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ABSTRACT

Single image depth estimation is a critical issue for robot vision, augmented
reality, and many other applications when an image sequence is not available.
Self-supervised single image depth estimation models target at predicting accu-
rate disparity map just from one single image without ground truth supervision
or stereo image pair during real applications. Compared with direct single im-
age depth estimation, single image stereo algorithm can generate the depth from
different camera perspectives. In this paper, we propose a novel architecture to
infer accurate disparity by leveraging both spectral-consistency based learning
model and view-prediction based stereo reconstruction algorithm. Direct spectral-
consistency based method can avoid false positive matching in smooth regions.
Single image stereo can preserve more distinct boundaries from another camera
perspective. By learning confidence map and designing a fusion strategy, the two
disparities from two approaches are able to be effectively fused to produce the
refined disparity. Extensive experiments indicate that our method exploits both
advantages of spectral consistency and view prediction, especially in constraining
boundaries and correcting wrong predicting regions.

1 INTRODUCTION

Depth prediction and scene reconstruction are required in robot navigation, augmented reality, au-
tonomous driving, and many other scenarios. Depth maps can be obtained directly from active
sensors such as LiDAR or Kinect. However, due to their high price and limited valid range, stereo
reconstruction is utilized as a major approach. Stereo matching algorithms, such as Semi-Global
Matching (SGM) or Semi-Global Block Matching (SGBM), infer the disparity from two or more
images. However, stereo matching usually results in wrong correspondences on regions with low-
texture and repeated pattern. Also, binocular and baseline setup are required.

Recent works show outstanding performance of deep neural networks in depth prediction from
largely collected training datasets based on supervised frameworks (Eigen et al. (2014) Mayer &
et al. (2016)) or unsupervised schemes (Garg et al. (2016) Godard et al. (2017) Poggi & et al. (2018)
Godard & et al. (2019)) from a single image without any priors. However, direct single image depth
estimation usually generates confusing and blurred output in object boundaries (with and without
occlusions) due to missing constraints from a different perspective like stereo or SfM reconstruction.

In this paper, we improve upon these methods above with a novel combined training objective and
enhanced network architecture that significantly increases the quality of our final results. We propose
two separate depth estimation algorithms, spectral consistency based single image depth estimation
and single image stereo matching based on predicted views. To benefit from both the depth esti-
mation approaches, an efficient fusion strategy is proposed with the help of a confidence map to
fuse spectral-consistency based single image depth estimation and predicted-view based stereo al-
gorithm in a self-supervised approach. First, we learn an end-to-end deep neural network to predict
disparity map from a single image by applying spectral consistency constraints. Then we exploit
it to predict a view from the given image and apply the single image stereo algorithm between the
original view and predicted view images to extract more information and produce clear boundary,
which can be constrained from a different camera perspective. Following the aforementioned depth
prediction networks, a fusion network is introduced to select the highly confident depth between the
two depth maps and correct low-confidence regions. The disparity maps developed from the two
newly designed single image depth estimation algorithms along with the help of the fusion strategy
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Figure 1: Overview of the proposed pipeline. For training, both spectral consistency based
disparity estimation and view prediction take stereo image pairs as input. In inference, a single
image is used to estimate the depth. Then the fusion module takes both of the disparities to produce
a refined output which prevent blurred object boundary and wrong-matching regions.

lead to a highly accurate depth estimation. The entire pipeline is shown in Fig. 1, which composes
both training (using stereo images) and testing stages (using just a single image).

The key contributions are as follows: 1) We improve a self-supervised deep neural network to pre-
dict disparity from single image based on the spectral consistency for image reconstruction; 2) We
propose a single image stereo reconstruction approach based on neighboring-view prediction; 3) A
novel strategy is developed to fuse the spectral consistency constrained estimation and single image
stereo reconstruction to achieve a highly confident depth.

2 RELATED WORK

Stereo matching algorithm: Most conventional stereo matching algorithms follow matching cost
computation, cost aggregation, disparity computation and refinement as the basic steps between left
and right image pairs. Semi-Global Matching (SGM) or Semi-Global Block Matching (SGBM)
based methods leverage both local and global features, and perform fast approximation from all di-
rections. In contrast to the hand-crafted matching cost metric, CNNs are explored to match between
patches. Bontar & et al. (2016) investigated a series of CNN architectures for binary classification
of pairwise matching and applied it for disparity estimation. Mayer & et al. (2016) proposed to train
an end-to-end network DispNet on a large synthetic dataset to infer disparity as well as optical flow.
As main contribution to this work, 1-D correlation along the disparity line is applied to approximate
the cost volume. Following this work, GCNet by Kendall et al. (2017) proposed to deploy 3-D
convolutions on 4-D volume to mimic the matching costs and obtain the best disparity over the vol-
ume. PSMNet designed by Chang & et al. (2018) applies a multi-scale pyramid matching to explore
global context information as well as local cues to improve disparity.

Depth prediction from single image: Early approaches for monocular depth estimation utilize
hand-craft features to build statistic model for depth prediction Saxena et al. (2007) Bipin & et al.
(2015). Most recent frameworks focus on deep neural networks for predicting depth from single
image (Eigen et al. (2014) Liu et al. (2015) Fu & et al. (2018) Lee & et al. (2019)). Eigen et al.
(2014) generated depth maps by deploying networks capable of detecting global and textured fea-
tures using the AlexNet structure Krizhevsky & et al. (2012). Following this work Liu et al. (2015)
applied the continuity of the depth values and treated depth estimation as a continuous conditional
random field (CRF) learning problem. Cao & et al. (2017) took this concept further by formulating
depth estimation as a pixel-wise classification task, using conditional random field (CRF) as a post-
processing scheme. DORN presented by Fu & et al. (2018) proposed a regression based network
for monocular depth estimation. Lee & et al. (2019) later adopted the same reconstruction strategy
and ordinal loss function, extending it for estimating relative depths at various scales. Targeting at
solving the supervision from ground truth, Garg et al. (2016) proposed differentiable inverse warp-
ing to learn matching from stereo image pairs . Godard et al. (2017) built on top of this work and
introduced novel left-and-right pixel disparity consistency loss to improve the performance. Instead
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of exploiting geometrical cues from stereo pairs, (Zhou et al. (2017) Yin & Shi (2018) Mahjourian
et al. (2018) Zou & et al. (2018) Ranjan & et al. (2019)) achieve success in attempts to explore
monocular depth estimation methods by combining ego-motion from unlabeled video sequences.

Disparity enhancement from fusion: Multiple approaches attempt to refine disparities from dif-
ferent cues such as diverse information (i.e. temporal and spatial) Zhan & et al. (2018) Mun &
et al. (2015), different tasks (i.e. depth and semantic segmentation) Ramirez & et al. (2018) to im-
prove accuracy of the initial map. Mun & et al. (2015) applied motion prediction to the traditional
iterative stereo matching method to compute moving region, Zhan & et al. (2018) utilized stereo
video sequences to extract both spatial (left-right pairs) and temporal (forward-backward) informa-
tion to further improve the performance and scale. Ramirez & et al. (2018) and Ochs et al. (2019)
both proposed to train a CNN architecture to optimize depth prediction by jointly learning semantic
segmentation.

3 UNSUPERVISED SIMULTANEOUS SINGLE IMAGE DEPTH ESTIMATION

In this section, we first describe the overall structure of how we build the entire pipeline by combing
the single image depth estimation based on spectral consistency and from view prediction. Second,
we introduce each component of the proposed method, including the intuition and designed unsuper-
vised loss functions. Our framework involves three main components, single image depth estimation
based on spectral consistency cues, single image stereo reconstruction based on the predicted view,
and depth map fusion.

3.1 SPECTRAL CONSISTENCY BASED DEPTH ESTIMATION

Our spectral consistency based depth estimation scheme transfers single image depth estimation task
as an image reconstruction issue. For each image (I l or Ir) from a stereo pair, our model targets at
constructing a deep neural network to predict its corresponding disparity map (d̃l or d̃r). Then the
predicted disparity map (e.g., left image disparity d̃l) is used to reconstruct the right image Ĩr by
warping with the biniliear interpolation operation. L1 loss is combined with Structural Similarity
Index Metric (SSIM) term (Godard et al. (2017)) to constrain the reconstructed image to be spectrally
consistent with the original image and build the photometric error function. The loss is defined as:

Lme = 0.85 ∗ 1

N

∑
xy

(1− SSIM(Ixy, Ĩxy))

2
+ 0.15 ∗ (||Ixy − Ĩxy||1) (1)

where Ixy refers to the image pixel at x th row and y th column in the original input images, and
˜Ixy represents the reconstructed image pixel. To enforce the disparity maps to be smooth and avoid

substantial gradient change on flat regions. Edge-aware smoothness loss term is applied.

Lsm =
1

N

∑
xy

(|∂xdxy|e−||∂xIxy||1 + |∂ydxy|e−||∂yIxy||1) (2)

where ∂x and ∂y are disparity gradient operators in horizontal and vertical direction respectively.
dxy is the predicted disparity value in the corresponding x-y coordinate.

In order to maintain the coherence between the predicted left and right disparity, we extend the left-
to-right consistency constraint Godard et al. (2017) with the reverse Huber (berHu) penalty term
Zwald & Lambert-Lacroix (2012). The improved disparity consistency loss now becomes:

Lcs =
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 (3)

where constant c = 1
5max(|d

l(r)
xy − dr(l)

xy+d
l(r)
xy

|). The berHu loss in L1 norm is in the range of [−c, c]
and L2 norm is out of this range, thus empirically demonstrating a good balance between thees two.

To solve the border artifact in Garg et al. (2016) and Godard et al. (2017) as a result of zero padding
in the border regions, we apply the closest pixel to replace those regions that are out of the boundary.
The accumulative constraints from monocular depth prediction based on spectral consistency cue
Lmono is comprised by Lme, Lsm and Lcs, and the corresponding weights are 1.0, 0.1 and 0.8
respectively from our experiments.
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3.2 SINGLE IMAGE STEREO BY PREDICTED VIEW

Spectral consistency based single image depth estimation can generate satisfatory depth output for
smooth regions. However, due to the little constraints from a different perspective and smoothness,
sharp object boundaries are usually not preserved. To deal with this issue, we also propose a single
image stereo algorithm that can enhance the depth estimation accuracy of spectral consistency sin-
gle image depth estimation approach. To realize the single image stereo reconstruction method, a
binocular view image is predicted from a GAN-based view synthesis method, which is trained from
stereo pairs. Once the view from another perspective is predicted, stereo matching algorithm SGBM
will be employed to estimate the scene depth. As binocular views capture the same scene from dif-
ferent perspectives, stereo image prediction problem can be simplified as an image generation task
from different domain representations. In this problem, the source domain represents images from
left camera view and target domain samples are the images from right view. Then our objective is
to learn the transformation and inverse transformation between these two domains. Assuming the
input modality is S, and target representation is T , we aim to learn both conversions of hS−>T

and hT−>S . Extending the basic idea from Cycle-GAN network (Zhu & et al. (2017)), we apply
multi-scale generators and discriminators to extract both local and holistic features from S and T .
The mapping function from input views S to target views T is expressed as:

LGAN (Gs−>t, Dt, S, T ) = Es∈p(s)[log(1−Dt(Gs−>t))] + Et∈p(t)[log(Dt)] (4)

where Gs−>t represents the generator to create images from the source domain to be similar as the
images in the target domain, and and Dt is discriminator to identify the real images and generated
images from Gs−>t. By combing the image transformation from source to target views and target
views back to source views, the total adversarial losses LG equals to LGAN (Gs−>t, Dt, S, T ) +
LGAN (Gt−>s, Ds, T, S).

To decrease the instability and uncertainty of the mapping function between source views and target
views, a cycle-consistency loss (Yi & et al. (2017) Kim & et al. (2017)) is utilized here to build the

forward cycle consistency and backward consistency, i.e. S
Gs−>t→ T̃

Gt−>s→ S̃ ' S and T
Gt−>s→

S̃
Gs−>t→ T̃ ' T . Thus the loss can be given as:

Lcyc = Es∈p(s)[‖Gt−>s(Gs−>t(s))− s‖1] + Et∈p(t)[‖Gs−>t(Gt−>s(t))− t‖1] (5)

where E is the expectation of loss values of all the training samples. s and t separately represent
the left-view modality and right-view modality. And L1 norm is applied to compute the distance
between source images and translated source images Gt−>s(Gs−>t(s)) and correspondingly origi-
nal target domain images and translated target imagesGs−>t(Gt−>s(t)). Though cycle consistency
loss was originally introduced for unpaired image data, we found it also has outstanding performance
on the paired datasets. The full optimization for synthesis network turns into Lstereo = LG+λLcyc

where λ is set to 10 and progressively decreased after half of the training process.

After predicting a different view image to compose a stereo image pair, we calculate the dispar-
ity map by extending SGBM semi-global matching algorithm with ELAS semi-local matching ap-
proach. Taking a aggregation cost from all neighbor directions into account, a weighted least squares
filter is applied to refine the initial matching result by SGBM. Further enhancing the matching perfor-
mance by ELAS semi-local matching approach, a Bayesian inference strategy is utilized to improve
the disparity based on image similarity score.

3.3 DEPTH FUSION BASED ON CONFIDENCE MAP

Spectral consistency constrained singe image depth estimation can estimate the smooth and flat
region accurately, but suffers from blur boundary and depth discontinuities issue. Single image
stereo reconstruction can lead to the boundary and textured regions matching more effectively due
to another camera perspective view constraints. However, it is less capable in resolving the matching
confusion of surface without textures or with repeated textures. To tackle with these problems, we
explore confidence maps to improve the refined disparity. Specifically, confidence maps are trained
separately in a self-supervised fashion without using ground truth depth labels. Given one disparity
map as input, we can assign labels to each pixel value belonging to the range of [0, 1] (0 is not
confident at all and 1 is totally confident) on a confidence map C based on conventional confidence
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Figure 2: Confidence maps from the corresponding predicted disparities for two approaches respec-
tively. (a) Input color image. (b) Predicted disparity from spectral consistency constrained method.
(c) Predicted disparity from single image stereo reconstruction. (d) Confidence maps for (b). (e)
Confidence map for (c).

measures provided in Tosi & et al. (2017). For predicted-view based single image stereo method,
we adopt the Winner Margin (WMN), Average Peak Ratio (APKR), Left-Right Consistency (LRC),
Matching Score (MC) and Distance to Left Border (DLB) as the metrics. For spectral consistency
based disparity prediction method, only Median Deviation of diaprtiy (MED) , Disparity Agreement
(DA) and Variance of the Disparity Values (VAR) are applied. Then the final confidence score Sc

for a pixel is the sum of all confidence scores for different measure metrics Ck, as Sc =
∑

k Ck.
The confidence maps from the corresponding disparities of two branches are given as Fig. 2.

The final refined disparity drefined can be selected and expressed as a combination of the initial
disparity maps d̃1 and d̃2 from two branches :

drefined =

{
˜d1(x, y), if Sc1(x, y) < Sc2(x, y)
˜d2(x, y), if Sc1(x, y) ≥ Sc2(x, y)

(6)

We output the actual value for each pixel in confidence score map Sc1(x, y) and Sc2(x, y). With
our fusion strategy, the refined disparity map is able to leverage both benefits of spectral consistency
disparity estimation network and view-prediction based single image stereo technique, achieving a
better performance in visual and quantitative evaluation which will be discussed in Sec. 4.

3.4 END-TO-END TRAINING OF THE WHOLE PIPELINE

These two networks can be combined for joint training once being trained to obtain the ability of
geometric reasoning for the task of view synthesis and stereo matching separately.

4 EXPERIMENTAL RESULTS

In this section, we will describe the dataset and experiment setup. Then the proposed method for dis-
parity prediction and refinement is evaluated on KITTI 2015 (Menze & et al. (2015)) and Cityscapes
(Cordts et al. (2016)) dataset compared with other recent state-of-the-art approaches. An ablation
analysis is provided in Sec. 4.3 to prove the effectiveness of each component,

4.1 DATASETS

KITTI stereo dataset contains 61 scenes (42382 stereo images) with an embedded LiDAR calibrated
together with the left color camera to build sparse ground truth depth map. The 697 images covering
29 scenes are served as the test split and the remaining 22600 images from the rest 32 scenes is
used for training. We conduct our experiment quantitatively and visually to show the performance
of the proposed method compared with other recent approaches. To compare with other works in
a consistent manner, we only evaluate on a cropped region proposed by Eigen et al. (2014). We
provide our result using both the cap of 0-80m (following Yang et al. (2019)) and 1-50m (following
Garg et al. (2016)). This requires to discard the pixels on which the depth is outside the proposed
range. Cityscapes dataset is a large-scale dataset collected in over 50 cities in Germany which
containing 19 semantic classes and 22973 stereo image pairs. DrivingStereo dataset (Yang et al.
(2019)) was originally used for large-scale stereo matching in urban scenarios. In our experiment,
we cropped the bottom part of the images to exclude the car hood and resize it to meet our network
setting as additional examples to show the ability of our method when generalizing to a new scene
without further training on it.
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Figure 3: Depth estimation samples from our refinement compared with depths from our two depth
estimation separately without fusion. Left to right: Input color image; Output from spectral consis-
tency based estimation only; Output from single image stereo network only; Our full output.

Methods Input type Fusion Error
Stereo only Stereo No 5.09%

Stereo gt only Stereo No 3.32%
Mono only Mono No 7.68%

Fusion by Ferrera & et al. (2019) Stereo Yes 3.03%
Our fusion strategy Mono Yes 3.01%

Table 1: Comparison of our different modules with and without the proposed fusion strategy.

4.2 IMPLEMENTATION

The architecture in our work is implemented with PyTorch framework. For the spectral consistency
based method, images are resized to 512 × 256 before feeding into the ResNet-50 based network.
Adam optimizer with β1 =0.9 and β2 = 0.999 together with a batch size of 8 and learning rate of 1e-4
are applied during training. Same data augmentation strategy as in Godard et al. (2017) is employed
to augment data and train the network more robust. During the inference time, the predicted disparity
map are post-processed to eliminate the effect of dis-occlusions (Godard et al. (2017) Poggi & et al.
(2018)). Then the output are up-sampled to fit the original image size for later fusion and evaluation.

For the predicted view-based single image stereo network, We train it from scratch with also Adam
where β1 =0.9 and β2 = 0.999 and ε = 10−8. The encoder starts with three convolutional layers,
followed by LeakyRelu layers. The filter size starts from 7×7 and gradually decrease to 3×3 to dig
into more details in small feature maps. The decoder consists of 4 convolutional layers with Relu
activation, excepting tanh activation for the last layer. Batch normalization, up-sampling, dropout,
and skip-connection layerS are also applied in the decoder. The initial learning rate is set to be
1e-4, and we linearly decrease the rate to zero over the totally 100 epochs. During the inference
phase, only one test image is required to generate the refined output disparity from our pipeline.
And standard metrics for monocular depth estimation as Abs rel, Sq rel, RMSE, RMSE log and
three accuracy metrics under different threshold 1.25, 1.252 and 1.253 are applied for evaluation.

4.3 PERFORMANCE ANALYSIS

To compare with the performance of each component of our proposed method and explore the effec-
tiveness of the proposed fusion pipeline, We first show visual comparison on given examples with
and without our refinement in Fig. 3. It can be observed that refined outputs leverage both ben-
efits from the two frameworks, especially in overcoming the blur boundary in disparity prediction
network and miss-matching regions in single image stereo matching. It can be observed that in the
regions with object occlusions such as traffic lights, trees and billboards, our full pipeline is able to
deal with the object occlusions and separate them better. Furthermore, we evaluate it on KITTI 2015
stereo evaluation dataset containing 200 images for testing. We report the result of the percentage
of miss-classified pixels (over 3 pixels) relative to the input in Table 1. We first show the error
percentage of each of our separate prediction methods without fusion. Then we demonstrate that
the refined result largely outperforms initial disparities from either of these two frameworks alone
(41.6% enhancement over single image stereo matching and 60.8% over disparity prediction from
single image). Last, by comparing with Ferrera & et al. (2019) which also adopts fusion idea, our
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Methods Training type Error Accuracy
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen Coarse Eigen et al. (2014)
Eigen Fine Eigen et al. (2014)

Deep CRF Liu et al. (2016)
SfMLearner Zhou et al. (2017)

Vid2depth Mahjourian et al. (2018)
DFNet Zou & et al. (2018)

GeoNet-ReNet Yin & Shi (2018)
CC Ranjan & et al. (2019)

Garg et.al. Garg et al. (2016)
MonoDepth Godard et al. (2017)

Unsup-depthGAN Pilzer & et al. (2018)
3-Net Poggi & et al. (2018)

EveryPixel++ Luo & et al. (2019)
Monodepth2 Godard & et al. (2019)

Ours w/o stereo
Our full wo pp

Our full

Supervised
Supervised
Supervised

Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised
Unsupervised

0.214
0.203
0.202
0.208
0.163
0.150
0.155
0.140
0.152
0.148
0.152
0.142
0.141
0.130
0.139
0.125
0.120

1.605
1.548
1.614
1.768
1.240
1.124
1.296
1.070
1.226
1.344
1.388
1.207
1.224
1.144
1.102
1.181
1.061

6.563
6.307
6.523
6.856
6.220
5.507
5.857
5.326
5.849
5.927
6.016
5.702
5.548
5.485
5.483
5.142
5.138

0.292
0.282
0.275
0.283
0.250
0.223
0.233
0.217
0.246
0.247
0.247
0.240
0.218
0.232
0.224
0.218
0.216

0.673
0.702
0.678
0.678
0.762
0.806
0.793
0.826
0.784
0.803
0.789
0.809
0.811
0.831
0.818
0.838
0.840

0.884
0.890
0.895
0.885
0.916
0.933
0.931
0.941
0.921
0.922
0.918
0.928
0.934
0.932
0.932
0.941
0.942

0.957
0.958
0.965
0.957
0.968
0.973
0.973
0.975
0.967
0.964
0.965
0.967
0.972
0.968
0.972
0.978
0.978

Table 2: Quantitative comparison with other recent methods. All methods just use KITTI training
split for a fair comparison. We compare with both supervised and unsupervised methods taking
single images (Eigen et al. (2014) Liu et al. (2016) Garg et al. (2016) Godard et al. (2017) Godard
et al. (2017) Poggi & et al. (2018) Luo & et al. (2019) Godard & et al. (2019)) or monocular video
(Zhou et al. (2017) Mahjourian et al. (2018) Zou & et al. (2018) Ranjan & et al. (2019)) or image
pair Pilzer & et al. (2018) as input.

Figure 4: Visual performance of the proposed method compared with other recent methods (Godard
& et al. (2019) Poggi & et al. (2018) Yin & Shi (2018)). First row: Input image; Second row:
Disparity from GeoNet (Yin & Shi (2018)). Third row: Disparity from 3-Net (Poggi & et al. (2018));
Fourth row: Disparity from Monodepth2 (Godard & et al. (2019)); Last row: Our pipeline output.

method is still able to maintain better performance (3.03% v.s. 3.01%). Note that Ferrera & et al.
(2019) must input stereo images during inference and our framework only requires one image.

To go insight into the proposed method, we investigate the performance of our pipeline in relation
to the state-of-the-art methods. Referred to Table 2, we conduct the experiments in 1 to 80 meters’
range and compare the result with other supervised methods (Eigen et al. (2014) Liu et al. (2016))
and self-supervised methods (Garg et al. (2016) Zhou et al. (2017) Godard et al. (2017) Yin & Shi
(2018) Pilzer & et al. (2018) Mahjourian et al. (2018) Poggi & et al. (2018) Zou & et al. (2018) Luo
& et al. (2019) Ranjan & et al. (2019) Godard & et al. (2019)). Our proposed method performs the
best evaluation in both loss and accuracy metrics. In particular, we observe that our method with the
refined process is able to achieve an obvious improvement in the Sq Rel metric. With and without
combing predicted-view based single image stereo algorithm makes a difference in the prediction
results, which further proves that the intuition of this work. Relevant performance can be better
perceived from the visual comparison in Fig. 4. The results from Yin & Shi (2018) and Poggi &
et al. (2018) have many artifacts and blur regions in the frame due to the wrong predictions. Also,
it can be noticed that there is also an overall scale problem in their predictions. For Poggi & et al.
(2018), it appears some large discontinuities, especially on the ground. Monodepth2 (Godard &
et al. (2019)) achieve the best visual performance among the three comparisons, but it still shows
weak ability to preserve object boundaries and deal with occlusions compared with our pipeline.
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It can be observed from Fig. 4 that our full pipeline generate more clear object boundaries and
efficiently prevent from the miss-matching issue on flat regions.

Method Mean SSIM Mean PSNR MAD
Zhou et al. (2016) 0.59 15.00 0.25
Sun et al. (2018) 0.68 18.49 0.15

Ours 0.74 19.98 0.13
Table 3: Quantitative comparison with other neighbor view synthesis methods. Higher mean
SSIM/PSNR and lower MAD means better performance in synthesising.

Table. 3 shows mean SSIM, mean PSNR and Mean Absolute Difference (MAD) metrics for each
method across the test set. We use these three metrics to measure if one method is averagely better
than another. For both PSNR and SSIM, one method is always better than the others with the higher
score, and for MAD, one method is better if with the smaller values than others. From Table 3,
our method achieves best numerical score in both SSIM (0.74) and PSNR (19.98) than Sun et al.
(2018) and Zhou et al. (2016). With respect to MAD, our method achieves a 13.3% and 48.0%
decrease in comparison with Sun et al. (2018) and Zhou et al. (2016) respectively, demonstrating the
effectiveness of our predicted images used for stereo reconstruction.

Figure 5: Comparison with other learning-based stereo matching methods from our synthesized
image pairs. Left to right: Left input image; Synthesized right image; Disparity output from Luo
et al. (2016); Disparity output from Chang & et al. (2018); Our single image stereo output.

Additional experiments analyze the effectiveness of our single image stereo matching approach
based on predicted view. Fig. 5 shows visual examples of the performance of our single image
stereo matching algorithm in comparison with the recent learning-based disparity estimation method
from stereo images. In particular, from the comparison with Luo et al. (2016), we can notice that
our proposed method is able to prevent many wrong matching on flat regions. Compared with the
most recent state-of-the-art stereo matching method Chang & et al. (2018), which uses ground truth
labels for training, our method still can achieve comparable performance, especially in the sky.

Figure 6: Qualitative results of our pipeline on Cityscapes and DrivingStereo stereo dataset without
training or fine-tuning. Upper two images are from Cityscapes, the rest are from DrivingStereo.

Figure 7: Examples of 3D reconstruction from the original input color image and the estimated
disparity map from our full pipeline.

Finally, we illustrate further examples in Fig. 6 and Fig. 7. With the model only trained on KITTI
split of Eigen, we tested directly on the DrivingStereo and Cityscapes dataset though with differ-
ences in camera parameters, weather and city. Our method benefits from both deep neural network
depth prediction and physical-informed stereo reconstruction with just one image input, which can
overcome the issues from both depth estimation strategies.
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5 CONCLUSION

In this paper, we investigated a single image depth estimation framework that is comprised of two
newly proposed depth estimation approaches, spectral constrained single image depth estimation
algorithm and single image stereo reconstruction based on predicted view. We also propose a novel
pipeline for dense depth fusion from only one single image as input. Experiments show that the
proposed approach leads to a more precise depth estimation performance compared with either only
applied monocular disparity prediction network or single image stereo algorithm, and is able to
generate comparable results compared with the state-of-the-art approaches. Moreover, our proposed
full pipeline is able to infer a high-quality disparity with more clear object boundaries and less miss-
predictions in flat regions compared with most recent approaches. Different with existing methods,
our pipeline is able to predict accurate disparity map only from one single image as input.
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