
Under review as a conference paper at ICLR 2024

HOW HARD IS TROJAN DETECTION IN DNNS?
FOOLING DETECTORS WITH EVASIVE TROJANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Trojan attacks can pose serious risks by injecting deep neural networks with hidden,
adversarial functionality. Recent methods for detecting whether a model is trojaned
appear highly successful. However, a concerning and relatively unexplored possi-
bility is that trojaned networks could be made harder to detect. To better understand
the scope of this risk, we develop a general method for making trojans more evasive
based on several novel techniques and observations. In experiments, we find that
our evasive trojans reduce the efficacy of a wide range of detectors across numer-
ous evaluation settings while maintaining high attack success rates. Surprisingly,
we also find that our evasive trojans are substantially harder to reverse-engineer
despite not being explicitly designed with this attribute in mind. These findings
underscore the importance of developing more robust monitoring mechanisms for
hidden functionality and clarifying the offense-defense balance of trojan detection.

1 INTRODUCTION

A neural trojan attack occurs when adversaries corrupt the training data or model pipeline to implant
hidden functionality in neural networks. The resulting networks exhibit a targeted behavior in
response to trigger patterns known only to the adversary. For example, a trojaned traffic sign classifier
might behave normally until the trigger pattern appears on a sign, leading to a car crash. This presents
the threat that a user might suffer catastrophic losses by adopting a trojaned network that later does
something bad.

A promising line of defense against trojan attacks is model-level trojan detection, which seeks to
distinguish trojaned networks from clean networks. Successfully detecting trojans enables analyzing
attacks and removing hidden functionality from networks (Wang et al., 2019). Further, the problem
of trojan detection is interesting in its own right. Being good at detecting trojans implies that one
must be able to distinguish subtle properties of networks by inspecting their weights and outputs,
and thus is relevant to interpretability research. More broadly, trojan detection could be viewed as
a microcosm for identifying deception and hidden intentions in future AI systems (Hendrycks &
Mazeika, 2022), highlighting the importance of developing robust trojan detectors.

Recent work suggests that trojan detection is fairly easy. For example, Liu et al. (2019) and Zheng
et al. (2021) both propose model-level detectors that obtain over 90% AUROC on existing trojan
attacks. However, Goldwasser et al. (2022) show that at least for single-layer networks one can build
trojans that are practically impossible to detect. This is a worrying result for the offense-defense
balance of trojan detection, especially if such trojans could be designed for deep neural networks.
To date there has been no demonstration of trojan attacks in deep neural networks that evade a wide
range of detectors.

In this paper, we propose a method for making deep neural network trojans harder to detect. The
core of our method is a distribution matching loss inspired by the Wasserstein distance along with
specificity and randomization losses. Crucially, we consider a white-box threat model that allows
defenders full access to training sets of evasive trojans, which enables gauging whether our evasive
trojans are truly harder to detect. In experiments, we train over 6, 000 trojaned neural networks
and find that our evasive trojans considerably reduce the performance of a wide range of detection
methods, in some cases reducing detection performance to chance levels.

1

Under review as a conference paper at ICLR 2024

Standard Trojans Evasive Trojans

Yes

Trojaned

Target

Trigger

No

Yield100 km/h
speed limit

100 km/h
speed limit Trojaned

Target

Trigger

100 km/h
speed limit

Figure 1: Compared to standard trojans, our evasive trojans are significantly harder to detect and
reverse-engineer when given white-box access to a potentially trojaned model (i.e., model-level
detection). In this illustrative example, the standard and evasive trojans contain dangerous hidden
functionality. A meta-network is able to detect the standard trojan and reverse-engineer its target
label and trigger, whereas the evasive trojan bypasses detection and disrupts reverse-engineering.

Surprisingly, we find that in addition to being harder to detect, our evasive trojans are also harder to
reverse-engineer. Namely, the tasks of target label prediction and trigger synthesis become consider-
ably harder (see Figure 1 for an illustrative example). This is an unexpected and concerning result,
because our method was not designed to make these tasks harder. In light of these results, we hope
our work shifts trojan detection research towards a paradigm of constructive adversarial development,
where more evasive trojans are developed in order to identify the limits of and improve detectors. By
studying the offense-defense balance of trojan detection in this way, the community could make steady
progress towards the ultimate goal of building robust trojan detectors and monitoring mechanisms for
neural networks. Experiment code and models are available at [anonymized].

2 RELATED WORK

Trojan Attacks on Neural Networks. Trojan attacks, or backdoor attacks, refer to the process
of implanting hidden functionalities into a system that affect its safety (Hendrycks et al., 2021).
Geigel (2013) devise a method to insert malicious triggers into a neural network. Since then, a wide
variety of neural trojan attacks have been proposed (Li et al., 2022). Gu et al. (2017) show how data
poisoning can insert trojans into victim models. They introduce the BadNets attack, which causes
targeted misclassification when a trigger pattern appears in test inputs. Chen et al. (2017) introduce a
blended attack strategy, which uses triggers that are less conspicuous in the poisoned training set.
More recent work develops attacks that are barely visible using adversarial perturbations (Liao et al.,
2020), learnable triggers (Doan et al., 2021b), and subtle warping of the input image (Nguyen & Tran,
2021). Others have considered making trojan attacks under fine-tuning threat models (Yao et al.,
2019), for textual domains (Zhang et al., 2021), and encompassing a diverse range of attack vectors
and goals (Bagdasaryan et al., 2020; Carlini & Terzis, 2021).

Trojan Detection. An important part of defending against trojan attacks is detecting whether a
given network is trojaned. Wang et al. (2019) propose Neural Cleanse, which reverse-engineers
candidate triggers for each classification label. If a small trigger pattern is found, this indicates
the presence of a deliberately inserted trojan. Several more recent methods build on this approach,
including K-Arm (Shen et al., 2021) and PixelBackdoor (Tao et al., 2022). Liu et al. (2019) analyze
inner neurons for suspicious behavior, then reverse-engineer candidate triggers to confirm whether a
neuron is compromised. Kolouri et al. (2020) and Xu et al. (2021) propose training a set of queries to
classify a training set of trojaned and clean networks. Remarkably, this generalizes well to unseen
trojaned networks. Other work uses conditional GANs to model trigger generation (Chen et al.,
2019b), adversarial perturbations (Wang et al., 2020), and persistent homology feature extraction
(Zheng et al., 2021).

2

[anonymized]

Under review as a conference paper at ICLR 2024

Patch
MNIST

Patch
CIFAR-10

Patch
CIFAR-100

Patch
 GTSRB

Blended
MNIST

Blended
CIFAR-10

Blended
CIFAR-100

Blended
 GTSRB

50

55

60

65

70

75

80

85

90
AU

RO
C

(%
)

Detection Performance Averaged Across Detectors
Standard Trojans
Evasive Trojans

Figure 2: Our method for making trojans more evasive substantially reduces AUROC across various
datasets and underlying trojan attacks. All values are averaged across eight detectors, and lower
is better for the attacker. Detectors have access to a training set containing our evasive trojans, so
reductions in AUROC are not caused by optimizing against fixed detectors, but rather indicate that
we can insert trojans in deep neural networks that are truly harder to detect for existing methods.

In this work, we consider model-level detectors such as those described above, which only require
a model as input. If a poisoned dataset or examples with trojan triggers are available, one can also
use dataset-level and input-level detectors such as activation clustering (Chen et al., 2019a), spectral
signatures (Tran et al., 2018), or online trojan detection (Gao et al., 2019; Chou et al., 2020; Kiourti
et al., 2021). This distinction is detailed by Xu et al. (2021), who point out that these levels of
detection solve different problems and are not directly comparable.

Evasive Trojans. There has been considerable work on making trojan triggers evade dataset-level
and input-level detection (Liao et al., 2020; Nguyen & Tran, 2020; Liu et al., 2020; Nguyen & Tran,
2021; Doan et al., 2021b;a; Qi et al., 2022; Tan & Shokri, 2020). Understandably, these works focus
on this class of detectors and do not systematically evaluate model-level detection. In Appendix B.2,
we show for the first time that methods for evading input-level and dataset-level detectors fail to
evade common model-level detectors, illustrating the differences between these detection problems
and how new methods are required to evade model-level detection. By comparison to this line of
work, there has been relatively little work on evading model-level detection, which is the focus of this
paper.

Early work on neural trojans considered evasiveness to consist of maintaining high accuracy on
clean inputs (Gu et al., 2017; Chen et al., 2017). However, examining the clean accuracy is a very
simple detection mechanism. Recently, several works have explored making trojans more evasive for
sophisticated detectors. Xu et al. (2021) train trojans to fool a meta-network detector in a black-box
setting, where the detector is not given full knowledge of the attack. Bagdasaryan & Shmatikov
(2021); Hong et al. (2021) train a trojaned network to fool the Neural Cleanse detector (Wang et al.,
2019), but their approach is not applicable to other detection methods. Goldwasser et al. (2022)
examine the problem from a cryptographic perspective and find that for one-layer networks it is
possible to construct trojans that are computationally infeasible to detect. Sahabandu et al. (2022)
train trojans and a meta-network detector in a min-max alternating fashion to be hard to distinguish
from clean networks, but only evaluate against one detector. Tang et al. (2021) propose a simple yet
effective technique called TaCT that increases evasiveness against two model-level detectors but is
only applicable for source-specific trojans.

We depart from prior work by developing a method for making trojans more evasive against a much
larger and more diverse array of detectors than was previously explored. Additionally, we are the
first to systematically evaluate reverse-engineering on a large scale, which allows us to make the
surprising discovery that trojans designed to evade detection are also harder for existing methods
to reverse-engineer. While most prior works are not directly comparable to our own, we provide

3

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NC | MNIST | Patch

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
ABS | CIFAR-10 | Patch

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
MNTD | CIFAR-100 | Patch

Standard Trojans
Evasive Trojans
Perfect Evasion

Figure 3: ROC curves for standard trojans and our evasive trojans across a variety of detectors and
datasets. In some cases, evasive trojans reduce detection performance to near-chance levels.

comparisons in Appendix B for completeness, finding that our evasive trojans outperform and in
some cases are complimentary with existing work.

3 BACKGROUND

Neural Trojans. A neural trojan is described by a trigger that can be applied to the inputs of a victim
network and a hidden behavior that the trigger should activate in the victim network. For simplicity,
we focus on classification networks and all-to-one attacks, where inserting a trigger reliably causes
the victim network to output a fixed class. Let C be the number of classes, and let f : X → RC be
a victim network that maps inputs x ∈ X to their posterior prediction. An attack specification is a
tuple (q, h, c), where q ∈ Q is a trojan trigger, h : X ×Q → X is a function that inserts triggers into
inputs, and c ∈ {1, . . . , C} is the target label of the attack. We also define distributions PX and PQ

over X and Q to model the data distribution and the distribution of triggers being considered by the
adversary. The associated random variables are X and Q.

Table 1: Attack success rate (ASR) and task accuracy
averaged across datasets and trained models. All val-
ues are percentages. Our method for making trojans
more evasive does not impact ASR or task accuracy.

ASR Accuracy
Clean Networks 88.1
Standard Trojans 98.9 88.0
Evasive Trojans 98.3 87.9

A trojan is successfully inserted if the attack
success rate (ASR) is high, where ASR is
defined as P(argmaxc′f(h(X, q))c′ = c), the
probability of a triggered input being classi-
fied as the target label. Other desirable proper-
ties of an attack include not affecting accuracy
on clean inputs and having high specificity,
where specificity refers to the ability of al-
ternate triggers q′ ∈ Q \ {q} to activate the
hidden behavior. If a trojan has low specificity
and the defender has some knowledge of Q,
then the trojan can be readily detected by sam-
pling triggers and analyzing their effect on f . Prior works consider a weaker notion of specificity
(Pang et al., 2022; Zhang et al., 2021; Ren Pang, 2019), where a trojan has high specificity if it does
not impact accuracy on clean examples. We extend this to include examples with unintended triggers.

Threat Model. We model trojan detection as an interaction between an attacker and defender. The
goal of the attacker is to insert a trojan into a victim network without being detected, and the goal of
the defender is to detect whether the network contains a trojan. The attacker randomly samples their
trigger and target label, and they may use any method for inserting the trojan.

Importantly, we assume that the defender has access to a dataset of clean and trojaned networks, where
the trojans are inserted using the same method as the attacker but with random triggers q ∼ Q and
target labels c ∈ {1, . . . , C}. In other words, the defender knows what the attacker’s distribution of tro-
jans looks like, but they do not know the specific trigger or target label used by the attacker. We make
this assumption because we are interested in studying trojans that are fundamentally hard to detect.

4

Under review as a conference paper at ICLR 2024

4 EVASIVE TROJANS

We develop a general method for inserting evasive trojans that can be applied to a variety of underlying
trojan attacks, referred to as “standard trojans”. Starting with a standard trojan attack defined by an
attack specification (q, h, c), the form of our loss for training evasive trojans is Ltask+Ltrojan+Levasion,
where Ltask is the task loss that increases accuracy on clean examples, Ltrojan is the trojan loss that
increases ASR, and Levasion is the evasion loss, which is designed to make trojans hard to detect.
As with standard trojans, the task loss and trojan loss are implemented via cross-entropy on clean
examples and examples with triggers inserted. The main modification for evasive trojans is the
evasion loss, which we describe below.

4.1 EVASION LOSS

We identify three high-level components for an evasion loss: distribution matching, specificity, and
randomization. The core of our approach is our distribution-matching loss, which enforces similarity
between the distribution of clean networks and trojaned networks. The specificity and randomization
losses augment this central loss by addressing two practical challenges with designing hard-to-detect
trojans for deep neural networks.

20 10 0 10 20

20

10

0

10

20

Distribution Matching t-SNE
Clean Networks
Trojan Networks

20 10 0 10 20

20

10

0

10

20

Randomization Loss Effect t-SNE
w/o rand loss
w/ rand loss

Figure 4: Top: Our distribution
matching loss successfully main-
tains a tight coupling between
evasive trojans θf and clean ini-
tializations θg and can thus be
interpreted as minimizing the 1-
Wasserstein distance. Bottom:
Omitting the randomization loss
leads to emergent coordination in
the differences between summary
statistics θ′f − θ′g , which cluster in
one direction. The randomization
loss makes coordination disappear.

Distribution Matching. A natural approach to making trojans
hard to detect is to ensure that across triggers, target labels, and
other sources of randomness, the distribution of the resulting
trojaned networks is similar to the distribution of clean networks.
One way of accomplishing this would be to use an adversarial
loss. However, for this to be effective one would need to train
a generator of networks or a diverse population of trojaned
networks in parallel, which is computationally prohibitive for
the attacker.

Rather than using an expensive adversarial loss, we propose a
loss inspired by the primal form of the 1-Wasserstein distance.
Let F and G be random variables corresponding to distributions
of trojaned and clean networks, respectively. The 1-Wasserstein
distance is defined as W1(F,G) = infΓ E(F,G)∼Γ [d(F,G)],
where Γ is a coupling between F and G—a joint distribution
with marginals equal to PF and PG—and d is a distance metric.
In general, finding the infimum over all couplings is challenging.
However, we can approximate the infimum by arbitrarily fixing
a coupling and maintaining it throughout training. If the dis-
tances remain small throughout training, it will remain a faithful
approximation.

In practice, this corresponds to first training a clean network
g ∼ G, then initializing the trojan network f from the parameters
of g and maintaining a small distance between the two networks
according to a distance metric d. The selection of d is an impor-
tant hyperparameter. In preliminary experiments, we found that a
simple combination of ℓ2 distance in parameter space and ℓ1 dis-
tance in the final unnormalized logits on clean examples was suf-
ficient to see a notable increase in evasiveness, so this is what we
use throughout the paper. In Appendix B, we explore alternative
distance metrics. Concretely, our distribution matching loss is

Ldist = λ1∥θf − θg∥2 + λ2EX [∥f ′(X)− g′(X)∥1] ,
where θf , θg are the parameters of f and g, the functions f ′, g′

output unnormalized logits, and λ1, λ2 are weights for adjusting
the strength of the two distances.

Specificity. Under our threat model, the defender has access to a training dataset of clean and tro-
janed models. In some cases, they may also have knowledge of the trigger distribution. If the attacker’s

5

Under review as a conference paper at ICLR 2024

Table 2: Detection results. Our evasive trojans are harder to detect across a wide range of detectors,
datasets, and attack specifications. From left to right, the detectors include two simple baselines (AB,
SB), four established backdoor scanning methods (NC, ABS, K-Arm, Pixel), and two meta-network
methods (Param, MNTD). Max and Avg denote the maximum and average across all detectors. All
values are percent AUROC, and lower is better for the attacker. For each detector, we bold the better
value in the “Average” row.

AB SB NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 53.0 82.4 90.1 67.5 60.3 74.2 64.0 80.5 97.3 71.5
CIFAR-10 59.7 100.0 90.0 86.0 71.0 99.0 70.3 99.7 100.0 84.5
CIFAR-100 59.6 99.9 92.5 71.4 61.0 97.6 73.5 98.1 99.9 81.7
GTSRB 50.8 74.8 82.0 58.6 73.9 64.3 74.2 80.0 85.5 69.8

Average 55.8 89.3 88.6 70.8 66.5 83.8 70.5 89.6 95.7 76.9

E
va

si
ve

Tr
oj

an
s MNIST 57.9 61.0 82.8 53.0 71.9 71.3 77.7 60.1 89.6 67.0

CIFAR-10 57.4 67.3 79.1 72.0 60.3 88.5 65.9 77.8 88.5 71.0
CIFAR-100 54.7 57.7 80.5 57.6 60.4 88.1 76.6 65.5 88.8 67.7
GTSRB 52.9 73.0 78.3 68.0 67.4 64.0 81.3 55.4 88.6 67.5

Average 55.7 64.8 80.2 62.7 65.0 78.0 75.4 64.7 88.8 68.3

trojans have low specificity and respond to many unintended triggers, they can become trivial to detect
by simply inserting random triggers into clean inputs and analyzing their effect on a given network f .

In experiments, we find that low specificity is a significant problem for trojan attacks on deep neural
networks. Thus, we add a loss encouraging high specificity. Let q ∈ Q be the trigger used for a
trojan. The general approach for a specificity loss involves inserting incorrect triggers q′ ∈ Q \ {q}
into training examples and enforcing normal behavior on those “negative examples”. Prior works
with specificity losses have used cross-entropy to the clean label on negative examples (Nguyen &
Tran, 2021). However, we find that a more effective loss is to match posteriors between the trojaned
network f and its clean initialization g on negative examples. Concretely, our specificity loss is

Lspecificity = EX,Q [cross-entropy(f(h(X,Q)), g(h(X,Q)))] ,

where h is the trigger insertion function.

Randomization. Empirically, we find that the distribution matching loss greatly increases
evasiveness against existing detectors. However, we identify a set of summary features of the
network parameters for which a simple logistic regression performs surprisingly well at detecting our
evasive trojans—even better than state-of-the-art detectors. We compare against this method, which
we call Param, in the main experiments. This suggests that the distribution matching loss induces
emergent coordination in the parameter space, such that independently trained evasive trojans acquire
similarities. To mitigate this problem, we propose a randomization loss Lrand = 1−cosine(θ′f−θ′g, r),
where θ′f , θ

′
g are the summary statistics for f and g, and r is a random direction fixed at the start

of training. This loss encourages the difference between θf and θg to not only be small, but to also
point in a random direction. Note that enforcing this loss directly in the parameter space is too strict,
so we use a feature space instead. For more details on our randomization loss, see Appendix A. In
Figure 4, we visualize the effect of the distribution matching and randomization losses.

5 EXPERIMENTS

To evaluate our approach for creating evasive trojans, we ask whether trojans with a fixed trigger
distribution can be made harder to detect for a variety of detectors, ranging from simple baselines to
state-of-the-art methods. We generate collections of clean networks, networks with standard trojans,
and networks with evasive trojans. We train these networks on MNIST, CIFAR-10, CIFAR-100,
and GTSRB (downsampled to 32x32). For each dataset, we generate 250 clean networks and 250
networks for each trojan attack, split evenly into training and test sets. The training sets of networks
are used for developing trojan detectors. These detectors are then evaluated on the test networks. In
total, we train over 6, 000 neural networks to evaluate our method.

6

Under review as a conference paper at ICLR 2024

Trojan Attacks. Following prior work in trojan detection, we consider the Patch and Blended
attacks (Gu et al., 2017; Chen et al., 2017). These two attacks are foundational attacks in the literature
and have become the standard for evaluating model-level trojan detectors. The patch attack uses
small patches with binary patterns as triggers, and the trigger insertion function stamps them onto
the input image. Each patch trigger consists of a pattern and a mask indicating where the pattern
should go in an input image. We sample patch triggers with masks of varying shapes and locations,
but the mask for each trojan is static once the location is initially decided. The blended attack is a
more subtle attack, using image-wide random noise as the trigger, which is blended into the input
image at a low magnitude. Both attacks are implemented by poisoning a small percentage of the
training data. We poison 1% of the training set and refer to these attacks as Standard Trojans.

1 2 3 4 5 6 7 8 9
Parameter-Space Distance

60

70

80

90

100

M
NT

D
AU

RO
C

(%
)

Distance Correlates With Detectability

Figure 5: By using different weights for our
evasion loss, we can control the distance
between trojaned networks and paired clean
networks. This distance correlates with the
detection performance of MNTD, indicating
that our evasion loss works as intended.

We train networks with Evasive Trojans using the
procedure described in Section 4. First, we train
a new dataset of clean networks for initializing the
evasive trojans. These are independent from the clean
networks used for training and evaluating detectors
and are only used for initializing and training evasive
trojans. Next, we train the evasive trojans using the
same patch and blended triggers that the standard
trojans use. The trigger distribution is fixed, so the
method for inserting trojans is the main independent
variable. In Table 1, we show that the attack success
rate is similar for standard trojans and our evasive
trojans.

Aside from the two standard trojan attacks used in the
model-level detection literature, numerous trojan at-
tacks have been proposed that design stealthy triggers
for evading input-level and dataset-level detectors. It
is currently unknown whether these attacks are eva-
sive for model-level detectors as well, so we evaluate
several representative attacks from this line of work
in Appendix B.

Network Architectures and Hyperparameters. For CIFAR-10 and CIFAR-100, we use 40-2
Wide ResNets (Zagoruyko & Komodakis, 2016) with a dropout rate of 0.3 (Srivastava et al., 2014).
For GTSRB, we use the SimpleViT Vision Transformer (Beyer et al., 2022) as implemented by
lucidrains. For MNIST, we use a simple 5-layer convnet with batch norm. For additional details, see
Appendix B.

Detectors. We evaluate our trojans against eight detection methods. We use an accuracy-based
detector (AB) and specificity-based detector (SB) as baselines along with a number of established
backdoor scanning methods, including Neural Cleanse (NC) (Wang et al., 2019), ABS (Liu et al.,
2019), K-Arm (Shen et al., 2021), and PixelBackdoor Pixel (Tao et al., 2022). We also evaluate
against two meta-network methods: MNTD (Xu et al., 2021) and the Param detector. For more
details on these methods, see Appendix B. The Max and Avg summary statistics are the maximum
and average AUROC obtained by the eight detectors on a given set of trojaned networks.

5.1 DETECTION

To measure the effectiveness of detectors, we use area under the ROC curve (AUROC) on test sets of
clean and trojaned networks. AUROC is a threshold-independent metric that can be interpreted as the
probability that a positive example has a higher detection score than a negative example (Fawcett,
2006), so 50% corresponds to random detection performance. For hand-crafted detectors that do not
leverage the training set, the AUROC can sometimes be below 50%. We find that this happens to a
small degree in some experiments. In these cases, we negate the detection score before computing
AUROC on the test set.

7

Under review as a conference paper at ICLR 2024

Table 3: Target label prediction results. Although we do not specifically design our evasive trojans to
be hard to reverse-engineer, we find that predicting their target labels is much harder. All values are
percent accuracy, and lower is better for the attacker. These are unexpected and concerning results
that highlight the need for more robust trojan detection and reverse-engineering methods.

NC ABS K-Arm Pixel Param MNTD Max Avg
St

an
da

rd
Tr

oj
an

s
MNIST 80.4 29.2 10.0 63.2 8.4 69.2 90.8 43.4
CIFAR-10 75.2 89.6 13.2 98.8 11.2 99.6 99.6 64.6
CIFAR-100 69.2 59.2 2.4 91.6 0.0 21.6 98.0 40.7
GTSRB 67.6 25.6 55.6 29.2 3.2 28.0 67.6 34.9

Average 73.1 50.9 20.3 70.7 5.7 54.6 89.0 45.9

E
va

si
ve

Tr
oj

an
s MNIST 60.4 20.8 1.6 65.6 8.8 43.2 77.2 39.7

CIFAR-10 8.0 60.4 3.2 77.2 11.2 50.0 77.2 41.0
CIFAR-100 2.0 18.4 0.0 82.0 0.8 4.8 82.0 27.1
GTSRB 2.4 48.0 34 32.0 1.6 11.2 48.0 25.3

Average 18.2 36.9 9.7 64.2 5.6 27.3 71.1 33.3

Main Results. Detection results are in Section 4.1, and sample ROC curves are in Figure 3. We
train standard and evasive trojans in eight settings and evaluate them on eight detectors. We average
results for each dataset across patch and blended attacks for brevity, and we show expanded results
in Appendix B. Average AUROC across all eight settings is lower for evasive trojans in seven out
of the eight detectors, with the exception of the Param detector. This indicates that there is some
leftover emergent coordination that the randomization loss did not eliminate. However, we show in
Appendix B that the randomization loss greatly improves robustness to the Param detector compared
to not including it. In some cases, evasiveness substantially improves. For example, average AUROC
for the MNTD detector drops by 25%. When looking at the most effective detector in each setting,
evasiveness also improves on average, with a 6.9 percent drop in AUROC. This shows that our evasive
trojans are harder to detect not just for a specific detector, but for a diverse range of detectors that use
different mechanisms.

To analyze the impact of our evasion loss on the results, we retrain MNIST evasive trojans with
different weights on the evasion loss. In Figure 5, we show the value of the parameter-space
component of Ldist induced by these increasing loss weight and the corresponding AUROC of MNTD.
We find that detectability smoothly decreases as the evasion loss increases, indicating that our evasion
loss works as intended. Additional results, ablations, and experiment details are in Appendix B.

5.2 REVERSE-ENGINEERING

Once a trojan has been detected, one might want to know what the intended functionality of
the trojan is or what causes it to activate. Reverse-engineering trojans is a nascent field with
few quantitative evaluations. However, since evasive trojans make detection more challenging, a
natural question to ask is whether they also make reverse-engineering harder. We operationalize
these reverse-engineering tasks as predicting the target label of a trojan attack and predicting the
segmentation mask of patch attacks. Since recovering trigger patterns is nontrivial (Guo et al., 2019),
we focus on reverse-engineering the trigger mask.

Target Label Prediction. We use accuracy as a metric for predicting target labels. Neural Cleanse,
ABS, K-Arm, and Pixel predict target labels as part of their detection pipeline, so no modification
is needed. For MNTD and Param, we replace the output layer and train them as classifiers with a
standard cross-entropy loss. Results are in Table 3. We average results for each dataset across patch
and blended attacks for brevity, and we show expanded results in Appendix B. Surprisingly, we
find that evasive trojans are not only harder to detect, but they also make predicting the target label
considerably harder. For each of the six classifiers, accuracy on evasive trojans is lower. Notably,
the average accuracies for Neural Cleanse and MNTD drop by 54.9 and 27.3 percentage points,
respectively. The accuracy of the best classifier in each setting drops by 17.9% on average.

Accuracy on evasive trojans drops to chance levels in several settings. For example, on CIFAR-10
standard trojans, MNTD reaches 99.2% accuracy, but for evasive trojans it drops to 11.2% accuracy

8

Under review as a conference paper at ICLR 2024

Table 4: Trigger synthesis results. All values are percent IoU, and lower is better for the attacker. We
show the performance of a random chance predictor (Rand) in gray in the leftmost column, which is
not factored into the Max and Average summary statistics. This corresponds to always predicting the
whole-image mask. Although IoU is low across the board, evasive trojans further reduce IoU. This
demonstrates the need to develop stronger and more robust trigger synthesis methods.

Rand NC Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 4.6 4.9 4.6 3.8 4.9 4.4
CIFAR-10 5.3 6.0 5.5 7.6 7.6 6.4
CIFAR-100 5.8 6.4 7.6 7.1 7.6 7.1
GTSRB 5.6 5.5 7.2 5.6 7.2 6.1

Average 5.3 5.7 6.2 6.0 6.8 6.0

E
va

si
ve

Tr
oj

an
s MNIST 5.3 5.7 5.9 5.2 5.9 5.6

CIFAR-10 5.6 5.7 4.1 4.8 5.7 4.9
CIFAR-100 5.4 5.9 4.8 5.2 5.9 5.3
GTSRB 5.6 5.6 7.2 4.0 7.2 5.6

Average 5.5 5.7 5.5 4.8 6.2 5.3

(random chance would be 10%). In some cases with the K-Arm classifier, accuracy is even reduced
to below chance levels, which could be used to create a separate classifier with performance slightly
above chance levels. Our evasion loss was only intended to make trojans harder to detect, and there is
no a priori reason for it to make target labels hard to predict. Consequently, this is a very unexpected
and concerning result for defense methods.

Trigger Synthesis. We use mean intersection over union (IoU) across trojaned networks as a metric
for predicting trigger masks. Neural Cleanse generates candidate trigger masks as part of its detection
pipeline, so no modification is needed. For MNTD and Param, we replace the output layer with
a 4-dimensional output that regresses to the top-left and bottom-right coordinates of trigger masks
in the training set. If a predicted bounding box is invalid, the predicted mask defaults to the entire
image. We also show the performance of a random chance predictor (Rand), which corresponds
to predicting the whole image as a segmentation mask. For a more informative evaluation, we
omit scanning methods that do not beat the random baseline, including K-Arm and Pixel, which
were tuned on a different trigger distribution than ours. In all trigger synthesis experiments, only
patch attacks are used. The trigger masks have varying shapes and locations, but they are fixed upon
sampling for a given trojan. Thus, the task is a well-defined binary segmentation task.

Results are in Table 7. In general, performance is quite poor across the trigger synthesis methods,
with IoU never exceeding 8%. Additionally, average IoU is very close for standard trojans and evasive
trojans on Neural Cleanse. However, average IoU for Param and MNTD is decreased by evasive
trojans. For MNTD, IoU drops from 6% to 4.8%, which is a 20% relative reduction. The IoU of the
most effective trigger synthesis method drops from 6.8% to 6.2% on average. These results indicate
that trigger synthesis is somewhat more difficult on evasive trojans. However, IoU values are close
to the floor in all cases, which demonstrates a need for more research on this important aspect of
reverse-engineering trojans.

6 CONCLUSION

We introduced a method for inserting evasive trojans in deep neural networks. Unlike standard trojan
attacks, our evasive trojans are specifically designed to be hard to detect. To evaluate our method, we
trained standard and evasive trojans on a large scale, creating training and test sets containing over
6, 000 neural networks. These networks were evaluated against a wide variety of trojan detectors,
including state-of-the-art detection algorithms and simple yet effective baselines. We found that our
evasive trojans are much harder to detect across a wide range of evaluation settings, in some cases
reducing detection performance to chance levels. Surprisingly, we also found that our evasive trojans
make reverse-engineering the target label and trigger of a trojan attack substantially harder. We hope
these results demonstrate the need for further research into robust mechanisms for monitoring and
detecting hidden functionality in deep neural networks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521, 2021.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statistics,
pp. 2938–2948. PMLR, 2020.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv preprint arXiv:2205.01580, 2022.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. arXiv preprint
arXiv:2106.09667, 2021.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In SafeAI@AAAI, 2019a.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, volume 2, pp. 8, 2019b.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In 2020 IEEE Security and Privacy Workshops (SPW), pp.
48–54. IEEE, 2020.

Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modifica-
tion. Advances in Neural Information Processing Systems, 34, 2021a.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11966–11976, 2021b.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pp. 113–125, 2019.

Arturo Geigel. Neural network trojan. J. Comput. Secur., 21:191–232, 2013.

Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models. arXiv preprint arXiv:2204.06974, 2022.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Xiaodong Song. Tabor: A highly accurate
approach to inspecting and restoring trojan backdoors in ai systems. ArXiv, abs/1908.01763, 2019.

Dan Hendrycks and Mantas Mazeika. X-risk analysis for ai research. arXiv preprint
arXiv:2206.05862, 2022.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
safety. arXiv preprint arXiv:2109.13916, 2021.

Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted backdoors in deep neural
networks. arXiv preprint arXiv:2106.04690, 2021.

Panagiota Kiourti, Wenchao Li, Anirban Roy, Karan Sikka, and Susmit Jha. Misa: Online defense of
trojaned models using misattributions. In Annual Computer Security Applications Conference, pp.
570–585, 2021.

10

Under review as a conference paper at ICLR 2024

Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus patterns:
Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 301–310, 2020.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Cong Liao, Haoti Zhong, Anna Cinzia Squicciarini, Sencun Zhu, and David J. Miller. Backdoor
embedding in convolutional neural network models via invisible perturbation. Proceedings of the
Tenth ACM Conference on Data and Application Security and Privacy, 2020.

Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. Abs:
Scanning neural networks for back-doors by artificial brain stimulation. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pp. 1265–1282, 2019.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack
on deep neural networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part X 16, pp. 182–199. Springer, 2020.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2021.

Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng, Xiapu Luo, and
Ting Wang. Trojanzoo: Towards unified, holistic, and practical evaluation of neural backdoors. In
2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pp. 684–702. IEEE,
2022.

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assump-
tion of latent separability for backdoor defenses. In The eleventh international conference on
learning representations, 2022.

Xinyang Zhang Shouling Ji Yevgeniy Vorobeychik Xiapu Luo Alex Liu Ting Wang Ren Pang,
Hua Shen. A tale of evil twins: Adversarial inputs versus poisoned models. arXiv preprint
arXiv:1911.01559, 2019.

Dinuka Sahabandu, Arezoo Rajabi, Luyao Niu, Bo Li, Bhaskar Ramasubramanian, and Radha
Poovendran. Game of trojans: A submodular byzantine approach. arXiv preprint arXiv:2207.05937,
2022.

Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiqing Ma,
and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimization. In
International Conference on Machine Learning, pp. 9525–9536. PMLR, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Te Juin Lester Tan and Reza Shokri. Bypassing backdoor detection algorithms in deep learning. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 175–183. IEEE, 2020.

Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis
of {DNNs} for robust backdoor contamination detection. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 1541–1558, 2021.

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13368–13378, 2022.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in
neural information processing systems, 31, 2018.

11

Under review as a conference paper at ICLR 2024

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. In European Conference on
Computer Vision, pp. 222–238. Springer, 2020.

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai trojans
using meta neural analysis. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 103–120.
IEEE, 2021.

Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. Regula sub-rosa: Latent backdoor
attacks on deep neural networks. ArXiv, abs/1905.10447, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87.

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. Trojaning language models for fun and
profit. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 179–197.
IEEE Computer Society, 2021.

Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank Goswami, and Chao Chen. Topological
detection of trojaned neural networks. Advances in Neural Information Processing Systems, 34,
2021.

12

Under review as a conference paper at ICLR 2024

A EVASIVE TROJANS DETAILS

Randomization Loss. The randomization loss minimizes the cosine distance between the network
parameters and a random direction. However, using the randomization loss in the raw parameter
space is far too restrictive and effectively amounts to adding noise to the parameters. Thus, we use a
space of differentiable summary features of the parameters instead. We concatenate the mean and
standard deviation of each parameter vector obtained via the PyTorch parameters enumerator, which
forms a single vector summarizing the network parameters.

For MNIST networks, we found that even this loss was too restrictive and hard to satisfy, perhaps
due to the smaller size of the networks. Thus, we use an alternate randomization loss for MNIST
networks. Let θ′f be summary statistics of the trojaned model parameters, let θ′g be summary statistics
of the clean initialization, and let r be a binary random vector. The alternate randomization loss is

Lrand = ∥min(θ′f − θ′g,0)⊙ r∥1 + ∥min(θ′g − θ′f ,0)⊙ (1− r)∥1,

where the min function outputs the elementwise minimum. This loss allows each summary statistic
in the trojaned network to either be greater or smaller than the corresponding summary statistic in the
clean initialization, where the direction of allowed change is selected by the binary random vector.
This can be considered a softer, axis-aligned version of the original randomization loss.

Method Hyperparameters. Our evasive trojans have several hyperparameters. The two compo-
nents of the distribution matching loss and the randomization loss each receive a separate weight.
Let these weights be denoted by λ1, λ2, and λ3, respectively. We use different loss weights for
different experiments, and the weights are coarsely tuned primarily to ensure that ASR is high
enough. Empirically, we find that increasing the weights for these losses smoothly decreases ASR and
eventually the task accuracy. This is because the evasion loss is in direct conflict with the trojan loss,
so there is a balancing act between satisfying the evasion loss and maintaining high ASR. Concretely,
we use the following settings of the loss weights:

• For blended attacks on CIFAR-10, λ1 = 0.02, λ2 = 0.02, λ3 = 0.00005

• For blended attacks on CIFAR-100, λ1 = 0.01, λ2 = 0.02, λ3 = 0.0001

• For blended attacks on GTSRB, λ1 = 0.005, λ2 = 0.01, λ3 = 0.00001

• For patch attacks on GTSRB, λ1 = 0.02, λ2 = 0.02, λ3 = 0.0001

• For patch attacks on CIFAR-10, λ1 = 0.02, λ2 = 0.02, λ3 = 0.00005

• For all other experimental settings, λ1 = 0.1, λ2 = 0.05, λ3 = 0.0001

We tune these weights by training small numbers of individual networks and monitoring the evasion
loss components and ASR. Importantly, we do not tune them specifically to obtain better results in
the main experiments except in preliminary experiments meant to identify appropriate ranges for
the losses, which we performed in a small number of settings. In a few experimental settings, we
observed that there was a long tail of networks with low ASR. We hypothesized that this was due
to the randomization loss picking a challenging direction. Thus, we retrained all networks below a
cutoff ASR using new random directions, which solved the problem. In general, we find that our
evasion loss is fairly robust to selections of loss weights and easy to use once the appropriate ranges
for the weights are identified. The specificity loss is implemented by inserting incorrect triggers into
16 examples for blended attacks and 10 examples for patch attacks. These numbers were selected
early during preliminary experiments.

Other Details. In preliminary experiments, we found that several implementation details were
important for increasing the evasiveness of our trojans. Namely, we train all evasive trojans without
dropout. Clean initializations are trained with dropout, but during the second stage of training we
turn dropout off. This is because dropout introduces uncorrelated randomness in the activations of the
trojaned network and its clean initialization, which makes satisfying the logit matching component
of Ldist challenging. For similar reasons, we also switch batch norm layers in clean initialization
networks to eval mode throughout the second stage of training evasive trojans.

To improve performance on blended attacks, we found that it was important to process the inputs for
the clean, trojan, and specificity losses together in a single forward pass. This is because networks

13

Under review as a conference paper at ICLR 2024

that use batch norm are able to “cheat” by aggregating information across the batch. Empirically,
this issue arose most prominently with blended attacks. Concatenating the inputs together fixes the
problem.

B ADDITIONAL RESULTS

Description of Detectors.

• The accuracy-based detector (AB) simply uses the clean accuracy of a network as a score for
detection. If a trojan insertion method consistently decreases clean accuracy, it can become trivial
to detect, so this is an important baseline detector.

• The specificity-based detector (SB) assumes that the defender has access to a small set of k triggers
sampled from the same distribution of triggers that are used by the trojaned networks in question.
This detector inserts each of the k triggers into images from the validation set and computes the
entropy of the average posterior. The k entropy values are then averaged, the negative of which is
used as the detection score. For trojans with low specificity, the entropy of the average posterior for
triggered inputs will be lower than for clean networks, which enables detection.

• Neural Cleanse (NC) iterates over possible target labels for an attack and directly searches for
candidate triggers using gradient-based optimization (Wang et al., 2019). We use a simplified
version of Neural Cleanse that we found obtains stronger detection performance. Namely, in
preliminary experiments we found that early stopping did not improve results, so we optimize
for a fixed number of gradient steps. Additionally, the original Neural Cleanse method uses an
anomaly index based off of the ℓ1 norms of the optimized trigger masks for detection, which
enables selecting a principled threshold. However, we find that simply using the raw ℓ1 norms
results in significantly better detection, so we switch to this simpler score for Neural Cleanse. This
is enabled by our large-scale evaluations on datasets of clean and trojaned networks, which allows
using threshold-independent metrics and any real-valued detection score. For trigger synthesis, we
predict segmentation masks by thresholding the optimized masks with a threshold of 0.01, tuned
manually to maximize average IoU for both standard and evasive trojans.

• ABS monitors the behavior of neurons while perturbing the input to identify candidate compromised
neurons. These candidate neurons are used to generate a trojan trigger similarly to Neural Cleanse,
and the maximum attack success rate across candidates is used as a detection score (Liu et al.,
2019). We use the original PyTorch implementation provided by the authors for TrojAI Round 1.
For trigger synthesis, we predict segmentation masks with the threshold of 0.01 used in the original
code.

• K-Arm recasts trigger optimization as a multi-armed bandit problem, spending optimization steps
on the most promising potential target labels found so far while maintaining exploration of other
potential target labels. This identifies the most promising target labels in a more efficient manner
than the original Neural Cleanse scanning method (Shen et al., 2021). We use the original PyTorch
implementation provided by the authors.

• PixelBackdoor (Pixel) is a trigger optimization method like Neural Cleanse and K-Arm. It uses
a loss that is easier to optimize than the original Neural Cleanse loss (Tao et al., 2022). We use
the original PyTorch implementation provided by the authors. For trigger synthesis, we predict
segmentation masks by thresholding the optimized patterns with a threshold of 0.01, tuned manually
to maximize average IoU for both standard and evasive trojans.

• MNTD consists of a set of query inputs, which are passed through the network in question. The
outputs on these queries are then concatenated and passed to a shallow classifier, which outputs a
detection score. The queries and shallow classifier are optimized on the training set of clean and
trojaned networks (Xu et al., 2021). MNTD is an example of a broad class of techniques called
meta-networks: neural networks trained to interpret or monitor other neural networks.

• The Param detector is a logistic regressor with a single linear layer that takes summary statistic
features of the raw network parameters as its input. For summary statistics, we concatenate the
min, max, mean, median, and standard deviation of each parameter vector into a single feature
vector summarizing the raw parameters of the network. We develop this detector to highlight the
emergent coordination issue described in Section 4, which motivates our randomization loss.

14

Under review as a conference paper at ICLR 2024

Training Hyperparamters. We train all CIFAR-10, CIFAR-100, and GTSRB networks for 50
epochs with a batch size of 128. We train all MNIST networks for 10 epochs with a batch size of
256 except for evasive trojans, which we found benefited from 20 epochs of training after initializing
from clean networks.

We train all CIFAR-10 and CIFAR-100 networks using SGD with learning rate 0.1, weight decay
of 5 × 10−4, and Nesterov momentum of 0.9. We train all MNIST and GTSRB networks using
Adam with a weight decay of 1× 10−5 and other hyperparameters at default settings. All training
hyperparameters were chosen early in preliminary experiments and received minimal tuning.

Expanded Results Tables. In Table 5, we show the full detection results. When looking at the
patch and blended attacks separately, we observe that blended attacks are detected very easily by
Neural Cleanse, and our evasion loss is unable to reduce the efficacy of Neural Cleanse in these
settings. This is surprising, because Neural Cleanse is designed specifically to detect patch attacks.
However, our evasion loss does make blended attacks harder to detect for other methods, including
MNTD and in some settings ABS. As shown in Figure 2, although blended attacks tend to be easier
to detect than patch attacks, evasive trojans reduce the efficacy of the average detector across all four
datasets.

In Table 6, we show the full target label prediction results. For this task, Neural Cleanse also performs
unexpectedly well on blended attacks for standard trojans. However, in this case our evasive trojans
greatly reduce the efficacy of Neural Cleanse.

B.1 ABLATIONS AND ANALYSIS

Our evasive trojan training procedure has several distinct components. Here, we examine what
happens when certain components are removed or modified.

Randomization Loss. We include the randomization loss to mitigate emergent coordination across
independently trained evasive trojans. This coordination occurs when only using the distribution-
matching and specificity losses, and it enables strong detection performance with a simple detector
that performs a logistic regression on summary statistics of the parameters (Param).

In Table 9, we compare evasive trojans with and without the randomization loss. When the ran-
domization loss is removed, the Param and MNTD detectors become much stronger, while average
AUROC for the other detectors remains relatively unchanged. In several cases for trojans without
the randomization loss, the Param detector obtains 100% AUROC. Consequently, including the
randomization loss substantially reduces the AUROC of the best detector from an average of 91.5%
to 84.5%. These results demonstrate that the randomization loss is an important component of our
method for training evasive trojans.

Specificity Loss. We include the specificity loss to prevent the issue of low specificity, where
unintended triggers can activate the trojan. If a trojan has low specificity, then a defender with
knowledge of the distribution of triggers can easily detect the trojan by checking whether the known
triggers cause unusual behavior. Our specificity-based detector (Spec) is based on this intuition.
To validate the importance of the specificity loss, we retrain the CIFAR-10 blended evasive trojans
without the specificity loss. The specificity detector obtains 100% AUROC on these networks
compared to 67.2% AUROC when the specificity loss is used. This indicates that the specificity loss
has the desired effect and is an important component of our method for training evasive trojans.

Logit Matching Loss. The logit matching loss is one of the two components of our distribution
matching loss. To isolate the impact of this loss, we train retrain the CIFAR-10 patch evasive trojans
without the logit matching loss. The MNTD detector obtains 70.8% AUROC on these networks
compared to 62.3% with the logit matching loss and 99.4% for standard trojans. This shows that the
logit matching loss is an important component of our evasive trojans, but it only accounts for part of
the increased evasiveness.

Different Distance Metrics. Since the distance metric is an important component of our distribution-
matching loss, an interesting question is what happens when the metric is changed. Here, we explore

15

Under review as a conference paper at ICLR 2024

adding an ℓ1 distance on the penultimate features to the distance metric. Concretely, we add
Lpenultimate = λpEX [∥fp(X)− gp(X)∥1], where gp and fp are functions that output the penultimate
features of the respective networks and λp is a scalar loss weight. We set λp to equal 0.1 and retrain
the MNIST evasive trojans using the modified distance metric. As before, we train 500 models,
split evenly into patch and blended triggers and divided into training and test sets. We evaluate
these trojaned models against baseline detectors and show the results in Table 10. We find that that
evasiveness against Neural Cleanse increases, but evasiveness against MNTD and Param decreases.
This demonstrates that the distance metric has a large effect on evasiveness, and designing good
distance metrics that improve evasiveness across many diverse detectors is nontrivial.

Impact of Evasion Loss on Detector Performance. Here, we provide an expanded discussion of
Figure 5. Two natural questions following our main results are (1) whether our evasion loss actually
reduces the distance in parameter and logit space as intended and (2) whether this correlates with
improved evasiveness. To more precisely evaluate the impact of our evasion loss, we retrain our
evasive trojans with patch triggers on MNIST using different weights on the evasion loss. For each
training run, we multiply all components of the evasion loss by a fixed scalar ranging from 1 (original
evasion loss) to 0 (no evasion loss, but still initializing from a clean network). In particular, the loss
weights are 1, 0.01, 0.001, and 0. The corresponding distance values in parameter space are 0.7,
2.0, 6.5, and 8.8. In logit space, the distance values are 2.2, 2.5, 5.9, and 33.9, respectively. This
shows that our evasion loss is optimized successfully. To see whether this translates into changes in
detectability, we compute the percent AUROC for MNTD at each of these loss weights. In Figure 5,
we show the results of this experiment by plotting distance in parameter-space on the x-axis and
MNTD AUROC on the y-axis. There is a clear correlation: larger parameter distances result in higher
detection performance. This suggests that evasiveness could be further improved by developing
approaches that allow one to reduce our current distance metric even further.

Effect of Summary Features in Param Detector. To compute the summary features used in
the Param detector, we iterate through each parameter vector in the network and concatenate their
standard deviation, min, max, mean, median, and skew statistics. This gives summary statistic vectors
of length 580 for CIFAR networks, 330 for GTSRB networks, and 90 for MNIST networks. To
evaluate the robustness of our trojans to Param detectors using different summary statistics, we
repeated the experiments using random projections from the full parameter vectors down to the same
reduced dimensionality (580, 330, 90). The AUROC of this modified Param detector is 50.3% on
average, with a maximum of 54.5% across all experimental settings. By contrast, the average AUROC
of the Param detector using the original summary statistics is 75.4% on our evasive trojans. This
shows that the summary statistics we use in the paper are a strong baseline, and our evasive trojans
are robust to other summary statistics.

B.2 ADDITIONAL ATTACK COMPARISONS

Here, we compare to other trojan attacks that are designed with evasiveness in mind. In each section,
we clarify how these prior attacks differ from our own.

Blind Backdoors Neural Cleanse Evasion Method. Bagdasaryan & Shmatikov (2021) train
trojans specifically to evade Neural Cleanse. Namely, a Neural Cleanse search process is carried out
simultaneously with model training in a two-phase update approach. We implement this method and
train a dataset of 500 MNIST models to evaluate its evasiveness. As with the standard and evasive
trojans, we evenly split these models into patch and blended triggers and divide them into training
and test sets.

With MNTD, the AUROC for patch and blended trojans is 72.8% and 98.7%, respectively. With
Neural Cleanse, the AUROC for patch and blended trojans is 77.3% and 98.9%, respectively. With
the Param detector, the AUROC for patch and blended trojans is 100.0% in both cases. Compared
to the performance of Neural Cleanse on standard trojans, this is slightly better in both cases. This
shows that their evasion method does work. However, MNTD and Param still have high performances
on their trojans (in the case of Param, this reaches perfect detection performance). This shows that
training trojans to be evasive for a specific detector may not generalize to all detectors. By contrast,
our evasive trojans do generalize to reducing the detection performance of a broad range of detectors
without specifically training against them.

16

Under review as a conference paper at ICLR 2024

Stealthy Trigger Attacks. As we note in the related work, there have been numerous prior works
exploring how to make trojan triggers more stealthy, which we distinguish from making trojans
themselves more evasive. These methods are specifically designed to evade dataset-level and input-
level detectors like Activation Clustering (Chen et al., 2019a), Spectral Signatures (Tran et al., 2018),
STRIP (Gao et al., 2019), and SentiNet (Chou et al., 2020). They do so by making inputs with
triggers appear more similar to inputs without triggers (either in the input-space or intermediate
features). However, these methods are not designed to evade model-level detectors like MNTD
or ABS and are rarely evaluated on these detectors. An interesting question is whether the strong
evasiveness of this class of trojans on dataset-level and input-level detectors transfers to evasiveness
on model-level detectors. To investigate this, we evaluate two representative attacks from this line
of work: WaNet (Nguyen & Tran, 2021) and LIRA (Doan et al., 2021b). WaNet uses subtle spatial
warping of the input as a trigger, which improves evasiveness against input-level detectors like STRIP.
LIRA uses a learned input-dependent perturbation function to generate trojan triggers, which allows
using imperceptible triggers with a very low perturbation magnitude.

First, we evaluate model-level detectors against the WaNet attack. We train 250 trojaned models
on CIFAR-10 using this attack, and we evaluate against several model-level detectors. The Neural
Cleanse, MNTD, and Param detectors obtain AUROC scores of 99.5%, 100.0%, and 99.98%,
respectively. Thus, WaNet is very easy to detect with model-level detectors. By contrast, we find that
input-level detection with STRIP (Gao et al., 2019) on five of the WaNet models only obtains 63.7%
AUROC for identifying trigger-embedded inputs in the test set. This illustrates how input-level and
model-level detection are entirely different problems. The result on Neural Cleanse runs counter to
Neural Cleanse experiments in the WaNet paper. We are not certain what the cause for this discrepancy
is. However, one possible explanation is that we use a custom PyTorch implementation of Neural
Cleanse that uses a different detection score due to our evaluations being threshold-independent.
Our implementation of Neural Cleanse obtains very high AUROC on blended triggers, which is
unexpected, since Neural Cleanse was not designed to work on whole-image blended triggers. This
could partially explain why our Neural Cleanse implementation also works for whole-image warping
triggers. We tried out different hyperparameters for the warping field to see if this would affect
evasiveness, but this did not change the results.

Next, we evaluate model-level detectors against the LIRA attack. We train 250 trojaned models on
MNIST using this attack, and we evaluate against several model-level detectors. The PixelBackdoor,
ABS, and MNTD detectors obtain AUROC scores of 100%, 98.3%, and 97.1%, respectively. Thus,
LIRA is also very easy to detect with model-level detectors.

These results indicate that methods designed for evasiveness against input-level detectors do not
necessarily generalize to being evasive for model-level detectors. We hope future work on designing
stealthy trigger attacks will take this into account and consider designing attacks to evade model-level
detectors as well.

Targeted Contamination Attack (TaCT). In our main experiments, we focus on one-to-all attacks.
However, one-to-one attacks, also known as source-specific attacks, are an important setting as well.
In these attacks, the hidden behavior is only trained to activate on one specific source class. The
target class is selected from among the other classes. Tang et al. (2021) find that in this source-
specific setting, one can greatly improve evasiveness against Neural Cleanse and ABS with a simple
modification to the standard data-poisoning attack. Instead of just inserting poisoned examples in
the source class, they also insert “cover examples”, which contain the trigger but are labeled with
their original clean label. These cover examples are inserted for all classes besides the source class,
which can be considered a form of specificity loss for the source-specific setting. They name this
method the Targeted Contamination Attack (TaCT). Note that TaCT is not applicable in our main
experiments, which focus on all-to-one attacks.

TaCT is a method for training evasive trojans in the source-specific setting, and there is some evidence
in the original paper that it generalizes across various model-level detectors, as they evaluate it on
Neural Cleanse and ABS. To compare our evasive trojans to TaCT, we adapt our standard and evasive
trojans for the source-specific setting. This involves only inserting triggers for examples from the
source class. We reimplement TaCT, and we combine TaCT with our evasive trojans by adding cover
examples to each training batch. Due to time constraints, we omit the K-Arm and Pixel detectors from
the evaluation. We train 500 trojaned MNIST models for each setting and show results in Table 11.

17

Under review as a conference paper at ICLR 2024

Interestingly, we find that standard trojans are far harder to detect in the source-specific setting
than in the all-to-one setting. On top of this naturally more difficult detection setting, TaCT greatly
improves evasiveness compared to the standard trojans. In fact, it is comparable to our evasive trojans.
However, when we combine TaCT with our evasion loss, we obtain the best results. Averaging across
all detectors and across patch and blended attacks, the percent AUROC values for standard trojans,
TaCT, evasive trojans, and evasive trojans with TaCT are 66.9, 61.4, 59.9, and 57.2. This shows that
TaCT and our evasion loss are complimentary, and in settings where TaCT is applicable we strongly
recommend evaluating detectors against it.

18

Under review as a conference paper at ICLR 2024

AB SB NC ABS K-Arm Pixel Param MNTD Max Avg
St

an
da

rd
Tr

oj
an

s MNIST P 53.0 64.8 80.2 51.8 68.3 94.6 55.4 69.3 94.6 67.2
B 53.0 100.0 100.0 83.1 52.2 53.9 72.6 91.7 100.0 75.8

CIFAR-10 P 55.8 100.0 80.0 90.0 52.9 98.0 57.6 99.4 100.0 79.2
B 63.6 100.0 100.0 82.0 89.0 100.0 83.0 100.0 100.0 89.7

CIFAR-100 P 57.9 99.9 84.9 70.8 58.0 97.8 61.8 96.5 99.9 78.4
B 61.3 100.0 100.0 72.0 63.9 97.3 85.2 99.8 100.0 84.9

GTSRB P 50.3 71.0 64.0 56.2 59.9 57.3 48.5 63.3 71.0 58.8
B 51.4 78.5 100.0 60.9 88.0 71.3 99.9 96.8 100.0 80.9

Average 55.8 89.3 88.6 70.8 66.5 83.8 70.5 89.6 95.7 76.9

E
va

si
ve

Tr
oj

an
s MNIST P 55.6 54.3 66.5 51.1 59.8 80.0 70.6 53.0 80.0 61.4

B 60.2 67.8 99.2 54.9 84.0 62.6 84.8 67.2 99.2 72.6

CIFAR-10 P 61.3 67.4 58.1 60.0 51.1 76.9 52.2 62.3 76.9 61.2
B 53.5 67.2 100.0 84.0 69.5 100.0 79.7 93.3 100.0 80.9

CIFAR-100 P 54.9 50.4 61.1 50.7 50.5 77.5 61.6 55.0 77.5 57.7
B 54.4 65.1 100.0 64.6 70.3 98.7 91.7 76.1 100.0 77.6

GTSRB P 50.8 73.7 56.6 54.8 57.0 52.5 77.1 48.7 77.1 58.9
B 55.0 72.3 100.0 81.3 77.9 75.4 85.5 62.0 100.0 76.2

Average 55.7 64.8 80.2 62.7 65.0 78.0 75.4 64.7 88.8 68.3

Table 5: Expanded detection results. P and B stand for Patch and Blended. Our evasive trojans are
harder to detect across a wide range of detectors, datasets, and attack specifications. All values are
percent AUROC, and lower is better for the attacker. For each detector, we bold the better value in
the “Average” row.

NC ABS K-Arm Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s MNIST Patch 60.8 16.8 10.4 81.6 8.0 40.0 81.6 36.3

Blended 100.0 41.6 9.6 44.8 8.8 98.4 100.0 50.5

CIFAR-10 Patch 52.0 94.4 9.6 97.6 11.2 99.2 99.2 60.7
Blended 98.4 84.8 16.8 100 11.2 100.0 100.0 68.5

CIFAR-100 Patch 38.4 70.4 1.6 96.0 0.0 28.8 96.0 39.2
Blended 100.0 48.0 3.2 87.2 0.0 14.4 100.0 42.1

GTSRB Patch 35.2 19.2 11.2 8.8 3.2 9.6 35.2 14.5
Blended 100.0 32.0 100 49.6 3.2 46.4 100.0 55.2

Average 73.1 50.9 20.3 70.7 5.7 54.6 89.0 45.9

E
va

si
ve

Tr
oj

an
s MNIST Patch 28.8 13.6 0 62.4 8.0 17.6 62.4 27.5

Blended 92.0 28.0 3.2 68.8 9.6 68.8 92.0 51.8

CIFAR-10 Patch 8.8 40.0 1.6 54.4 12.8 11.2 54.4 26.2
Blended 7.2 80.8 4.8 100 9.6 88.8 100.0 55.9

CIFAR-100 Patch 1.6 2.4 0.0 66.4 0.0 0.8 66.4 19.7
Blended 2.4 34.4 0 97.6 1.6 8.8 97.6 34.6

GTSRB Patch 1.6 20.0 6.4 4 1.6 3.2 20.0 8.1
Blended 3.2 76.0 61.6 60 1.6 19.2 76.0 42.5

Average 18.2 36.9 9.7 64.2 5.6 27.3 71.1 33.3

Table 6: Expanded target label prediction results. Although we do not specifically design our evasive
trojans to be hard to reverse-engineer, we find that predicting their target labels is much harder. All
values are percent accuracy, and lower is better for the attacker. These are unexpected and concerning
results that highlight the need for more robust trojan detection and reverse-engineering methods.

19

Under review as a conference paper at ICLR 2024

Rand NC ABS Pixel Param MNTD Max Avg

St
an

da
rd

Tr
oj

an
s

MNIST 4.6 4.9 4.5 1.25 4.6 3.8 4.9 3.8
CIFAR-10 5.3 6.0 4.6 1.09 5.5 7.6 7.6 5.0
CIFAR-100 5.8 6.4 5.0 1.4 7.6 7.1 7.6 5.5
GTSRB 5.6 5.5 6.5 0.28 7.2 5.6 7.2 5.0

Average 5.3 5.7 5.2 1.0 6.2 6.0 6.8 4.8

E
va

si
ve

Tr
oj

an
s MNIST 5.3 5.7 5.3 2.14 5.9 5.2 5.9 4.8

CIFAR-10 5.6 5.7 4.3 1.44 4.1 4.8 5.7 4.1
CIFAR-100 5.4 5.9 5.6 1.8 4.8 5.2 5.9 4.7
GTSRB 5.6 5.6 6.0 0.19 7.2 4.0 7.2 4.6

Average 5.5 5.7 5.3 1.4 5.5 4.8 6.2 4.5

Table 7: Trigger synthesis results. All values are percent IoU, and lower is better for the attacker. We
show the performance of a random chance predictor (Rand) in gray in the leftmost column. This
corresponds to always predicting the whole-image mask. Several methods obtain lower IoU than this
baseline and are thus omitted from the table in the main paper. Although IoU is low across the board,
evasive trojans further reduce IoU for the most effective methods. This demonstrates the need to
develop stronger and more robust trigger synthesis methods.

ASR Accuracy

C
le

an
N

et
w

or
ks MNIST 99.3

CIFAR-
10

94.0

CIFAR-
100

74.6

GTSRB 84.7

Average 88.1

St
an

da
rd

Tr
oj

an
s MNIST Patch 100.0 99.3

Blended 100.0 99.3

CIFAR-10 Patch 100.0 93.9
Blended 99.5 93.9

CIFAR-100 Patch 99.8 74.5
Blended 97.5 74.5

GTSRB Patch 99.8 85.5
Blended 94.6 83.5

Average 98.9 88.0

E
va

si
ve

Tr
oj

an
s MNIST Patch 99.5 99.3

Blended 99.2 99.2

CIFAR-10 Patch 100.0 93.9
Blended 95.8 94.0

CIFAR-100 Patch 99.9 74.6
Blended 97.4 74.7

GTSRB Patch 96.4 84.4
Blended 97.8 83.5

Average 98.3 87.9

Table 8: Attack success rate (ASR) and task accuracy in all experimental settings. Each value is
averaged across 125 neural networks in the validation set for the indicated experimental setting. All
values are percentages.

20

Under review as a conference paper at ICLR 2024

AB SB NC ABS Param MNTD Max Avg

W
ith

ou
tL

ra
nd

MNIST Patch 56.5 53.4 63.1 53.6 67.7 60.9 67.7 59.2
Blended 58.4 54.1 97.3 61.4 93.6 74.4 97.3 73.2

CIFAR-10 Patch 72.8 71.1 54.7 61.3 85.7 88.6 88.6 72.4
Blended 57.4 66.7 100.0 90.8 100.0 91.3 100.0 84.4

CIFAR-100 Patch 74.1 98.8 55.7 54.1 100.0 74.9 100.0 76.3
Blended 50.0 72.2 100.0 74.1 100.0 94.5 100.0 81.8

GTSRB Patch 51.4 62.6 54.5 53.0 78.2 49.5 78.2 58.2
Blended 52.2 55.4 100.0 84.5 93.5 74.8 100.0 76.7

Average 59.1 66.8 78.2 66.6 89.8 76.1 91.5 72.8

W
ith

L
ra

nd

MNIST Patch 55.6 54.3 66.5 51.1 70.6 53.0 70.6 58.5
Blended 60.2 67.8 99.2 54.9 84.8 67.2 99.2 72.4

CIFAR-10 Patch 61.3 67.4 58.1 60.0 52.2 62.3 67.4 60.2
Blended 53.5 67.2 100.0 84.0 79.7 93.3 100.0 79.6

CIFAR-100 Patch 54.9 50.4 61.1 50.7 61.6 55.0 61.6 55.6
Blended 54.4 65.1 100.0 64.6 91.7 76.1 100.0 75.3

GTSRB Patch 50.8 73.7 56.6 54.8 77.1 48.7 77.1 60.3
Blended 55.0 72.3 100.0 81.3 85.5 62.0 100.0 76.0

Average 55.7 64.8 80.2 62.7 75.4 64.7 84.5 67.2

Table 9: Randomization loss ablation. Without the randomization loss, the Param detector is especially
strong, leading to a high maximum AUROC across all detectors. Adding the randomization loss
greatly reduces AUROC for MNTD and Param detectors. For the other detectors, average AUROC
remains similar. All values are percent AUROC, and lower is better for the attacker.

NC Param MNTD

With Lpenultimate
Patch 58.8 100 60.5
Blended 91.6 100 70.9

Without Lpenultimate
Patch 66.5 70.6 53.0
Blended 99.2 84.8 67.2

Table 10: Evaluation of using an ℓ1 distance on the penultimate features as an additional component
of the distance metric. Compared to the original distance metric, this improves evasiveness against
Neural Cleanse (lower AUROC) but reduces evasiveness against MNTD and Param (higher AUROC).
All values are percent AUROC, and lower is better for the attacker.

Acc Spec NC ABS Param MNTD

Standard Patch 53.6 63.1 65.5 52.3 46.3 59.2
Blended 54.5 99.8 90.3 69.8 66.3 82.3

TaCT Patch 50.8 58.3 50.9 51.6 52.7 54.4
Blended 50.6 78.8 68.4 61.7 64.6 94.5

Evasive Patch 52.8 55.4 57.2 51.7 58.2 50.9
Blended 55.6 71.2 72.8 53.8 65.3 74.4

Evasive+TaCT Patch 51.7 51.9 50.1 51.5 57.7 47.1
Blended 55.7 69.3 66.0 51.0 64.5 69.6

Table 11: Results on source-specific trojans. TaCT obtains highly general evasion, although our
evasive trojans are slightly better on average. Combining the two methods yields even greater evasion,
demonstrating that TaCT is complimentary with our approach. All values are percent AUROC, and
lower is better for the attacker.

21

	Introduction
	Related Work
	Background
	Evasive Trojans
	Evasion Loss

	Experiments
	Detection
	Reverse-Engineering

	Conclusion
	Evasive Trojans Details
	Additional Results
	Ablations and Analysis
	Additional Attack Comparisons

