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Abstract

Diffusion models have established themselves as leading techniques for image
generation. However, their reliance on an iterative denoising process results in slow
sampling speeds, which limits their applicability to interactive and creative appli-
cations. An approach to overcoming this limitation involves distilling multistep
diffusion models into efficient one-step generators. However, existing distillation
methods typically suffer performance degradation or require complex iterative
training procedures which increase their complexity and computational cost. In this
paper, we propose Contrastive Energy Distillation (CED), a simple yet effective
approach to distill multistep diffusion models into effective one-step generators.
Our key innovation is the introduction of an unnormalized joint energy-based
model (EBM) that represents the generator and an auxiliary score model. CED
optimizes a Noise Contrastive Estimation (NCE) objective to efficiently transfers
knowledge from a multistep teacher diffusion model without additional modules or
iterative training complexity. We further show that CED implicitly optimizes the
KL divergence between the distributions modeled by the multistep diffusion model
and the one-step generator. We present results of experiments which show that CED
achieves performance comparable to that of representative baselines for distilling
multi-step diffusion models while maintaining excellent memory efficiency.

1 Introduction

Diffusion models have become the prominent method for image generation, capable of producing
highly realistic and diverse outputs through a stable training process [18, 45, 49, 44]. Unlike
Generative Adversarial Networks (GANs) [14] and Variational Autoencoders (VAEs) [26], diffusion
models rely on an iterative denoising procedure that progressively refines an initial Gaussian noise
into detailed images [18, 50]. This method, while effective, is computationally intensive, often
requiring dozens or even hundreds of neural network evaluations. Consequently, the slow sampling
speed significantly reduces the practicality of diffusion models in interactive, creative applications.

To address this issue, several efforts have aimed at reducing the sampling steps required in reverse
diffusion processes [34, 36, 67, 68, 52]. These approaches still require multiple steps to generate
images. To significantly improve the efficiency of diffusion models, one-step diffusion methods have
been proposed. In particular, distillation techniques have become increasingly popular for one-step
generation, achieving state-of-the-art performance [70]. One line of work is score-based distillation,
which includes iteratively training an auxiliary score model with the one-step generator [35, 47, 61, 65]
or using an additional discriminator to create a GAN [69, 64], both obtaining great results.

However, these methods heavily rely on auxiliary models and the iterative training of multiple
components, leading to substantial GPU consumption, prolonged training times, and increased
complexity due to the additional hyperparameters introduced by these extra components, which
require careful tuning. In contrast, trajectory-based distillation offers a more lightweight alternative
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by progressively increasing the sampling intervals of the student model [1, 15, 31, 32, 46, 51, 29].
This strategy avoids the need for extra models and iterative training, significantly simplifying the
training pipeline. Nevertheless, these techniques typically experience great performance degradation
compared to the original diffusion models when generating images in just one step. Therefore, in this
paper, it naturally raises a question: How can we design a simple, efficient and effective distillation
algorithm for one-step diffusion models without iterative training and additional components?
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Figure 1: Training pipelines for different kinds
of distillation methods. Our method (CED) uses
only 1/3 or 1/2 the memory compared with them
by loading fewer models during training.

In this paper, we approach the problem by in-
troducing an unnormalized joint Energy-based
Model (EBM) that models the auxiliary score
model (commonly referred to as the "fake score
model" in prior work) and the one-step generator.
Our key innovation lies in utilizing this EBM to
distill knowledge from a teacher diffusion model.
The energy function is designed to directly quan-
tify the discrepancy between images generated by
the one-step generator and outputs from the fake
score model. A central challenge of our frame-
work is to enable efficient training without relying
on additional modules or complex architectures.
To address this issue, we propose Contrastive En-
ergy Distillation (CED), a method that trains our
joint energy-based model inspired by the Noise Contrastive Estimation (NCE) framework [16].
Specifically, we sample synthetic images from a pre-trained teacher diffusion model prior to training,
and from the generator’s previous training iteration to serve as negative samples. These are then
used to optimize the NCE objective. This approach removes the need for extra components and
iterative updates, enabling more resource-efficient training compared to previous methods, as shown
in Figure 3. Furthermore, we show that, with a specific design of the energy function, our method
implicitly optimizes the Kullback–Leibler (KL) divergence—an objective widely used in distribution
matching distillation of one-step diffusion models. This provides a foundation for the effectiveness of
our approach in transferring knowledge from multi-step diffusion models to a single-step generator.

In summary, the main contributions of this paper are: (i) We propose Contrastive Energy Distillation
(CED), a simple and efficient distillation algorithm leveraging a contrastive loss on our joint energy-
based model to transform multi-step diffusion models into a one-step generator. Inspired by noise
contrastive estimation, CED eliminates the need for auxiliary modules, offering a novel and stream-
lined approach for designing one-step diffusion model distillation strategies. (ii) We demonstrate
that CED implicitly optimizes the KL divergence for distribution matching distillation, providing a
principled foundation for its distillation effectiveness. (iii) CED achieves competitive performance
that also rely solely on one-step generators during training without auxiliary components.

2 Related Works

Diffusion models have become a powerful framework for generative modeling [18, 53, 50, 22],
achieving remarkable success across a wide range of domains, including image generation [44, 42, 45],
audio synthesis [27], video generation [10, 48], and molecular design [19, 62]. These models work by
gradually transforming random noise into coherent data through a reverse diffusion process. Despite
their state-of-the-art performance, the iterative nature of diffusion models leads to computational
overhead, making them less suitable for real-world applications. To accelerate the sampling process of
diffusion models, numerous techniques have been proposed to speed up generation through distillation.
These approaches have achieved impressive results and can be broadly categorized into score-based
distillation [35, 47, 61, 65, 69, 64] and trajectory-based distillation [52, 46, 32, 51, 36, 17, 63, 34, 43].

Score-based distillation methods were initially introduced in the context of text-to-3D synthe-
sis [40, 56, 55], where a pre-trained text-to-image diffusion model is used to define a distribution
matching loss. Inspired from these approaches, score distillation has been extended to the training of
diffusion models themselves [65, 11, 35, 37]. These approaches either involve iteratively training an
auxiliary score network alongside the one-step generator [35, 47, 61, 65], or incorporate an additional
discriminator to form a GAN-like framework [69, 64] to further improve their performance. While
effective, these methods depend heavily on auxiliary models and the iterative training of multiple
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components, resulting in high GPU usage, longer training durations, and added complexity from
extra hyperparameters associated with the additional components that require careful tuning.

Trajectory-based Distillation methods eliminate the need for additional modules and iterative
training, which greatly simplify the overall pipeline. They offer a more streamlined approach by
progressively increasing the sampling intervals of the student model [1, 15, 31, 32, 46, 51, 29].
Luhman et al. [34] precompute a dataset of image-noise pairs using an ODE sampler and train a
student model to learn the mapping in a single step. Recified Flow simplifies the ODE trajectories
to make them easier for one-step models to learn [31, 32]. Progressive Distillation eliminates the
need for precomputed data by iteratively training student models, each reducing the number of
sampling steps [46]. Consistency Distillation (CD) [51, 52] and TRACT [1] further improve training
by enforcing self-consistency of the student’s outputs along the ODE trajectory, aligning them with
the teacher model. Moreover, Flow matching (FM) [31, 30] based methods distill themselves to
shorten sampling steps. However, when used to generate images in a single step, these methods
often suffer from significant performance degradation compared to the original diffusion models.
Therefore, in this paper, we propose a simple, efficient, and effective approach to distilling a multistep
diffusion model into a one-step generator using Contrastive Energy Distillation (CED). CED requires
neither auxiliary models nor iterative training, and outperforms trajectory-based distillation methods,
which rely on loading the teacher model during training. CED relies solely on the one-step generator
during training, which make the process both simple and efficient.

3 Notations and Preliminaries

Diffusion Models. Given a dataset
{
x(1), . . . ,x(N)

}
sampled from a real data distribution preal (x),

diffusion models learn to generate these samples by progressively denoising corrupted versions [18,
50]. In the forward diffusion process, noise is incrementally added to a sample x ∼ preal across T
timesteps until it becomes pure Gaussian noise. Formally, at each timestep t, the diffused samples
follow preal ,t (xt) =

∫
preal (x)q (xt | x) dx with q(xt | x) ∼ N

(
αtx, σ

2
t I
)
, where αt, σt > 0 are

scalars determined by the noise schedule. During training, the model learns to reverse this corruption
process by the distribution q(xt−1 | xt) ∼ N

(
xt−1;µ (xt, t) , σ

2
t I
)
, which predict a denoised

estimate, µ(xt, t), conditioned on the timestep t and the noisy sample xt. By iterative refinement, the
model recovers images resembling those drawn from preal. Once trained, the denoised estimate aligns
with the gradient of the likelihood function (i.e., the score function) of the diffused distribution:

sreal (xt, t) = ∇xt log preal ,t (xt) = −xt − αtµreal (xt, t)

σ2
t

. (1)

Distribution Matching Distillation (DMD). To distill a pretrained multi-step diffusion model
into a single-step generator Gθ, a distribution matching approach can be used [64, 65]. This
method seeks to minimize the expected approximate Kullback–Leibler (KL) divergence, LDMD =
Et (DKL (pfake ,t∥preal ,t)), between the diffused target distribution, preal,t(x), and the diffused genera-
tor distribution, pfake,t, across different timesteps t with the following objective function:

∇θLDMD = −Et

(∫
(sreal (F (Gθ(z), t) , t)− sfake (F (Gθ(z), t) , t))

dGθ(z)

dθ
dz

)
, (2)

where z ∼ N (0, I) is the guassian noise, F is the diffusion forward process with noise level
corresponding to time step t and sreal and sfake are score function defined in Equation (1). DMD
employs a frozen pre-trained diffusion model, µreal as the teacher, while iteratively updating µfake
during the training of Gθ.This involves a denoising score-matching loss applied to samples produced
by the one-step generator Gθ(z), where z ∼ N (0, I) is a guassian noise.

Reinforcement Learning. When fine-tuning models with reinforcement learning, the learned reward
function serves as a feedback to guide the model’s training. Specifically, given a noise vector
z ∼ N (0, I), we generate an image based on this input. Following a widely adopted optimization
objective from the fine-tuning of large language models (LLMs) [20, 21], the training objective is:

max
θ

Ez∼N (0,I),x∼Gθ(x|z) [rϕ(x, z)]− βDKL [Gθ(x | z)∥Gθ′(x | z)] , (3)

where we consider modeling the reinforcement learning process for the one-step generator Gθ and
θ′ serves as a reference model from a previous optimization step or a supervised fine-tuned model,
similar to those commonly used in large language model literature. The reward function rϕ(·) is
trained prior to the reinforcement learning stage and provides feedback as the reward model.
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4 Simple Distillation Approach for One-Step Diffusion Models

In this section, we introduce a simple Contrastive Energy Distillation (CED) based approach to
training a one-step generator that mimics the generative process of a multistep diffusion model.
We introduce a joint energy-based model that represents the auxiliary (fake) score model sfake and
the one-step generator Gθ. To simplify the training pipeline and avoid iterative updates involving
auxiliary models (fake score models), we employ CED to directly train the one-step generator using
an approach inspired by Noise Contrastive Estimation (NCE). We leverage a connection between
CED and distribution matching distillation methods to design a simple and efficient method to distill
a multi-step diffusion model into a one-step generator. Our approach requires loading the student
model only during training, significantly reducing computational complexity and memory use while
achieving competitive performance relative to state-of-the-art methods.

4.1 Joint Energy-based Models

We can interpret the two-step learning process of one-step diffusion models as leveraging a “fake
score model,” sfake , designed to approximate the distribution of the one-step generator. However,
during iterative training, optimization errors may prevent sfake from accurately reflecting the true
distribution of the generator. Conceptually, this discrepancy can be viewed as an energy function
that captures the difference between samples generated by the fake score model and those from the
one-step generator. Based on this viewpoint, we introduce an unnormalized density to simultaneously
represent the fake score model’s distribution and its deviation from the one-step generator.

pθ,ϕ (x | z) = pfake,ϕ (x | z) exp (−E (x, Gθ(z)))

Zϕ (z)
, (4)

where Zϕ is the partition function as a normalizing factor. The term pθ,ϕ (x | z) denotes the distribu-
tion that generates samples x from an input z drawn from pure Gaussian noise z ∼ N (0, I). Similarly,
pfake,θ (x | z) denotes the distribution of samples produced by iteratively denoising z ∼ N (0, I) by
the reverse process of diffusion model based on the fake score model sfake,θ and x. E is used to
measure the discrepancy between generated samples from fake score models and one-step genera-
tors. Moreover, E(x, Gθ(z)) can be viewed as a distance function between samples produced by
the fake score models and those generated by the one-step generator—using, for instance, the L2,
Pseudo-Huber, or LPIPS-Huber distance [6]. In this formulation, a higher energy value indicates a
larger discrepancy between the two sets of samples, while a lower energy implies a lower discrepancy.
Therefore, this joint EBM provides a calibrated distribution for pfake: samples that are well-aligned
with the one-step generator are assigned higher probabilities, while poorly aligned samples receive
lower probabilities. In other words, pθ,ϕ offers a more accurate estimation of the image distribution
of Gθ, and also capturing the interplay between the fake score model and the one-step generator.

4.2 Training with Contrastive Energy Distillation

The goal of distillation methods is to align the distribution of the fake score model (pfake) with that of
the teacher diffusion model (preal). In this paper, we use the calibrated distribution (joint EBM) pθ,ϕ
introduced in earlier sections, to approximate the teacher model preal. Accordingly, we treat the joint
EBM defined in Equation (4) as modeling the teacher distribution preal. Based on this formulation, we
optimize the parameters of the joint energy function using a conditional variant of Noise Contrastive
Estimation (NCE) [16]. First, NCE samples contrastive examples from both the data distribution and
a noise distribution that should closely approximate the data distribution. Second, it computes the
likelihoods of these samples under both the model and the noise distributions, then optimizing a binary
classification objective. Under our joint energy formulation from Equation (1), the log-odds reduce
to log pθ,ϕ − log pϕ = −E(x, Gθ(z)), simplifying the objective to a standard binary classification
form with z ∼ N (0, I) and referred to Contrastive Energy Distillation (CED):

LCED = −Ex∼pθ,ϕ
[log

1

1 + exp (E (x, Gθ(z)))
]− Ex′∼pϕ

[log
1

1 + exp (−E (x′, Gθ(z)))
]. (5)

In this formulation, we replace pθ,ϕ with the teacher model preal(x | z) as our target distilled
distribution for sampling positive examples in the first term. Meanwhile, one-step diffusion distillation
typically involves fitting the fake score model pϕ to outputs from the generator Gθ′(z) of the previous
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Algorithm 1 Simple Distillation of One-step Diffusion Models

Require: Teacher diffusion model ptrue
1: Initialize the one-step generator with the teacher’s score network Gθinit(·) ≡ strue(·)
2: Sample x from ptrue(x | z) with z ∼ N (0, I)
3: Warm-up train with L = E(x, z) to obtain a ones-step generator Gθ′

4: Get negative samples x′ from Gθ′(z) and construct a triplet (x,x′, z) for each z ∼ N (0, I)
5: for each training iteration do
6: Get a batch of samples (x,x′, z)
7: Update one-step generator’s parameters θ with LCED in Equation (14) with (x,x′, z)
8: end for

optimization step, where θ′ denotes the earlier parameter set of θ. To streamline the iterative process
and avoid training an additional fake-score model, we replace pϕ with Gθ′ for the negative samples in
the second term of Equation (5). Since pϕ is designed to approximate the distribution of images from
the previous optimization step—following earlier iterative learning approaches for one-step diffusion
models—this substitution remains valid. Thus, we propose the following loss to distill the teacher
model without extra models or iterative training, thereby simplifying the distillation process:

LCED = Ex∼preal [log (1 + exp (E (x, Gθ(z))))] + Ex′∼Gθ′ [log (1 + exp (−E (x′, Gθ(z))))], (6)

where the energy function E serves as a distance metric, where smaller values correspond to reduced
discrepancy between the two input samples. For instance, when using the L2 distance, we have
E (x, Gθ(z)) = ∥x − Gθ(z)∥22. To further streamline the training process, we begin with a brief
warm-up phase for the one-step generator Gθ′ . We then optimize the objective specified in Equation
(6). The full details of this procedure can be found in Algorithm 1.

4.3 Relation to Distribution Matching Distillation

In this section, we establish the connection between our proposed objective and Distribution Matching
Distillation (DMD) methods. We begin by formulating the KL divergence objective of distribution
matching distillation from a reinforcement learning perspective:

max
θ

−DKL
(
pθfake(x | z)∥preal(x | z)

)
= Epθ

fake
[log preal(x | z)− log pfake(x | z)]

Epθ
fake

[
log

preal(x | z)
pθ0fake(x | z)

− log
pθfake(x | z)
pθ0fake(x | z)

]
= Epθ

fake
r(x, z)− DKL

(
pθfake(x | z)∥pθ0fake(x | z)

)
,

(7)

where r(x, z) = log(preal(x | z)/pθ0fake(x | z)) can be viewed as an auxiliary reward function and θ0
is the initial parameter of the fake score model, initialized from the teacher diffusion model. Hence,
DMD can be interpreted in a manner analogous to Reinforcement Learning From Human Feedback
(RLHF) [39, 41, 60, 58, 59]. Specifically, the procedure has two stages: (1) learning a reward model
r, and (2) optimizing the primary objective. To relate DMD to our single-step training approach, we
reformulate it so that these two steps are combined into a single unified procedure. Specifically, we
begin with the standard RLHF training pipeline, where the first step is to learn a reward model. For the
DMD objective in Equation (7), we use Density Ratio Estimation methods to learn the reward model
log(preal(x | z)/pθ0fake(x | z)). Since this process relies on estimating the log ratio, a straightforward
solution is to train a classifier (i.e., a discriminator) with logistic regression to approximate it:

LDRE = −Ex∼preal [log (σ(h(x, z)))]− E
x′∼p

θ0
fake
[log (1− σ(h(x, z)))], (8)

where σ(·) denotes the sigmoid function, and each data sample is treated as though it is drawn from a
distribution with binary labels—one class for samples from preal and one class for samples from pθ0fake.
Then, the log density ratio can be linked to the optimal classifier probabilities via Bayes’ rule [2]:

log
preal (x | z)
pθ0fake(x | z)

=
P (c = 1)P (c = 0 | x, z)
P (c = 0)P (c = 1 | x, z)

= log

(
σ (h∗(x, z))

1− σ (h∗(x, z)

))
, (9)

where h∗(·) is the optimal solution for Equation (8) and is the constant ratio P (c = 1)/P (c = 0)
between the priors of two classes that can be estimated with sample size. Although we can optimize
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Equation (7) with the learned reward (i.e., density ratio) from Equation (8), this still involves a two-
step process and additional computational overhead. To simplify matters and align with our proposed
objective of Equation (6), we propose a direct optimization method for the DMD objective that does
not require an RL training loop or a separate discriminator. The key insight lies in using a specific
parameterization for the discriminator, which allows us to extract the optimal solution in closed
form—circumventing the iterative RL loop in Equation (7). Specifically, under this parameterization,
the optimization problem defined in Equation (7) admits a straightforward analytical solution:

pθ
∗

fake(x | z) = 1

Z(z)
pθ0fake(x | z) exp(r(x, z)), (10)

where Z(z) =
∫
x
pθ0fake(x | z) exp(r(x, z)) =

∫
x
preal(x | z) = 1 by the definition of r(·) in Equation

(7) and θ∗ is the optimal solution of paramter θ. A detailed derivation of this optimal format (Equation
(10)) is provided in the Appendix A.1. To unify the process into a single optimization step, we can
combine Equations (10) and (9) with simple algebra, yielding the following relationship:

log
pθ

∗

fake(x | z)
pθ0fake(x | z)

= log

(
σ (h∗(x, z))

1− σ (h∗(x, z)

))
⇒ h∗(x, z) = log

pθ
∗

fake(x | z)
pθ0fake(x | z)

. (11)

Then, by combining the two-step optimization in Equation (8) with Equations (7) and (5), we derive
a direct optimization algorithm, resulting in the following objective:

L∗
DRE = −Ex∼preal

[
log

(
σ(log

pθ
∗

fake(x | z)
pθ0fake(x | z)

)
)]

− E
x′∼p

θ0
fake

[
log

(
1− σ(log

pθ
∗

fake(x | z)
pθ0fake(x | z)

)
)]
. (12)

For pθ
∗

fake(x | z), we can use a single-step generator parameter, modeling the generator as a Gaussian
distribution pθfake ∼ N (Gθ, σ

2I). Then, we can convert this objective with the trainable parameters
by replacing θ∗ with θ and we can see the relation with our proposed objective in Equation (6):

LDRE = Ex∼preal [log (1 + exp (E (x, Gθ(z))))] + Ex′∼Gθ′ [log (1 + exp (−E (x′, Gθ(z))))],
(13)

where E (x, Gθ(z)) = −(log pθfake(x | z)− log pθ0fake(x | z)) ≈ −(∥x−Gθ(z)∥22 −∥x−Gθ′(z)∥22).
Therefore, although the objective in Equation (8) requires a two-step training process from the
reinforcement learning perspective, we unify these steps by noting that they have the relation between
two steps’ optimal parameter (see Equations (11) and (12)). By optimizing Equation (13) to its
optimal solution, we implicitly fulfill the DMD objective, effectively merging the original two-step
learning procedure into a single step. This streamlined strategy aligns closely with methods commonly
employed in Direct Alignment Algorithms for RLHF [41], which we further discuss in Appendix A.2.
Furthermore, implicitly optimizing DMD objectives can be viewed as a special case of our proposed
CED framework, realized through a specific definition of the underlying energy functions.

4.4 Generalized Extensions and Practical Implementations

We have presented a simple distillation algorithm for one-step diffusion models that aligns with
distribution-matching objectives in Equation (7), and we will next explore an extension of this
approach using different loss formulations. Since our CED in Equation (13) and (6) can be seen as a
binary classification problem, it naturally extends to a more general form [5, 13]:

LCED = Ex∼prealf
+(−E(x, Gθ(z))) + Ex′∼Gθ′ f

−(−E(x′, Gθ(z))). (14)

Table 1: Summary of various functions of general-
ized extensions of CED for Equation (14).

Loss f+(−E) f−(−E)

Logistic log(1 + eE) log(1 + e−E)
Hinge max(0, 1 +E) max(0, 1−E)

Brier
(

eE

1+eE

)2 (
1

1+eE

)2

Exponential eE/2 e−E/2

We summarize the different classification loss
functions f+ and f− (e.g., Logistic, Hinge [7],
Brier [13], Exponential [12]) in Table 1, includ-
ing the Logistic loss from Equation (11). For
practical implementation, the complete training
procedure is detailed in Algorithm 1. To sim-
plify the training process and reduce computa-
tional costs, we first generate synthetic samples
from the teacher diffusion model and perform a
warm-up phase by optimizing the one-step gen-
erator to reconstruct images from pure Gaussian noise. Specifically, we minimize the discrepancy
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(a) Cifar-10 (b) ImageNet
Figure 2: Results on Cifar-10 and ImageNet of different training steps, where CD [52] requires
800,000 steps to reach FID 3.55 on CIFAR-10 and 600,000 steps to get FID 6.20 on ImageNet.

with the auxiliary energy function E(z), obtaining an intermediate model θ′, which subsequently
provides negative samples for the final training objective (Line 3). To further enhance efficiency, we
construct a dataset consisting of triplets (x,x′, z) where each noise vector z corresponds to positive
samples x from the teacher diffusion model and negative samples x′ from the warm-up generator Gθ′

before training. This dataset with (x,x′, z) is then used to optimize Gθ according to Equation (14).

5 Experiment

5.1 Experimental Setup

Datasets and Models. To thoroughly evaluate CED, we use two representative benchmark datasets
from prior works: CIFAR-10 (32×32) for unconditional generation [28] and ImageNet (64×64) for
conditional generation [8]. To distill the teacher diffusion models, we employ EDM models [22],
which are widely used in distillation-based methods.

Evaluation Protocol. We measure image generation quality using the Frechet Inception Distance
(FID) and the Inception Score (IS) [38]. For FID, we generate 50k samples and compare them against
the training set used by the EDM teacher model as the reference. We also consider Precision and
Recall when evaluating conditional generation on ImageNet 64x64, where we follow previous works
with a predefined reference batch to compute both metrics [9, 52].

Baselines. We assess the effectiveness of one-step distillation methods and other efficient diffusion
models without directly utilizing the original image dataset, instead focusing on comparing the quality
of images generated by CED. Based on the models employed during student model training, we
categorize the baseline methods into the following groups: (1) Diffusion Models, which include
methods aimed at accelerating sampling speed as well as original diffusion models; (2) (Generative
Adversarial Networks) GANs with extra discriminator models; (3) Distillation with Teacher & Fake
Score Models, which utilize both Teacher and Auxiliary (Fake) Score Models; (4) Distillation with
Teacher Models; and (5) Distillation with Student Models Only. Note that these categorizations are
based specifically on the models involved during the training of student generators.

Implementation Details. We implement CED on top of the EDM codebase [22], initializing the
one-step generator θ with θtrue from the teacher diffusion EDM model. To reduce computational
overhead in Equation (14) (see Algorithm 1), we randomly sample negative samples for only 25% of
the batch size—compared to the positive samples—to optimize the objective effectively. Moreover,
we compute the energy function using the LPIPS-Huber distance [51, 29], which balances perceptual
similarity and robustness to outliers. As outlined in Algorithm 1, we first sample from the teacher
model to generate training data. Specifically, we use 35 sampling steps for the Cifar-10 and 79 steps
for ImageNet with Heun’s 2nd-order method [22], as shown in Line 2 of Algorithm 1.

5.2 Image Generation

We present the image generation results comparing various baseline methods on the CIFAR-10
and ImageNet datasets in Tables 2 and 3, respectively. Specifically, we include two variants of our
approach: CED-DRE and CED. The key difference between these variants is whether we load the
previously obtained warm-up student model parameters θ0 during training. From the density ratio
estimation perspective, CED-DRE calculates the energy as E (x, Gθ(z)) = −(∥x−Gθ(z)∥22−∥x−
Gθ′(z)∥22), where we replace the traditional L2 distance with the LPIPS-Huber distance. Firstly, we
observe that preserving the intermediate model parameters θ′ does not significantly impact the final
performance. Therefore, to further save memory, we can safely omit storing these parameters. Instead,
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Table 2: Results of unconditional image gen-
eration on CIFAR-10 with FID and IS.
METHOD NFE (↓) FID (↓) IS (↑)
Diffusion models
Score SDE [53] 2000 2.38 9.83
DDPM [18] 1000 3.17 9.46
LSGM [54] 147 2.10
EDM [22] 35 1.97
GANs
BigGAN [4] 1 14.7 9.22
StyleGAN2 [24] 1 8.32 9.21
StyleGAN2-ADA [23] 1 2.92 9.83
Distillation with Teacher & Fake Score Models
Diff-Instruct [35] 1 4.53 9.89
DMD [65] 1 3.77
SID [70] 1 1.92 9.98
Distillation with Teacher Models
Knowledge Distillation [34] 1 9.36
DFNO (LPIPS) [68] 1 3.78
TRACT [1] 1 3.78
PD [46] 1 9.12
CD (LPIPS) [52] 1 3.55 9.48
CTM w/o GAN [25] 1 5.19
1-rectified flow (+distill) [31] 1 6.18 9.08
2-rectified flow [31] 1 12.21 8.08
+distill [31] 1 4.85 9.01
3-rectified flow [31] 1 8.15 8.47
+Distill [31] 1 5.21 8.79
Distillation with Student Models Only
CED-DRE 1 2.95 9.36
CED 1 2.96 9.42

Table 3: Results of conditional image generation on
ImageNet 64 × 64 with FID, Precision and Recall.
METHOD NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
Diffusion models
DDIM [50] 50 13.7 0.65 0.56

10 18.3 0.60 0.49
DPM solver [33] 10 7.93

20 3.42
DEIS [66] 10 6.65

20 3.10
DDPM [18] 250 11.0 0.67 0.58
iDDPM [38] 250 2.92 0.74 0.62
ADM [9] 250 2.07 0.74 0.63
EDM [22] 79 2.30
GANs
BigGAN-deep [4] 1 4.06 0.79 0.48
Distillation with Teacher & Fake Score Models
Diff-Instruct [35] 1 5.57
DMD [65] 1 2.62
SID [70] 1 1.52 0.74 0.63
Distillation with Teacher Models
TRACT [1] 1 7.43
BOOT [15] 1 16.3 0.68 0.36
PD [46] 2 15.39 0.59 0.62
CD (LPIPS) [52] 1 6.20 0.68 0.6
CTM w/o GAN [25] 2 5.8
Distillation with Student Models Only
CED-DRE 1 3.88 0.72 0.60
CED 1 4.06 0.74 0.58

we pre-sample negative examples and directly load the current student model itself during training, as
outlined in Algorithm 1. Furthermore, our results consistently demonstrate that CED outperforms
baseline methods using only teacher models like Consistency Models (CM) and Flow Matching (FM),
while significantly reducing memory consumption of loading models by approximately 50% during
training. Also, our method CED can outperform DMD which includes iterative training with extra
models on CIFAR-10 datasets. Although our method does not surpass approaches involving both
teacher and auxiliary (fake) score models with iterative training like DMD and SiD on ImageNet, it
simplifies the training pipeline by eliminating the necessity of loading and maintaining three models
simultaneously, thus achieving a 66% reduction in memory usage of loading models. Also, unlike
these methods—which require iterative updates and thus demand careful hyperparameter tuning for
multiple models—CED avoids extra hyperparameter search, streamlining the overall training process.

Moreover, we evaluate CED at different training steps on CIFAR-10 and ImageNet, as shown in
Figure 2. Remarkably, CED achieves strong performance with just 100,000 training steps on CIFAR-
10 (FID 3.53) and 40,000 steps on ImageNet (FID 5.31). In comparison, CD requires 800,000 steps to
reach a similar FID of 3.55 on CIFAR-10 and 600,000 steps to achieve an FID of 6.20 on ImageNet,
while also requiring the loading of additional models during training (based on their official code
implementation). These results further demonstrate the efficiency of our proposed algorithm, which
achieves good performance with relatively few training steps. Notably, CED does not incur additional
training overhead. This efficiency likely stems from the fact that CED avoids the need for extra
timestep sampling like previous distillation methods (e.g., CD) during training, thereby simplifying
the process and potentially enabling faster convergence.

5.3 Analysis and Ablation Study Table 4: Results on Cifar-10 with various
distance functions for the energy E(·).

Method FID (↓) IS (↑)

L2 4.07 9.23
L1 3.78 9.23
Pseudo-Huber 3.04 9.34
LPIPS-Huber 2.96 9.42

In this section, we conduct experiments to analyze the
impact of various distance metrics used in the energy func-
tion and different loss formulations together with analysis
of generated imge quality, as summarized in Table 1.

Ablation Study with Different Distance Functions. We
investigate the impact of different distance functions on

8



(a) EDM (b) SiD (c) CED (our)
Figure 4: Case Study of generated images from different models trained on ImageNet.

model training. Specifically, we modify the energy function E(x, Gθ(z)) in Equation (14) by sub-
stituting various loss functions, including L2 distance, L1 distance, Pseudo-Huber [6, 51], and
LPIPS-Huber [29]. We adopt the logistic loss formulation as described in Table 1, and the corre-
sponding results on CIFAR-10 are reported in Table 4. The Pseudo-Huber distance function, known
for being less sensitive to outliers than the squared L2 distance, can potentially reduce gradient
variance during training. Our results show that it consistently outperforms the standard L2 distance
on Cifar-10, indicating its effectiveness. We also explore the LPIPS-Huber distance function, which
encourages the model to minimize perceptual differences between generated samples and the ground
truth, as demonstrated in prior works on generative modeling [29]. Among the tested metrics, the
Pseudo-Huber distance function significantly outperforms L2 and other alternatives, as summarized
in Table 4. Therefore, we select the LPIPS-Huber distance as the primary choice for our model.

FID IS2.8

2.9

3.0

3.1

3.2

3.3
FI

D 
(

)
Hinge
Brier

Exp
Log

9.2

9.3

9.4

9.5

IS
 (

)

Figure 3: Results on CIFAR-10 with different
loss functions, as shown in Table 1. "Exp" de-
notes Exponential and "Log" denotes Logistic.

Ablation Study with Different Loss Functions.
We investigate the impact of different loss function
formulations on the final objective in Equation 14.
The specific formats of these loss functions are
presented in Table 1. Our results show that both
the Logistic and Hinge loss formulations achieve
the best performance compared to other alterna-
tives, making them strong candidates for practical
use for training a one-step diffusion model. Ad-
ditionally, in our implementation, we observe that
Hinge loss leads to faster convergence (i.e., fewer
training steps) compared to Logistic loss, making
it a particularly attractive choice when aiming for
competitive results with reduced training time.

Analysis of Generated Image Quality. We further generate images using different models, including
EDM (our teacher model), SiD (a state-of-the-art one-step generator) and our proposed method (CED).
We selected representative images from each model for qualitative comparison. Although our model
(CED) does not outperform SiD in terms of FID scores, it achieves comparable image quality, as
illustrated in Figure 4. Moreover, the quality of images generated by CED are also comparable to
those produced by the teacher model, further demonstrating the effectiveness of our approach to
generate high quality images. Notebly, CED requires only one third of the memory to load models
during training, making it particularly attractive for scaling to larger models with more parameters.
More examples CED-generated images are included in the Appendix C.

6 Conclusion

In conclusion, we introduce CED, a simple and efficient distillation algorithm leveraging noise
contrastive estimation to distill multi-step diffusion models into a single-step generator. Our method
implicitly optimizes the KL divergence commonly used for distribution-matching distillation, pro-
viding theoretical justification for its effectiveness. Empirically, CED outperforms existing one-step
training methods that avoid iterative procedures but still require loading the teacher model during
training, incurring additional memory overhead. In contrast, CED significantly simplifies the pipeline
for one-step image generation while achieving superior performance. We believe this work paves the
way for a new class of one-step distillation techniques and holds strong potential for extension to
larger-scale tasks, such as text-to-image generation with high-capacity models.
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A Omitted Derivation Details and Background

A.1 Derivation of Equation (10)

We derive Equation (9) following [41, 57]. We first consider the Distribution Matching Distillation
objective in Equation (7) from the reinforcement learning perspective:

max
θ

Epθ
fake
r(x, z)− βDKL

[
pθfake(x | z)∥pθ0fake(x | z)

]
, (15)

where we introduce a hyperparameter β to control the weight of KL divergence. The reward function
is r(x, z) = log(preal(x | z)/pθ0fake(x | z)) and θ0 is the parameter of the reference model. Then, we
have:

max
θ

Ez∼N (0,I),x∼pθ
fake
[r(x, z)]− βDKL

[
pθfake(x | z)∥pθ0fake(x | z)

]
=max

θ
Ez∼N (0,I)Epθ

fake

[
r(x, z)− β log

pθfake(x | z)
pθ0fake(x | z)

]

=min
θ

Ez∼N (0,I)Epθ
fake

[
log

pθfake(x | z)
pθ0fake(x | z)

− 1

β
r(x, z)

]

=min
θ

Ez∼N (0,I)Epθ
fake

log pθfake(x | z)
1

Z(z)p
θ0
fake(x | z) exp

(
1
β r(x, z)

) − logZ(z)

 ,

(16)

where Z(z) =
∑

x πref(x | z) exp
(

1
β r(x, z)

)
. Then, we can obtain:

min
θ

Ez∼N (0,I)Epθ
fake

log pθfake(x | z)
1

Z(z)p
θ0
fake(x | z) exp

(
1
β r(x, z)

) − logZ(z)


=min

θ
Ez∼N (0,I)Epθ

fake

[
log

pθfake(x | z)
pθ

∗
fake(x | z)

− logZ(z)

]
,

=min
θ

Ez∼N (0,I)

[
DKL

(
pθfake(x | z)∥pθ

∗

fake(x | z)
)
− logZ(z)

]
(17)

where pθ
∗

fake(x | z) = 1
Z(z)p

θ0
fake(x | z) exp

(
1
β r(x, z)

)
. We find that the previous equation is to

optimize the KL divergence and obtain the optimal parameter as follows:

pθfake(x | z) = pθ
∗

fake(x | z) = 1

Z(z)
pθ0fake(x | z) exp

(
1

β
r(x, z)

)
(18)

A.2 Direct Alignment Algorithm

We follow the represenative direct alignment algorithm Typically, fine-tuning Large Language Models
(LLMs) via reinforcement learning first requires training a reward model using human-preferred
data pairs, denoted as (xw,xl), representing human-preferred and human-dispreferred images in our
setting. The reward model can be trained on image pairs with Bradley-Terry (BT) models [3]:

p (xw ≻ xl | z) =
exp (r (xw, z))

exp (r (xw, z)) + exp (r (xl, z))
. (19)

We can obtain the reward model based on the optimal policy as follows:

r(x, z) = β(log
pθ

∗

fake(x, z)

pθ0fake(x, z)
− logZ(z)). (20)

Then, we can get the BT model with the format of optimal policy:

p∗ (xw ≻ xl | z) =
1

1 + exp

(
β log

pθ∗
fake(xl|z)

p
θ0
fake (xl|z)

− β log
pθ∗

fake(xw|z)
p
θ0
fake(xw|z)

) (21)
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Figure 5: Images generated by one-step diffusion models trained with CED on ImageNet.

To avoid the complexity of two-step training, [41] introduces a direct optimization approach, replacing
the optimal parameter θ∗ with trainable parameters θ. This strategy integrates the traditional two-stage
process—first training reward models and subsequently training reinforcement learning models using
these reward models—into a unified, single-step training pipeline:

min
θ

− log p (xw ≻ xl | z) = min
θ

− log
1

1 + exp

(
β log

pθ∗
fake(xl|z)

p
θ0
fake (xl|z)

− β log
pθ∗

fake(xw|z)
p
θ0
fake(xw|z)

) . (22)

Therefore, our approach, viewed from the perspective of Density Ratio Estimation, shares concep-
tual similarities with direct alignment algorithms, as both leverage related techniques to unify the
conventional two-step training process into a single step.

B Experiment Details

B.1 Implementation Details

We present implementation and setup details of CED in this section. For experiments, we use the
Adam optimizer with an effective batch size of 512 for CIFAR-10 and 1024 for ImageNet. Training
is conducted on 2 NVIDIA A100 GPUs. We train at fixed square resolutions and use a learning rate
3e-5. Moreover, we perform 10000 steps warm-up training as demonstrated in Line 3 of Algorithm 1.
Our code of CED is based on the implementation EDM [22].

C Additional Experiments

In this section, we present more results generated from CED on Cifar-10 and ImageNet as shown in
Figure 5 and Figure 6, which further shows the effectiveness of our proposed method.
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Figure 6: Images generated by one-step diffusion models trained with CED on Cifar-10.

D Limitations

This work introduces an algorithm for efficiently distilling knowledge from multi-step diffusion
models into one-step diffusion models for image generation tasks. However, the current focus is
limited to image generation, while other domains—such as scientific discovery and 3D reconstruction,
which could also benefit from fast diffusion models to enhance the efficiency of their generative
pipelines.

E Broader Impact

This work can be used to accelerate both image generation and text-to-image generation, enhancing
the user experience in text-to-image systems. Furthermore, it can be extended to other domains for
efficient high-quality sample generation, such as 3D reconstruction, audio synthesis, and scientific
discovery.
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materials to reproduce our results.
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to make their results reproducible or verifiable.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental settings in section 5 and Appendix C.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included statistical signifance in Section 5.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included computing resources in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our code conforms with the NeuIPS code Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included broader impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have discussed this in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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