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ABSTRACT

We present a method to analyze images taken from a passive
egocentric wearable camera along with the contextual infor-
mation, such as time and day of week, to learn and predict
everyday activities of an individual. We collected a dataset
of 40,103 egocentric images over a 6 month period with 19
activity classes and demonstrate the benefit of state-of-the-
art deep learning techniques for learning and predicting daily
activities. Classification is conducted using a Convolutional
Neural Network (CNN) with a classification method we in-
troduce called a late fusion ensemble. This late fusion en-
semble incorporates relevant contextual information and in-
creases our classification accuracy. Our technique achieves
an overall accuracy of 83.07% in predicting a person’s activ-
ity across the 19 activity classes. We also demonstrate some
promising results from two additional users by fine-tuning the
classifier with one day of training data.
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INTRODUCTION

The ability to automatically monitor and infer human behav-
iors in naturalistic environments is essential for a wide range
of applications in areas such as context-aware personal assis-
tance, healthcare, and energy management. Recently, wear-
able egocentric cameras such as the GoPro ! and Narrative 2
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Figure 1. Example images from our dataset of 40,000 egocentric images
with their respective labels. The classes are representative of the number
of images per class for the dataset. Note: We handpicked family images
for this figure so they did not contain family subjects (for privacy and
anonymity concerns).

have become ubiquitous, enabling a new form of capturing
human experience. The first-person perspective photos taken
by these cameras can provide rich and objective evidence of
a person’s everyday activities. As a result, this data collection
approach has been extensively used in a variety of research
domains, particularly in healthcare. Health-related applica-
tions that have leveraged first-person photos include, but are
not limited to, retrospective memory support [11], dietary as-
sessment [23, 26], autism support [20], travel and sedentary
behavior assessment [15, 17], and recognition of physical ac-
tivities [30].

Besides the ever important issue of privacy, first-person photo
capture with wearable cameras has one additional and serious
challenge. Once photographs have been taken, in many cases,
it is necessary to review them to identify moments and activ-
ities of interest, and possibly to remove privacy-sensitive im-
ages. This is particularly challenging when wearable cameras
are programmed to take snapshots periodically, for example:
every 30 or 60 seconds. At this rate, thousands of images are
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captured every week, making it imperative to automate and
personalize the process of image analysis and categorization.

We describe a computational method leveraging state-of-the-
art methodologies in machine learning to automatically learn
a person’s behavioral routines and predict daily activities
from first-person photos and contextual metadata such as day
of the week and time. Example of daily activities include
cooking, eating, watching TV, working, spending time with
family, and driving (see Table 1 for a full list). The ability to
objectively track such daily activities and lifestyle behaviors
is extremely valuable since behavioral choices have strong
links to chronic diseases [28].

To test and evaluate our method, we compiled a dataset
of 40,103 images representing everyday human activities.
The dataset has 19 categories of activities and were col-
lected by one individual over a period of six months “in the
wild”. Given the egocentric image and the contextual date-
time information, our method achieves an overall accuracy of
83.07% at determining which one of these 19 activities the
user is performing at any moment.

Our classification method uses a combination of a Convolu-
tional Neural Network (CNN) and a Random Decision Forest
(RDF), using what we refer to as a CNN late-fusion ensem-
ble. It is designed to work on single images captured over
a regular interval as opposed to video clips. Capturing hours
of egocentric video footage would require tethered power and
large storage bandwidth, which still remains impractical. An
example of our input egocentric image and the output class
prediction probabilities is shown in Figure 1. In brief, our
contributions are:

e A robust framework for the collection and annotation of
egocentric images of daily activities from a wearable cam-
era.

e A CNN+RDF late-fusion ensemble that reduces overfitting
and allows for the inclusion of local image features, global
image features, and contextual metadata such as day of the
week and time.

e A promising approach to generalize and fine-tune the
trained model to other users with a minimal amount of data
and annotation by the user. We also get insights into the
amount of data the first user needs to collect to train a clas-
sifier and how much data subsequent users need to collect
to fine-tune the classifier to their lifestyle.

e A unique dataset of annotated egocentric images spanning
a 6 month period and a CNN+RDF late-fusion ensemble
model fit to that data.

RELATED WORK

Activity Analysis: Discovering daily routines in human be-
havior from sensor data has been an active area of research.
With a dataset of 46 days of GPS sensor data collected from
30 volunteer subjects, Biagioni and Krumm demonstrated an
algorithm that uses location traces to assess the similarity of
a person’s days [1]. Blanke and Schiele explored the recogni-
tion of daily routines through low-level activity spotting, with
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precision and recall results in the range of 80% to 90% [2].
Other proposed techniques for human activity discovery have
included non-parametric approaches [25], and topic modeling
[13].

One of the most comprehensive computer-mediated analysis
of human behaviors in naturalistic settings was done by Ea-
gle and Pentland [7]. By collecting data from 100 mobile
phones over a 9-month period, they were able to recognize
social patterns in daily user activity, infer relationships, iden-
tify socially significant locations, and model organizational
rhythms. Their work was based on a formulation for identi-
fying structure in routine called eigenbehaviors [8]. By ex-
amining a weighted sum of an individual’s eigenbehaviors,
the researchers were able to predict behaviors with up to 79%
accuracy. This approach also made it possible to calculate
similarities between groups of individuals in terms of their
everyday routines. With data collected in-the-wild over 100
days, Clarkson also presented an approach for the discovery
and prediction of daily patterns from sensor signals [4].

While long-term activity prediction approaches have mostly
relied on mobile phone data and sensor signals, our approach
is focused on the prediction of human activities in real-wold
setting from first-person egocentric images using computer
vision and machine learning approaches. While there has
been some work on detecting activities with egocentric cam-
eras, most of these approaches rely on video and hand-crafted
features. Fathi et al. [9] used egocentric video and detected
hands and objects to recognize actions. Pirsiavash et al. [24]
introduced an annotated dataset that includes 1 million frames
of 10 hours of video collected from 20 individuals perform-
ing activities of daily living in 20 different homes and used
hand-crafted object detectors and spatial pyramids to classify
activities using a SVM classifier.

In contrast to state-of-the-art approaches that use hand-
crafted features with traditional classification approaches on
egocentric images and videos, our approach is based on Con-
volutional Neural Networks (CNNs) combining image pixel
data, contextual metadata (time) and global image features.
Convolutional Neural Networks have recently been used with
success on single image classification with a vast number of
classes [18] and have been effective at learning hierarchies of
features [29]. However, little work has been done on clas-
sifying activities on single images from an egocentric device
over extended periods of time. This work aims to explore that
area.

Privacy Concerns: One of the challenges of continuous and
automatic capture of first person point-of-view images is that
these images may, in some circumstances, pose a privacy
concern. Privacy is an area that deserves special attention
when dealing with wearable cameras, particularly in public
settings. Kelly et al. proposed an ethical framework to for-
malize privacy protection when wearable cameras are used in
health behavior research and beyond [16] while Thomaz et
al. proposed a framework for understanding the balance be-
tween saliency and privacy when examining images, with a
particular focus on photos taken with wearable cameras [27].
People’s perceptions of wearable cameras are also very rele-
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Figure 2. Our simple yet practical setup for data collection: A neck
identity holder fitted with a smartphone with our custom data collection
application. No specialized or expensive hardware is needed.

vant. Nguyen et al. examined how individuals perceive and
react to being recorded by a wearable camera in real-life situ-
ations [21], and Hoyle et al. studied how individuals manage
privacy while capturing lifelong photos with wearable cam-
eras [12].

DATA COLLECTION

Over a period of 26 weeks, we collected 40,103 egocentric
images of activities of daily living for one subject with 19
different activity classes. The images were annotated manu-
ally using a tool we developed to facilitate this arduous daily
task. The classes were generated by the subject at their dis-
cretion based on what activities the user conducted (we did
not provide the labels prior to data collection).

Process

The subject was equipped with a neck identity holder that was
fitted to hold a smartphone in portrait mode (shown in Figure
2). We developed an application that runs on the smartphone
and captures photos at fixed intervals, which allows for the
capture of egocentric data throughout the day. At the end
of the day, the participant could filter through the images in
order to remove unwanted and privacy sensitive images and
annotate the remaining images. The participant categorized
the data collected for 26 weeks using the annotation tool de-
scribed in the following subsection into one of the 19 activity
classes. The distribution of these classes is shown in Table
1. We can see that "Working” and “Family” are the top two
dominant classes due to the participant’s lifestyle. We note
that the participant was free to collect and annotate data at
their disclosure. The subject was also free to leave ambigu-
ous images (i.e. going from work to a meeting) unannotated.
Any unlabeled and deleted images were reasonably not in-
cluded in the dataset.

Tool for Annotation

We developed a tool for rapid image annotation that is in-
tended for daily activity labeling. The tool automatically re-
ceives the imagery taken from the application on the egocen-
tric device and displays them in chronological order. The user
is then able to select sequential images (in chunks) to label
as specific activities. This facilitates the process of labeling
large image sets in a simpler and intuitive manner.
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[ Classes | Number of Images | Percent of Dataset |
Chores 725 1.79
Driving 1031 2.54
Cooking 759 1.87
Exercising 502 1.24
Reading 1414 3.48
Presentation 848 2.09
Dogs 1149 2.83
Resting 106 0.26
Eating 4699 11.58
Working 13895 34.24
Chatting 113 0.28
TV 1584 3.90
Meeting 1312 3.23
Cleaning 642 1.59
Socializing 970 2.39
Shopping 606 1.49
Biking 696 1.71
Family 8267 20.37
Hygiene 1266 3.12

Table 1. The distribution of the 19 different classes in our dataset.

Description of Dataset

As shown in Table 1, the distribution of tasks is represented
by a few common daily tasks followed by semi-frequent ac-
tivities with fewer instances. We are keen to highlight the dif-
ficulty of certain classes due to their inherent overlap (social-
izing vs. chatting, chores vs. family, cleaning vs. cooking,
etc). This class overlap is due to the inherent impossibility of
describing a specific moment with one label (the participant
could be eating and socializing).

The bi-weekly breakdown of data collection is shown in Table
2. We can see a general increase in the number of annotated
samples later in the collection process. Some of this is due to
increasing the interval at which the application captured im-
ages up to once a minute from once every five minutes. The
rest of the increase can be attributed to the participant becom-
ing more comfortable with the data collection and annotation
process, and over time, successfully incorporating this pro-
cess into their day-to-day routine.

The participant collected the majority of the data from ap-
proximately 7-8am to 7-8pm. The majority of the data that is
not captured is therefore during the participants sleep cycle.
On an average day we retain 80% of the data that is collected
(the participant removes approximately 20% for privacy and
null classes). The participant handled null classes (blurry im-
ages, etc) by leaving them unlabeled. These images were then
removed prior to assembling the dataset.

METHODOLOGY

We present a methodology for incorporating contextual meta-
data and other traditional hand-crafted features with a Convo-
lutional Neural Network (CNN) that processes the raw image
data. The method is compared to baseline machine learning
methods (k-Nearest Neighbors (kNN) [5] and Random Deci-
sion Forests (RDF) [3]) in order to demonstrate the benefits
and limitations of our approach. We also introduce a method
called late fusion ensembling for combining non-image data
with CNN probabilities and compare it to a traditional CNN
and classic ensembling methods.
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Figure 3. Overview of our Convolutional Neural Network Late Fusion Ensemble for predicting activities of daily living.

[ Classes | Number of Samples | Percent of Dataset |
Week 1&2 553 1.40
Week 3&4 814 2.07
Week 5&6 69 0.18
Week 7&8 216 0.55
Week 9&10 239 0.61
Week 11&12 2586 6.58
Week 13&14 5858 14.90
Week 15&16 6268 15.94
Week 17&18 2903 7.38
Week 19&20 3417 8.69
Week 21&22 6465 16.45
Week 23&24 4695 11.94
Week 25&26 5229 13.30

Table 2. The bi-weekly distribution of the number of images in our
dataset.

Baseline Approaches

We ran evaluations using k-Nearest Neighbor (kNN) and
Random Decision Forest (RDF) classifiers in order to ad-
equately fine-tune the best accuracy for our baseline. We
parametrized our dataset using contextual metadata (day of
the week (as a nominal value from O to 6) and time of day)
and global image features (color histograms). We found that
a kNN classifier (with a k-value of 3) trained on the metadata
and the color histograms (with 10 bins) gave an accuracy of
73.07% which was better than training a kNN trained on the
metadata alone or the color histograms alone. We tested the
classifier at incremental parameters of k (until 50) and found
that performance slowly degraded as we increased k beyond
3. We further tested the time metadata at three granularities
(the hour, hour + minutes (i.e. 7:30am = 7.5), and hour and
minute as separate features) and found the difference in pre-
diction accuracy to be negligible due to the scheduled nature
of humans. We selected to keep the hour and minute as sepa-
rate features as it had the highest accuracy. Further, we found
that a RDF classifier with 500 trees trained on the metadata
and color histograms (with 10 bins) gave us the best overall
accuracy of 76.06% (note that random chance, by picking the
highest prior probability, is 34.24% for this dataset). Train-
ing the RDF with more than 500 trees had a negligible ef-
fect on the total accuracy. Our baseline results can be seen
in Table 3. It is important to note that a high total accuracy
is driven by the distribution of the data amongst the classes.
Since a majority of the data is in two classes (“Working” and
“Family”), a classifier can achieve a high total accuracy by
accurately classifying only those two classes. We also show
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average class accuracy to show how well the baseline classi-
fier does for all classes distributed evenly.

Convolutional Neural Network

Recently, Convolutional Neural Networks (CNNs)[19] have
been shown to be effective at modeling and understanding
image content for classification of images into distinct, pre-
trained classes. We used the Caffe CNN framework [14] to
build our model since it has achieved good results in the past
and has a large open-source community. Since the dataset
has a small number of images, we fine-tune our CNN using
the methodology of [10] using the ImageNet [6] classifica-
tion model introduced by Krizhevsky et al. in [18] that was
trained on over a million images in-the-wild. We retrain the
last layer using our collected data with 19 labels for daily ac-
tivity recognition. We set the base learning rate to 0.0001
in order to converge with our added data and use the same
momentum of 0.9 and weight decay of 0.0005 as [18] with
up to 100,000 iterations as shown in Figure 4. Our CNN
has five convolutional layers, some max-pooling layers, and
three fully-connected layers followed by dropout regulariza-
tion and a softmax layer with an image size of 256x256 just
as in [18]. We split our data by classes into 75% training, 5%
validation, and 20% testing. The classifier was never trained
with testing data on any of the experiments. The parameters
were chosen using the validation set and the fine tuning in all
of the experiments was only done with the training set. It is
interesting to note that the algorithm jumps to almost 78%
accuracy after only 20,000 to 30,000 iterations and converges
around 50,000 iterations due to fine tuning. Despite a high
total accuracy, the class accuracy of a CNN alone is hindered
due to the lack of contextual information and global image
cues.

For many problems with small amounts of data, data augmen-
tation can be effective at preventing overfitting and increasing
accuracy. However, in this case, we are collecting data at a
specific orientation and viewpoint, so many data collection
techniques are not applicable. Because of this, we elected not
to augment our training data although that would be a useful
extension of the work.

Classic Ensemble

One method to combine the CNN output with non-image data
is a classic ensemble method. Training a classifier such as a
RDF on the contextual metadata can yield a probability distri-
bution which can be combined with the CNN probability dis-
tribution to yield a final probability. This equally weights the
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[ [ kNN Metadata | kNN Hist | kNN Metadata+Hist | RDF Metadata | RDF Hist | RDF Metadata+Hist |

Avg. Class Accuracy | 15.51 44.23 54.72

15.51 40.43 50.71

Total Accuracy 52.50 65.62 73.07

52.50 68.89 76.06

Table 3. A comparison of the baselines using KNN and RDF trained on contextual metadata, color histograms and a combination of both.
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Figure 4. A Convolutional Neural Network trained for 100,000 itera-
tions. We can see the accuracy convergence after 20,000 to 30,000 itera-
tions.

CNN output and the RDF output in order to get the best out-
put possible. This can prevent over-fitting from the CNN but
doesn’t necessarily increase the prediction accuracies since it
doesn’t leverage which classifier is better at which classes or
which information from the classifiers are important.

Late Fusion Ensemble

To solve the problem of combining a CNN with a classic en-
semble, we developed a late-ensemble technique. We use a
RDF trained on the CNN soft-max probabilities along with
the contextual metadata (day of week and time of day) and the
global image information (histograms of color), each being
separate features for the RDF. This allows for a good combi-
nation of outputs that can be learned rather than naively com-
bined. Using this we outperform the classic ensemble and the
normal CNN model by approximately 5%. The pipeline for
our method is shown in Figure 3.

RESULTS

In this section we present a comparison of baseline machine
learning techniques against the different convolutional ap-
proaches for the classification of daily living activities. As
shown in Table 3, kNN and RDF perform surprisingly well
with contextual metadata (day of the week and time of day)
and color histograms. RDFs marginally outperform the kNN
methods, particularly with the use of color histograms. It is
worth mentioning that we tested other global features (such
as GIST [22]) on the same baseline methods and obtained
negligible changes in accuracy.

In order to improve the performance of our activity prediction
we leverage the use of local image information. Through the
use of a regular CNN, we see a minor increase in total accu-
racy (+2%) over the baseline (see Table 5), but a much more
impressive jump in average class accuracy (+7%). We see
an even greater increase in accuracy as we incorporate both
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[ [ kNN [ RDF [ CNN [ CNN+LF |
Chores 33.10 | 17.24 | 00.69 20.00
Driving 55.07 | 60.87 | 98.55 96.62
Cooking 25.66 | 35.53 | 47.37 60.53
Exercising 44.00 | 63.00 | 69.00 73.00
Reading 68.55 | 49.12 | 30.04 53.36
Presentation 80.00 | 72.35 | 80.59 87.06
Dogs 62.17 | 44.35 | 55.65 66.09
Resting 72.73 | 5455 | 27.27 45.45
Eating 77.14 | 75.75 | 82.05 83.12
Working 91.10 | 96.42 | 93.49 95.19
Chatting 21.74 | 04.35 | 00.00 17.39
TV 77.38 | 75.79 | 81.75 81.75
Meeting 68.73 | 61.00 | 73.36 81.47
Cleaning 26.56 | 30.47 | 38.28 46.09
Socializing 52.85 | 37.31 | 31.60 45.08
Shopping 40.16 | 27.87 | 63.93 64.75
Biking 19.57 | 23.19 | 78.26 81.88
Family 70.82 | 87.42 | 86.69 90.15
Hygiene 52.36 | 46.85 | 51.57 62.60
Avg. Class Accuracy | 54.72 | 50.71 | 57.38 65.87
Total Accuracy 73.07 | 76.06 | 78.56 83.07

Table 4. A comparison of the best of all methods (using contextual meta-
data, color histograms and pixel data) for all the 19 activity classes.
CNN+LF is CNN with Late Fusion Ensemble

contextual metadata and global image information (color his-
tograms). We have demonstrated through the baseline meth-
ods that these features are of importance, which is why we
developed our CNN late fusion ensemble that leverages the
metadata and global and local image features. Our best en-
semble leverages all of the presented information for a to-
tal accuracy of 83.07% with an average class accuracy of
65.87% showing an impressive increase over the baseline and
the other methods. A confusion matrix of our final method’s
results is shown in Figure 5.

DISCUSSION

Our method achieves the highest accuracy on the classes with
the most samples (as one would expect since test accuracy
increases with larger amounts of training data). As shown
in Table 5, our ensemble method outperforms both a normal
CNN and a classic ensemble with a CNN. Training an RDF
with extra features and the CNN probabilities allows the RDF
to find what is important for each individual class. It also
allows for the other types of data to be effectively added in
a framework that prevents some of the overfitting that CNN’s
typically have. This shows how our novel ensemble method
effectively combines local pixel-level information, contextual
information, and global image-level information. Because it
relies on a CNN running on a GPU, the system uses a large
amount of power and is not well suited for embedded devices.
On an ARM device, testing each image would take more than
15 seconds. However, the method could be run on a server
that an embedded device could query.
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| Average Class Accuracy | Total Accuracy |

CNN 57.38 78.56
CNN Classic Ensemble (Pixel + Metadata) 53.48 78.47
CNN Classic Ensemble (Pixel + Metadata + Hist) 59.72 81.49
CNN Late Fusion Ensemble (Pixel) 63.22 80.94
CNN Late Fusion Ensemble (Pixel + Metadata) 65.29 82.45
CNN Late Fusion Ensemble (Pixel + Metadata + Hist) | 65.87 83.07

Table 5. A comparison of different CNNs and CNN ensembles using contextual metadata, global features (color histograms), raw image pixels and their

combinations.

CNN Late Fusion Ensemble Confusion Matrix
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Figure 5. Confusion Matrix for the 19 classes of our dataset with
columns as the predicted labels and rows as the actual labels.

Many of the classification failures of our method deal with
some classes being inter-related. Our worst results are in
“Chores” and “Chatting”. These classes can be easily con-
fused with others such as “Cleaning”, “Working” and “Fam-
ily”. In many examples in which the subject is conducting a
chore, the family is in the background, which may confuse
the classifier. An example of a chore misclassification can be
seen in Figure 6. In this example, the image has erroneous
probability peaks for “Eating”, “Socializing” and “Family”
classes due to the presence of the kitchen environment in the
image, a place where the family meet, socialize and eat to-
gether. We acknowledge this as a limitation of the method
used for data capture that uses a single image frame in con-
trast to a short video clip. We believe the extension of our
method to short video clips would prevent some of these dif-
ficult classification errors but would present further questions
in privacy, device storage and battery life.

To visually display an average day and our prediction of the
activities for that day, we have taken a random daily sample
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Figure 6. An example of a classification error on an image from the class
“Chores” (class 0). We can see the confusion against “Eating” (class 8),
“Socializing” (class 14) and “Family” (class 17) due to the presence of
the Kkitchen environment in the image.

Figure 7. An example of a randomly chosen day and the classifier’s pre-
dicted output.

from the data and classified it visually. The results are shown
in Figure 7. For this particular day, our classifier nears 100%
accuracy at predicting the user’s activities. We are keen to
highlight the misclassification errors on this given day. Dur-
ing the classification of “Dogs” at the beginning of the day
(seen in purple), we notice two slivers of misclassification
in which the algorithm detects “Family” instead of walking
the dogs (both classes have instances of green foliage). We
see similar errors in the last light blue segment, representing
“Working”, in which it detects two instances as ‘“Meeting”
instead of “Working”. This provides further evidence that
the class overlap is likely to contribute heavily to the 16.93%
overall misclassification that we have in our dataset.

In a second experiment, we demonstrate the correlation be-
tween the amount of training data and the algorithms’ test
accuracy for the participant. We highlight two hypotheses for
the increase in accuracy over time. The first is that the algo-
rithm is adequately learning the participants’ schedule and
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Figure 8. A plot of class accuracies vs. the number of weeks of training
samples. We can see a general trend where the class accuracies increase
as the amount of training samples increase. A significant increase in
accuracy is seen after training on the first 4 weeks of data.

frequented activities, which allows it to better model their
daily activities. The second plausible hypothesis is that the al-
gorithm is adapting to general human behavior and learning
the overall characteristics of specific classes. This presents
two interesting questions for the applications of this research.
First, how much data is required to train a generic model and
second, how much data is required to “fine-tune” said generic
model to a specific user. We have tried to address the first of
these questions by training our model with varying amounts
of data points to observe the number of days/samples a user
is required to collect in order to train a good generic model.
The top 7 classes are shown in Figure 8 (plots for the other
12 classes are omitted to maintain clarity). We can see that
the class accuracies improve as more data is captured with a
significant increase in accuracy after the first 4 weeks.

In order to address the second question, we performed a fi-
nal experiment in which two volunteers (V1 and V2) wore
the egocentric device for 48 hours in order to collect images
and time-stamps at a 60 second interval. The data was divided
equally into a training and test set (Day 1 for training and Day
2 for testing) in order to test the validity of the model trained
by our original participant’s data. The results of this experi-
ment are demonstrated in Table 6. As you can see, for some
classes that involve a similar viewpoint and environment, like
reading, the model generalizes very well. However, for many
others such as driving and chatting where volunteers are go-
ing different places and talking to different people, the model
does not generalize well. It is worth noting that the initial
accuracy prior to fine-tuning performs worse than the highest
prior probability of the original model (34.24%). We reason
that this is due to the difference in habits between participants
(we work, read, cook for distinct periods of time) that require
fine-tuning to adapt to one’s specific daily schedule.
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[ [ Original [ VI [ V1Fine [ V2 | V2Fine |
Chores 20.00 5.56 25.0 N/A | N/A
Driving 96.62 18.6 100.0 0.0 100.0
Cooking 60.53 0.0 25.0 N/A | N/A
Exercising 73.00 0.0 50.0 N/A | N/A
Reading 53.36 77.78 | 75.0 N/A | N/A
Presentation | 87.06 N/A N/A N/A N/A
Dogs 66.09 N/A N/A N/A N/A
Resting 45.45 N/A N/A N/A N/A
Eating 83.12 11.48 | 76.92 30.68 | 100.0
Working 95.19 31.59 | 98.32 39.14 | 94.44
Chatting 17.39 0.0 86.67 0.0 96.72
TV 81.75 0.0 3333 N/A N/A
Meeting 81.47 0.0 100.0 0.0 60.0
Cleaning 46.09 0.0 0.0 N/A N/A
Socializing | 45.08 0.0 0.0 0.0 83.33
Shopping 64.75 40.0 | 50.0 N/A N/A
Biking 81.88 N/A N/A N/A N/A
Walking N/A 0.0 57.14 N/A N/A
Family 90.15 N/A N/A N/A N/A
Hygiene 62.60 1333 | 0.0 27.78 | 81.82
Class Acc 65.87 10.56 | 51.83 13.94 | 88.05
Total Acc 83.07 23.58 | 86.76 27.06 | 91.23

Table 6. A comparison of the original model tested on two volunteers
and the fine tuned model. “Original” is the original applicants data and
model. “V1” and “V2” are the results from the original model tested on
volunteers 1 and 2 data respectively. “V1 Fine” and “V2 Fine” are the
results from the fine-tuned models trained on volunteers 1 and 2 data
respectively. The results that are not available are classes that the two
volunteers did not perform when collecting their data.

Different individuals also have different activities and one set
of class labels from one individual might not fit another indi-
vidual’s lifestyle. Given the model trained for one person, is
it possible to fine-tune the classifier to yield good results for a
different person, even with different classes? At its core, this
addresses the question of whether a classifier is learning the
schedule and habits of one person or if the learning is inher-
ently adapting to common human behavior. As seen in Ta-
ble 6, the classifier trained on the original participant was not
very successful. However, fine-tuning that model with just
one day of data from the new user can yield very good accu-
racy. Not only did this achieve great accuracy, but the CNN
converged in less than 5,000 iterations, whereas the original
CNN takes more than 50,000 iterations to converge. This im-
plies that part of the model is learning human behavior while
another part is learning the habits of a specific person. We
can use a small amount of training data to fine-tune the clas-
sifier to learn the habits of a new person, while still keeping
the knowledge of general human behavior.

CONCLUSION

We have demonstrated a robust and unique dataset of egocen-
tric images that have been annotated with the user’s activi-
ties, a CNN late-fusion ensemble method to classify the data,
promising results in fine-tuning the model to other users and
a trained model that performs well on egocentric daily living
imagery. We have shown state-of-the-art results on the data
compared to commonly-used methods (a traditional CNN and
a Classic Ensemble) and we have determined the amount of
data that is needed to train an initial CNN classifier for this
problem and the amount of data that is required to fine-tune
the model on a per-user basis.
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