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ABSTRACT

Large pre-trained language models (PLMs) have demonstrated strong perfor-
mance on natural language understanding (NLU) tasks through fine-tuning. How-
ever, fine-tuned models still suffer from overconfident predictions, especially in
out-of-domain settings. In this paper, we tackle the problem of calibrating fine-
tuned language models. We demonstrate that the PLMs are well-calibrated on the
masked language modeling task with robust predictive confidence under domain
shift, yet the fine-tuned models fail to retain such property due to catastrophic
forgetting, which impacts the calibration on the downstream classification task.
In light of these observations, we evaluate the calibration of several methods that
preserve pre-trained features and show that preserving pre-trained features can
improve the calibration of fine-tuned language models. Among these methods,
our proposed method that encourages the fine-tuned model to learn generative
representations with auxiliary language modeling objective achieves competitive
accuracy and the lowest expected calibration error compared to several strong
baselines under both in-domain and out-of-domain settings on three downstream
NLU tasks.

1 INTRODUCTION

Fine-tuning pre-trained language models (PLMs) is a dominating paradigm for natural language un-
derstanding (NLU) with state-of-the-art results for a variety of NLU tasks (Peters et al., 2018; Devlin
et al., 2019; Liu et al., 2019; He et al., 2021a). The powerful fine-tuned language models have been
experimented with for decision-making in real-world applications such as the healthcare domain (He
et al., 2020) and safety-critical domain (Sandagiri et al., 2020), where the classification networks
need to be highly accurate and provide calibrated confidence for their predictions to improve the
safety and trustiness of the models (Guo et al., 2017). For example, suppose a medical language
inference LM that predicts the disease given the description of symptoms is well-calibrated, i.e.,
the model’s posterior probabilities (or confidence) align well with the true correctness likelihood.
In that case, the wrong predictions can be easier to detect and correct by human doctors by given
low predictive confidence. However, as with other modern neural networks, the fine-tuned LMs
are shown to suffer from overconfidence (Desai & Durrett, 2020; Jiang et al., 2021), which creates
obstacles and concerns for their deployment in real-world applications.

Uncertainty estimation of fine-tuned models is challenging due to the small amount of available data
for fine-tuning, especially under out-of-domain settings (Desai & Durrett, 2020; Guo et al., 2021).
While prior works illustrate that simple calibration techniques such as temperature scaling (Guo
et al., 2017) and label smoothing (Szegedy et al., 2016) are not sufficient to calibrate the fine-tuned
LMs under both in-domain (ID) and out-of-domain (OD) settings (Desai & Durrett, 2020; Park &
Caragea, 2022), several approaches with strong regularization have been developed to calibrate the
fine-tuned model on NLU tasks, including knowledge distillation from deep ensembles (Guo et al.,
2021), stochastic network architectures (Fan et al., 2020; Zhang et al., 2021), and Mixup (Park
& Caragea, 2022). However, these existing works mostly utilize general calibration methods for
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supervised learning, while specific properties of the pre-training & fine-tuning paradigm are still
largely neglected.

In this work, we tackle the calibration of fine-tuned models from the perspective of better leveraging
the powerful PLMs. Through a carefully designed empirical study on both pre-trained and fine-tuned
models, we first observe that PLMs themselves are actually well-calibrated on the masked language
modeling (MLM) task and robust to higher levels of perturbation to the inputs, which suggests the
PLMs can model the predictive uncertainty well across different domains. However, the pre-trained
features are only used as initialization and are distorted by the fully discriminative fine-tuning. The
phenomenon is known as catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick et al.,
2017; Howard & Ruder, 2018). We show that such forgetting can make the fine-tuned language
models fail to hold proper predictive confidence toward the OD and outlier samples, which leads to
miscalibration on the downstream tasks. Based on the observations, we hypothesize that preserving
the pre-trained features helps calibrate the fine-tuned LMs.

To validate our hypothesis, we first evaluate the calibration of some previous methods that can pre-
serve pre-trained features, including (1) Parameter-efficient tuning (Houlsby et al., 2019; Hu et al.,
2021; Li & Liang, 2021), (2) Pre-trained weight decay, (3) Mixout (Lee et al., 2020). Although these
methods were originally designed to improve the performance beyond uncertainty estimation, our
experiment demonstrates that these methods outperform vanilla fine-tuning in terms of calibration,
especially under out-of-domain settings. Based on our observation that the PLMs are well-calibrated
on the MLM task yet the fine-tuned LMs that forget the pre-trained features struggle with overconfi-
dence under domain shift, we propose a simple baseline that utilizes the MLM objective to maintain
the consistency between the pre-trained and fine-tuned models. The proposed method achieves the
lowest expected calibration error and competitive accuracy compared to existing calibration methods
in both ID and OD settings on three NLU tasks, including natural language inference, paraphrase de-
tection, and commonsense reasoning, showing that preserving the pre-trained features is an effective
approach for improving the calibration of fine-tuned LMs.

2 PRELIMINARIES

2.1 MASKED LANGUAGE MODELS

Masked language models generally consist of a transformer-based text encoder fφ parameterized by
φ and a linear language modeling head gθ parameterized by θ. In the pre-training phase, the model
handles the masked language modeling task (Devlin et al., 2019). Assume we have unsupervised
sequence inputs x sampled from large-scale corpora pu(x). A subset of x is first masked by a
corruption function or distribution. Denote the indices of the masked tokens as M, the set of masked
tokens as xM, and the observed unmasked input as x\M. The model is trained to recover the masked
tokens xM. In particular, the masked language model first uses the text encoder to get a hidden
representation of the input, denoted as fφ(x\M). Then the language modeling head gθ with softmax
function is applied to fφ(x\M) to obtain a conditional categorical distribution pmlm(xi|x\M) over
the vocabulary V for each masked position i ∈M. The masked language modeling objective is:

Lmlm = −Epu(x)[
∑
i∈M

log pmlm(xi|x\M;φ, θ)] (1)

In the fine-tuning phase, assume we have labeled data in the form of (x, y) sampled from data dis-
tribution pd, where x corresponds to the text input, and y corresponds to the label. For classification
tasks, a task-specific head hϕ that parameterized byϕ is applied on the hidden representation of input
to obtain the logit for each class. The predictive posterior distribution q(y|x) is given by the logits
after softmax operation. In standard fine-tuning, the pre-trained encoder fφ and the task-specific
head hϕ are jointly optimized using the cross-entropy loss:

Lcls = −Epd(x,y) [log q(y|x;φ, ϕ)] (2)

which is also known as full fine-tuning (Full-FT) (Peters et al., 2018; Devlin et al., 2019).
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2.2 CONFIDENCE CALIBRATION

The framework of confidence calibration under the supervised classification setting can be expressed
as a joint distribution P (ŷ, p̂) over the label prediction ŷ ∈ |Y| and the corresponding confidence
p̂ ∈ [0, 1]. A perfectly calibrated model holds P (ŷ = y|p̂ = p) = p (Guo et al., 2017). One way
to evaluate calibration through finite samples is expected calibration error, i.e., ECE (Naeini et al.,
2015). To compute ECE, the model’s predictive confidences are first grouped into M equal-sized
bins. Denote Bm as the indices of samples whose confidences are in the interval (m−1

M , mM ]. Sup-
pose we have N samples, the ECE is calculated by the weighted average of the difference between
confidence and accuracy in each bin:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1 (ŷi = yi) , conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|

(3)

In this work, we set M = 10 following Desai & Durrett (2020).

3 A CLOSER LOOK TO THE PRE-TRAINED AND FINE-TUNED LANGUAGE
MODELS IN CALIBRATION

In this section, we explore the connection between the pre-trained and fine-tuned language mod-
els in terms of calibration by examining: (1) The calibration of the pre-trained language models
themselves. (2) How fine-tuning affects calibration on the downstream classification tasks.

3.1 WHAT WE FORGET AFTER FINE-TUNING THE PRE-TRAINED LANGUAGE MODELS

Pre-trained language models have demonstrated their ability to capture informative linguistic fea-
tures from large corpora (Tenney et al., 2019; Jawahar et al., 2019; Ethayarajh, 2019). Intuitively,
the pre-trained features learned on diverse corpora should be capable of performing uncertainty
estimation well. In this subsection, we validate that the pre-trained language models are indeed
well-calibrated on the MLM task, which suggests that the predominant full fine-tuning method that
forgets such pre-trained features is suboptimal.

Table 1: The Expected Calibration Error (ECE)
of the pre-trained RoBERTaBASE on the MLM
task.

Dataset pmask = 0.15 pmask = 0.3 pmask = 0.5

WikiText-103 3.890.23 3.730.12 4.300.08

SNLI 2.990.29 3.650.18 5.800.18

MNLI 2.680.29 3.610.10 5.650.18

QQP 4.230.13 4.740.06 6.190.05

TwitterPPDB 7.520.23 8.450.07 10.120.10

SWAG 5.670.08 5.860.02 6.880.05

HellaSWAG 3.180.10 3.440.03 4.820.02
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Figure 1: Reliability diagram of the pre-trained
RoBERTaBASE on the MLM task on WikiText-
103.

Setup: We evaluate the calibration of the pre-trained RoBERTaBASE (Liu et al., 2019) through the
MLM task. We use the test split of the WikiText-103 (Merity et al., 2016) , one of the corpora in
the pre-training phase, and six downstream datasets from different domains (see §5.1 and A.1 for
details) as sequence inputs for masked language modeling. The inputs are masked and corrupted
with three levels of 15%, 30%, and 50% mask probability with the same masking approach (i.e., the
80-10-10 strategy) as in the pre-training phase (Devlin et al., 2019).

Results and Analysis: Table 1 and Figure 1 show the ECE and the reliability diagram (DeGroot &
Fienberg, 1983; Niculescu-Mizil & Caruana, 2005) of the pre-trained RoBERTaBASE on the MLM
task. The results suggest that the PLM is relatively well-calibrated across different domains, where
the model needs to recover the corrupted position with the options of |V|. Moreover, as the mask
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probability grows higher than in the pre-training phase, the ECE of the PLM increases only by a
relatively small amount, which indicates that the PLM’s predictive confidence pmlm(x|x\M) on the
MLM task is robust to higher corruption levels. Figure 2 demonstrates that although the hidden
representations of 50% masked inputs (visualized by t-SNE (Van der Maaten & Hinton, 2008)) have
shifted significantly from the original input, the PLM can still make calibrated predictions to the
original inputs. Intuitively, the calibrated confidence on the MLM task suggests that the pre-trained
features of PLMs are good at modeling the samples under large domain shifts, which may benefit the
calibration of the downstream classification task under OD settings. However, this property is less
likely to be retained by the fine-tuned LM due to catastrophic forgetting caused by full fine-tuning
with the discriminative objective (Howard & Ruder, 2018).

PT-QQP
PT-TwitterPPDB
PT-WikiText-103
PT-WikiText-103 (50% mask)
FT-QQP
FT-TwitterPPDB
FT-WikiText-103

Figure 2: t-SNE visualization for hidden repre-
sentations of the sampled inputs from different
domains given by the pre-trained (PT) and fine-
tuned (FT) language models.
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Figure 3: Average predictive confidence (up)
and ECE (down) for the validation split of
QQP (ID), TwitterPPDB (OD), and WikiText-
103 (outlier) dataset in different training steps.

3.2 HOW FINE-TUNING AFFECTS CALIBRATION ON THE DOWNSTREAM TASKS

Although previous works have shown that fine-tuned language models can outperform non-pre-
trained models in terms of calibration (Desai & Durrett, 2020), the fine-tuned LMs’ calibration
performance is still far from satisfactory, especially under the OD settings (Desai & Durrett, 2020;
Guo et al., 2021). To study why fine-tuned LMs are miscalibrated under the OD settings, we conduct
a case study on the LM fine-tuned on the QQP dataset, which is a typical failure case that the fine-
tuned model exhibits dramatic disparity in ECE on ID and OD settings, as shown in Figure 3.

Setup: We fine-tune the pre-trained RoBERTaBASE on the QQP training set following the default
configuration of the Huggingface Transformers library (Wolf et al., 2020). Compared to the pre-
trained model, we visualize the hidden representations of the same inputs with §3.1 given by the
fine-tuned model. Besides, we evaluate the average confidence of the fine-tuned model’s prediction
on several datasets, including the in-domain QQP validation set, the out-of-domain TwitterPPDB
validation set, and the outlier WikiText-103 validation set that does not hold any particular attributes
of the downstream classification task.

Results and Analysis: As shown in Figure 2, compared to the pre-trained models, fine-tuning
changes the hidden representation of the LM in two ways: (1) For the inputs within the same domain,
fine-tuning enlarges the difference of the corresponding hidden representations, which aligns with
the quantitative results of the previous work (Zhou & Srikumar, 2022). (2) For the inputs across
different domains, fine-tuning makes the hidden representations from different domains much harder
to distinguish by projecting them to a simpler data manifold, which causes the fine-tuned model fails
to give proper predictive confidence for OD and outlier samples.

As shown in Figure 3, the average predictive confidence of the ID, OD, and outlier validation sets
increases as the training step increases. The gap between the average predictive confidence and the
correctness likelihood (i.e., classification accuracy) in the OD setting is relatively larger than in the
ID setting, which results in a larger OD ECE. More crucially, the average confidence of the outlier
samples is higher during the whole training process than both ID and OD settings and increases to
nearly 100% after three training epochs, which can not be fixed by simple techniques such as tem-
perature scaling and early stopping. Ideally, the model should be uncertain about the outlier samples
significantly deviating from the training samples. However, the fine-tuned LM exhibits overcon-
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fidence toward the OD and outlier samples, which implies that strong regularization methods are
needed to improve the confidence modeling for OD and outlier samples. Based on the observations
that the pre-trained features of the PLMs can model the predictive uncertainty well across differ-
ent domains and are distorted by the fine-tuned LMs in §3.1, we hypothesize that preserving the
pre-trained features of PLMs helps the fine-tuned LMs better model the predictive confidence and
improve calibration on downstream classification tasks.

4 METHODS

To validate the hypothesis that preserving the pre-trained features helps the calibration of fine-tuned
LMs, we examine existing methods that can preserve the pre-trained features in different ways.
Although these methods are not originally designed for enhancing uncertainty estimation, such
as achieving better trade-off between tunable parameters and model’s performance for parameter-
efficient tuning, or improving classification accuracy and stability for pre-trained weight decay and
Mixout, we anticipate that these methods may improve calibration by mitigating catastrophic for-
getting and evaluate their effectiveness in calibration in §5.

4.1 PARAMATER-EFFICIENT TUNING

Parameter-efficient tuning is a series of fine-tuning methods which keep the pre-trained parame-
ters of the text encoder φ frozen and update only a small number of extra parameters φ∆ and the
task-specific head hϕ while preserving competitive performance with Full-FT. Since the pre-trained
knowledge is encoded to the model’s parameters and there are only a small amount of extra parame-
ters, parameter-efficient tuning methods can preserve more pre-trained features compared to Full-FT.
In this work, we choose three mainstream parameter efficient tuning methods: (1) Adapter (Houlsby
et al., 2019), which adds a light-weight bottleneck module after the output of each sub-layer in the
transformer block; (2) LoRA (Hu et al., 2021), which updates the attention weight matrix using
low-rank reparameterization; (3) Prefix Tuning (Li & Liang, 2021), which prepends tunable prefix
vectors to keys and values of the multi-head attention layers.

4.2 REGULARIZATION WITH PRE-TRAINED WEIGHT

Introducing regularization terms using the pre-trained weight can also better leverage the pre-trained
features during fine-tuning. In this work, we adopt two common regularization techniques:

Pre-trained Weight Decay: Traditional weight decay methods add a regularization term λ
2 ||w||

2

that penalizes large weights to improve generalization (Krogh & Hertz, 1991), where λ is a regular-
ization coefficient. As an alternative, performing weight decay towards the pre-trained weight w0

by adding λ
2 ||w − w0||2 to the task loss function is shown by previous works as an effective way

to mitigate catastrophic forgetting caused by fine-tuning (Wiese et al., 2017) and can improve the
performance of the downstream task (Chen et al., 2020).

Mixout: To explicitly prevent the deviation from the pre-trained weight w0, Lee et al. (2020) pro-
pose Mixout that stochastically replaces the model parameters with their pre-trained counterparts
with probability p at each training iteration, which has been shown to improve the stability of fine-
tuning and enhance the classification accuracy of the fine-tuned LMs on downstream task.

4.3 JOINT LEARNING WITH MLM OBJECTIVE

Besides fixing or constraining the model parameters to the pre-trained counterpart, we can enforce
the consistency between the pre-trained and fine-tuned LMs by utilizing the MLM objective. Previ-
ous works have demonstrated that performing the MLM task before or during the fine-tuning process
can yield better performance on the downstream tasks (Sun et al., 2019; Wiedemann et al., 2020; Ma
et al., 2021). In this work, to better preserve the pre-trained features, we jointly optimize the MLM
objective in the fine-tuning phase: Ljoint = αmlm Lmlm +Lcls, where αmlm is the scaling factor of the
MLM loss. In addition to introducing the MLM objective, we propose three simple techniques to
further strengthen the connection between the pre-trained model and our fine-tuned model:
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Utilizing corpus of the pre-training phase: The dataset for the MLM task is not required to be
labeled as for the downstream task, so we can choose any text dataset. In this work, we present two
criteria for selecting pu(x) of the MLM task. The first one uses the dataset of downstream tasks,
referred to as JL-D. The second one introduces the corpus of the pre-training phase, referred to as
JL-P. We suppose that using the corpus in the pre-training phase is helpful in preserving the pre-
trained features, while increasing data diversity could enhance the model’s uncertainty estimation
under OD settings.

Distillation from the pre-trained model: Knowledge distillation (Hinton et al., 2015) has been
shown to be an effective technique to reap the benefits of a powerful teacher model. In ad-
dition to preserving the accuracy, Guo et al. (2021) illustrate that the calibration performance
of the teacher model can be distilled into the student model and propose to distill from an
ensemble of fine-tuned LMs for better calibration. Inspired by this, we perform knowledge
distillation from the pre-trained language model when performing the MLM task. Specifi-
cally, instead of calculating the MLM loss using the original text as hard labels, we use the
KL-divergence DKL(pmlm(xi|x\M;φ0, θ0)‖pmlm(xi|x\M;φ, θ)) between the predictive distribution
pmlm(xi|x\M;φ0, θ0) of the pre-trained language model and our model.

Regularization on the contextualized representation: Zhou & Srikumar (2022) validate that fine-
tuning enlarges the distance in feature space between samples from different classes. This behavior
may increase the deviation of the fine-tuned model from the pre-trained model. To address this
problem, we introduce a heuristic regularization by adding the L2 norm of each training example’s
contextualized representation fφ(x) with regularization coefficient βL2 .

Putting Ljoint with the knowledge distillation and regularization term together, we get our final joint
learning objective:

−LJL =αmlm Epu(x)[
∑
i∈M

DKL(pmlm(xi|x\M;φ0, θ0)‖pmlm(xi|x\M;φ, θ))]

+ Epd(x,y) [log q(y|x;φ, ϕ)] + βL2 ||fφ(x)||
(4)

Following previous works (Desai & Durrett, 2020; Park & Caragea, 2022), we also apply label
smoothing (Szegedy et al., 2016) on the classification task, which can mitigate overconfident pre-
dictions by distributing a σ fraction of probability mass of the ground-truth label equally to other
non-ground-truth classes.

5 EXPERIMENTS

5.1 GENERAL SETUP

Datasets: We conduct experiments on three natural language understanding tasks: natural language
inference (NLI), paraphrase detection (PD), and commonsense reasoning (CR). Each task consists
of a pair of in-domain (ID) and out-of-domain (OD) datasets. Specifically, SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) are ID and OD datasets for NLI; QQP (Shankar et al.,
2017) and TwitterPPDB (Lan et al., 2017) are ID and OD datasets for PD; SWAG (Zellers et al.,
2018) and HellaSWAG (Zellers et al., 2019) are ID and OD datasets for CR. We use the same
train/validation/test split for those six datasets published by Desai & Durrett (2020). For each task,
we fine-tune the model using the ID training set and evaluate the model’s performance with both ID
and OD test sets. We use WikiText-103 (Merity et al., 2016) as the corpus of the pre-training phase
for JL-P. The detailed statistics for each dataset can be found in Appendix A.1.

Setup: We follow the general training configuration provided by the Huggingface Transformers li-
brary (Wolf et al., 2020). For parameter-efficient tuning methods, we use the default hyperparameter
configuration provided by OpenDelta (Ding et al., 2022) library for all three methods and conduct
a grid search for learning rates on different tasks. For pre-trained weight decay (PWD), we follow
the implementation of the RecAdam (Chen et al., 2020), which integrates the quadratic penalty be-
tween the model parameters and the pre-trained parameters into the Adam optimizer (Kingma &
Ba, 2015). We tune the regularization strength λPWD for each task. For Mixout, we tune the mixout
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probability pmixout. For joint learning methods, we use a Bernoulli corruption distribution 1. We
conduct hyperparameter search for the mask probability pmask, the scaling factor αmlm of the MLM
loss, and the regularization coefficient βL2 on the contextualized representation. We also tune the
hyperparameter σls for label smoothing (LS). We search all the hyperparameters on the validation set
of each task independently. Completed setup details for each method on each task can be found in
Appendix A.2. All experiments are run for 3 training epochs and are deployed on a single NVIDIA
A40 48G GPU within 3 hours to fine-tune a single model.

Evaluation: In this section, we use pre-trained RoBERTaBASE (Liu et al., 2019) for all experiments.
For each NLU task, we report accuracy and expected calibration error (ECE) on both ID and OD test
sets. We evaluate “out-of-the-box” calibration of our method, which does not apply any post-hoc
calibration methods such as temperature scaling (Guo et al., 2017).

Table 2: Out-of-the-box calibration results of different fine-tuning methods on in-domain (SNLI,
QQP, SWAG) and out-of-domain (MNLI, TwitterPPDB, HellaSWAG) datasets. We report the av-
eraged accuracy and ECE across five random fine-tuning runs. We also report the corresponding
standard deviation in subscripts.

RoBERTa-base In-Domain Out-of-Domain
Acc ECE Acc ECE

Task: SNLI/MNLI
Baseline (Desai & Durrett, 2020) 91.23 1.93 78.79 3.62
Baseline (Our run) 91.890.18 2.210.12 79.870.32 4.060.20
BABN (Zhang et al., 2021) 91.70 2.62 79.86 2.67
Mixup (Park & Caragea, 2022) 91.240.3 1.280.6 78.860.5 1.371.7
Adapter (Houlsby et al., 2019) 91.300.09 1.320.20 79.170.30 1.980.47
LoRA (Hu et al., 2021) 89.860.23 1.280.12 77.520.23 1.700.33
Prefix Tuning (Li & Liang, 2021) 89.080.19 1.680.08 76.090.28 1.530.39
Pre-trained Weight Decay 91.090.16 1.710.15 78.350.30 0.870.32
Mixout (Lee et al., 2020) 90.700.07 1.700.07 78.820.26 1.140.39
JL-D (w/o KD) 91.950.12 0.670.05 79.850.29 1.260.50
JL-P (w/ KD) 91.740.15 1.090.15 79.360.27 1.200.43
JL-P (w/ KD) + LS 91.780.09 1.480.17 80.000.15 1.900.07
Task: QQP/TwitterPPDB
Baseline (Desai & Durrett, 2020) 91.11 2.33 86.72 9.55
Baseline (Our run) 91.260.13 2.440.10 86.150.35 10.090.49
BABN (Zhang et al., 2021) 91.72 1.74 87.31 9.42
Mixup (Park & Caragea, 2022) 89.750.6 2.180.7 87.631.0 3.961.6
Adapter (Houlsby et al., 2019) 90.180.09 1.370.08 85.630.30 9.840.47
LoRA (Hu et al., 2021) 88.540.10 1.050.09 85.510.46 8.550.51
Prefix Tuning (Li & Liang, 2021) 87.670.12 1.460.16 85.260.22 8.020.21
Pre-trained Weight Decay 89.950.09 1.250.09 85.280.29 8.010.35
Mixout (Lee et al., 2020) 89.770.08 1.170.09 83.691.72 5.751.24
JL-D (w/o KD) 90.420.08 0.570.12 86.670.22 6.490.44
JL-P (w/ KD) 90.500.09 0.910.50 86.500.90 1.270.39
JL-P (w/ KD) + LS 90.420.08 0.770.28 86.380.93 2.211.06
Task: SWAG/HellaSWAG
Baseline (Desai & Durrett, 2020) 82.45 1.76 41.68 11.93
Baseline (Our run) 83.980.27 1.380.25 42.990.97 8.800.65
BABN (Zhang et al., 2021) 83.12 1.32 43.11 9.72
Mixup (Park & Caragea, 2022) 82.690.7 1.120.4 41.371.1 1.860.9
Adapter (Houlsby et al., 2019) 82.370.12 3.250.19 43.941.08 11.130.76
LoRA (Hu et al., 2021) 80.010.18 5.120.15 43.170.42 4.380.99
Prefix Tuning (Li & Liang, 2021) 80.660.20 4.200.56 42.860.63 5.761.09
Pre-trained Weight Decay 84.150.22 1.290.15 42.731.54 8.210.67
Mixout (Lee et al., 2020) 83.170.12 0.780.09 45.150.74 7.520.65
JL-D (w/o KD) 84.490.24 0.910.25 43.750.92 7.640.43
JL-P (w/ KD) 83.510.05 1.940.12 44.780.22 5.230.43
JL-P (w/ KD) + LS 83.610.27 1.200.29 44.080.61 1.620.29

5.2 MAIN RESULTS

We summarize our results in Table 2. Our baselines include full fine-tuning and two advanced meth-
ods based on the pre-trained language models: Bayesian Attention Belief Networks (BABN) (Zhang
et al., 2021) and Mixup (Park & Caragea, 2022). We copied the results of the same setting from the

1For the MLM objective in joint learning method, we only perform the mask operation instead of the 80-
10-10 strategy as in the pre-training phase.
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original paper. We also report our full fine-tuning runs following the default behavior of the training
scripts provided by the Huggingface Transformers library. We present our experimental results for
pre-trained weight decay, Mixout, JL-D (w/o KD) and JL-P (w/ KD) 2

As shown in Table 2, full fine-tuned models generally have lower in-domain ECE compared to out-
of-domain, which illustrates that the fine-tuned language models tend to be overconfident under OD
settings. BABN exhibits better generalization performance than deterministic methods, but it has a
limited effect on the OD calibration. Mixup significantly lowers the ECE under both ID and OD
settings while preserving comparable accuracy to vanilla fine-tuning. Besides, all of the methods
that preserve the pre-trained features in different ways are generally more calibrated than full fine-
tuning, especially under the OD settings, which matches our expectations that pre-trained features
are helpful to better model the predictive confidence for OD samples. In addition to achieving
competitive performance, parameter-efficient tuning methods have advantages in calibration over
full fine-tuning. Fine-tuning with regularization to pre-trained models in the parameter space also
significantly improves calibration. However, Table 2 and Table 5 show that this requires maintaining
a relatively high constraint strength to the pre-trained weights throughout the fine-tuning process,
which leads to a large loss of raw quality in some cases, e.g., Mixout on QQP/TwitterPPDB.

Notably, the proposed joint learning (JL) methods outperform previous calibration methods in ECE
across three tasks simultaneously under both ID and OD settings, which suggests that it may be more
effective to encourage fine-tuned models to be consistent with pre-trained models in the function
space. In addition to being well-calibrated, JL models achieve the best accuracy in both ID and OD
settings on NLI and CR tasks and maintain accuracy within < 1% drop compared to vanilla fine-
tuning on the PD task. We also highlight that the JL models have relatively low standard deviations
for both accuracy and ECE compared to other methods.

5.3 PRESERVING PRE-TRAINED FEATURES HELPS CALIBRATE FINE-TUNED LMS

PT-TwitterPPDB

PT-WikiText-103

FT-TwitterPPDB

FT-WikiText-103

LoRA-TwitterPPDB

LoRA-WikiText-103

PWD-TwitterPPDB

PWD-WikiText-103

Mixout-TwitterPPDB

Mixout-WikiText-103

JL-D-TwitterPPDB

JL-D-WikiText-103

JL-P-TwitterPPDB

JL-P-WikiText-103

Figure 4: t-SNE visualization for hidden repre-
sentations of the sampled inputs from different
domains given by different models fine-tuned on
QQP.
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Figure 5: Confidence histogram for OD sam-
ples (up) and outlier samples (down) of differ-
ent models fine-tuned on QQP.

As shown in Figure 4, compared to full fine-tuning, the hidden representations for OD samples of the
methods described in §4 are more consistent with the PLMs, showing that they are able to preserve
the pre-trained features and can mitigate catastrophic forgetting. The representations for outlier
samples are more distinguishable from the OD samples, as the pre-trained model does. Figure 5
illustrates that preserving the pre-trained features helps calibrate the fine-tuned models by mitigating
the overconfident tendency to the OD and outlier samples discussed in §3.2. Specifically, parameter-
efficient tuning, pre-trained weight decay, and JL-D slightly alleviate the overconfidence toward the
OD and outlier samples, while JL-P and Mixout significantly improve the fine-tuned models’ ability
to model the predictive confidence for OD and outlier samples. Among these methods, JL-P with
knowledge distillation is shown to be the most effective regularization that can achieve low ECE
and competitive raw quality at the same time. Nevertheless, it requires access to the corpus of the
pre-training phase, which may not be available in some cases.

There is clearly more room for further improve these methods. Mixout exhibits a promising ability
to model the confidence of OD and outlier samples properly and improve the OD generalization

2We present the results of JL-D without knowledge distillation and JL-P with knowledge distillation in
Table 2. We show the full results for JL in A.3.1.
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(e.g., the result on HellaSWAG) by taking advantage of the pre-trained models. However, Mixout
fails to balance the preservation of pre-trained features and the learning of downstream tasks in some
cases, which leads to low accuracy and high ECE. Figure 4 demonstrates that the outlier samples
can be easily distinguished from the hidden representations of the JL-D models, but they do not
provide as reasonable predictive confidence as JL-P, as shown in Figure 7. We leave these questions
for future work.

6 RELATED WORK

Uncertainty estimation of PLMs. Previous works have demonstrated that PLMs can be benefi-
cial for improving the robustness and calibration on downstream tasks compared to non-pre-trained
models (Hendrycks et al., 2020; Desai & Durrett, 2020). However, PLMs can still fail to model
their predictive uncertainty on downstream tasks. For example, Desai & Durrett (2020); Kong et al.
(2020); Guo et al. (2021) have shown that fine-tuned masked language models (e.g., BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019)) are overconfident on text classification tasks, while Jiang
et al. (2021) has shown that powerful generative PLMs (e.g., T5 (Raffel et al., 2020), BART (Lewis
et al., 2020), and GPT-2 (Radford et al., 2019)) are poorly calibrated on QA tasks. In this work, we
study a specific failure case of fine-tuned LM in which the models are overconfident of the OD and
outlier samples due to catastrophic forgetting.

Calibrating fine-tuned LMs. Several approaches have been developed to calibrate the fine-tuned
LMs on NLU tasks. For instance, Desai & Durrett (2020) demonstrate that temperature scaling and
label smoothing can improve the calibration of the models in ID and OD settings, respectively. He
et al. (2021b) introduce a new discriminative objective under the noise contrastive estimation (NCE)
framework to jointly train an energy-based model defined on the classifier, which leads to better ID
calibration. Fan et al. (2020); Zhang et al. (2021) model the attention weights as random variables
and design a series of methods to optimize the stochastic attention layer with variational inference,
which yields better performance in accuracy and calibration compared to vanilla deterministic atten-
tion layers. Kong et al. (2020); Park & Caragea (2022) adopt Mixup (Zhang et al., 2018) to calibrate
fine-tuned language models and exhibit effectiveness in calibration under both ID and OD settings.
We tackle the problem of calibrating the fine-tuned LMs from a new perspective by focusing specifi-
cally on the pre-training & fine-tuning paradigm and validate that preserving the pre-trained features
is an effective way to improve the fine-tuned LMs’ calibration.

Benefit from mitigating catastrophic forgetting. Previous works have shown that mitigating catas-
trophic forgetting of PLMs can be helpful for various aspects of downstream tasks. For example,
Chen et al. (2020); Lee et al. (2020) show that constraining the models’ parameters closer to the
pre-trained ones can improve the training stability and performance of fine-tuned LMs on down-
stream tasks. Xie et al. (2021) validate that standard fine-tuning can destroy the output structure
of pre-trained generative denoiser such as BART and show that preserving pre-trained features via
lightweight fine-tuning can improve out-of-distribution generalization on downstream generation
tasks. Dong et al. (2021) show that the pre-trained features of PLMs are beneficial for a robust ob-
jective model and improve the adversarial robustness of fine-tuned language models by maximizing
the mutual information between the hidden representation of the pre-trained and fine-tuned models
during the whole fine-tuning process. Our work specifically focus on uncertainty estimation of the
fine-tuned LMs and makes a complementary contribution that the calibration of fine-tuned LMs can
be improved by mitigating catastrophic forgetting.

7 CONCLUSIONS

In this work, we show that PLMs that pre-trained with large corpora are inherently well-calibrated on
the MLM task while the fine-tuned LMs suffer from overconfidence due to catastrophic forgetting.
Our experimental results validate that preserving the pre-trained features can better calibrate the fine-
tuned LMs. We hope our work can draw more attention to the deeper exploitation of the pre-trained
features learned by PLMs and contribute to building safe and reliable NLP systems for real-world
applications.
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REPRODUCIBILITY STATEMENT

We have provided detailed setup for all experiments in §3.1, §3.2, §5.1, A.1, and A.2, we submit
our codes as the supplementary material. The information we provided is sufficient to reproduce our
results.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Sang Michael Xie, Tengyu Ma, and Percy Liang. Composed fine-tuning: Freezing pre-trained
denoising autoencoders for improved generalization. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversarial
dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In International Conference on Learning Representations, 2018.

Shujian Zhang, Xinjie Fan, Bo Chen, and Mingyuan Zhou. Bayesian attention belief networks. In
ICML, pp. 12413–12426, 2021.

Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes BERT. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2022.

13



Published as a conference paper at ICLR 2023

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

14



Published as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASET DETAILS

The general information of in-domain and out-of-domain datasets of the three NLU tasks are shown
below:

Natural Language Inference: Stanford Natural Language Inference (SNLI) (Bowman et al.,
2015) requires the model to learn the textual entailment by predicting the relationship between given
premise and hypothesis among entailment, contradiction, or neutral. Multi-Genre Natural Language
Inference (MNLI) (Williams et al., 2018) shares the same task form as SNLI, but the samples are
from more diverse domains than SNLI.

Paraphrase Detection: Quora Question Pairs (QQP) (Shankar et al., 2017) contains question pairs
from Quora. The model needs to discriminate whether the given pairs are semantically equivalent.
TwitterPPDB (Lan et al., 2017) is the out-of-domain dataset that collects sentence pairs shared with
the same URLs.

Commonsense Reasoning: Situations With Adversarial Generations (SWAG) (Zellers et al., 2018)
is a common sense reasoning task that requires the model to choose the most plausible continuation
of a sentence given four possible candidates. HellaSWAG (Zellers et al., 2019) is designed as a more
challenging commonsense reasoning task for the pre-trained language models built with Adversarial
Filtering.

The statistic of the datasets for both MLM and NLU tasks are shown in Table 3. For the datasets
of NLU tasks (SNLI/MNLI, QQP/TwitterPPDB, SWAG/HellaSWAG), we use the published ver-
sion by Desai & Durrett (2020). For WikiText-103, we use the version provided by Huggingface
Datasets (Lhoest et al., 2021) library. Note that the training splits of the OD datasets (MNLI, Twit-
terPPDB, HellaSWAG) are not used.

Table 3: The size of the training, validation, test splits and number of labels for all datasets.

Dataset #Train #Validation #Test #Labels
SNLI (Bowman et al., 2015) 549,368 4,922 4,923 3
MNLI (Williams et al., 2018) 392,702 4,908 4,907 3
QQP (Shankar et al., 2017) 363,871 20,216 20,217 2
TwitterPPDB (Lan et al., 2017) 46,667 5,060 5,060 2
SWAG (Zellers et al., 2018) 73,547 10,004 10,004 4
HellaSWAG (Zellers et al., 2019) 39,905 5,021 5,021 4
WikiText-103 (Merity et al., 2016) 1,801,350 3,760 4,358 —

A.2 SETUPS

A.2.1 SETUP FOR FULL FINE-TUNING AND PARAMETER-EFFICIENT TUNING

We conduct the experiments with the Huggingface Transformers library (Wolf et al., 2020). For
parameter-efficient tuning methods, we use the implementations of OpenDelta (Ding et al., 2022)
library for the three parameter-efficient tuning methods (Adapter, LoRA, Prefix Tuning). We use the
same default hyperparameters provided by the OpenDelta library for each method across all three
tasks 3.

All fine-tuning methods are trained with the AdamW optimizer (Loshchilov & Hutter, 2019). For
full fine-tuning, we use a learning rate of 1e-5 across all tasks. For parameter-efficient tuning meth-
ods, we search the learning rate among {1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4}. We use the one that
has the best ID accuracy on the validation set, which is the widespread application scenario for
the parameter-efficient tuning methods. Table 4 shows the learning rate used to fine-tune all the
methods. For other training hyperparameters, we follow the default setup of the Huggingface Trans-

3The default hyperparameters can be found in the definition of each class on the document: https://
opendelta.readthedocs.io/en/latest/modules/deltas.html.
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formers library 4. In specific, we set a batch size of 32, a maximum sequence length of 256, and a
weight decay of 0.1. We use a linear decay learning rate scheduler without warmup and do not apply
gradient clipping. Note that the reported baselines for full fine-tuning and Mixup (Desai & Durrett,
2020; Park & Caragea, 2022) in Table 2 do not use learning rate scheduler and use a gradient clip of
1.0 compared to our runs. There are also some minor differences, such as the padding strategy for
input texts between our fine-tuning setup and theirs.

Table 4: Learning rate of fine-tuning methods on each task. The models are fine-tuned on the training
split of SNLI for natural language inference (NLI), QQP for paraphrase detection (PD), SWAG for
commonsense reasoning (CR).

Task Full-FT Adapter LoRA Prefix Tuning
NLI 1e-5 2e-4 2e-4 1e-4
PD 1e-5 2e-4 2e-4 1e-4
CR 1e-5 1e-4 1e-4 2e-4

A.2.2 SETUP FOR THE JOINT LEARNING METHOD

We conduct hyperparameter search with the ID/OD validation set for the models that joint learning
with the MLM objective (JL). Specifically, we set a learning rate of 1e-5 and a batch size of 32 across
all three tasks as Desai & Durrett (2020) does, except for fine-tuning JL-P with label smoothing
on SWAG, where we use a larger learning rate of 5e-5. For other training parameters, we adopt
the same setup described in A.2.1 except for fine-tuning JL-P on QQP, where we do not use a
learning rate scheduler. For the hyperparameter of the JL models, we search the scaling factor
of the MLM loss αmlm ∈ {0.1, 0.3, 0.5, 1, 2, 3, 4, 5}, the coefficient of the regularization term on
contextualized representation βL2 ∈ {1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4} , the masking probability
for a sentence pmask ∈ {0.05, 0.15, 0.3, 0.4, 0.5, 0.6}, and the hyperparameter of label smoothing
σls ∈ {0.01, 0.03, 0.05} for each task. We also search the maximum sequence length of the MLM
task for JL-P and the batch size of MLM tasks for both JL-D and JL-P. In detail, we use a batch size
for the MLM task of 32 on NLI and PD tasks and a batch size for the MLM task of 8 on the CR
task. The maximum sequence lengths of the MLM task for JL-P are set to 32/32/64 for NLI, PD,
and CR tasks, respectively. Training a single model for 3 epochs can be done in two hours with a
single NVIDIA A40 48G GPU. We present the detailed hyperparameter setup of each method on
each task in Table 5.

Table 5: Hyperparameters of JL models for each NLU task.

αmlm pmask βL2 σls
Task: SNLI/MNLI
JL-D 0.3 0.4 1e-5 —
JL-P 0.3 0.4 1e-5 —
JL-P + LS 0.5 0.6 1e-8 0.03
Task: QQP/TwitterPPDB
JL-D 1 0.15 1e-5 —
JL-P 4 0.15 1e-7 —
JL-P + LS 4 0.15 1e-9 0.01
Task: SWAG/HellaSWAG
JL-D 1 0.3 1e-9 —
JL-P 3 0.3 1e-9 —
JL-P + LS 3 0.05 1e-4 0.05

A.2.3 SETUP FOR REGULARIZATION WITH PRE-TRAINED WEIGHT

Pre-trained Weight Decay: We tune the regularization strength λPWD ∈ {0.1, 1, 10, 20, 50, 100}
and use λPWD = 10/20/1 for SNLI, QQP, and SWAG, respectively.

4The NLI and PD tasks correspond to the text classification setting, while the CR task corresponds to the
multiple choice criterion of huggingface transformers library.
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Mixout: We tune the mixout probability pmixout ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and use pmixout = 0.9 for
all three NLU task.

For other training parameters, we use the same default setup described in A.2.2.

A.2.4 COMPARISON OF TRAINING TIME

We compare the training time of different methods using a single NVIDIA A40 48G GPU. We use
the full fine-tuning as a baseline (1x). The time cost of 3 training epochs using full fine-tuning
is 1/0.8/0.3 GPU hours for SNLI/QQP/SWAG. We present the time cost of different methods in
Table 6.

Table 6: Comparison of training time of different methods.

Task Full-FT Parameter-Efficient Tuning PWD Mixout JL
NLI & PD 1x 0.6x∼1x 1x 2.4x 2x
CR 1x 0.75x 1x 1.5x 1.5x
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A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 ABLATION STUDY FOR THE JOINT LEARNING METHOD
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Figure 6: Accuracy, ECE and L2 distance to the pre-trained hidden representations (||fφ(x) −
fφ0

(x)||) of JL-D (up) and JL-P (down) over different scaling factors αmlm of the MLM Loss in ID
and OD settings.

Effect of the MLM objective: As shown in Figure 6, compared to vanilla fine-tuning (αmlm =
0), introducing the MLM objective lowers the ECE effectively in both ID and OD settings with a
relatively small effect on accuracy. As the magnitude of the MLM loss increases, the features of
the fine-tuned models are closer to those of the pre-trained models, reflected in both the geometry
of feature space (shown in Figure 4) and euclidean distance between the representations of pre-
trained and fine-tuned models (shown in Figure 6), and the ECE of the fine-tuned models decreases.
However, when the weight of the MLM loss becomes too large compared to the classification loss,
the performance of the NLU task will be apparently damaged. For the overconfidence toward the
OD samples and outlier samples illustrated in §3.2, as shown in Figure 7, can be mitigated by using
a relatively small magnitude of αmlm, while increasing it can have a more significant effect.

Effect of introducing corpus of pre-training phase: From Table 2 and Figure 6, we observe that
performing the MLM task with the corpus of the pre-training phase has lower OD ECE on all three
tasks. This confirms our belief that using the corpus of the pre-training phase can preserve more
helpful features from the PLMs. We also notice that sometimes JL-P degrades the ID calibration
(e.g., calibration on SWAG in Table 2), however, applying label smoothing on downstream tasks can
relieve this negative effect. An interesting observation is that although the hidden representations
given by both JL-D and JL-P can distinguish outlier samples easily, the JL-D holds higher confidence
toward outlier samples than JL-P. As shown in Figure 7, compared to JL-P, the JL-D are more
confident in samples from the BookCorpus (Zhu et al., 2015) dataset that is not seen by both JL-P
and JL-D in the fine-tuning phase for a fair comparison, which suggests utilizing the pre-training
phase’s corpora that are more diverse than the training datasets are helpful for the fine-tuned LMs to
model the confidence of the outlier samples better.

Effect of knowledge distillation from the pre-trained model: Table 7 shows that applying knowl-
edge distillation has limited effect on JL-D but enhances the accuracy and ECE of JL-P in most cases.
We hypothesize that performing the MLM task with the corpus that is distinct from the downstream
datasets can hurt relatively more performance on the downstream tasks, and distilling from the pre-
trained model’s predictive distribution might be a smoother and more effective regularization.
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Effect of regularization on the contextualized representation: As shown in Figure 8, the intro-
duced heuristic regularization term could improve the ECE of JL-D models under both ID and OD
settings by smoothing the models’ predictive confidence. The effect of this regularization term is
similar to applying temperature scaling under the ID validation set, where large magnitudes can lead
to overly conservative prediction confidence. We also find that a proper choice of βL2 can marginally
benefit the accuracy under ID and OD settings. However, the effect of this term on Full-FT models
is limited.
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Figure 7: Confidence histogram for OD (TwitterPPDB) samples and two sets of outlier (WikiText-
103, BookCorpus) samples of JL-D and JL-P.
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Figure 8: Reliability diagram of JL-D and Full-FT models with different βL2 values.

Table 7: The results with/without knowledge distillation for JL models.

RoBERTa-base In-Domain Out-of-Domain
Acc ECE Acc ECE

Task: SNLI/MNLI
JL-D (w/o KD) 91.950.12 0.670.05 79.850.29 1.260.50
JL-D (w/ KD) 91.640.19 0.750.21 79.990.30 1.310.28
JL-P (w/o KD) 91.720.14 1.120.17 79.450.25 1.190.17
JL-P (w/ KD) 91.740.15 1.090.15 79.360.27 1.200.43
Task: QQP/TwitterPPDB
JL-D (w/o KD) 90.420.08 0.570.12 86.670.22 6.490.44
JL-D (w/ KD) 90.860.04 0.500.08 86.260.35 6.060.52
JL-P (w/o KD) 89.750.19 0.780.47 86.770.61 2.861.01
JL-P (w/ KD) 90.500.09 0.910.50 86.500.90 1.270.39
Task: SWAG/HellaSWAG
JL-D (w/o KD) 84.490.24 0.910.25 43.750.92 7.640.43
JL-D (w/ KD) 84.030.14 0.580.08 44.680.49 10.080.36
JL-P (w/o KD) 82.390.03 2.850.11 42.680.24 7.640.37
JL-P (w/ KD) 83.510.05 1.940.12 44.780.22 5.230.43
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A.3.2 SAMPLING FROM JOINT LEARNING MODELS

Since the JL model is encouraged to learn both discriminative and generative representations, we can
perform conditional generation with the MLM head gφ and classifier hϕ. In this work, we choose
Mask-Predict (Ghazvininejad et al., 2019) as our basic sampling algorithm, which can incorporate
the rejection sampling framework to generate samples from the conditional distribution p(x|y∗)
given the desired label y∗. We show the detailed sampling process in Alg 1.

Algorithm 1: Mask-Predict with Rejection Sampling
1 Input: Number of iterations T , Text Encoder fφ, MLM head gθ, Classifier hϕ, Desired label

y∗, Number of initial masked tokens N .
2 Initialize: x(0) ← [MASK]N

3 for t← 0 to T − 1 do // Mask-Predict iteration
4 n← f(N, t) // Determine number of tokens to mask at iteration t
5 repeat // Rejection sampling loop
6 x̂(t) ← gθ(fφ(x

(t))) // Select prediction with highest probability for every [MASK] token.
7 Mt ← argmini(pmlm(xi = x̂

(t)
i |x(t)), n)

8 x̂
(t)
Mt
← [MASK] // Mask n tokens with the lowest probability scores

9 until u ∼ U(0, 1), u ≤ Softmax(hϕ(x̂
(t)))[y∗]/τ

10 x(t+1) ← x̂(t)

11 end
12 Output: x(T ) ∼ p(x|y∗)

Table 8 shows the samples generated by JL-D models with the sampling algorithm described above.
The JL-D models are able to generate text with the given labels, which can be seen as a diagnostic
for the model. For example, the models prefer to generate contradictory hypotheses by changing
the objective’s entity or adjectives with high confidence and tend to copy the prefix to generate
positive textual entailment, which may expose some spurious correlations that the models rely on
when performing the NLU tasks (Tu et al., 2020).
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Table 8: Samples generated by JL-D models with SNLI and QQP test set using the Mask-Predict
algorithm with rejection sampling. For SNLI, the model generates hypotheses given class labels
{none (-), entailment, contradiction, natural} and premise prefixes. For QQP, the model generates
sentences given class labels {none (-), non-paraphrase (non-para), paraphrase (para)} and question
prefixes. We mark the generated samples whose assigned label is consistent with the given label
using [ ] and mark the failure cases where the assigned label is not consistent with the given label
using [ ]. We also report the corresponding confidence of the class of the generated text after the
label.

Text Prefix: A mountain biker rides up a hill on a red bicycle.
[ - ] A mountain biker rides a bike on a hill.
[ Entailment, 99% ] A mountain biker rides a bike up a hill.
[ Contradiction, 99% ] A mountain biker rides downhill on a blue bicycle.
[ Natural, 65% ] A mountain biker is trying to climb a hill.
Text Prefix: A man plays the french horn as his pianist plays the supporting melody on stage.
[ - ] A man is playing a french horn for a concert.
[ Entailment, 97% ] A man is playing a french horn on a stage.
[ Contradiction, 99% ] A man is playing a flute for a crowd.
[ Natural, 91% ] A man is playing a song on a concert stage.
Text Prefix: Two young men in unusual clothing are jumping in a gym.
[ - ] Two men are playing basketball.
[ Entailment, 96% ] Two men are jumping around.
[ Contradiction, 90% ] Two men are jumping outside.
[ Natural, 44% ] Two men are playing basketball.
Text Prefix: a blue and gray race car driving on a dirt track.
[ - ] A race car is driving on a dirt track.
[ Entailment, 98% ] A race car is driving on a dirt track.
[ Contradiction, 99% ] A race car is parked on a dirt track.
[ Natural, 66% ] A race car is racing on a dirt track.
Text Prefix: A boy poses in karate form and uniform.
[ - ] A boy is practicing karate.
[ Entailment, 75% ] A boy is practicing karate.
[ Contradiction, 2% ] A boy is in a costume.
[ Natural, 25% ] A boy is practicing karate.
Text Prefix: Four females wearing helments are riding on an ATV.
[ - ] Four females are wearing helments on an ATV.
[ Entailment, 98% ] Four females are wearing helments on an ATV.
[ Contradiction, 99% ] Four females are riding on a horse in the park.
[ Natural, 99% ] Four females are riding a ATV in the desert.
Text Prefix: How does cloud computing work?
[ - ] How does cloud computing in India work?
[ Non-Paraphrase, 95% ] How does Google think cloud computing work?
[ Paraphrase, 74% ] How does I understand cloud computing work?
Text Prefix: Do you think time travel is possible?
[ - ] Do you think space and time travel is possible?
[ Non-Paraphrase, 73% ] Do you think gravity can make time travel possible?
[ Paraphrase, 98% ] Do you think it is possible to time travel?
Text Prefix: What is a good data analysis book?
[ - ] What is a good free data analysis book?
[ Non-Paraphrase, 78% ] What is a good book for analysis books?
[ Paraphrase, 67% ] What is the best free data analysis book?
Text Prefix: Feeling bored. What do I do?
[ - ] What to do to get bored?
[ Non-Paraphrase, 97% ] What should I do to myself?
[ Paraphrase, 28% ] What should I start to do?
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