.30 0.26
Ours 25.86 0.864 0.110 0.31 0.14

Qualitative Results. Figure 3| visualizes rendering results on the fern scene. Our method achieves
the best reconstruction quality, correctly rendering fine details like complex leaf structures. The
error map shows that our errors are minimal and confined to inherently challenging areas, such
as thin leaf edges and dark boundary lines. The main advantage of our method is shown in the
uncertainty maps. Our uncertainty estimate exhibits the strongest correlation with the actual error
map, especially in difficult regions like the plant’s stem. In contrast, while FisherRF achieves good
reconstruction, its uncertainty estimation is poor. This is because its Hessian-based approximation
relies on depth information, which does not translate well to RGB space, resulting in noisy and
uninformative uncertainty. In summary, the visualization confirms that our method not only delivers
superior reconstruction quality but also provides more accurate and reliable uncertainty estimates.

Active View Selection. A key application of reliable uncertainty is guiding data acquisition in active
learning. We conduct an experiment on the LLFF dataset, starting with 10% of views and iteratively
adding one view every 500 training steps based on uncertainty, up to 30% of total views. Specifically,
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we select the view with the highest integrated pixel-wise variance. We strictly enforce this budget
alignment for all baselines, and the model is further trained for 7K steps after all images are chosen.
As shown in Table[I0] our method significantly outperforms all baselines. This result confirms that
our well-calibrated uncertainty is highly effective at identifying the most informative views, leading
to greater data efficiency in reconstruction.

Inference Time Analysis. We report the inference speed of 3DGS-based uncertainty methods in
Table ] The inference time is measured as the average time to render 1000 frames on the torch
scene of the LF dataset. At just 0.03 seconds per view, our method is by far the fastest, running
approximately 9x faster than the costly Ensemble GS approach and significantly outpacing both
FisherRF and Variational 3DGS. This result demonstrates that our approach provides state-of-the-art
performance while simultaneously achieving the fastest rendering speed.

Table 3: The experiment on active learning. Table 4: Inference time for 3DGS-base methods.
| PSNR T | SSIM 1 | LPIPS | | Inference Time (s)

Random 20.97 0.65 0.234 Ensemble GS (x10) 0.27 + 0.050

FisherRF 23.37 0.81 0.144 FisherRF 0.12 £+ 0.003

Variational 3DGS | 21.35 0.69 0.212 Variational 3DGS 0.06 £ 0.020

Ours 26.23 0.87 0.104 Ours 0.03 4 0.005

5.3 ABLATION STUDY.

Effectiveness of the Horseshoe Prior. To validate our core contribution, we replace our hierarchical
Horseshoe prior with a standard Laplace prior and Gaussian prior. As shown in Table [5} while
rendering quality remains comparable, the Horseshoe prior yields dramatically better uncertainty
estimates. The most striking result is the NLL score, which plummets on both datasets (e.g., from 9.15
to -0.74 on LF), indicating a far more accurate predictive distribution. This confirms the Horseshoe
prior’s heavy-tailed nature is critical for modeling structural sparsity and producing a well-calibrated
predictive distribution.

Table 5: Horseshoe Prior compare Laplace Prior and Gaussian Prior.

Dataset Method Synthesized View Quality | Uncertainty Quality
PSNR1T SSIM1 LPIPS | \ AUSE | NLL | Depth AUSE |

Laplace Prior 30.04 0.942 0.065 0.37 10.58 0.19

LF Gaussian Prior 30.01 0.941 0.067 0.38 9.15 0.18
Horseshoe Prior 30.05 0.947 0.064 0.25 -0.74 0.18
Laplace Prior 25.74 0.860 0.112 0.42 8.22 /

LLFF Gaussian Prior 25.61 0.859 0.116 0.42 6.98 /
Horseshoe Prior 25.86 0.864 0.110 0.31 0.14 /

Sensitivity to Hyperparameter Prior Variance p and KL Weight Ay ;.

We study the impact of two key hyperpa- Table 6: Ablation study on hyperparameters p and A\g ..
rameters: the log-scale prior variance p and
the KL-divergence weight A, with re-

Synthesized View Quality \ Uncertainty Quality

sults on the LLFF dataset shown in Table 0] PSNRT SSIMf LPIPS||AUSE| NLL|
: s k. p=-5 2586 0864  0.110 0.31 0.14
For p, which conFrols the global shrink 4 5<% 0ses o1 033 015
age strength, we aim to find a balance be- ,= -3 25.78 0.863 0.110 033 0.14
tween rendering quality and uncertainty es- »=—2 2596 0866 0105 | 033 0.15
N . p=-1 2549 0855  0.118 034 0.18
timation. As shown in the table, p = —5
hi he b caint hil Arr = 0.1 2561 0861  0.113 0.32 0.16
ac '16V§S't € best uncer alp Yy scores while Arr = 0.01 25.70 0.860 0114 0.33 0.15
maintaining strong rendering performance.  Axz =0001 2586  0.864  0.110 0.31 0.1
Although p = —2 yields a slightly higher Agz =0.0001 2575 0862  0.113 0.33 0.16

PSNR, its uncertainty metrics are worse. Therefore, to prioritize well-calibrated uncertainty without
significantly compromising rendering quality, we select p = —5 for our main experiments.

For A\ k1, the model achieves the best overall performance at A7, = 0.001, leading in both rendering
quality and uncertainty metrics. This indicates that while the model is robust, a smaller KL weight is
beneficial. We use Ax;, = 0.001 in our experiments.

Verification of Structural Sparsity. Table[/|quantitatively confirms the induced structural sparsity.
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Across all thresholds € € {5,3,1,0.5}, the Horseshoe prior consistently yields the highest proportion
of near-zero scales (e.g., 64.62% vs. 61.01% for Laplace at ¢ = 5). This quantitative evidence is
further corroborated by the visualization of the posterior densities in Figure d] Compared to the
Gaussian and Laplace baselines, the Horseshoe posterior over the scale parameters s;; exhibits a
distinct “spike-at-zero” distribution combined with heavy tails. This behavior indicates aggressive
shrinkage of noise-dominated scales while simultaneously preserving large, signal-bearing coeffi-
cients—aligning perfectly with the theoretical properties of Horseshoe priors (Carvalho et al, 2009a}
[Piironen and Vehtari, 2017b; [Van der Pas et all [2017). In contrast, the Laplace prior’s lighter tails
risk over-shrinking significant features, while the Gaussian prior fails to induce meaningful sparsity.
These results confirm that the performance gains are specific to the Horseshoe hierarchy, rather than
simply the result of applying “any sparsity prior” (Park and Casellal 2008}, [Bhadra et al., 2019).

— Laplace Prior 1000000

uuuuuu

400000

200000

uuuuu 0002 0001 0.000 0001 0002 0.003 ~0.0000055 -0.0000050 ~0.0000045 -0.0000040 —0.0000035 —0,0000030

Figure 4: Posterior density of covariance scale parameters (s;;) on the LF torch scene under
different priors (Left: Gaussian; Middle: Laplace; Right: Horseshoe). The Horseshoe prior (Right)
exhibits a pronounced spike at zero along with heavy tails, effectively inducing structural sparsity
by suppressing noise while preserving salient scales, whereas Gaussian and Laplace priors fail to
achieve this optimal balance.

6 CONCLUSION

We proposed Horseshoe Splatting, a Table 7: Comparison of Structural Sparsity Induction
Bayesian extension of 3D Gaussian Splat- on LF torch.

ting that places a global-local Horseshoe
prior on per-splat covariance scales to en-

| Sparsity Ratio (% of scales < )

code structural sparsity and deliver cali-  Method

brated uncertainty. This prior’s spike-at- [e=5 e=3 e=1 €=05
zero and heavy tails aggressively shrink No Prior 60.73 31.57 6.59 2.98
noise-dominated directions while preserv-  Gaussian Prior 60.85 31.64 6.64 3.00
ing data-supported anisotropy, directly = Laplace Prior 61.01 3195 6.78 3.07

tackling artifacts that arise in deterministic Horseshoe Prior ‘ 64.62 34.09 7.17 3.21
3DGS pipelines and enabling pixel-wise
uncertainty via factorized variational inference and Monte-Carlo rendering. Theoretically, we estab-
lish posterior contraction for the scale vector and transfer it to image space under a locally Lipschitz
renderer, while empirically we maintain the strong real-time fidelity of 3DGS and obtain reliable
uncertainty maps that highlight underconstrained regions. Together, these results show that principled
prior design turns explicit splatting into a robust, uncertainty-aware renderer. Looking ahead, we
plan to explore alternative structured priors (e.g., low-rank/Wishart constraints) and adaptive splat
birth-pruning to further couple sparsity, fidelity, and confidence.

10
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APPENDIX SUMMARY

This appendix provides supplementary material. Section [A]describes our use of Large Language
Models (LLMs). Section [B]outlines the resources provided to ensure the reproducibility of our work.
Section [C]contains proofs of our main theorems and derivations for the KL divergences. Section[D]
presents additional qualitative results. Section [E|provides the pseudo-code for our method. Section [
provides the additional experiment results.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in this work solely for language polishing and improving
the clarity of writing. No LLMs contributed to research ideation, experimental design, analysis, or
the development of core scientific content. All conceptual and technical contributions are original to
the authors.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive set of resources. Our full
implementation is available as an anonymous code repository, linked in the abstract, which includes
all necessary code and usage instructions to replicate our experiments.

C TECHNICAL DETAILS

C.1 PROOF OF MAIN THEOREMS

Proof of Lemmall] Set z = J,(s — s*). Since 0min(J+) > Kmin, the Moore—Penrose bound gives
Is = s*ll2 < 1T lop 12]l2 = Frninll2l2,

where J; denotes the Moore—Penrose pseudoinverse of J,. Under the surrogate linear model the
likelihood in z is Gaussian:
2

y=g(s*)+z+& £ NN(O, %Ipy).

Equipping s with the Horseshoe prior (specified by Assumption [3) induces a global-local shrinkage
prior on z through the linear map J,. By the testing—plus—prior—mass program for posterior con-
traction (Ghosal et al.,|2000) together with near—minimax Horseshoe rates in sparse normal means
(van der Pas et al., 2014;2017),

o2 e3N
H(||z||§>cpklog - ’y) -0

1 hence

o® klog(e SN/k))
P K2 ’

min

Pulling back through JI scales Euclidean error by at most

s = 513 < ri 12113 = On(

min

which is the desired rate; the posterior—mean bound follows from Jensen’s inequality using the
posterior tail control (Ghosal et al., [2000).

Proof of Theorem[I] By a second-order Taylor expansion at s*,

* * H *
y=g(s") + (s =) (s e, r(s)la < s — 7B,

For the linearized likelihood with mean g(s*) + J.(s — s*), Lemma(invoking (Ghosal et al., 2000
van der Pas et al.,|2014;2017)) yields contraction at radius

2 ﬁklog(e3N/k‘)~
npP P Hr2nin
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On the complement of the contraction ball {||s — s*||2 > en,p} the remainder satisfies ||r(s)||2 <

%Hs — 8*||3 = o(Kmin|ls — s*||2) under the side condition Hyen,p = 0(Kmin). Therefore
the nonlinear and linearized log-likelihood ratios differ by o(1) uniformly on the alternative, so
exponentially powerful tests and KL—ball prior mass transfer by Le Cam—type contiguity/bracketing
arguments (Ghosal et al.||2000; |[Nickl, 2022)). Consequently,

(s = s3> Mk | ) =0,
and E- |[E[s | y] — s*[13 = O(c} p)- 0
Proof of Theorem 2] By local Lipschitzness of the renderer (Assumption [3)),
i = I"[]2 < Lr [|s — 872
Hence for any M’ > 0,
{HI — I*”Q > M/LRENHD} - {HS — 8*”2 > M/EN’p}.
Taking posterior probabilities and expectations under s* and applying Theorem|I] gives contraction in

image space at rate €y p = Len, p; this is the standard Lipschitz pushforward used for nonlinear
Bayesian inverse problems (Nickl, 2022). O

C.2 CLOSED FOrRMS OF KL DIVERGENCES

KL Divergence Between Two Inverse Gamma Distributions Below is the KL divergence between
two inverse-Gamma distributions

Q(x) = Inv-F(x; aqvﬁq)a p(iﬂ) = IHV-F({E; O‘paﬂp)v

where

Inv-I'(z; o, ) = Fﬁ(Z) [ exp(—g),

The KL divergence KL(g|pp) is

> q
Ki(alp) = [ o) n 20 o
0 p
= (aq — ap) P(ag) —InT'(ag) +InT () + apln & +a,=— — aqg,
p
where t(-) is the digamma function.

D ADDITIONAL VISUALIZATION RESULTS

D.1 DEPTH AND UNCERTAINTY ON THE LF DATASET
Figure 5] shows additional qualitative results for depth rendering and uncertainty estimation on the LF

dataset. Our method accurately captures the geometry and produces uncertainty maps that correlate
well with the error maps.

D.2 RGB AND UNCERTAINTY ON THE LLFF DATASET
Figure 6] presents additional qualitative results for novel view synthesis and uncertainty estimation

on the LLFF dataset. Across all scenes, our method generates high-fidelity renderings, and the
corresponding uncertainty maps correctly.
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Figure 5: The visualization of depth rendering and uncertainty on LF dataset.

Algorithm 1 Horseshoe Splatting (training and posterior predictive rendering)

A A

e

11:
12:

13:

14:
15:
16:

Input: images D, camera poses, number of Gaussians N, initial {u;, R;, ¢;, ai}ij\il, base scale
params {3;;,0ij }i=1..N, j=1..3

Prior (global-local Horseshoe): s;; | Xij,0; ~ N(Bij, 03,657%), A | vij ~

IG(3,1/v3;), vij~1G(3,1),  071&~1G(3,1/¢;), & ~TG(3,1/b?)
Init VI factors: for all 7,j set qlg(/\?j; a;j,bij), qic(Vij; cij,dij); for each axis j set
aic(03; aj, 85), a1c (&5 75, 05)
for epoch = 1 to nepoch do
Sample shrinkage scales: A7, ~ qic(A\};), vij~ qic(vij), 05~ qic(65), &~ qia(&;)
Sample noise: €;; ~ N'(0,1) and set s;; = (i + 04, 0 Nij €i;
Build SZ' = diag(sil, Si2, Sig) and Ei = RZ Si R;r
Render predicted pixels {I,} with 3DGS rasterization
ﬁrec - Zp Ing([p | Ip)
L By (KL aa () 11G(4, 1/v35)] + KL{aia (v) 11G(3,1)] )

+ 3, (KL (62) [1G(3,1/¢)] + KL[aia (&) 1 1G(3,1/8)] )
Update {p;, Ri, ¢i, o, Bij, 045} and all VI parameters by gradients of Lyec + Lk1,
end for
Posterior predictive & uncertainty (MC rendering):
form =1to M do
Draw )\f;m) ~ qlc;()\fj), 0]2-(m) ~ qlg(HJQ»), 62(»;’1) ~N(0,1)
2 8y 4 0 0PG5I L R (s, o3, o) T
Render image I store per-pixel samples
end for ~ . .
return posterior mean [ = 3 >~ 1(™) and per-pixel variance Var[l(™)]

E

ALGORITHM DETAILS

The pseudo-code for our Horseshoe Splatting algorithm is provided below.
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Figure 6: The visualization of RGB images rendering and uncertainty on the LLFF dataset.
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EVALUATION ON CHALLENGING LARGE-SCALE DATASETS

To validate the robustness of our method in diverse and challenging scenarios, we conducted compre-
hensive additional experiments on the Tanks & Temples and Mip-NeRF 360 datasets, which feature
large-scale, unbounded outdoor scenes with complex geometries and varying lighting conditions.
The quantitative results, presented in Table[8] demonstrate our method’s exceptional generalization
capabilities. Specifically, we achieve a substantial improvement in uncertainty calibration compared
to baselines: on Tanks & Temples, our method reduces the Negative Log-Likelihood (NLL) from
2.46 (Variational 3DGS) to 0.58, and on Mip-NeRF 360 from 2.88 to 0.72. This confirms that
our Horseshoe prior effectively induces meaningful structural sparsity even in complex wild set-
tings. Furthermore, we maintain or exceed the rendering quality (PSNR/SSIM/LPIPS) of competing
uncertainty-aware methods, proving that our improved uncertainty modeling does not compromise
visual fidelity.

Table 8: Novel View Synthesis (NVS) and Uncertainty Estimation on large-scale datasets
(Tanks&Temples and Mip-NeRF360). Our method achieves significantly better uncertainty metrics
(AUSE, NLL) while maintaining superior visual quality. Best results are bolded.

Synthesized View Quality \ Uncertainty Quality

Dataset Method
PSNRt SSIMt LPIPS| | AUSE| NLL|
FisherRF 23.41 0.837 0.198 0.57 5.94
Tanks&Temples  Variational 3DGS ~ 23.45 0.835 0.199 0.47 2.46
Ours 23.67 0.845 0.186 0.35 0.58
FisherRF 27.36 0.803 0.238 0.56 6.11
Mip-NeRF360  Variational 3DGS ~ 27.28 0.797 0.250 0.51 2.88
Ours 27.68 0.810 0.207 0.35 0.72

F.2 COMPUTATIONAL COST ANALYSIS

To demonstrate accessibility and efficiency, we benchmarked our method against Vanilla 3DGS and
other uncertainty-aware methods on a single NVIDIA RTX 3090 GPU (Table[9). It is crucial to
note that Vanilla 3DGS is deterministic and inherently incapable of estimating uncertainty; obtaining
uncertainty via a standard Ensemble strategy (e.g., the x 10 baseline) would linearly scale the training
time and resource usage by a factor of 10, making it prohibitively expensive. While our Bayesian
formulation incurs a moderate overhead compared to a single deterministic 3DGS (training: 42s
— 87s), this represents a highly efficient trade-off compared to ensembles. Moreover, compared to
other single-model uncertainty methods, our approach is the only one to maintain real-time rendering
speeds (33 FPS), significantly outperforming FisherRF (8 FPS) and Variational 3DGS (17 FPS).
With a peak memory usage of only 1.43 GB and a compact model size of 59 MB, our method
remains lightweight enough for deployment on commodity hardware, demonstrating its practicality
for real-world applications.

Table 9: Computational Cost on the LF t orch scene. All experiments were conducted on a single
NVIDIA RTX 3090 GPU.

Method | Training Time FPS Peak Memory Model Size
3DGS(x 1) 42.17s 494 0.47GB 49MB
FisherRF 55.22s 8 1.20GB 128MB
Variational 3DGS 81.08s 17 0.87GB 99MB
Ours 87.33s 33 1.43GB S9MB
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F.3 DOWNSTREAM UTILITY OF UNCERTAINTY

To further demonstrate the practical value of our uncertainty estimates, we evaluated our method on
two downstream tasks: Active View Selection on the large-scale Tanks & Temples dataset, and Out-of-
Distribution (OOD) View Detection on the LLFF dataset. The results are presented in Tables[I0]and

Regarding active view selection, our uncertainty-guided selection on Tanks & Temples achieves a
PSNR of 20.05, significantly outperforming Random selection (16.87) and Variational 3DGS (19.86),
confirming that our uncertainty estimates successfully identify the most informative geometric regions
under sparse data conditions. In the OOD view detection experiment on LLFF, our method achieves a
remarkable AUROC of 0.8732 in identifying novel views, far surpassing Variational 3DGS (0.7345)
and FisherRF (0.5696). This demonstrates that our uncertainty is well-calibrated enough to serve as a
reliable signal for anomaly detection in safety-critical scenarios.

Table 10: Active Learning on Tanks&Temples. Table 11: OOD View Detection on LLFF.
Method | PSNR T | SSIM 1 | LPIPS | Method | AUROC
Random 16.87 0.61 0.345 ;

FisherRF 17.00 | 0.61 0.346 FisherRF 0.5696
Variational 3DGS | 19.86 0.67 0.330 Variational 3DGS | 0.7345
Ours 20.05 0.71 0.322 Ours 0.8732
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