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ABSTRACT

Approximate second-order optimizers are increasingly showing promise in accel-
erating training of deep learning models, yet their practical performance depends
critically on how preconditioning is applied. Two predominant approaches to
preconditioning are based on (1) Adam, which leverages statistics of the current
gradient, and (2) Gauss-Newton (GN) methods, which use approximations to the
Fisher information matrix (often raised to a power). This work compares these
approaches through the lens of two key factors: the choice of basis in the precondi-
tioner and the impact of gradient noise from mini-batching. To gain insights, we
analyze these optimizers on quadratic objectives and logistic regression under all
four quadrants. We show that regardless of the basis, there exist instances where
Adam outperforms both GN−1 and GN−1/2 in full-batch settings. Conversely, in
the stochastic regime, Adam behaves similarly to GN−1/2 under a Gaussian data
assumption. These theoretical results are supported by empirical studies on both
convex and non-convex objectives.

1 INTRODUCTION

Modern deep learning has shifted away from vanilla (stochastic) gradient descent toward adaptive first-
order optimizers with preconditioned updates of the form θt+1 = θt−ηPgt, where the preconditioner
P ∈ Rd×d is often taken to be diagonal. Popular methods such as Adam (Kingma & Ba, 2014),
RMSProp (Tieleman & Hinton, 2012), Adafactor (Shazeer & Stern, 2018), SignSGD (Bernstein
et al., 2018), and Lion (Chen et al., 2023) all fall into this category. Recent work has shown that
these optimizers perform comparably in practice (Zhao et al., 2024), prompting a natural question:
what additional gains might be possible by incorporating second-order information into the diagonal
preconditioner?

Second-order optimizers offer one answer to this question. Although directly using the inverse
Hessian, as in Newton’s method, is typically impractical at scale, a variety of scaling-friendly
approximations have been proposed that are both efficient and theoretically grounded (Martens &
Grosse, 2015; Gupta et al., 2018; Liu et al., 2023; Vyas et al., 2024). These methods can be viewed as
first rotating the gradient into a particular basis—often derived from an approximation to the Hessian
or Fisher information matrix—and then applying a diagonal preconditioner in that rotated basis. For
instance, Shampoo (Gupta et al., 2018) directly approximates the Gauss-Newton algorithm—often
using an exponent on the approximated eigenvalues ranging from −1 to −1/4—with a Kronecker-
product structure that defines an efficient preconditioning basis (see (Morwani et al., 2024) for
discussion). In contrast, SOAP (Vyas et al., 2024) can be interpreted as running Adam in a rotated
basis, where the basis is potentially derived from a Kronecker-factored approximation to curvature.

This motivates a central question: can we disentangle the role of the basis used for preconditioning
from the choice of diagonal scaling in that basis? In this work, we explore this question by comparing
two canonical choices of diagonal scalings: one based on the running average of squared gradients,
as in Adam (which approximates the diagonal of the empirical Fisher (Kunstner et al., 2019)), and
another based on the diagonal of the Gauss-Newton (GN) matrix, which reflects curvature information
derived from the Fisher or Hessian. These diagonal forms can be applied in arbitrary bases—including
the identity basis (used by default in Adam) and the eigenbasis of the GN matrix. We formally define
these choices in Section 2.
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Table 1: Comparing Adam vs GN diagonal preconditioners across two axes: (i) basis choice, and
(ii) gradient noise. Our theoretical results are based on quadratics (Section 3) and logistic regression
(Section 4), across the eigen and identity bases on full (population) and small (single-sample) batch.

Batch-Size Regime

Basis Choice Full Batch Small Batch

Eigenbasis ∃ logistic example where Adam > GN−1 GN−1 ≥ Adam ≈ GN−1/2 for
quadratics

Identity basis ∃ quadratic example where Adam > GN−1 Adam ≈ GN−1/2 for quadratics

A guiding question in our study is whether the empirical Fisher (used in Adam and SOAP) offers
any advantage over GN-derived curvature estimates, or whether it merely provides a tractable proxy.
Furthermore, since Adam effectively uses the square root of its second-moment estimate, we also
investigate whether preconditioning with GN−1/2 is preferable to GN−1 under various conditions.
Importantly, we aim to decouple the influence of the preconditioning basis from that of the diagonal
approximation applied within it.

Our Contributions. We study how the effectiveness of diagonal preconditioners depends on two key
factors: (1) Basis choice: We compare preconditioning in the eigenbasis of the GN matrix versus in
the identity basis (or more generally, bases misaligned with the eigenbasis but still satisfying structural
properties such as a sparse plus low-rank structure). (2) Gradient noise: We analyze both full-batch
(population gradient) and stochastic gradient (batch size 1) regimes to isolate how preconditioner
behavior is influenced by gradient variance.

For linear regression, we obtain the following theoretical results:

• Sensitivity to basis choice (Section 3.1): It is well known that GN preconditioning in the eigenbasis
yields optimal convergence rates for quadratics. However, when the basis is misaligned, Adam can
outperform both GN−1 and GN−1/2, sometimes matching the speed of GN in its ideal basis.

• Equivalence under noise (Section 3.2): In the stochastic regime with Gaussian data, Adam
behaves similarly to GN−1/2 regardless of basis, suggesting a surprising alignment between its
empirical design and curvature-based preconditioning.

Further, in the case of logistic regression, we show Adam can even outperform GN−1 under the
eigenbasis with full batch update (Section 4).

These results are summarized in a two-by-two grid in Table 1, and we further discuss the distinction
between GN−1 and GN−1/2 in Section 3.3. The quadratic model and logistic regression provide
complementary perspectives, yielding a more complete picture and highlighting the benefit of
separating basis and gradient noise considerations.

We complement our theoretical findings with empirical results on both simulations and more general
problems (Section 5). The results align with the theory across all empirical settings, illustrating the
practical implications of basis choice and gradient noise. We discuss related work in Appendix A.

2 PRELIMINARIES

Consider optimizing a function f : Rd → R parameterized by the (vectorized) parameter θ ∈ Rd

against a loss function ℓ. Updates performed by preconditioning optimizers can be seen as

θ(t+1) = θ(t) − η · (UDpU⊤)g(t),

where η denotes the learning rate, D is the diagonal preconditioner which is raised to the exponent
p ∈ {− 1

2 ,−1}, U is the orthonormal basis on which the preconditioned update is performed, and
g(t) denotes the gradient at time t (which could correspond to either population gradient or stochastic
gradient depending on the setting). The full update is described in Algorithm 1.
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We will discuss the choice of the basis and the diagonal preconditioner below. We start with describing
the Gauss-Newton (GN) matrix, which is the first term of the Hessian:

H := ∇2
θℓ = ∇θf∇2

f ℓ∇θf
⊤ +∇f ℓ∇2

θf := H(GN) +∇f ℓ∇2
θf, (1)

Contrast to the Hessian H , the GN matrix H(GN) requires only first-order gradient information to
compute and often serves as a reasonable preconditioner in practice (Sankar et al., 2021). For convex
loss functions, which will be the focus of this work, the GN term is positive-semidefinite (PSD) and
admits a real-valued eigendecomposition.

Basis estimation. Our theory analyzes two basis choices: 1) the identity basis U = I , and 2) the eigen-
basis of the Gauss-Newton matrix H(GN); for the mean-squared loss, H(GN) = Ex[∇θf(x)∇θf(x)

⊤].
For the experiments, we additionally consider the Kronecker-factored preconditioner (Martens &
Grosse, 2015; Vyas et al., 2024) as a computationally efficient approximation of the eigenbasis: for a
matrix-valued parameter θ ∈ Rn×m, where H(GN) ∈ Rnm×nm is approximated by the outer product
of two matrices of dimension Rn×n and Rm×m; see Appendix D.1 for details.

Diagonal preconditioners. Given an orthonormal basis U , we first rotate the gradient g into the
basis g̃ := U⊤g, then apply a diagonal conditioner D to the rotated gradient. We consider two
types of D: Adam and Gauss-Newton. For the theoretical part, we are going to consider the Adam’s
preconditioner as described below:

D
(A)
ii :=

(
E[(g̃(x)i)2]

)−1/2
=
(
E[(u⊤

i g(x))
2]
)−1/2

, (2)

where the expectation is over all possible batches. Note that in the full batch case, this simply
corresponds to the rotated gradient, while in the stochastic case, it represents the expected per-sample
gradient norm. This is motivated from the practical version of Adam, which maintains a running
average of the gradients seen during the training. For Gauss-Newton, it takes an additional exponent
parameter p ∈ {− 1

2 ,−1} and computes the diagonal elements as

D
(GN)
ii := (u⊤

i H
(GN)ui)

p, (3)

where ui is the ith vector in the given basis. In particular, when U is the eigenbasis of H(GN),
{u⊤

i H
(GN)ui}i∈[d] give the eigenvalues of H(GN).

The preconditioners for Adam an Gauss-Newton correspond respectively to empirical Fisher matrix
and the Fisher matrix. The former is defined with gradients with respect to labels from the true data
distribution, whereas the latter is defined with respect to the output of the model.

3 THEORETICAL ANALYSIS ON LINEAR REGRESSION

This section focuses on linear regression with the mean-squared loss, where we compare Adam and
Gauss-Newton along both axes in Table 1: the quality of the basis choice, and the effect of batch size
(gradient noise). The goal is to learn a function fθ(x) = θ⊤x with loss ℓ(θ) = 1

2E[((θ − θ∗)⊤x)2],
where θ∗ is the ground truth parameter. We consider Gaussian input x ∼ N (0,Σx). For this setup, the
vanilla gradient descent update has ∆(t+1) := θ(t+1) − θ∗ = (I− ηΣx)∆

(t), and the Gauss-Newton
matrix simplifies to the data covariance matrix, i.e. H(GN) = E[∇θf∇θf

⊤] = Σx.

3.1 AXIS 1 – CHOICE OF BASIS

Deep learning optimization often encounters heterogeneous curvature, which motivates the use of
preconditioned methods (Sagun et al., 2016; Ghorbani et al., 2019; Yao et al., 2019; Zhang et al.,
2020; Liu et al., 2023). However, while GN−1 is known to achieve optimal convergence under the
correct eigenbasis (Section 3.1.1), we show in Section 3.1.2 that GN−1 can be severely suboptimal
under a poorly chosen basis that does not reflect the true curvature. In contrast, Adam has an “auto-
tuning” effect that allows it to outperform both GN−1 and GN− 1

2 . We support this with a constructed
example.
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Algorithm 1 Preconditioned optimizer

1: Input: θ(0), BASISTYPE ∈ {Id, EigenBasis}, PRECOND ∈ {Adam,GN}, power p ∈
{−0.5,−1}, learning rate {ηt}Tt=1, regularization coefficient ϵ, gradient batch size bG, and
basis estimation batch size bH .

2: for t = 1 to T do
3: Sample a batch of bG samples XG := {xi}i∈[bG].
4: Compute batch loss ℓt(θ(t);XG) and gradient g(t) = ∇ℓt(θ(t);XG).
5: Sample a batch of bH samples XH := {xi}i∈[bH ].
6: Compute the Gauss-Newton matrix H(GN) using XH .
7: if BASISTYPE == Id then // Basis choice
8: Basis U ← I .
9: elif BASISTYPE == EigenBasis then

10: Basis U ← EigenDecomposition(H(GN)).
11: Compute the basis-rotated gradient g̃(t) = U⊤g(t).
12: if PRECOND == Adam then // Diagonal preconditioner choice

13: Compute the diagonal preconditioner as Dii =
(
E[(g̃(x)i)2]

)−1/2
.

14: elif PRECOND == GN then
15: Compute the diagonal preconditioner as Dii = (u⊤

i H
(GN)ui)

p.
16: θ(t+1) = θt − UDg̃(t) = θt − UDU⊤g(t).

3.1.1 GN−1 IS OPTIMAL UNDER THE CORRECT BASIS

The basis given by the eigenvectors of H(GN) can be considered as the “correct” basis. Under this
basis, it is well-known that GN−1 achieves the optimal convergence rate in both full-batch and
stochastic setting 1 : when using the full batch, GN−1 converges in 1 step; for the stochastic setting,
GN−1 decreases the loss at a linear rate. Details are included in Appendix B.1 for completeness.

3.1.2 INCORRECT BASIS: ADAM AUTO-TUNES TO THE CURVATURE

The previous section shows that GN is optimal under the ideal eigenbasis. What if the basis is not
estimated correctly? In this section, we show that GN is sensitive to the basis choice. We provide an
example where the wrong basis obscures the true curvature, voiding GN’s adaptiveness.

Consider a quadratic problem with a covariance

Σx := E[xx⊤] =

[
11⊤ 0
0 I

]
∈ R2d×2d, (4)

where 1 ∈ Rd is the all-one vector, and I ∈ Rd×d is the identity matrix. This problem has a block
structure that is symmetric among the first d coordinates and among the last d coordinates. The two
blocks have widely different maximal eigenvalues and hence different optimal learning rates: The
first block has a maximum eigenvalue of d, and thus the maximum stable learning rate is the 2

d . In
contrast, all eigenvalues for the second block are 1, hence the maximum learning rate affordable is 2.

The wrong basis choice we consider is the identity basis. We will see that this makes GN fail to adapt
to the curvature of the problem, while Adam remains efficient.

GN converges slowly. When taking U = I , the diagonal preconditioner for GN has D(GN)
ii = 1p = 1.

That is, both GN−1 and GN− 1
2 simply scale all coordinates by the same factor as all diagonal

elements are 1, behaving the same as vanilla gradient descent.

Adam “auto-tunes” to the curvature. Given the symmetry of the problem, we will assume the
gradient norms are the same for coordinates within the same block. Therefore, Adam effectively
acts as normalized gradient descent for the first block, and acts as signed gradient descent in each
coordinate in the second block. As we train using Adam with a constant learning rate η, let ∥g(t)0 ∥

1By stochastic setting we refer to updates where each batch contains a single sample.
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represent the gradient norm for the first block coordinates, and |g(t)i | for i ∈ [d] represent the
per-coordinate gradient norm for the coordinates in the second block which evolves independently.

Recall that for quadratic problem, the gradient is g = Σx∆ where ∆ := θ − θ∗, and ∆(t+1) =
(I− ηΣx)∆

(t) for vanilla gradient descent; the gradient norm goes down as long as η ≤ 2
λmax

. For
Adam, the updates can be considered as gradient descent with an adaptive learning rate. Specifically,
following Equation (2), the first block updates as ∆(t+1)

0 = (I− η

∥g(t)
0 ∥2

· Σx)∆
(t)
0 , and the second

block has per-coordinate updates ∆(t+1)
i = (I− η

|g(t)
i |2
· Σx)∆

(t)
i for i ∈ [d]. This means:

1. ∥g(t)0 ∥ decreases provided η/∥g(t)0 ∥ ≤ 2/d,

2. |g(t)i | decreases for i > 0 provided η/|g(t)i | ≤ 2.

Thus essentially, after an initial “burn-in” period, η/∥g(t)0 ∥ reaches 2/d and oscillates around this
value, while η/|g(t)i | oscillates around 2. We refer to this as the auto-tuning of Adam, where it adapts
to the curvature of different coordinates on its own, by regulating the gradient norms. After this
burn-in period, we can reduce the learning rate by half at every step, and reach a target error within
log number of steps. We note that this auto-tuning effect is similar to adapting to the smoothness of
the curvature, which is known to be a property of normalized gradient descent (Orabona, 2023).

3.2 AXIS 2 – GRADIENT NOISE AND BATCH SIZE

The previous section shows an example where Adam outperforms GN when the updates are using
population gradients but a poor basis choice. In this section, we focus on the stochastic regime and
show that Adam and GN− 1

2 behave similarly regardless of the basis choice. Proofs for this section
can be found in Appendix B.2.

We first prove a stronger result, showing that for Gaussian input distribution and quadratic loss,
empirical Fisher is approximately equal to Fisher up to a loss scaling.
Lemma 1. For linear regression with Gaussian inputs, the following holds:

ℓ(θ) · Σx ⪯
1

2
E[g(x)g(x)⊤] ⪯ 3ℓ(θ) · Σx.

We can utilize the lemma above to show that GN− 1
2 and Adam behave the same upto a scalar constant

in any basis for our theoretical setup at batch size 1.

Corollary 1. For single-sample updates, the update of Adam and GN− 1
2 differ by a constant.

1√
3ℓ
·D(GN,− 1

2 ) ⪯ 1

2
D(A) ⪯ 1√

ℓ
·D(GN,− 1

2 ).

From the above lemmas, we expect Adam and GN−1/2 to have a similar performance for small
batch size. However, we still don’t know if GN−1 performs better than GN−1/2 at small batch.
To answer this, we provide a lemma quantifying the convergence rate of a general preconditioner
P for linear regression with stochastic Gaussian inputs. Denoting the preconditioned Hessian as
A(P ) := P 1/2ΣxP

1/2, we have that:
Lemma 2. For a general preconditioner P , for linear regression with stochastic Gaussian inputs,
the following holds:

E[ℓ(t)] ≤ O

[(
1− λmin(A(P ))

3Tr(A(P ))

)t

ℓ(0)

]
.

Defining a version of the condition number κs(A(P )) = Tr(A(P ))
λmin(A(P )) =

∑
i∈d

λi(A(P )
λmin(A(P ) ≥ d. We

can see that the convergence rate depends on κs(A(P )).

The above bound shows that in the correct basis, GN−1 is the optimal preconditioner even in the
stochastic regime, as it minimizes the condition number to κs(A(P )) = κs(I) = d. For GN−1/2
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in the correct basis, we have κs(A(P )) = κs((Σx)
1/2) =

∑
i

√
λi(Σx)

λmin(Σx)
, which is greater than d

unless λmax(Σx) = λmin(Σx).

3.3 WHICH POWER TO USE FOR GAUSS-NEWTON?

Newton’s method was originally proposed with a preconditioner closer to GN−1. However, the
square root in the denominator of Adam (Kingma & Ba, 2014) and Adagrad (Duchi et al., 2011) has
spurred multiple papers (Liu et al., 2023; Lin et al., 2024; Vyas et al., 2024) questioning the correct
power of the preconditioner to be used in practice. As shown before, for the quadratic model, in
the correct basis, GN−1 is optimal. However, under the incorrect identity basis, we claim that there
exists problems for which, even in the full batch case, p = 0.5 leads to faster convergence than p = 1.
The key idea is that the convergence rate of preconditioned gradient descent (Boyd & Vandenberghe,
2004) depends on the condition number of the preconditioned Hessian. It then suffices to construct
examples where the condition number is better behaved for p = 0.5 than p = 1. We provide details
in Appendix B.3 and accompanying simulation results in Section 5.

4 THEORETICAL ANALYSIS ON LOGISTIC REGRESSION

For quadratics, Section 3.1.1 shows that GN−1 is optimal under the eigenbasis. However, this needs
not hold in general. In this section, we provide an example with logistic regression, where Adam
converges faster than GN−1 even under the eigenbasis with full batches.

Setup. Since we are operating under the eigenbasis, the updates can be considered per dimension.
We hence take the input x from the set of d-dimensional one-hot vectors {ei}di=1, with probability
νi := Pr(x = ei). Conditional on x = ei, the label y is Bernoulli with mean Pi := Pr(y = 1|x =
ei). We assume 0.6 ≤ Pi ≤ 0.8, ∀i ∈ [d], i.e. the labels are neither deterministic nor fully random,
and the optimal parameter has a bounded norm.

We optimize a two-layer linear network q : Rd → Rd, whose output depends on the squares of the
weights: for any θ ∈ Rd and for i ∈ [d], we define the model’s prediction as

qi(θ) = Pr
θ
(y = 1 | x = ei) = σ

( d∑
j=1

θ2jxj

)
= σ(θ2i ), σ(z) =

1

1 + exp(−z)
. (5)

The square parameterization makes the problem non-convex, and is analogous to the structure of
key-query multiplication in self-attention (Vaswani et al., 2017).

In the following, we show that under the natural assumption of non-increasing step sizes, there is
a separation between Adam and GN−1 in terms of κ(ν) := νmax

νmin
. We consider local convergence

near the optimum. In particular, let κ(ν) = Ω(d1/2+δ) for some δ ∈ [0, 1
2 ], and let ϵ denote the

target parameter error, i.e. we want to find θ such that ∥θ − θ∗∥2 ≤ ϵ. We prove that Adam enjoys
dimension-free convergence, whereas GN−1 suffers from a polynomial-in-dimension slowdown.

Adam converges in O(log(1/ϵ)) steps. Adam effectively performs sign GD, hence the amount of
parameter update is determined by the step size. The O(log(1/ϵ) convergence hence follows directly
from starting with a O(1) learning rate and halving the step size every O(1) steps.

GN−1 requires Ω̃(dδ log(1/ϵ)) steps. In contrast to Adam, GN’s precondtioning can result in an
unboundedly large update (see Equation (21)), unless the learning rate is kept small, which in turn
leads to slow convergence. To show the lower bound, we first state a more general convergence
result. Recall that the GN−1 update is θ(t+1) = θ(t) − η(t)(H(GN)(θ) + αI)−1g(t). We assume that
{η(t)}t≥0 are non-increasing and that the step size schedule and regularization lead to convergence,
i.e. θ(t)→ θ∗ as t→∞. Linearizing the update map at the limit θ∗ gives

θ(t+1) − θ∗ =
(
I − η∞(H

(GN)
∗ + αI)−1H

(GN)
∗

)
(θ(t) − θ∗) + O

(
∥θ(t) − θ∗∥2

)
,

6
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where H
(GN)
∗ := H(GN)(θ∗) and η∞ = limt→∞ ηt. We are interested in lower bounding the spectral

radius of the local iteration matrix:

γ(η(∞), α) :=
∥∥I − η(∞)(H

(GN)
∗ + αI)−1H

(GN)
∗

∥∥
2
,

as it governs the ultimate local rate of convergence that any GN schedule can achieve. We refer to
γ(η(∞), α) as the local contraction factor; a value of γ close to 1 implies slow convergence.

The main result of this section is a lower bound on γ:

Theorem 2. Suppose the weights are initialized at θ(0) = 1√
d
· 1⃗. Consider any non-increasing step

size sequence {η(t)}t≥0 and regularization parameter α ≥ 0. If the Gauss-Newton iterates converge
to θ∗, i.e. θ(t) → θ∗, then the local contraction factor γ(η(∞), α) is lower bounded by:

γ(η(∞), α) ≥ 1− c
√

log d max

{
1√
d
,
√
d/κ(ν)

}
,

for some universal constant c.

This theorem reveals a basic trade-off: for the Gauss-Newton method to converge globally from
our chosen starting point, its final learning rate must be small. This restriction, in turn, hampers its
local convergence speed and creates a bottleneck. The slowdown is substantial under the common
conditions of high dimensionality and ill-conditioned data:

Corollary 3. For imbalanced input with κ(ν) = Ω(d1/2+δ) for some δ ∈ [0, 1/2], GN−1 requires
t = Ω̃(dδ log(1/ϵ)) steps to reach a parameter satisfying ∥θ(t) − θ∗∥2 ≤ ϵ.

This demonstrates a polynomial slowdown in the dimension, highlighting a scenario where the
theoretical power of Gauss-Newton is significantly degraded due to the practical requirement of
global convergence. We empirically verify this on Transformers in Section 5.

Remark: Ideally, in a purely local setting, one could choose λ = 0 and use a constant final stepsize
η∞. For instance, setting η∞ = 1 would make the iteration matrix zero, yielding γ = 0 and
superlinear convergence. In fact, any other constant η∞ ∈ (0, 2) would similarly provide rapid linear
convergence with a rate independent of the condition number. However, Theorem 2 shows this ideal
scenario is not possible. As the proof (Appendix C) shows, the requirement of ensuring convergence
from a specific, natural initialization forces the algorithm’s final step size, η(∞), to be small. This
constraint directly degrades the local contraction factor, preventing the rapid convergence one might
expect from a Newton-like method. Further, we note that our result does not contradict with the fast
convergence from line search, which does not fall under the non-increasing step size assumption.

5 EXPERIMENTS

In this section, we provide experimental evidence to the theoretical claims made in the previous
section. Our experiments are broadly divided into two categories: (i) simulations for examples in
Section 3 and Section 4, (ii) non-convex examples with MLP, and (iii) Transformer experiments.

Experiment details. We use the mean square error as the objective function unless otherwise
specified. For numerical stability, we optionally regularize D to be D+αI for some small α > 0. We
sweep over the learning rate η and the regularization coefficient α. For Adam, we also sweep over the
learning rate schedule (constant or step decay) and β2; we fix β1 = 0, similar to Das et al. (2024). We
use different samples for estimating gradient and Gauss-Newton. Due to computational considerations,
our eigenbasis experiments also consider Kronecker approximation of the full eigenbasis. We report
the mean and standard error based on 10 seeds. More details are provided in Appendix D.1.

Simulations This section provides simulation results on the examples in Section 3 and Section 4.

• Comparing Adam and GN under full-batch updates. We empirically verify the examples provided
in the theory where Adam can outperform GN both under the identity basis and the eigenbasis
(Figure 1 left). For the identity basis, we consider a 100-dimensional linear regression task
(Section 3.1.2) where the covariance matrix has a block-wise structure. Adam converges quickly
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Figure 1: Simulation results. (Left) Adam converges faster than GN with full batches 1) under the
identity basis on a linear regression task with block-wise covariance (left subplot), where GN fails to
adapt to the problem curvature and behaves identically to SGD; and 2) under the eigenbasis, for the
reparameterized logistic regression task (right subplot). (Right) Comparing GN power p ∈ {− 1

2 ,−1}.
On a regression task where GN− 1

2 leads to a more favorable condition number, GN− 1
2 converges

faster than GN−1 with both small and large batches.
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Figure 2: Learning from a random teacher, comparing Adam, GN−1 and GN−1/2 for the full 2×2
grid (Table 1).

due to the auto-tuning effect, whereas Gauss-Newton converge as slowly as vanilla gradient
descent. For logistic regression (Section 4), our results on a 2048-dimensional problem (detailed
in Appendix D.4) show that Adam converges faster even under the eigenbasis.

• Comparing powers of Gauss-Newton. Section 3.3 shows that the comparison of GN−1 and GN− 1
2

amounts to comparing the condition number of a particular matrix, for both population and
stochastic settings. We empirically verify the claim on a 5-dimensional linear regression problem,
controlling the choice of the covariance Σx. Figure 1 (right) shows the simulation results in this
case, where GN− 1

2 converges faster than GN−1 when using both large and small batches. Details
are provided in Appendix B.3.

Non-convex examples with MLP Next, we consider non-convex optimization with one-hidden-
layer MLPs on the following tasks: 1) learning from a random teacher network; 2) feature learning
with sparse parity and its variant “staircase”, where the labels depend on a subset of input coordi-
nates; and 3) CIFAR10 image classification, where the class labels are treated as one-hot vectors;
Appendix D.2 provides details. Experiments on these tasks cover the full 2× 2 grid in Table 1, with
respect to batch size (full vs small) and the basis (eigenbasis vs identity). We use the Kronecker
approximation for the eigenbasis of the Hessian, which behaves similarly as the full eigenbasis (Ap-
pendix D.1) while being more compute efficient. We provide additional experiments on intermediate
basis choices by interpolating between the identity and the eigenbasis in Appendix D.3.

As shown in Figure2–4, our theoretical analyses empirically extend to these four non-convex tasks
across both axes of interest. In particular, across all problems considered, Adam and GN−1/2 closely
track one another at small batch sizes, regardless of the basis chosen (subfigures (c), (d)). Moreover,
Adam is close to or better than GN−1 when the basis is incorrect (subfigures (a), (c)).

A logistic-like task with Transformers We consider a selection-based regression task learned with
a 1-layer Transformer, whose attention module resembles the structure of the reparametrized logistic
regression in Section 4 (detailed in Appendix D.4). Results in Figure 5 are consistent with our theory,
where Adam outperforms GN under the eigenbasis with full batch updates.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 2000
Step

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) Identity | Full

0 500 1000
Step

(b) Eigenbasis | Full

0 20000
Step

(c) Identity | Small

0 5000
Step

(d) Eigenbasis | Small

Adam GN (p=-1) GN (p=-1/2)

Figure 3: Staircase, comparing Adam, GN−1 and GN−1/2 for the full 2× 2 grid (Table 1). Staircase
is a generalization of sparse parity (Figure 7).

Figure 4: CIFAR10, comparing Adam, GN−1 and GN−1/2 for the full 2× 2 grid (Table 1).

6 DISCUSSION

Figure 5: Transformer experiments
(Section 5): Adam outperforms
GN−1 under the eigenbasis with
full batches.

This work studies the effectiveness of diagonal preconditioners
along two key factors: the alignment to the ideal eigenbasis, and
the level of gradient noise as influenced by the batch size. Our
theoretical results on linear and logistic regression show that
the comparison between Adam and Gauss-Newton (GN)-based
diagonal preconditioners is sensitive to the change in either
factor (Table 1): In the full batch setting, Adam can outperform
GN in the identity basis for linear regression, and can even out-
perform GN in the ideal eigenbasis when considering logistic
regression. In contrast, in the stochastic regime, we show that
Adam and GN− 1

2 exhibit similar behavior for linear regression
regardless of the basis choice, thereby revealing a connection
between Adam’s design and curvature-based preconditioning.

Our empirical results on simulation, synthetic, and image
datasets are consistent with the theoretical results. In particular,
all MLP experiments align with findings for linear regression, and the Transformer experiments align
with our logistic regression results.

It is important to understand whether phenomena and differences observed in small-scale, synthetic
setups persist across scale. We hypothesize that the equivalence between Adam and GN− 1

2 in the
stochastic regime extends to practical, large-scale training. In particular, as training progresses,
the gradient variance tends to dominate over the gradient mean, mirroring the stochastic regime in
which variance drives the dynamics. Validating this hypothesis in large-scale settings is an interesting
direction for future work. Finally, such equivalence combined with the benefits of Adam’s auto-tuning
at large-batch regimes suggests a promising direction: developing algorithms that exhibit similar
desirable auto-tuning behavior even when operating with small batches.
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The Use of Large Language Models In this work, LLMs are used for rephrasing and polishing the
writing, assisting with basic algebraic manipulation in the proof, and assisting with the plotting code.

A RELATED WORK

Approximate second-order optimizers Recent advances on approximate second-order methods
have demonstrated success in large-scale settings, serving as efficient alternatives to classic second-
order methods such as Newton’s and natural gradient descent, which are computationally bottle-
necked to scale to high dimensions. While first-order diagonal preconditioners are shown to be
comparable in practice Kaddour et al. (2023); Zhao et al. (2024), leveraging second-order information
has proven effective. Most relevant to our work are methods that can be considered as applying
diagonal preconditioners in a chosen basis (Gupta et al., 2018; Liu et al., 2023; Vyas et al., 2024;
Jordan et al., 2024). However, there is no clear understanding how the preconditioner and the basis
interact. For instance, Sophia (Liu et al., 2023) can be considered as applying GN−1 in the identity
basis, which as we will show, is not always desired. In contrast, our work provides a clarifying
decomposition of the design space of these second-order methods by separating the choice of basis in
which to perform a diagonal preconditioner, from the choice of the diagonal preconditioner itself.

For results in the stochastic regime, Martens (2014) provided results the stochastic case and depends
on the condition number, similar to Lemma 2. However, their setting crucially differs from ours by
assuming that the covariance of the gradients is independent of the current iterate.

Efficient optimizers for large-scale training Although preconditioned methods are theoretically
appealing for their faster convergence, substantial efforts have been made to translate these gains to
practical speedups in wall-clock time, which is crucial in modern large-scale training. To keep each
update step lightweight, it is common to approximate the Hessian using the Gauss-Newton matrix
(Equation (1)), which, despite being biased, relies only on gradient information and is therefore more
computationally efficient than the other commonly used Hutchinson estimator. In addition, when
estimating the eigenbasis, one can use the Kronecker factorization in place of the full basis (Martens
& Grosse, 2015; George et al., 2018; Vyas et al., 2024). In this work, we analyze the full eigenbasis
of the Gauss-Newton matrix, while adopting the Kronecker approximation in the experiments (see
Appendix D.1 for details).

Adam vs (S)GD There have been a lot of interest understanding the comparison of Adam and
(stochastic) gradient descent. Related to the preconditioning perspective in our work, Das et al.
(2024) studies Adam’s preconditioning effect on quadratics, and shows that it outperforms SGD
when the Hessian is sufficiently ill-conditioned. A line work focuses the comparison on optimizing
Transformers, which has investigated through the lens of gradient noises (Zhang et al., 2020), relation
to sign descent (Kunstner et al., 2023), and the curvature of the landscape (Jiang et al., 2023; Pan
& Li, 2023); Ahn et al. (2024) provides a review and a theory-friendly abstraction. Most related to
our work is Maes et al. (2024), which shows that Adam’s advantage over SGD for Transformers rely
crucially on the choice of basis. While these results hinge on properties specific to Transformers, we
are interested in understanding of algorithm design with insights that can be generally applicable.

B THEORETICAL RESULTS AND OMITTED PROOFS

B.1 OPTIMALITY OF GN−1 IN THE CORRECT BASIS

For completeness, we provide proofs for the optimality of GN−1 for the quadratic loss under the
correct eigenbasis.

Full batch For GN−1, the parameter estimation error evolves as

θ(1) − θ∗ =(θ(0) − θ∗)− η · (H(GN))−1 · g(0)

=θ(0) − η · E[xx⊤]−1 · E[xx⊤(θ − θ∗)] = (1− η)(θ − θ∗).
(6)

Hence GN−1 can reach the optimum in 1 step with η = 1.
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Stochastic regime Let’s consider the stochastic regime where each update step is performed with a
single sample. With respect to some algorithm, define

M (t) := E[(θ(t) − θ∗)(θ(t) − θ∗)⊤].

which is the expected second-moment matrix of the distance-to-opt.

Recall that GN−1 has updates θ(t+1) = θ(t) − ηΣ−1
x g(t), where g = (θ − θ∗)⊤x · x. We have that:

M (t+1) = M (t) − 2ηM (t) + η2 Tr(M (t)Σx)Σ
−1
x + 2η2M (t). (7)

Multiplying by Σx and taking the trace leads to:

E[ℓ(t+1)] =
(
1− 2η + 2η2(d+ 1)

)
E[ℓ(t)]. (8)

Setting η = 1
2(d+1) reduces the expected error by a 1

2 factor every O(d) steps.

B.2 EQUIVALENCE OF ADAM AND GN−0.5 UNDER STOCHASTIC REGIME

We start with establishing the equivalence between the empirical and true Fisher (Lemma 1), which
will then be used to prove the equivalence of Adam and GN− 1

2 ’s updates.

B.2.1 PROOF OF LEMMA 1: EQUIVALENCE OF THE EMPIRICAL AND TRUE FISHER

Lemma (Lemma 1, restated). For linear regression with Gaussian inputs, the following holds:

ℓ(θ) · Σx ⪯
1

2
E[g(x)g(x)⊤] ⪯ 3ℓ(θ) · Σx.

Proof. For a given θ, let M := (θ − θ∗)(θ − θ∗)⊤. Then w.r.t. θ, we have

E[g(x)g(x)⊤] = E[x⊤Mx · xx⊤] = 2ΣxMΣx +Tr(ΣxM)Σx ⪯ 3Tr(ΣxM)Σx, (9)

where the last equality follows from Wick’s theorem. The lemma follows by noting that ℓ =
1
2E[x

⊤Mx] = 1
2 Tr(ΣxM).

B.2.2 PROOF OF COROLLARY 1: EQUIVALENCE OF ADAM AND GN− 1
2

Corollary (Corollary 1, restated). For single-sample updates, the update of Adam and GN− 1
2 differ

by a constant.
1√
3ℓ
·D(GN,− 1

2 ) ⪯ 1

2
D(A) ⪯ 1√

ℓ
·D(GN,− 1

2 ).

Proof. Adam’s preconditioner is based on

P (A) := E(x,y)∼D[g(x)g(x)
⊤]. (10)

Given a basis U , the diagonal preconditioner given by Adam has entries

(D
(A)
ii )−1 =

√
u⊤
i P

(A)ui. (11)

The relation between D(A) and D(GN,−0.5) follows from Lemma 1 and the fact that (D(GN,−0.5)
ii )−1 =√

u⊤
i Σxui.
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Part 2: when H(GN) is based on a single sample On single-sample batches, the gradient is
g(θ) = ℓ′f · ∇θf . Then, the diagonal preconditioner for Adam (with β1 = β2 = 0) has Given a basis
U , let g̃ := U⊤g denote the gradient rotated into the basis.

D
(A)
ii = (|g̃i|)−1 =

(
(ℓ′f )

2 · (U⊤∇θfi)
2
)−0.5

.

The diagonal preconditioner for Gauss-Newton has

D
(GN)
ii = (H

(GN)
ii )−0.5 = (ℓ′′f · (U⊤∇θfi)

2)−0.5 = ((ℓ′f )
2/ℓ′′f )

0.5 ·D(A)
ii .

B.2.3 PROOF OF LEMMA 2: LOSS CONVERGENCE OF GENERAL PRECONDITIONERS

Lemma (Lemma 2, restated). For a general preconditioner P , for linear regression with stochastic
Gaussian inputs, the following holds:

E[ℓ(t)] ≤ O

[(
1− λmin(A(P ))

3Tr(A(P ))

)t

ℓ(0)

]
.

Proof. Let’s define
M (t) = E[(θ(t) − θ⋆)(θ(t) − θ⋆)⊤]. (12)

For any preconditioner P , given the update θ(t+1) − θ∗ = (I− ηPxx⊤)(θ(t) − θ∗), we have:

M (t+1) = M (t) − ηPΣxθ
(t) − ηθ(t)ΣxP + η2P

(
2ΣxM

(t)Σx +Tr(ΣxM
(t))Σx

)
P

= (I− ηPΣx)M
(t)(I− ηPΣx)

⊤ + η2P

(
ΣxM

(t)Σx +Tr(ΣxM
(t))Σx

)
P.

(13)

Observe that E[ℓt] = E[Tr(ΣxM
(t))]. This motivates us to make the following definition:

M̃ (t) = Σ1/2
x M (t)Σ1/2

x , (14)

and so E[ℓt] = E[Tr(M̃ (t))].

Define A(P ) := Σ
1/2
x PΣ

1/2
x . The corresponding update rule is then:

M̃ (t+1) = (I− ηA(P ))M̃ (t)(I− ηA(P ))⊤ + η2A(P )

(
M̃ (t) +Tr(M̃ (t))I

)
A(P )

⪯ (I− ηA(P ))M̃ (t)(I− ηA(P ))⊤ + 2η2 Tr(M̃ (t))(A(P ))2.

(15)

For a given P , achieving the best loss contraction rate reduces to finding the optimal η. Rotating
the left and the right hand side into the eigenbasis of A(P ) and noting that the Trace of a matrix
is independent of rotation, we can consider diagonal A(P ) (without loss of generality) with the
diagonal entries correspond to the eigenvalues. Define:

vt = diag(M̃ (t)).

We have:
vt+1 = ((I− ηA(P ))2 + η2A(P )2 + η2diag(A(P )2)⃗1⊤)vt. (16)

Taking dot product with diag(A(P )−1) on both sides, we get

diag(A(P )−1)⊤vt+1 = diag(A(P )−1)⊤((I− ηA(P ))2 + η2A(P )2 + η2diag(A(P )2)⃗1⊤)vt

= diag(A(P )−1)⊤vt − 2η1⊤vt + 2η2diag(A(P ))⊤vt + η2 Tr(A(P ))1⊤vt.
(17)
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Figure 6: Comparing GN power p ∈ {− 1
2 ,−1}. Contrary to Section 5, when GN−1 has a more

favorable condition number, it converges faster or close to GN− 1
2 on both small and large batches.

Since M̃ (t) is PSD, vt has non-negative entries. Hence we have 1⊤vt = diag(A(P )−1)⊤A(P )vt ≥
λmin(A(P ))diag(A(P )−1)⊤vt, and

diag(A(P )−1)⊤vt+1

≤diag(A(P )−1)⊤vt − 2η1⊤vt + λmax(A(P ))2η21⊤vt + η2 Tr(A(P )1⊤vt

=diag(A(P )−1)⊤vt − η ·
(
2− (2λmax(A(P )) + Tr(A(P ))η

)
1⊤vt

≤
(
1− λmin(A(P )) · η

(
2− (2λmax(A(P )) + Tr(A(P ))η

))
· diag(A(P )−1)⊤vt.

(18)

The max contraction rate is achieved by setting η = 1
2λmax(A(P ))+Tr(A(P )) , which gives

diag(A(P )−1)⊤vt+1 ≤
(
1− λmin(A(P ))

2λmax(A(P )) + Tr(A(P ))

)
diag(A(P )−1)⊤vt

≤
(
1− λmin(A(P ))

3Tr(A(P ))

)
· diag(A(P )−1)⊤vt.

(19)

B.3 COMPARING GN POWERS

This section discusses the comparison between GN−1 and GN− 1
2 . We will show that under the

identity basis, GN−1/2 can outperform GN−1 even with full batches.

One can show that the convergence rate of preconditioned gradient descent (Boyd & Vandenberghe,
2004) depends on the condition number of the preconditioned Hessian given by

κ(A(P )) :=
λmax(A(P ))

λmin(A(P ))
. (20)

By Lemma 2, to compare these two powers, it suffices to compare the condition number of for specific
preconditioners Σ−1

x and Σ
−1/2
x . We claim that there exists problems for which, even in the full batch

case, in identity basis, p = 0.5 leads to faster convergence than p = 1:

Claim 1. There exists Σx such that κ(A(diag(Σx)
−1/2)) < κ(A(diag(Σx)

−1)).

Denote r(Σx) :=
κ(Σ1/2

x diag(Σ−1
x )Σ1/2

x )

κ(Σ
1/2
x diag(Σ−1/2

x )Σ
1/2
x )

. We empirically show that there exists Σx such that r(Σx) >

1. We obtain such Σx by fixing the diagonal matrix of eigenvalues Λ and randomly sampling
orthonormal matrices U , and setting Σx = UΛU⊤.

In particular, we construct two covariance matrices Σhalf,Σone ∈ R5× 5, such that r(Σhalf) > 1 (i.e.
GN−1/2 is more favorable), and r(Σone) < 1 (i.e. GN−1 is more favorable). As shown in Figure 1
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(right) and Figure 6, GN− 1
2 indeed converges faster on data from Σhalf, whereas GN−1 converges

faster with Σone, consistent with the theory.

Characterizing covariance matrices for which r(Σx) > 1 is left as future work.

C PROOF FOR THE LOGISTIC EXAMPLE

For logistic regression, recall that the gradient g(θ) and the diagonal Gauss–Newton matrix H(GN)(θ)
are given by

[g(θ)]i = 2νi θi
(
σ(θ2i )− Pi

)
, [H(GN)(θ)]ii = 4νi θ

2
i σ(θ

2
i )
(
1− σ(θ2i )

)
. (21)

The Hessian of ℓ(θ) equals H(GN)(θ∗) at the optimum θ∗.

For a step size sequence {η(t)} and ridge regularization α ≥ 0, the Gauss-Newton iteration is

θ(t+1) = Mη(t),α(θ
(t)), where Mη,α(θ) = θ − η (H(GN)(θ) + αI)−1g(θ).

Coordinate-wise, this update reads

[Mη,α(θ) ]i = θi − ,
2θiνi(σ(θ

2
i )− Pi)

4(θi)2νi σ(θ2i )(1− σ(θ2i )) + α
. (22)

C.1 PROOF FOR THEOREM 2

The proof strategy hinges on the following key technical lemma that establishes a learning rate
threshold for a single coordinate, where the threshold is a function of both initialization θ(0) and the
regularization parameter α. Above this threshold, the Gauss-Newton update diverges. By requiring
that all coordinates avoid this divergence to ensure global convergence, we use the lemma to derive a
strict upper bound on the algorithm’s final learning rate, η∞. Substituting this necessary restriction
into the definition of the local contraction factor directly yields the theorem’s lower bound, showing
that slow convergence is an unavoidable consequence of global stability from the chosen initialization.

Lemma 3. For constants η, α > 0, define the one-dimensional update map Mη,α : R → R
corresponding to a regularized Gauss-Newton step:

Mη,α(θ) = θ − η
2θ(σ(θ2)− P )

4θ2σ(θ2)(1− σ(θ2)) + α
.

Consider the update rule θ(t+1) = Mη(t),α(θ
(t)).

There exists a universal constant c such that for any target probability P ∈ [0.6, 0.8] and any initial
weight θ(0) > 0 satisfying σ((θ(0))2) ≤ 0.55, if the learning rate sequence satisfies

η(t) ≥ c

√
log

1

θ(0)

(
θ(0) +

α

θ(0)

)
for all t,

then |θ(t)| diverges geometrically.

Proof. The proof proceeds in three parts. First, we show that the first step, w(1), becomes large.
Second, we establish a key property satisfied by w(1). Finally, we use this to show that all subsequent
iterates grow geometrically.

Part 1: The first step makes θ(1) large. The condition σ((θ(0))2) ≤ 0.55 implies θ(0) ≤ 0.5. Since
P ≥ 0.6, the term σ((θ(0))2) − P is negative, ensuring θ(1) > θ(0). We can lower bound θ(1) as
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follows:

θ(1) = θ(0) − η(0)
2θ(0)(σ((θ(0))2)− P )

4(θ(0))2σ((θ(0))2)(1− σ((θ(0))2)) + α

≥ θ(0) + η(0)
2θ(0)(0.6− 0.55)

4(θ(0))2(0.55)(0.45) + α

≥ η(0)
0.1θ(0)

(θ(0))2 + α

= η(0)
0.1

θ(0) + α/θ(0)
.

Substituting our lower bound for η(0) from the lemma statement yields:

θ(1) ≥

(
c

√
log

1

θ(0)

(
θ(0) +

α

θ(0)

)) 0.1

θ(0) + α/θ(0)
= 0.1c

√
log

1

θ(0)
.

As θ(0) → 0, this lower bound grows, so we can choose the universal constant c large enough to
make θ(1) arbitrarily large.

Part 2: Establishing a key property of θ(1). We now show we can choose c large enough to ensure
two conditions hold simultaneously for θ(1):

(i) σ((θ(1))2) ≥ 0.9.

(ii) 4(θ(1))2(1− σ((θ(1))2)) ≤ θ(0).

Condition (i) is met by choosing c sufficiently large. For condition (ii), we use the facts that 1−σ(z) ≤
e−z and that z(1− σ(z)) is a decreasing function for z ≥ 2. 2 Let θ(1)low := 0.1c

√
log(1/θ(0)). This

implies:

4(θ(1))2(1− σ((θ(1))2)) ≤ 4(θ
(1)
low)

2(1− σ((θ
(1)
low)

2)) ≤ 4(θ
(1)
low)

2e−(θ
(1)
low )2

= 4(0.01c2) log(1/θ(0)) · exp
(
−(0.01c2) log(1/θ(0))

)
= (0.04c2) log(1/θ(0)) · (θ(0))0.01c

2

=

(
(0.04c2) log(1/θ(0))(θ(0))0.01c

2−1

)
· θ(0).

For a sufficiently large constant c (e.g., 0.01c2 > 2), the term in the large parenthesis is less than 1,
because for a fixed θ(0) ∈ (0, 0.5], the polynomial term (θ(0))0.01c

2−1 decays much faster than the
logarithmic term log(1/θ(0)) grows. This establishes condition (ii).

Part 3: Proving geometric divergence for t ≥ 1. Consider any η satisfying the learning rate lower
bound, i.e. suppose:

η ≥ c

√
log

1

θ(0)

(
θ(0) +

α

θ(0)

)
.

We show that for any θ where θ2 ≥ (θ(1))2, it follows that |Mη,α(θ)| ≥
√
2|θ|. First, rewrite the

update as

Mη,α(θ) = θ

(
1− 2η(σ(θ2)− P )

4θ2σ(θ2)(1− σ(θ2)) + α

)
.

Let K(θ) = 2η(σ(θ2)−P )
4θ2σ(θ2)(1−σ(θ2))+α . We seek to show |1−K(θ)| ≥

√
2, which is true if K(θ) ≥ 1+

√
2.

We lower bound K(θ) for any θ where θ2 ≥ (θ(1))2. The numerator is positive and lower-bounded
using condition (i): 2η(σ(θ2) − P ) ≥ 2η(σ((θ(1))2) − P ) ≥ 2η(0.9 − 0.8) = 0.2η. For the

2Indeed, d
dz

[ z(1− σ(z)) ] = (1− σ(z))− zσ(z)(1− σ(z)) < 0 once z ≥ 2.
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denominator, we use the fact that z(1 − σ(z)) is decreasing (for z ≥ 2), condition (ii), and that
w(0) ≤ 0.5:

4θ2σ(θ2)(1−σ(θ2))+α ≤ 4θ2(1−σ(θ2))+α ≤ 4(θ(1))2
(
1−σ((θ(1))2)

)
+α ≤ θ(0)+α ≤ θ(0)+

α

θ(0)
.

Combining these bounds gives:

K(θ) ≥ 0.2η

θ(0) + α/θ(0)
≥ 0.2c

√
log

1

θ(0)
,

where the last step follows by substituting the lower bound for η. Since θ(0) ≤ 0.5, we have
log(1/θ(0)) ≥ log(2). We can choose the universal constant c large enough such that 0.2c

√
log 2 ≥

1 +
√
2.

Thus, for any t ≥ 1, we have |θ(t+1)| = |Mη(t),α(θ
(t))| ≥

√
2|θ(t)|, which shows that |θ(t)| diverges

geometrically.

We are now ready to complete the proof of Theorem 2.

Proof. (of Theorem 2) The proof proceeds by using Lemma 3 to find an upper bound on the final
learning rate η(∞), and then substituting this bound into the definition of the local contraction factor
γ.

At the optimum θ∗, the diagonal entries of the Fisher matrix H
(GN)
∗ = H(GN)(θ∗) are

λi(H
(GN)
∗ ) = 4(θ∗i )

2νiσ((θ
∗
i )

2)
(
1− σ((θ∗i )

2)
)
.

Recall the target probabilities Pi = σ((θ∗i )
2) are assumed to lie in [0.6, 0.8]. This implies that (θ∗i )

2’s
are bounded by a universal constant. Thus, the term 4(θ∗i )

2σ((θ∗i )
2)
(
1− σ((θ∗i )

2)
)

is also bounded
by universal constants, and we conclude that the Fisher eigenvalues are proportional to the sampling
probabilities. In particular,

λmin(H
(GN)
∗ ) ≥ νmin/c1,

where c1 is a universal constant.

The Gauss-Newton update for each coordinate θi can be analyzed independently. For the sequence
θ(t) to converge θ∗, the iterates for each coordinate θi[t] must also converge to θ∗i . From equation 22,
the update rule for each coordinate can be written as:

[Mη,α(θ) ]i = θi − η
2θi(σ(θ

2
i )− Pi)

4(θi)2 σ(θ2i )(1− σ(θ2i )) + α/νi
.

This shows that we can apply Lemma 3 coordinate wise, where we take α/νi as the regularization
parameter. Since {η(t)} is non-increasing, Lemma 3 implies the limiting stepsize η(∞) must satisfy
the following for each coordinate i ∈ [d]:

η(∞) ≤ c

√
log

1

θi[0]

(
θi[0] +

α/νi
θi[0]

)
.

In our setting, the initial weights are θi[0] = 1/
√
d. To get a single upper bound on η(∞), we take the

tightest possible constraint derived from above, which is when νi is at its maximum, νmax. Thus, for
convergence to be possible, η(∞) must be bounded by:

η(∞) ≤ c
√
log d

(
1√
d
+

√
dα

νmax

)
.

The local contraction factor is the spectral radius of I − η(∞)(H
(GN)
∗ +αI)−1H

(GN)
∗ . Its eigenvalues

are 1 − η(∞) λi(H
(GN)
∗ )

λi(H
(GN)
∗ )+α

. We can lower bound the spectral radius by considering the smallest
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eigenvalue of H(GN)
∗ , λmin:

γ(η∞, λ) ≥ 1− η∞
λmin(H

(GN)
∗ )

λmin(H
(GN)
∗ ) + λ

.

Substituting the upper bound on η(∞) from above:

γ(η(∞), α) ≥ 1−

(
c
√
log d

(
1√
dim

+

√
dimα

νmax

))
λmin

λmin + α

= 1− c
√
log d

(
1√
d
· λmin

λmin + α
+

√
dα

νmax
· λmin

λmin + α

)
.

We can bound the terms in the parenthesis using λmin

λmin+α ≤ 1 and λmin

λmin+α ≤
λmin

λmin+α :

γ(η(∞), α) ≥ 1− c
√
log d

(
1√
d
+

√
dλmin

νmax

)
.

Using the our lower bound λmin ≥ νmin/c1 from above, and absorbing constants into c′:

γ(η(∞), α) ≥ 1− c′
√
log d

(
1√
d
+
√
d
νmin

νmax

)
,

which implies the claimed result.

D EXPERIMENTS

D.1 ADDITIONAL EXPERIMENT INFORMATION

Hyperparameters, hardware, and runtime The learning rate (η) search is first performed at
factors of 3 (e.g. 0.01, 0.003, 0.001) and then at factors of 2 or finer around the optimal value. The
regularization (α) search is at factors at 10 (e.g. 10−3, 10−4). For Adam, we additionally sweep over
β2 ∈ {0, 0.9, 0.95, 0.99}. When comparing batch sizes, we vary the batch size used for computing
gradient, and always use a large batch size (4096) for Gauss-Newton matrix to ensure an accurate
basis estimation. Experiments were run on NVIDIA A100 GPUs. Simulation runs in Section 3.1.2
each completes within 1min. Simulation runs in Section 3.3 takes 9min for every 100k steps. The
parity and staircase runs take around 10min for every 1k steps. For CIFAR experiments, runs under
the identity basis take less than 5min each, and runs under the Kronecker approximation of the
eigenbasis take around 80min each.

Kronecker factorization Inspired by prior work (Martens & Grosse, 2015; Gupta et al., 2018;
Vyas et al., 2024), our experiments use Kronecker factorization as a computationally efficient
approximation to the full eigenbasis. Given a matrix-valued parameter W ∈ Rm×n, let g ∈ Rmn

denote the flattened gradient, and G ∈ Rm×n denote the unflattened gradient. The mn × mn
Gauss-Newton matrix can be approximated by a Kronecker factorization as

H(GN) := E[gg⊤] ≈ E[GG⊤]⊗ E[G⊤G], (23)

where ⊗ denote the Kronecker product. The eigenvalues and eigenvectors of the Kronecker product
are the products and Kronecker products of the factors; hence the eigenbasis of H(GN) ∈ Rmn⊗mn can
be approximated by computing the eigenbasis of the smaller E[GG⊤] ∈ Rm×m, E[G⊤G] ∈ Rn×n.

Is Kronecker approximation a good proxy for the full eigenbasis? Benzing (2022) showed that
Kronecker-factored approximation such as KFAC (Martens & Grosse, 2015) can lead to better
performance than using the full eigenbasis in some cases. They attributed the gain to heuristic
damping, which effectively controls the step sizes and was beneficial in their experiments. Our
experiments do not use such heuristic damping, and we find the Kronecker approximation to behave
similarly to the full eigenbasis, while being much more compute-efficient.
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Figure 7: Sparse parity, comparing Adam, GN−1 and GN−1/2 for the full 2× 2 grid (Table 1).

D.2 DETAILS FOR MLP EXPERIMENTS WITH SQUARED LOSS

This section provides details for the MLP experiments in Section 5.

We learn all tasks with single-hidden-layer MLPs given by ŷ = f(x; θ) = a · σ(w⊤x+ b), where
w ∈ Rd×m, a, b ∈ Rd, with d and m being the input and hidden dimensions respectively. The
non-linearity σ defaults to ReLU unless specified otherwise.

Below we provide detailed descriptions of the tasks:

• Learning from a random teacher network. We first construct a teacher-student setting to evaluate
our hypotheses on a non-convex example. Consider input vectors, xi ∼ N (0,Σx) ∈ Rd where
Σx ∈ Rd×d is a random covariance matrix. We initialize a random teacher model, fT : Rd → R,
as a single hidden layer MLP. For each input vector, we sample output labels from the teacher:
yi = f(xi; θT ) = aT · σ(w⊤

T xi + bT ), where, wT ∈ Rm×d; aT , bT ∈ R⋗, and nT , hT are the
teacher’s input and hidden dimensions, respectively. The objective is to learn this (x, y) mapping
using an identical student model which has a hidden dimension dS = 2× dT .

• Feature learning with sparse parity. Sparse parity is well-studied and widely adopted for
understanding neural network optimization (Barak et al., 2022; Bhattamishra et al., 2022; Edelman
et al., 2023; Morwani et al., 2023; Abbe et al., 2024). It can be viewed as learning a sparse “feature”
embedded in a much higher ambient dimension. Specifically, (d, k)-parity is a function from
x ∈ {±1}d to y =

∏
i∈S xi ∈ {±1}, where S = {s1, s2, . . . , sk} ⊆ [d] is the unknown support

of relevant coordinates. In our experiments, we set d=20, k=6.
• Feature learning with staircase. We consider a multi-feature generalization of sparse parity

called the staircase function (Abbe et al., 2022; 2023). Given input x ∈ {±1}d, the label y is
the sum of several parity functions, whose supports are specified by k segments. Specifically,
y =

∑
(si,ei)∈P

∏ei−1
j=si

xj , where P = {(si, ei)}i∈[k] are the start (inclusive) and stop (exclusive)
indices of a segment. For our experiments, we set each segment to be of the same size and choose
d = 21, k = 3, i.e., P = {(0, 7), (7, 14), (14, 21)}, and y ∈ {−3,−1, 1, 3}.

• CIFAR-10 (Krizhevsky et al., 2009). The input images are flattened to a length-3072 vector and the
labels are treated as 10-dimensional one-hot vectors. We use 400 steps in all experiments, which
is sufficient for large-batch eigenbasis experiments to reach around 47% accuracy, a reasonable
performance for 2-layer MLPs.

What about using power p = −1 for Adam? In Section 2, we introduced the power p ∈ {− 1
2 ,−1}

as a hyperparameter for Gauss-Newton (GN) but kept the power Adam to be − 1
2 , following the

standard definition of the Adam algorithm. For completeness, we experiment on Adam with p = −1
on sparse parity. Our results in Figure 8 is consistent with Lin et al. (2024), which finds that p = −1
shows comparable empirical performance to the standard choice of p = −0.5, especially under
low-precision.

D.3 INTERPOLATING BETWEEN BASIS

In Section 5, we discussed the behavior of GN and Adam on two kinds of basis: identity and full-GN,
depicting an incorrect and a correct basis to precondition the gradient, respectively. To provide a
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Figure 8: Sparse parity, comparing Adam, with power −1 or − 1
2 for the full 2× 2 grid (Table 1).

Algorithm 2 Geodesic interpolation between bases
17: Input: full GN basis U , interpolation factor α.
18: Compute the matrix log K := logm(U).
19: Compute the matrix exponent Û := exp(α ·K).
20: Obtain the real part Uα := real(Û).
21: Output: Uα.

more complete picture of the effect of basis, we provide results with more granularity with respect to
the choice of basis.

Particularly, we compare GN and Adam on bases of “intermediate” quality by interpolating between
the identity and full-GN basis. Given the identity basis I and the eigenbasis U , we construct
an interpolation Uγ , parameterized by some interpolation factor γ ∈ {0, 0.25, 0.5, 0.75, 1}, using
geodesic interpolation (Algorithm 2). In particular, U0 = I and U1 = U . Results are shown in
Figure 9. In particular, Adam and GN− 1

2 behave similarly under the stochastic regime across basis
choices, as predicted by the theory (Section 3.2).

D.4 DETAILS FOR LOGISTIC EXPERIMENTS

Simulation for Section 4 We run simulation following the 2-layer linear network example in
Section 4. The inputs are 2048-dimensional one-hot vectors following a power law decay, with
νi := Pr(x = ei) ∝ i−c. We set c = 0.6 in the experiments. The label distributions are set to
Pi = p(y = 1|x = ei) = 0.75 for all i.

Transformer experiments This section provides details for the Transformer experiments in Sec-
tion 5. The attention module shares a similar structure as the logistic regression results in Section 4:
the inner product of query and key matrices resembles the reparameterization, and the softmax
function resembles the logistic function. As a result, Gauss-Newton is forced to take conservative
step sizes and suffers from slow convergence, as shown in Figure 5.

We consider a selection task: The input is a sequence of T Gaussian vectors followed by a length-d
one-hot vector (d ≥ T ) specifying which input is used in the regression task, i.e. [x1, · · · , xT , s]. For
s = ei, the label is given by y = ⟨θ∗, xi⟩. We set T = 32 in the experiments. The task is learned
with a 1-layer 1-head Transformer with dimension 128. Figure 5 shows results comparing GN and
Adam under the Kronecker-approximated eigenbasis with large batches (batch size = 16384), each
aggregated over 10 seeds. Each run takes around 90min to complete.
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Figure 9: Basis interpolation: Comparing GN−1, GN−1/2, and Adam under various bases, for
parity and staircase (Section 5). Each basis is obtained by a geometric interpolation between
the eigenbasis (darker colors) and the identity basis (lighter colors), parmaeterized by a factor
γ ∈ {0, 0.25, 0.5, 0.75, 1}.
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