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Abstract

The Key-Value (KV) cache is a crucial component in serving transformer-based1

autoregressive large language models (LLMs), enabling faster inference by stor-2

ing previously computed KV vectors. However, its memory consumption scales3

linearly with sequence length and batch size, posing a significant bottleneck in4

LLM deployment. Existing approaches to mitigate this issue include: (1) efficient5

attention variants integrated in upcycling stages, which requires extensive parame-6

ter tuning thus unsuitable to pre-trained LLMs; (2) KV cache compression at test7

time, primarily through token eviction policies, which often overlook inter-layer8

dependencies and can be task-specific.9

This paper introduces an orthogonal approach to KV cache compression. We10

propose a low-rank approximation of KV weight matrices, allowing for plug-11

in integration with existing transformer-based LLMs without model retraining.12

To effectively compress KV cache at the weight level, we adjust for layerwise13

sensitivity and introduce a progressive compression strategy, which is supported by14

our theoretical analysis on how compression errors accumulate in deep networks.15

Our method is designed to function without model tuning in upcycling stages or16

task-specific profiling in test stages. Extensive experiments with LLaMA models17

ranging from 8B to 70B parameters across various tasks show that our approach18

significantly reduces the GPU memory footprint while maintaining performance.19

1 Introduction20

Autoregressive large language models (LLMs) such as GPT (Achiam et al., 2023), PaLM (Chowdhery21

et al., 2023), and LLaMA (Touvron et al., 2023), built upon transformer architectures (Vaswani22

et al., 2017), have shown remarkable capabilities across a wide range of tasks. However, the23

attention mechanism underpinning those models poses significant challenges to the efficiency of24

their deployment, particularly the management of the Key-Value (KV) cache. The KV cache is25

originally designed to accelerate the generation process by storing intermediate attention KV vectors,26

thus avoiding recomputation of shared prefixes for each autoregressively generated token. Despite27

reducing computational overhead, the KV cache significantly increases memory footprints, as its28

size scales linearly with both sequence length and batch size. This drives the need for KV cache29

compression to enable cost-effective deployment of LLMs across various devices and platforms.30

To address the overhead of the original attention mechanism, one prominent line of work aims31

to design more efficient attention variants, such as multi-query attention (MQA) (Shazeer, 2019)32

and group-query attention (GQA) (Ainslie et al., 2023), which inherently reduce the corresponding33

KV cache. Nevertheless, those techniques typically require upcycling existing models. Without34

proper training, their direct application often results in degraded performance (Ribar et al., 2023;35

Ainslie et al., 2023; Liu et al., 2024b), thereby making them unsuitable for deployment in resource-36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



constrained environments. Recently, Liu et al. (2024a) design a multi-head latent attention (MLA) for37

efficient inference, utilizing low-rank key-value union compression to reduce KV cache. However,38

similar to MQA and GQA, MLA is also integrated during the model’s training cycle, thus not directly39

applicable to pre-trained LLMs.40

In contrast, another line of work focuses on KV cache compression at test time, primarily achieved41

by dropping tokens while leaving the backbone model intact. Several works design the token eviction42

policy based on accumulated attention scores(Sheng et al., 2023; Zhang et al., 2024b; Liu et al.,43

2024b), or heuristics such as special tokens or and relative distance between tokens (Ge et al., 2023)44

However, these methods either ignore the inter-layer dependency or require attention pattern analysis,45

and the resulting eviction policy can be task-specific.46

In this paper, we propose to compress KV cache from an orthogonal perspective, i.e., the KV weight47

matrices. As the KV weight matrices are typically characterized by low-rank properties, we perform48

a low-rank approximation to reduce their dimension and thus compress the resulting KV cache.49

Recognizing that compressed KV caches inevitably introduce information loss to subsequent layers,50

and that sensitivity to input changes varies across layers, we introduce a progressive compression51

strategy. This approach is grounded in the calculation of cumulative condition numbers for KV weight52

matrices across different layers, reflecting their sensitivity and guiding the compression strategy.53

Theoretically, we derive error bounds for both individual layer compression and error propagation54

through the network. These theoretical results reveal that errors introduced in earlier (shallower)55

layers are amplified more significantly than those in deeper layers, and informs our progressive56

compression strategy.57

Our method is designed for straightforward implementation, requiring neither model profiling nor58

detailed inspection of the attention structure. It can be directly applied to pre-trained LLMs by59

extracting weight matrices and leveraging their inherent properties to swiftly determine optimal60

layer-wise compression. This approach offers a practical and efficient solution for enhancing LLM61

performance in memory-constrained deployment scenarios, without the need for model retraining or62

complex eviction strategy composition.63

We evaluate our method on 8B, 13B, and 70B LLaMA models that built upon multi-query attention64

or group-query attention. Experiments across tasks such as commonsense reasoning, reading compre-65

hension, text summarization, and mathematical reasoning, demonstrate that our approach can reduce66

substantial GPU memory footprint while maintaining minimal impact on performance.67

2 Related Works68

2.1 Attention Mechanism69

Attention mechanisms in Transformer models have evolved to enhance efficiency and effectiveness70

(Vaswani et al., 2017). Multi-Query Attention (MQA)(Shazeer, 2019) reduces memory requirements71

during decoding, while Grouped-Query Attention (GQA) (Ainslie et al., 2023) balances efficiency72

and performance by sharing key and value heads among query groups. Recently, Liu et al. (2024a)73

introduced Multi-head Latent Attention (MLA), using low-rank key-value union compression to74

optimize inference. However, these approaches are typically integrated during model training, limiting75

their applicability to pre-trained LLMs. Parallel research efforts have targeted inference efficiency76

improvements. For example, Pope et al. (2023) developed multi-dimensional partitioning techniques,77

and de Jong et al. (2022) optimized the Fusion-in-Decoder (FiD) approach (Izacard & Grave, 2020)78

for more efficient inference. Holmes et al. (2024) introduces SplitFuse which leverages dynamic79

prompt and generation decomposition and unification to further improve continuous batching and80

system throughput. In this paper, we contribute to this line of research by improving inference81

efficiency through the compression of KV cache. Our approach leverages the low-rank property of82

the attention weight matrices, offering a plug-and-play method to reduce the memory footprint of83

LLMs during inference without requiring model retraining.84

2.2 KV Cache Compression85

As Large Language Models (LLMs) continue to grow in size and complexity, efficient management86

of their memory usage during inference has become a critical challenge. Early efforts to compress87

token hidden states (Guan et al., 2022; Sun et al., 2022; Zhou et al., 2020) are limited to non-88
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autoregressive models and require retraining, thus motivating research into pruning tokens in the89

KV cache of auto-regressive LLMs. For instance, Mu et al. (2024) learns to compress prompts into90

a few special tokens to reduce memory pressure during caching, but this token prediction requires91

model retraining and could be an expensive overhead during inference. Several methods design token92

eviction policies based on accumulated attention scores (Sheng et al., 2023; Zhang et al., 2024b; Liu93

et al., 2024b), or heuristics such as special tokens and relative distance between tokens (Ge et al.,94

2023). However, these approaches often overlook inter-layer dependencies, potentially resulting in95

task-specific eviction policies that may not generalize well across different applications. In contrast96

to token-dropping methods, our study takes a different tack. We focus on compressing the KV cache97

from the perspective of weight matrix dimension reduction. Importantly, our progressive compression98

strategy carefully addresses the issue of error propagation across compressed layers, a consideration99

often ignored in previous methods.100

A few studies have explored customized cache budgets across different layers in the context of token101

dropping, yet no definitive consensus has been reached on the most effective strategies. Zhang102

et al. (2024a) suggest increasing compression intensity in higher layers based on the assumption that103

these layers contain less critical information. Conversely, Liu et al. (2024b) argue that significant104

tokens exhibit greater variability at higher layers, thus larger caches are required to reduce cache105

misses. While these approaches demonstrate understanding of layer-specific requirements, they106

depend heavily on task-specific attention patterns. Our approach diverges fundamentally by adopting107

an orthogonal perspective to compression, focusing on weight matrix dimension reduction rather than108

token eviction. This approach enables us to establish error propagation bounds across the network and109

to guide our progressive compression strategy effectively. It eliminates the need to analyze attention110

patterns for eviction policy design, simplifying implementation and enhancing general applicability111

across different LLMs.112

Concurrently, Liu et al. (2024a) and Yu et al. (2024) modify attention mechanisms to manage KV113

caches more efficiently during inference. While these methods align with our philosophy of altering114

attention dynamics, they require either pretraining adjustments or extensive model finetuning to115

accommodate the modified attention schemas, limiting their practicality in deployed systems. In116

contrast, our method requires no such training or fine-tuning, offering a plug-and-play solution that117

seamlessly integrates with pre-trained models to deliver efficient compression without compromising118

the model’s integrity or performance.119

3 Preliminary: Attention Mechanism and KV Cache120

Transformer-based language models use self-attention to weigh the importance of different tokens,121

thus allowing for the model to focus on different parts of the input sequence. Given an input122

X ∈ RN×D, where N is the sequence length and D is the dimensionality of each token’s embedding,123

we compute the Query (Q), Key (K), and Value (V ) matrices by multiplying X with their respective124

weight matrices: Q = XWq,K = XWk, V = XWv .125

Then the attention mechanism is as follows:126

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V. (1)

Multi-head attention allows the model to jointly attend to information from different representation127

subspaces at different positions128

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)Wo, (2)

where129

headi = Attention(X(W i
q)

T , X(W i
k)

T , X(W i
v)

T ).1 (3)

Here, W i
q , W i

k, and W i
v are the weight matrices for the i-th attention head, and Wo is the weight130

matrix for the output linear transformation.131

In autoregressive transformers, the computation of attention scales quadratically (i.e., O(N2)) with132

the sequence length N , as every token in the sequence computes interactions with every other token.133

1This formulation with transposed weight matrices aligns with the implementation found in the models
examined in our study. Mathematically, this is equivalent to the standard formulation without transpose. The
choice of which form to use depends on implementation details and computational optimizations.
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Figure 1: LORC compresses KV-cache by decomposing the KV weight matrices in attention heads.
The progressive compression strategy retains more dimension for KV weights in shallow layers and
compresses the KV weights in deep layers more aggressively.

Such scaling is impractical for very large inputs or real-time applications, where speed and efficiency134

are crucial.135

To address this computational bottleneck, KV caches store the results of previous computations of136

the KV matrices. When processing subsequent tokens, the model can retrieve keys and values from137

the cache rather than recomputing them, thereby reducing the number of operations to a linear scale138

with respect to the sequence length. This method trades off increased memory usage for a reduction139

in computational overhead. The size of KV cache per layer is defined as below:140

Ck,v = b×N × h× d, (4)

where b is the batch size, N is the max sequence length in the batch, h is the number of K/V head141

and d is the head dimension. This linear relationship between cache size and sequence length, as well142

as batch size, underscores the critical need for efficient compression methods. As described, existing143

works that can reduce KV cache consumption either require expensive model training in upcycling144

stages or empirical token eviction policy design at test time. In the following section, we present a145

novel method for KV cache compression from the perspective of low-rank weight approximation.146

4 Method147

We structure this section as follows. In Section 4.1, we detail the process of compressing the KV148

cache for a single layer using Singular Value Decomposition (SVD) on weight matrices. Section 4.2149

introduces our progressive compression strategy, which determines adaptive compression dimensions150

for each layer. Finally, Section 4.3 covers additional considerations for handling various attention151

mechanisms, and Section C addresses the implementation details specific to the rotary position152

embedding. Figure 1 presents an overview of our method, illustrating the low-rank approximation of153

the weight matrix and the progressive compression strategy across layers.154

4.1 KV Cache Compression via Low-rank Approximation of Weight Matrices155

Unlike previous approaches that focus on token-level eviction strategies or require model retraining,156

we propose a novel method that operates at the weight matrix level in the attention mechanism. This157

approach leverages the inherent low-rank properties of these matrices (as shown in Appendix B),158

allowing for significant compression without the need for complex token selection algorithms or159

time-consuming model tuning. By applying a low-rank approximation to the weight matrices, we160

effectively reduce the dimensionality of the KV cache while preserving the essential information flow161

through the network.162

Key Matrix Compression: Figure 1 presents how we implement SVD on the key weight matrices.163

Specifically, for the i-th head in the MHA attention, we decompose its key matrix W i
k ∈ RD×d to:164

SVD(W i
k)D×d = UD×dc

Σdc×dc
V T
dc×d = UD×dc

(ΣV T )dc×d. (5)

For MHA, there are h attention heads, then the decomposition becomes:165
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SVD(WH
k )D×hd = UD×dc

(ΣV T )dc×hd = UD×dc

[
(A1)dc×d (A2)dc×d · · · (Ah)dc×d

]
,

(6)
where (Ai)dc×d is the i-th block in the matrix (ΣV T )dc×hd.166

Now we have decomposed the key matrix W i
k to the multiplication of UD×dc

and (ΣV T )dc×hd. We167

will multiply X with (ΣV T )Thd×dc
as the compressed key, which is stored in the KV cache. Through168

this implementation, we effectively update the size of key cache from hd to dc, where dc is smaller169

than hd, reducing the memory footprint while keeping the essential information intact.170

For UD×dc
, we incorporate it to the query calculation by updating the original query matrix WH

q ∈171

RD×hd as follows:172

WH
q′ = (WH

q )D×hdUD×dc
. (7)

Note that the embedding dimension D is equal to the product of the number of attention heads h and173

the dimension per head d, i.e., D = hd. Consequently, the updated query matrix WH
q′ ∈ RD×dc .174

Value Matrix Compression: The decomposition for the value matrix follows a similar structure175

to that of the key matrix, with the difference that we integrate its left singular vectors to the output176

matrix Wo. Specifically, the value matrix is decomposed as:177

SVD(WH
v )D×hd = UD×dc(ΣV

T )dc×hd = UD×dc

[
(B1)dc×d (B2)dc×d · · · (Bh)dc×d

]
(8)

where (Bi)dc×d is the i-th block in the matrix (ΣV T )dc×hd. After multiplication with X , the178

dimension of the value cache shrinks from hd to dc, thus reducing memory consumption.179

In contrast to the key matrix operation, we incorporate UD×dc to the output matrix. To achieve this,180

we update the output matrix Wo ∈ RD×D as follows:181

Wo′ = (U⊤)dc×D(Wo)D×D, (9)

resulting in an updated output matrix Wo′ ∈ Rdc×D.182

Compression Ratio: The compression strategy effectively reduces the dimensions from N × d× h183

for both keys and values to N × dc, ensuring data integrity and minimizing overhead. This results in184

a layer compression ratio ρ = dc

h×d , which quantifies the extent of the reduction.185

4.2 Progressive Compression Strategy186

Algorithm 1 LORC Algorithm
Require: Pre-trained LLM with L layers

1: Initialize cumulative condition numbers κ̃l

2: for l = L to 1 do
3: Compute κ(W l

k) and κ(W l
v)

4: κ̃l ←
∏L

j=l κ(W
j
k ) · κ(W

j
v )

5: end for
6: for l = 1 to L do
7: dlc ← Calculate by Eq. 13
8: if κ̃l > threshold then
9: Skip compression for layer l

10: continue
11: end if
12: Key Matrix Compression:
13: Perform SVD: W l

k = UkΣk(V
T
k )

14: W̃ l
k ← Uk[:, : d

l
c](ΣkV

T
k )[: dlc, :]

15: W l
q′ ←W l

qUk[:, : d
l
c]

16: Value Matrix Compression:
17: Perform SVD: W l

v = UvΣv(V
T
v )

18: W̃ l
v ← Uv[:, : d

l
c](ΣvV

T
v )[: dlc, :]

19: W l
o′ ← Uv[:, : d

l
c]

TW l
o

20: Update KV cache size for layer l
21: end for

Having established low-rank approximation for
compressing weight matrices, we now address its
dynamic application across network layers. This ap-
proach is necessary due to the varying sensitivity of
different layers, which significantly affects overall
model efficacy and efficiency.
To tackle this challenge, we propose a progressive
compression strategy for our low-rank approxima-
tion of KV weight matrices. Our intuition is that the
compressed shallow layers could lead to cascading
errors that propagate and amplify through the net-
work. Therefore, we measure the layer sensitivity
by the condition numbers of KV matrices to de-
termine layer-wise compression dimensions. This
approach accounts for each layer’s sensitivity to per-
turbations caused by previously compressed layers,
ensuring output variations remain within acceptable
ranges. This progressive nature allows for more
conservative compression in shallow layers and
more aggressive compression in deeper layers, min-
imizing the risk of error accumulation throughout
the network. By carefully balancing compression
across layers, we maintain model integrity while
achieving significant memory savings.

187
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Condition Number and Sensitivity Analysis To ensure that the change in the output bl = Alxl188

remains within a specified range when the input xl changes due to compression in previous layers, we189

need to consider the sensitivity of the output to such changes. Given a weight matrix Al, its condition190

number plays a crucial role in determining the allowable change in xl. The condition number κ(Al)191

is defined as:192

κ(Al) = |Al|2 · |A−1
l |2 =

σmax(Al)

σmin(Al)
, (10)

where σmax(Al) and σmin(Al) are the largest and smallest singular values of Al, respectively. To193

keep the relative change in the output bl within a tolerance ϵ, we utilize the standard definition of the194

condition number to relate it to the allowable relative change in the input xl:195

|∆bl|2
|bl|2

≤ κ(Al) ·
|∆xl|2
|xl|2

≤ ϵ. (11)

Solving for the allowable relative change in xl, we obtain: |∆xl|2
|xl|2 ≤ ϵ

κ(Al)
. This inequality indicates196

that the acceptable change in the input xl is inversely proportional to the condition number κ(Al)197

of the layer’s weight matrix. Layers with higher condition numbers are more sensitive to input198

perturbations, requiring smaller changes in xl to maintain the output within the desired range. Given199

the multi-layer structure of transformers, it is essential to consider not just the condition number of a200

single layer but the cumulative effect of condition numbers from all preceding layers. This cumulative201

measure gives a more holistic view of how perturbations might propagate and amplify as data passes202

through successive layers.203

Cumulative Condition Number: To effectively manage this across the network, we calculate the204

cumulative condition number as an estimated layer sensitivity, which we then use to derive the205

compression dimension. For a model with L layers, we calculate the cumulative condition number206

for each layer l by multiplying the condition numbers of the current layer and all subsequent layers:207

κ̃l =

L∏
j=l

κ(W j
k ) · κ(W

j
v ), (12)

where W j
k and W j

v denote the key and value weight matrices of the j-th layer, respectively. This208

cumulative condition number κ̃l reflects the total amplification of input perturbations from current209

layer to the final output layer, encompassing the effects of layers from l to L.210

Compression Dimension: Based on the cumulative condition number, we then adjust the compression211

dimensions for each layer to balance the fidelity and compression rate. More sensitive layers212

(those with higher cumulative condition numbers) will have less aggressive compression to preserve213

information, whereas layers with lower sensitivity can be compressed more substantially without214

significantly affecting the overall network performance. We compute the compressed dimension dlc215

for each layer by scaling κ̃l using the following function:216

dlc = dmax ×
[
1−

(
maxi∈[1:L] log(κ̃i)− log(κ̃l)

maxi∈[1:L] log(κ̃i)−mini∈[1:L] log(κ̃i)

)
×

(
1− dmin

dmax

)]
, (13)

where dmax is the maximum allowable compressed dimension, and dmin is the minimum one.217

The logarithmic scale mitigates the effect of large variations in the cumulative condition numbers,218

providing a more balanced sensitivity metric across layers. This equation ensures that layers with219

higher sensitivity (larger κ̃l) retain more dimensions (larger dl), while less sensitive layers can be220

compressed more aggressively.221

4.3 Multi-head Attention and Group-query Attention222

The above derivation in Section 4.1 holds for standard MHA, where the model dimension D equals223

to the multiplication of number of head and head dimension h × d. For GQA, the number of KV224

heads is reduced as shown in Table 3. To adapt such implementation, we can still follow the above225

procedure for cache compression. After fetching the key and value from cache, we just need to repeat226

them according to the number of the total attention heads.227
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5 Error Bounds for KV Cache Compression228

In this section, we derive error bounds for our KV cache compression method, considering both229

individual layer errors and their propagation through a deep network. These theoretical results provide230

insights into how the matrix decomposition-based compression affects the network’s performance231

and guide the progressive compression strategy to balance model efficiency and performance.232

5.1 Error Bound for Key/Value Matrix Approximation233

Theorem 1 Let W ∈ Rm×n be a weight matrix (either key or value), and let W̃ ∈ Rm×n be its234

rank-k approximation obtained via truncated singular value decomposition (SVD). For any input235

vector x ∈ Rn, the error introduced by the approximation is bounded by:236

∥Wx− W̃x∥2 ≤ σk+1∥x∥2, (14)

where σk+1 is the (k + 1)-th singular value of W .237

The proof is provided in Appendix A.1. This theorem quantifies the error introduced at a single layer238

due to compressing the weight matrix. The bound indicates that the error is directly proportional239

to the (k + 1)-th singular value of W and the norm of the input vector x. Larger singular values240

correspond to directions of significant variance in the data, so truncating smaller singular values241

(which represent less significant features) minimizes the error introduced by compression.242

5.2 Single Layer Error Bound Including Nonlinearities243

We now extend the analysis to include the effect of nonlinearities within a single layer. We derive an244

error bound that accounts for both the approximation of the weight matrix and the layer’s nonlinear245

activation function. For simplicity, we analyze the error introduced by compressing each weight246

matrix (key or value) individually.247

Theorem 2 Consider a single layer applying a linear transformation W followed by a nonlinearity248

ϕ with Lipschitz constant Lϕ. Let W̃ be the compressed version of W obtained via truncated SVD249

with rank k. For any input vector x ∈ Rn, the error at the output of the layer is bounded by:250 ∣∣∣ϕ(Wx)− ϕ(W̃x)
∣∣∣ ≤ Lϕσk+1∥x∥2. (15)

The proof is straightforward by using Theorem 1 and the Lipschitz property of ϕ, we present it as the251

base case in the proof of Theorem 3, which is detailed in Appendix A.2.252

This theorem shows that the error introduced by the compressed weight matrix propagates through253

the nonlinearity, scaled by the Lipschitz constant of the activation function. While considering254

both matrices simultaneously complicates the bounds due to their interactions within the attention255

mechanism, it is still feasible to derive combined error bounds because the attention mechanism256

allows us to mathematically bound these interactions. The total error due to simultaneous compression257

can be bounded by the sum of their individual approximation errors, scaled by a constant. However,258

for simplicity and clarity in the following derivation, we use the simplified version that considers259

each matrix individually.260

5.3 Error Propagation Bound261

Theorem 3 Consider an L-layer network where each layer i applies a linear transformation Wi262

followed by a nonlinearity ϕ with Lipschitz constant Lϕ. Let W̃i be the compressed version of Wi263

obtained via truncated SVD with rank ki. The error at the output of the network is bounded by:264

∥xL − x̃L∥2 ≤
L∑

i=1

σ
(i)
ki+1L

L−i
ϕ

L∏
j=i+1

∥Wj∥2

 , (16)
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where xL and x̃L are the outputs of the original and compressed networks, respectively; σ(i)
ki+1 is the265

(ki + 1)-th singular value of Wi; ∥Wj∥2 denotes the spectral norm of Wj; and Lϕ is the Lipschitz266

constant of the activation function ϕ.267

We detail the proof in Appendix A.2. Until now, we have established an upper bound on the268

cumulative error at the network’s output due to compression of weight matrices across multiple269

layers. It is important to note that the nonlinearities characterized by the Lipschitz constant Lϕ270

represent a simplification. In practice, transformer models like LLaMA incorporate complex nonlinear271

components, so the exact error propagation may deviate from this simplified bound due to intricate272

nonlinearities. Despite these complexities, the theorem still offers insights into how compression273

errors may accumulate in deep networks. Specifically, it reveals that errors introduced in earlier274

(shallower) layers are amplified more significantly than those in deeper layers because they pass275

through more subsequent transformations and nonlinearities.276

This understanding supports our design of a progressive compression strategy, where we compress277

shallow layers less aggressively than deeper ones. By preserving more information in the early278

layers (i.e., retaining more singular values), we minimize the initial errors that could be significantly279

amplified throughout the network. This approach helps maintain overall model performance while280

still achieving substantial compression in deeper layers, where the impact on the final output is less281

pronounced due to reduced error amplification.282

6 Experiment283

6.1 Models284

We conduct experiments using two attention mechanisms, Multi-Head Attention (MHA) (Vaswani285

et al., 2017) and Graph Query Attention (GQA) (Ainslie et al., 2023), across three models: LLaMA-286

2-13B, LLaMA-3-Instruct-8B, and LLaMA-3-Instruct-70B. The LLaMA-2 family incorporates the287

MHA mechanism, while the LLaMA-3 family is based on the GQA framework. We list the model288

specifications in Table 3. Note that for the models based on MHA, the number of KV heads is equal289

to the number of attention heads, so the weight matrices of KV are square matrices. The models290

based on GQA use an intermediate number of key-value heads to group the query heads, with an291

adjustment on the shape of KV weight matrices.292

6.2 Implementation Details293

In practice, we set thresholds to exclude compression on layers with high cumulative condition294

numbers: 30 for LLaMA-3-Instruct-8B, and 90 for LLaMA-2-13B and LLaMA-3-Instruct-70B. The295

dmax equals to the original head dimension, while dmin varies based on the target compression ratio.296

For baseline methods, we have the same refrained layers while applying the uniform compression297

ratios across compressed layers instead of using a progressive compression strategy.298

6.3 Dataset299

We follow Touvron et al. (2023) to evaluate our methods on the following tasks: BoolQ (Clark et al.,300

2019) for reading comprehension, XSum (Narayan et al., 2018) for text summarization. Openbook301

QA (Mihaylov et al., 2018) for commonsense reasoning, and GSM8K (Cobbe et al., 2021) for302

mathematical reasoning. We use ROUGE score (Lin, 2004) as the evaluation metric for XSum and303

accuracy for the other tasks. We report 2-shot results for LLaMA-2 models on BoolQ, and 0-shot304

results for other settings.305

6.4 Main Results306

Figure 2 presents our main results on four datasets with different KV cache budgets. Compared to307

the full-cache model, LORC achieves on-par performance with a significant compression ratio, and308

the performance degradation is still nearly negligible with a 60% compression ratio on most datasets.309

When slightly compressed, LORC could even enhance model performance in some cases. Note that310

our method requires no model training or model profiling, the only efforts are SVD on weight matrices311

which requires minimal computational cost compared to the LLM inference. Such plug-and-play312
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Figure 2: Performance of KV cache compression on LLaMA models. LORC compresses the KV
weights with a progressive strategy, while the baselines compress each layer with the same ratio. The
horizontal dashed line indicates the performance with a full-cache model.

merits make our method easily integrable in resource-constrained environments, enabling efficient313

model deployment with limited KV cache budgets.314

In Figure 2, one interesting observation is that in some cases the model with a compressed KV cache315

leads to better performance. Particularly, on the GSM8K dataset, performing KV cache compression316

leads to more than 10% performance improvement. This phenomenon aligns with findings reported317

in the literature (Ge et al., 2023). Also, similar effects have been documented in the context of318

improving reasoning by applying low-rank decomposition on the MLP layers (Sharma et al., 2023).319

We believe this phenomenon demonstrates the feasibility of conducting task-specific profiling for320

better performance, or adapting our proposed method in model finetuning.321

6.5 Single Layer Profiling322
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Figure 3: Single-layer compression results. This experiment
uses LLaMA-3-Instruct-8B on the OpenBookQA dataset.

To investigate the impact of compres-323

sion at different layers, we conduct324

experiments on single-layer compres-325

sion as shown in Fig. 3. We use326

LLaMA-3-Instruct-8B on OpenBook327

QA for this experiment. The original328

dimension of the KV head is 1024,329

and we select compression dimen-330

sions from [256, 384, 512] to com-331

press each single layer while keeping332

all other layers untouched.333

Figure 3 shows clear layer-specific variability, indicating that some layers are more susceptible to334

compression than others, particularly in the shallow layers. It is observed that the deep layers (i.e.,335

layers 15–31 of the 32-layer LLaMA-3-Instruct 8B model), despite the reduction in dimensions,336

maintain performance closely approaching the full KV Cache baseline. This suggests that these layers337

can sustain robust performance even when subjected to significant parameter reduction. This finding338

supports our progressive compression strategy for optimizing model efficiency without significantly339

compromising the model’s effectiveness.340
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Table 1: Performance comparison between compression on shallow layers and deep layers on
OpenBookQA. For our progressive compression strategy, we report the performance at the 60%
overall compression ratio. For layer-0 compression and shallow blocks compression, we use a 50%
layer compression ratio within the chosen strategy. Hence, the overall compression ratio is 98.44%
for the layer-0 compression, and 93.75% for the shallow blocks compression.

Model Baseline Ours Layer 0 Shallow Blocks (1/8)

LLaMA-2-13b 76.6 77.4 (↑ 0.8) 77.2 (↑ 0.6) 74.8 (↓ 1.8)
LLaMA-3-Instruct-8b 78.0 77.4 (↓ 0.6) 67.2 (↓ 10.8) 61.4 (↓ 16.6)
LLaMA-3-Instruct-70b 91.2 91.2 (↑ 0.0) 84.2 (↓ 7.0) 23.2 (↓ 68.0)

6.6 Curse of shallow layers341

To validate the intuition of the progressive compression strategy that the noise caused by shallow342

compressed layers will be amplified more after propagation, we compare it to compressing the first343

layer and the shallow blocks (i.e., the first 1/8 layers in a model) on 3 LLaMA models.344

Table 1 shows how the compressed shallow layers impact the model performance, taking the baseline345

full-cache model and our method as reference. The results indicate that compressing only the first346

layer can lead to a performance decline, with reductions ranging from minimal to moderate. For347

instance, the LLaMA-3-70B gives a 7.0% decrease, while the LLaMA-3-Instruct-8b shows a more348

substantial drop of 10.8%. When compressing the shallow blocks, the impact is more pronounced.349

The LLaMA-3-Instruct-8B suffers a 16.6% reduction. Notably, the LLaMA-3-Instruct-70b model350

shows a drastic 68.0% decline, highlighting a significant sensitivity to shallow layer compression.351

These findings underscore the importance of careful layer selection in compression strategies and352

validate the effectiveness of our progressive compression method, as the choice of layer to compress353

can have a substantial impact on model performance, particularly in larger or more complex models.354

6.7 Memory footprint reduction analysis355

Table 2: Summary of Model Sizes, KV cache usage and performance drop. Experiments were
conducted with a batch size of 64 and a sequence length of 2048 for all models.

Model KV Cache Average Performance Drop

Full dim dim_c Ours Compression Ratio

LLaMA-2-13B 50G 5120 2048 27.5G 55% 0.47%
LLaMA-3-8B 8G 1024 512 4.8G 60% 0.92%

LLaMA-3-70B 20G 1024 512 11G 55% 0.22%

We report the memory footprint reduction in Table 2. By controlling the performance drop averaged356

on the four tasks less than 1%, we can achieve a considerable compression ratio from 55%-60%.357

For the LLaMA-3 models in which the GQA has already been employed to save the KV cache, we358

further achieve a significant compression ratio. Note that we have excluded the GSM8k results for359

the performance drop calculation for a fair comparison.360

7 Conclusions361

In conclusion, we proposed LORC, a novel approach to KV cache compression that capitalizes362

on the inherent low-rank properties of weight matrices. Our method employs a progressive layer-363

wise compression strategy, implementing a post-hoc low-rank approximation to circumvent the364

complexities and limitations associated with token-level eviction strategies and model retraining.365

Moreover, we provide theoretical analysis, deriving error bounds for layer compression and error366

propagation in deep networks, supporting our design of progressive compression strategy. This367

theoretically grounded and universally applicable approach preserves model integrity and performance368

across diverse tasks, attention mechanisms, and model scales. Our comprehensive experimental369

results demonstrate that LORC significantly reduces GPU memory requirements while minimally370

impacting performance. This approach offers a robust and efficient solution of KV cache compression,371

without requiring attention pattern analysis or model tuning.372
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A Detailed Proofs450

A.1 Proof of Theorem 1451

The proof of Theorem 1 is presented here for completeness.452

Proof.453

Let W = UΣV ⊤ be the full SVD of W , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices,454

and Σ = diag(σ1, . . . , σn) with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.455

The rank-k approximation W̃ is given by:456

W̃ = UkΣkV
⊤
k ,

where Uk, Σk, and Vk are truncated versions of U , Σ, and V , respectively, keeping only the first k457

singular values and corresponding vectors.458

We have:459

∥Wx− W̃x∥2 = ∥(W − W̃ )x∥2
= ∥U(Σ− Σk)V

⊤x∥2
= ∥(Σ− Σk)V

⊤x∥2, since U is orthogonal

= ∥ diag(0, . . . , 0, σk+1, . . . , σn)V
⊤x∥2

≤ σk+1∥V ⊤x∥2
= σk+1∥x∥2, since V is orthogonal.

□460

A.2 Proof of Theorem 3461

We present the proof of Theorem 3, including an adjustment for activation functions with Lipschitz462

constant Lϕ.463

Proof.464

Let xi and x̃i denote the outputs of the i-th layer in the original and compressed networks, respectively.465

We prove by induction that:466

∥xi − x̃i∥2 ≤
i∑

s=1

σ
(s)
ks+1L

i−s
ϕ

i∏
j=s+1

∥Wj∥2

 . (17)

Base Case (i = 1).467

Using Theorem 1 and the Lipschitz property of ϕ:468

∥x1 − x̃1∥2 = ∥ϕ(W1x0)− ϕ(W̃1x0)∥2
≤ Lϕ∥W1x0 − W̃1x0∥2
≤ Lϕσ

(1)
k1+1∥x0∥2.

Inductive Step.469

Assume the inductive bound holds for layer i− 1. For layer i:470
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∥xi − x̃i∥2 = ∥ϕ(Wixi−1)− ϕ(W̃ix̃i−1)∥2
≤ Lϕ∥Wixi−1 − W̃ix̃i−1∥2

≤ Lϕ

(
∥Wi(xi−1 − x̃i−1)∥2 + ∥(Wi − W̃i)x̃i−1∥2

)
≤ Lϕ

(
∥Wi∥2∥xi−1 − x̃i−1∥2 + σ

(i)
ki+1∥x̃i−1∥2

)
.

We can bound ∥x̃i−1∥2 using the triangle inequality:471

∥x̃i−1∥2 ≤ ∥xi−1∥2 + ∥xi−1 − x̃i−1∥2.

Assuming that ∥xi−1∥2 is bounded (which is reasonable in practice due to normalization techniques),472

and applying the inductive hypothesis, we can express ∥xi − x̃i∥2 in terms of the accumulated errors473

up to layer i.474

By recursively applying this inequality and summing over all layers, we obtain the bound stated in475

Theorem 3.476

□477

A.3 Note on Activation Functions and the Lipschitz Constant478

It is important to note that Theorem 3 assumes the activation function ϕ has a Lipschitz constant Lϕ,479

which reflects how much the function can amplify differences in its input. For activation functions like480

ReLU, which are 1-Lipschitz, the error bound simplifies and indicates minimal error amplification481

through the activation layers.482

However, the LLaMA model family uses activation functions such as SwiGLU and GELU, whose483

derivatives can exceed 1, making them not 1-Lipschitz. For networks employing such activation484

functions, the error propagation bound in Theorem 2 is adjusted by incorporating a Lipschitz constant485

Lϕ, which may be greater than 1. This adjustment accounts for the potential additional error486

amplification introduced by the activation functions.487

B Reconstruction Error of Matrix SVD488

Given a pre-trained LLM, we conduct layer-wise weight matrix decomposition and reconstruction.489

We found that these matrices are low-rank and therefore can be reconstructed with low-dimension490

matrices, resulting in minimal reconstruction error. It means instead complex eviction policy design491

at the token level, we can turn to the attention level to develop a model and task agnostic KV cache492

compression method. We present the relative reconstruction error in Figure 4, which is computed as493

below.494

1 # Code for matrix reconstruction error calculation495

2 matrix_reconstructed = torch.mm(torch.mm(U_reduced , S_reduced_diag),496

V_reduced)497

3 error = torch.norm(matrix - matrix_reconstructed , p=’fro’)498

4 relative_error = error / torch.norm(matrix , p=’fro’)499

C Adjusted Position Embedding500

Su et al. (2024) propose a rotary position embedding (RoPE) and it has been used in most recent501

LLMs. Applying RoPE to self-attention gives502

qTmkn = (Rd
Θ,mWT

q xm)T (Rd
Θ,nW

T
k xn) = xTWqR

d
Θ,n−mWT

k xn, (18)

where Θ is a pre-defined rotary matrix, m and n denotes the token position. In practice, the rotation503

matrix Rd
Θ,n−m is decomposed as (Rd

Θ,m)T and Rd
Θ,n to rotate the query and key separately, and504

the KV cache stores the rotated keys. To ensure that our compressed keys are compatible with the505
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Figure 4: Layerwise relative reconstruction errors. wkerr and wverr denote the relative difference
between the original key/value matrices and their corresponding low-rank approximations measured
using the Frobinus norm. The compression ratio is computed as r = dc

Nh×dh
, where Nh is the number

of attention heads and dh, dc is the original and compressed hidden dimensions respectively.

rotary operation, we adjust the position embedding pipeline. Specifically, we store the compressed506

keys X(ΣV ⊤)⊤D×dc
in cache, while incorporating the rotation and key projection into the query507

computation to streamline the process.508

RoPE does bring additional computations to LoRC. To address this, we follow H2O (Zhang et al.,509

2024b) and FastGen (Ge et al., 2023) to develop a customized kernel that fuses cache reconstruction510

and rotation operations. This approach minimizes memory transfers and computational overhead,511

enhancing the overall throughput.512

Specifically, we leverage Triton to implement a fused kernel that optimizes memory access and com-513

putation. With this kernel, we are able to combine key reconstruction from compressed representation514

and apply RoPE rotations on-the-fly. It also streamlines memory access because the single data load515

from global memory for compressed keys requires minimal data movement. In a complete RoPE516

workflow, there are two stages:517

• Caching: We project keys to low-rank space without position embedding and store only the518

compressed representation.519

• Attention computation: Within the customized kernel, we load compressed keys into shared520

memory, reconstruct and apply RoPE in a fused operation, and then compute attention scores521

with position-aware keys.522

With these engineering efforts, we achieve higher throughput compared to baseline configurations.523

Table 3: Model Architectures.
Model Attention Layers Heads KV Heads Head Dimension Model Dimension Weight Shape

LLaMA-2-13B MHA 40 40 40 128 5120 5120 × 5120
LLaMA-3-Instruct-8B GQA 32 32 8 128 4096 4096 × 1024

LLaMA-3-Instruct-70B GQA 80 64 8 128 8192 8192 × 1024

D Latency Analysis524

Table 4: Latency analysis for sensitivity calculation and SVD processing.
Model Computing Resource Sensitivity Calculation (s) SVD Processing (s)

LLaMA-3-8B-Instruct NVIDIA H100 80GB HBM3 × 1 30.6 33.3
LLaMA-3-70B-Instruct NVIDIA H100 80GB HBM3 × 8 12.2 14.3

The latency analysis is shown in Table 4. Note that sensitivity calculation only takes place once for a525

given model, and the SVD processing is a one-time implementation during the model initialization526
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stage. Such latency will not affect inference speed. Compared to the whole inference duration, the527

latency incurred by these processes is negligible. For example, the LLaMA-3-70B-Instruct model528

requires approximately 1 hour and 8 minutes to process 1,000 summaries from the XSUM dataset529

with a batch size of 32 and a sequence length of 8,000. The combined latency introduced by sensitivity530

calculations and SVD processing represents only 0.6% of the total inference time.531

E Throughput Analysis532

Our method involves additional computations to recover the compressed cache and manage RoPE.533

To address this, we developed a customized kernel that fuses cache reconstruction and rotation534

operations. This approach minimizes memory transfers and computational overhead, enhancing the535

overall throughput.536

Following H2O () we conducted throughput experiments with fixed input and output sequence537

lengths using the LLaMA-3-70B-Instruct model on a node equipped with eight NVIDIA H100 80GB538

HBM3 GPUs. The results below indicate that our engineering efforts can streamline the attention539

computation with LoRC compression, thereby achieving higher throughput compared to full cache540

scenarios.

Table 5: Throughput of LLaMA-3-70B-Instruct with and without LoRC compression.
Input Length Output Length Batch Size Full Cache Throughput LoRC-60% Throughput Speedup

1024 2048 32 52.75 tokens/s 60.08 tokens/s × 1.14
1024 4096 32 78.66 tokens/s 98.74 tokens/s × 1.26

541

F Comparison with Other KV Cache Compression Methods542

We compare LORC with a token-eviction method – H2O (Zhang et al., 2024b) and a quantization543

method – KIVI (Liu et al., 2024c) in this section. We conduct experiments using LLaMA-3-8B-544

Instruct. For H2O and LoRC, we keep the same 60% KV cache budget. For KIVI, we use the545

KIVI-4-bit implementation. We evaluate accuracy on BoolQ and OpenBook QA, and Rouge-Lsum546

for XSum. The results below show LoRC can preserve a better performance compared to token-547

eviction and quantization methods when KV cache is aggressively compressed.548

Table 6: Performance comparison across different KV cache compression methods.
Method BoolQ XSum OpenBookQA

Full Cache 81.6 11.6 78.0
H2O (Zhang et al., 2024b) 76.4 10.5 75.1

KIVI (Liu et al., 2024c) 77.6 10.3 74.8
LORC 79.2 11.2 75.7

For throughput comparison with the other methods, we use the metric seconds per iteration (s/it)549

on XSum. We adhered to the same 60% KV cache budget for both H2O and LoRC. In an effort to550

demonstrate compatibility with other KV cache compression methods, we integrated LoRC with both551

H2O and standard 8-bit quantization. Specifically, we allocated a 70% KV cache budget to LoRC552

and 85% to H2O, resulting in approximately a 60% overall cache budget. A similar configuration553

was used for the combination of LoRC with 8-bit quantization.

Table 7: Throughput and performance comparison of different methods..
Full Cache H2O KIVI LoRC LoRC w/ H2O LoRC w/ 8-bit

Performance 11.6 10.5 10.3 11.2 11.0 10.9
s/it 228.5 192.7 186.6 203.4 195.9 193.7

554
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Our results show that LoRC achieves superior performance compared to existing compression555

methods while maintaining competitive throughput. While the SVD-based computations introduce556

some overhead, LoRC still has a higher throughput than its full cache baseline because we deployed557

a customized kernel to streamline the attention computation. It is important to note that our primary558

objective was not to develop a Pareto-optimal method (simultaneously optimizing both performance559

and throughput), but rather to introduce an orthogonal approach to KV cache compression and560

establish the progressive compression strategy.561

Additionally, the integration of LoRC with both token-eviction and quantization methods demonstrates562

its compatibility with existing compression methods. With only a slight performance trade-off563

(11.0/10.9 vs 11.2), these hybrid configurations achieve better throughput compared to using LoRC564

alone, which shows the potential of combining LoRC with orthogonal compression approaches.565

G Enhancements in memory-constrained deployment scenarios566

Table 8: LLaMA-3-8B-Instruct model on a single GPU with 24GB memory.
Max Sequence Length Batch Size 8B w/ Full Cache 8B w/ LoRC-60%

2048 20 OOM 22.12 G

Table 9: LLaMA-3-70B-Instruct model on 8 GPUs with 24GB memory.
Max Sequence Length Batch Size 70B w/ Full Cache 70B w/ LoRC-60%

2048 8 OOM 22.97 G

LoRC demonstrates significant benefits in memory-constrained deployment scenarios. To further567

validate this, we provide additional experiments here. These results demonstrate that LoRC enables568

the deployment of models that would otherwise be impossible to run with full KV cache on consumer569

GPUs.570

H Prompts used in experiments571

We present our prompts used for different datasets here. We use a few-shot setting for LLaMA-2572

models on OpenBookQA (1-shot), BoolQ (2-shot), and GSM8k (8-shot), and zero-shot setting for573

other experiments.574

OpenBookQA575

1 def format_examples(examples):576

2 example_prompts = []577

3 for j in range (1):578

4 question = examples[’question_stem ’][j]579

5 fact = examples[’fact1 ’][j]580

6 choices = examples[’choices ’][j][’text’]581

7 labels = examples[’choices ’][j][’label’]582

8 formatted_choices = "\n".join(f"{label }) {text}" for label ,583

text in zip(labels , choices))584

9 answer = examples[’answerKey ’][j]585

10 example_prompt = f"Fact: {fact}\ nQuestion: {question }\ nOptions586

:\n{formatted_choices }\ nAnswer: {answer }\n"587

11 example_prompts.append(example_prompt)588

12 return "\n---\n".join(example_prompts)589

13590

14591

15 def create_prompts_from_data(data , example_context):592

16 prompts = []593

17 answers = []594

18 for i in range(len(data[’id’])):595

17



19 question = data[’question_stem ’][i]596

20 fact = data[’fact1 ’][i]597

21 choices = data[’choices ’][i][’text’]598

22 labels = data[’choices ’][i][’label’]599

23 formatted_choices = "\n".join(f"{label }) {text}" for label ,600

text in zip(labels , choices))601

24602

25 task_intro = "You will be provided with a fact and a related603

question. Your task is to use the given fact to choose the correct604

answer from the provided options."605

26 prompt = f"Task Introduction :\n{task_intro }\n1 -Shot Examples :\606

n{example_context }\n---\nFact: {fact}\ nQuestion: {question }\607

nOptions :\n{formatted_choices }\ nAnswer:"608

27 prompts.append(prompt)609

28 answers.append(data[’answerKey ’][i])610

29 return prompts , answers611

30612

31613

32 def extract_option_label(outputs):614

33 answer_labels = []615

34 for output in outputs:616

35 match = re.search(r’\b([A-D])\b’, output)617

36 if match:618

37 answer_labels.append(match.group (1))619

38 else:620

39 answer_labels.append(None)621

40 return answer_labels622

BoolQ623

1 def get_examples(dataset , num_examples):624

2 selected_examples = dataset.shuffle(seed =42).select(range(625

num_examples))626

3 examples = []627

4 for i in range(num_examples):628

5 passage = selected_examples[’passage ’][i]629

6 question = selected_examples[’question ’][i]630

7 answer = "yes" if selected_examples[’answer ’][i] else "no"631

8 examples.append ((passage , question , answer))632

9633

10 example_section = "\n\n".join([634

11 f"Example {i + 1}:\ nPassage: {ex[0]}\ nQuestion: {ex[1]}\635

nAnswer: {ex[2]}" for i, ex in enumerate(examples)636

12 ])637

13 return example_section638

14639

15 def create_prompts_from_data(data , example_section=None):640

16 task_description = "For each passage and question , determine if641

the answer to the question is ’yes’ or ’no’ based on the passage642

provided."643

17644

18 prompts = []645

19 references = []646

20 for question , passage , answer in zip(data[’question ’], data[’647

passage ’], data[’answer ’]):648

21 prompt = f"{task_description }\n\n2 -Shot Examples :{649

example_section }\n\nPassage: {passage }\ nQuestion: {question }\n\650

nAnswer (yes or no):"651

22 prompts.append(prompt)652

23 references.append("yes" if answer else "no")653

24 return prompts , references654

25655

26 def extract_answer(generated_text: str) -> str:656

27 normalized_text = generated_text.lower ().strip()657

28 if normalized_text.startswith("yes"):658
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29 return "yes"659

30 elif normalized_text.startswith("no"):660

31 return "no"661

32 return "unknown"662

XSum663

1 def create_prompts_from_data(data):664

2 prompts = []665

3 references = []666

4 for article , summary in zip(data[’document ’], data[’summary ’]):667

5 prompt = f"Provide a concise summary of the text below: {668

article }\n\nSummary:"669

6 prompts.append(prompt)670

7 references.append(summary)671

8 return prompts , references672

GSM8k673

1 def create_prompts_from_data(data , examples):674

2 content = f"Please give a step -by-step answer to the question. You675

have to put your final numeric answer at the end , without any676

extra sign , prefix , or suffix , just pure integer numbers , in the677

format: \n#### answer\n Done , make sure to separate the final678

numeric answer with \n####"679

3680

4 prompts = []681

5 references = []682

6683

7 example_section = ""684

8 for ex_question , ex_answer in examples:685

9 example_section += f"\nExample Question: {ex_question }\686

nExample Answer: {ex_answer }\n"687

10688

11 for question , answer in zip(data[’question ’], data[’answer ’]):689

12 prompt = f"{example_section }\ nQuestion: {question }\n{content }.690

"691

13 prompts.append(prompt)692

14 _, extracted_answer = extract_answer(answer)693

15 references.append(extracted_answer)694

16 return prompts , references695

17696

18 def extract_answer(completion):697

19 start_idx = completion.find("####")698

20 if start_idx == -1:699

21 return completion , ’None’700

22 start_idx += 4 # Move past ’####’701

23 end_idx = completion.find(’\n’, start_idx)702

24 if end_idx == -1:703

25 end_idx = len(completion)704

26 answer = completion[start_idx:end_idx ].strip ()705

27 return completion [: end_idx], answer706

28707

29708

30 def calculate_accuracy(predictions , references):709

31 correct = sum([1 for (_, pred), ref in zip(predictions , references710

) if pred.lower () == ref.lower ()])711

32 return correct , len(predictions)712

I Throughput Analysis713

Our method involves additional computations to recover the compressed cache and manage RoPE.714

To address this, we developed a customized kernel that fuses cache reconstruction and rotation715
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operations. This approach minimizes memory transfers and computational overhead, enhancing the716

overall throughput.717

Following H2O () we conducted throughput experiments with fixed input and output sequence718

lengths using the LLaMA-3-70B-Instruct model on a node equipped with eight NVIDIA H100 80GB719

HBM3 GPUs. The results below indicate that our engineering efforts can streamline the attention720

computation with LoRC compression, thereby achieving higher throughput compared to full cache721

scenarios.

Table 10: Throughput of LLaMA-3-70B-Instruct with and without LoRC compression.
Input Length Output Length Batch Size Full Cache Throughput LoRC-60% Throughput Speedup

1024 2048 32 52.75 tokens/s 60.08 tokens/s × 1.14
1024 4096 32 78.66 tokens/s 98.74 tokens/s × 1.26

722

J Comparison with Other KV Cache Compression Methods723

We compare LORC with a token-eviction method – H2O (Zhang et al., 2024b) and a quantization724

method – KIVI (Liu et al., 2024c) in this section. We conduct experiments using LLaMA-3-8B-725

Instruct. For H2O and LoRC, we keep the same 60% KV cache budget. For KIVI, we use the726

KIVI-4-bit implementation. We evaluate accuracy on BoolQ and OpenBook QA, and Rouge-Lsum727

for XSum. The results below show LoRC can preserve a better performance compared to token-728

eviction and quantization methods when KV cache is aggressively compressed.729

Table 11: Performance comparison across different KV cache compression methods.
Method BoolQ XSum OpenBookQA

Full Cache 81.6 11.6 78.0
H2O (Zhang et al., 2024b) 76.4 10.5 75.1

KIVI (Liu et al., 2024c) 77.6 10.3 74.8
LORC 79.2 11.2 75.7

For throughput comparison with the other methods, we use the metric seconds per iteration (s/it)730

on XSum. We adhered to the same 60% KV cache budget for both H2O and LoRC. In an effort to731

demonstrate compatibility with other KV cache compression methods, we integrated LoRC with both732

H2O and standard 8-bit quantization. Specifically, we allocated a 70% KV cache budget to LoRC733

and 85% to H2O, resulting in approximately a 60% overall cache budget. A similar configuration734

was used for the combination of LoRC with 8-bit quantization.

Table 12: Throughput and performance comparison of different methods..
Full Cache H2O KIVI LoRC LoRC w/ H2O LoRC w/ 8-bit

Performance 11.6 10.5 10.3 11.2 11.0 10.9
s/it 228.5 192.7 186.6 203.4 195.9 193.7

735

Our results show that LoRC achieves superior performance compared to existing compression736

methods while maintaining competitive throughput. While the SVD-based computations introduce737

some overhead, LoRC still has a higher throughput than its full cache baseline because we deployed738

a customized kernel to streamline the attention computation. It is important to note that our primary739

objective was not to develop a Pareto-optimal method (simultaneously optimizing both performance740

and throughput), but rather to introduce an orthogonal approach to KV cache compression and741

establish the progressive compression strategy.742

Additionally, the integration of LoRC with both token-eviction and quantization methods demonstrates743

its compatibility with existing compression methods. With only a slight performance trade-off744

(11.0/10.9 vs 11.2), these hybrid configurations achieve better throughput compared to using LoRC745

alone, which shows the potential of combining LoRC with orthogonal compression approaches.746
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K Enhancements in memory-constrained deployment scenarios747

Table 13: LLaMA-3-8B-Instruct model on a single GPU with 24GB memory.
Max Sequence Length Batch Size 8B w/ Full Cache 8B w/ LoRC-60%

2048 20 OOM 22.12 G

Table 14: LLaMA-3-70B-Instruct model on 8 GPUs with 24GB memory.
Max Sequence Length Batch Size 70B w/ Full Cache 70B w/ LoRC-60%

2048 8 OOM 22.97 G

LoRC demonstrates significant benefits in memory-constrained deployment scenarios. To further748

validate this, we provide additional experiments here. These results demonstrate that LoRC enables749

the deployment of models that would otherwise be impossible to run with full KV cache on consumer750

GPUs.751
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