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ABSTRACT

In many fields, including healthcare, marketing, and online platform design, A/B
tests are used to evaluate new treatments and make launch decisions based on
average treatment effect (ATE) estimates. But this workflow can overlook distri-
butional risks, such as a large fraction of individuals affected negatively by the
treatment. In this paper, we propose a novel method for inference on the treatment
effect distribution. Prior work in this setting has estimated partial identification
bounds—known as Makarov bounds—on the cumulative distribution function of
the treatment effect by making restrictive assumptions on the outcome distribu-
tion. In contrast, our method guarantees accurate estimation and valid asymptotic
inference of the Makarov bounds for any outcome distribution. Our main tech-
nical contributions are to develop smoothed surrogates for the Makarov bounds,
derive semiparametrically efficient estimators of these surrogates, and propose a
procedure for optimal selection of the smoothing parameters. We show empirically
on synthetic and semi-synthetic datasets that, by not relying on the assumptions
made by other methods, our estimators achieve a better bias-variance trade-off and
lower mean-squared error. Finally, we deploy our method on real A/B test data
from a large social media platform, and show how estimates of the treatment effect
distribution can inform decision-making.

1 INTRODUCTION

Randomized controlled trials (RCTs) and A/B tests are crucial for evaluating the impact of treatments
or product changes on a target outcome. Examples include medical treatments aimed at improving
patient health (Feuerriegel et al., 2024), advertising placement to increase revenue (Varian, 2016),
and interventions on digital platforms to boost user engagement (Swaminathan & Joachims, 2015).
By randomly assigning units to treatment and control, A/B tests enable unbiased comparisons of
outcomes between groups. A common decision rule is to estimate the average treatment effect (ATE)
and adopt the new treatment when the ATE is statistically significantly positive (Athey et al., 2020).

In many settings, the ATE is not sufficient for decision-making and practitioners in fact need estimates
of distributional quantities beyond the average (Kallus & Zhou, 2021). In sensitive applications it is
vital to understand the fraction of individuals that are affected negatively by the treatment, even when
the average treatment effect is positive. For example, a minor tweak to a platform’s ranking algorithm
may lift overall engagement yet reduce engagement for new or low-activity users, increasing early
churn. Such business-critical decisions motivate estimating the entire distribution of the treatment
effect, rather than merely the mean.

Estimating the treatment effect distribution is challenging. Even in RCTs, where randomization rules
out unobserved confounding, the joint distribution of potential outcomes is not identified (Fan &
Park, 2010). Consequently, the treatment-effect distribution is only partially identified: its cumulative
distribution function (c.d.f. ) is bounded by the sharp Makarov bounds (Makarov, 1982). These
bounds are obtained by optimizing over all possible joint distributions of treatment and control that
are consistent with the the observed marginal distributions of treatment and control. Hence the
Makarov bounds are complex functionals of the data-generating distribution that involve suprema
and infima over the outcome space. The non-smoothness of these suprema and infima complicates
estimation of the bounds and especially complicates the application of standard tools from efficiency
theory, such as debiased estimation (Kennedy, 2022).
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Existing methods for efficient statistical inference on Makarov bounds either address stylized settings,
such as a binary outcome (Kallus et al., 2022; Zhang & Richardson, 2025), or rely on a margin
assumption (Semenova, 2025). The margin assumption requires the suprema and infima in the
Makarov bounds to be attained at unique points, and is often violated in practice. For example, if the
treatment effect is constant or nearly constant for a subset of users, the margin assumption will fail or
nearly fail to hold. In this case, existing estimators are biased or high-variance, leading to inaccurate
estimates and sub-optimal decisions.

In this paper, we propose a novel, assumption-lean, method for inference on Makarov bounds for
the treatment-effect distribution. Our key idea is to replace the non-smooth suprema and infima that
define the bounds with smooth surrogates, allowing us to apply semiparametric efficiency theory to
obtain debiased estimators. We then derive an upper bound on the bias introduced by smoothing
and incorporate it into both the selection of the smoothing parameters and the construction of our
confidence intervals. Our method offers three key advantages: (i) it provides lower mean-squared
error (MSE) estimates of Makarov bounds under violation of the margin assumption; (ii) it is model-
agnostic and can be combined with arbitrary black-box learners to exploit covariates and tighten the
bounds; and (iii) it admits data-driven procedures for selecting the smoothing level optimally.

Our contributions are1: (i) We propose debiased estimators of smoothed versions of the Makarov
bounds and quantify the induced smoothing bias; (ii) We propose a new data-driven procedure to
tune the smoothing parameters of our method; and (iii) We validate the effectiveness of our method
using synthetic, semi-synthetic, and real-world data.

2 RELATED WORK

Distributions of treatment effects. There are two main streams of work on statistical inference
for treatment-effect distributions. The first stream aims at constructing prediction intervals for the
individual treatment effect (ITE), typically based on conformal prediction (Lei & Candès, 2021; Alaa
et al., 2023; Schröder et al., 2024). These methods provide valid predictive intervals for individual-
level effects, but do not allow for inference on the full treatment-effect distribution (e.g., estimating
its c.d.f. or density).

The second stream focuses on inference on the c.d.f. of the treatment-effect distribution. However, this
distribution is not identifiable under standard assumptions (Rubin, 1974; Robins, 1986; Fan & Park,
2010), even with experimental data. Two approaches to overcome this obstacle have emerged. The
first is to impose additional assumptions on the data-generating process to achieve point identification,
as in Post & Van Den Heuvel (2025). Such assumptions, however, are unrealistic and untestable.
The second is to take a partial identification approach and estimate upper and lower bounds on the
cumulative distribution function. For example, sharp bounds and corresponding estimators have been
proposed for binary outcomes (Kallus et al., 2022; Zhang & Richardson, 2025).

For general outcomes, sharp bounds are given by the Makarov bounds (Makarov, 1982). Estimation
and inference methods for these bounds are mostly based on plug-in approaches (Fan & Park, 2010;
Ruiz & Padilla, 2022; Fava, 2024; Lee, 2024; Cui & Han, 2023; Liang & Wu, 2025), which do
not leverage semiparametric efficiency theory (Kennedy, 2022). The resulting estimators are not
guaranteed to be asymptotically normal and confidence intervals are often constructed via invalid
bootstrap procedures. Beyond Makarov bounds, Firpo & Ridder (2019) introduced uniformly sharp
bounds for the treatment-effect distribution, but these are computationally challenging as no closed-
form expressions are available. Similarly, Ji et al. (2023) proposed a dual-optimization framework for
partial identification, but this framework can yield overly conservative bounds when strong duality
fails (see their Sec. 6.2).

Table 1: Approaches for debiased estimation of Makarov-
bounds and other non-smooth causal estimands.

Other causal estimands Makarov bounds
Margin

assumption
Policy value (Luedtke & Van Der Laan, 2016);
Intersection bounds (Semenova, 2025);

(Melnychuk et al., 2024)
(Semenova, 2025)

Smoothing Optimal policy value (Park, 2024);
IV bounds (Levis et al., 2025). Ours.

Efficient estimation of non-smooth
causal estimands. A key techni-
cal difficulty in the estimation of the
Makarov bounds is that the bounds
involve suprema and infima over the
outcome space. These suprema and
infima are non-differentiable, precluding the use of standard theory.

1Code: https://anonymous.4open.science/r/SmoothedMakarovBounds-632B.
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One literature stream attempts to remedy this by making a so-called margin assumption (Kitagawa
& Tetenov, 2018), which essentially requires that the suprema and infima are attained at a single
point only. This assumption has been used in the estimation of various other statistical estimands
with similar non-differentiability issues: the optimal policy value (Luedtke & Van Der Laan, 2016),
covariate-conditional Makarov bounds (Melnychuk et al., 2024), and more general intersection
bounds (Semenova, 2025) which include Makarov bounds as a special case. However, the margin
assumption is violated even in simple settings, like that of a constant treatment effect, making these
methods unreliable in practice.

A second stream of work handles non-differentiability by approximating non-differentiable functions
(e.g., the supremum) with smooth functions. This approach has been developed for inference on
the optimal policy value Park (2024) and on bounds on average treatment effects in instrumental
variable settings Levis et al. (2025). To the best of our knowledge no prior work has proposed a
similar method for estimation and inference of Makarov bounds, which is the scope of our paper.

3 PROBLEM SETUP

3.1 SETTING

Data: We consider a causal inference setting using either randomized or observational data. That
is, we consider a population Z = (X,A, Y ) ∼ P, where X ∈ X ⊆ Rd are covariates, A ∈ {0, 1}
is a binary action, and Y ∈ R is a continuous outcome of interest that is observed after taking
the action A. For example, X may be user demographics, A may be a binary decision of whether
a policy is implemented, and Y may be a user engagement metric. We provide extensions of all
our results to discrete outcomes in Appendix C. We also assume that we have access to a dataset
D = {(xi, ai, yi)}ni=1 of size n ∈ N sampled i.i.d. from P.

Notation. We define the propensity score as π(x) = P(A = 1 | X = x). The propensity score
characterizes the treatment assignment mechanism and is often known in randomized experiments,
e.g., π(x) = 0.5. Furthermore, we define the response distributions as the conditional outcome c.d.f.s
Fa(y|x) = P(Y ≤ y|X = x,A = a) for a ∈ 0, 1. We let η = {π, F1, F0} be the collection of these
nuisance functions. For any v ∈ R, we write v+ = max(v, 0) and v− = min(v, 0).

Target estimand. We use the potential outcomes framework of Rubin (1974) and denote Y (a) as the
potential outcome corresponding to the treatment A = a. The parameter of interest is the cumulative
distribution function of the treatment effect evaluated at a single point,

ρ(δ) = P(Y (1)− Y (0) ≤ δ). (1)

The c.d.f. ρ(δ) characterizes the entire treatment effect distribution. For example, ρ(0) is the fraction
of users negatively affected by the treatment (Kallus et al., 2022).

Partial identification bounds. We impose the following standard causal inference assumptions
(Rubin, 1974).
Assumption 3.1 (Standard causal inference assumptions). For all a ∈ {0, 1} and x ∈ X we have:
(i) consistency, Y (a) = Y whenever A = a; (ii) overlap, 0 < π(x) < 1 whenever P(X = x) > 0;
and (iii) ignorability, A ⊥ Y (1), Y (0) | X = x.

Conditions (ii) and (iii) are automatically satisfied in randomized experiments where the propensity
score π is known and can be controlled (and is often the constant function π(x) = 0.5). Condition (i)
prohibits interference between individuals and excludes the possibility of spillover effects. Together,
these assumptions allow us to partially identify the treatment effect distribution ρ(δ) via the Makarov
bounds (Makarov, 1982)

ρ−(δ) ≤ ρ(δ) ≤ ρ+(δ), (2)
where

ρ−(δ) = E
[
sup
y∈Y

(F1(y|X)− F0(y − δ|X))+

]
and ρ+(δ) = 1+E

[
inf
y∈Y

(F1(y|X)− F0(y − δ|X))−

]
.

(3)
The Makarov bounds ρ−(δ) and ρ+(δ) only depend on the marginal response distributions F1 and F0

and are thus identified from the observation distribution P. Intuitively, the Makarov bounds quantify
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the stochastically smallest and largest distributions that can be obtained by maximizing or minimizing
over joint distributions of the potential outcomes that are compatible with the observed marginals
F1 and F0. (They are also generalizations of the bounds from (Kallus, 2022) for the fraction of
negatively affected users in the case of binary outcomes.)

3.2 BACKGROUND ON ESTIMATING MAKAROV BOUNDS

Plug-in estimation. The simplest estimator of the Makarov bounds is the so-called plug-in estimator
(Fan & Park, 2010): one first obtains nuisance estimators η̂ = (F̂1, F̂0, π̂) of the response distributions
Fa and propensity score π (in the observational setting). Then, one substitutes the estimated nuisance
functions into the expression for the bound from Eq. (3) to obtain

ρ̂−PI(δ) =
1

n

n∑
i=1

sup
y∈Y

(
F̂1(y|xi)− F̂0(y − δ|xi)

)
+
. (4)

However, it turns out that the plugin estimator ρ̂−PI(δ) has two drawbacks (Kennedy, 2022): (i) plug-in
bias, which makes it asymptotically suboptimal, and (ii) difficulty establishing asymptotic normality
under reasonable conditions on the nuisance estimators, which prevents reliable confidence interval
construction.

Semiparametric efficient estimators. To address these limitations, a major line of work in causal
inference leverages semiparametric efficiency theory to construct debiased estimators. Debiased
estimators are of the form

ρ̂−AIPTW(δ) = ρ̂−PI(δ) +
1

n

n∑
i=1

Ψ−
δ,y∗

(
zi, η̂, ρ̂

−
PI(δ)

)
, (5)

where Ψ−
δ,y∗ (Z, η, ρ−(δ)) is the so-called efficient influence function (EIF) of the target estimand.

Adding the EIF term debiases the plug-in estimator, yielding an estimator that is asymptotically
efficient and normally distributed, i.e., yielding the lowest possible asymptotic variance given
by E[Ψ−

δ,y∗ (Z, η, ρ−(δ))
2
]. Hence, debiasing using the EIF enables valid and efficient statistical

inference.

Envelope estimators for Makarov bounds. For the lower Makarov bound, the efficient influence
function is given by (Melnychuk et al., 2024; Semenova, 2025):

Ψ−
δ,y∗

(
Z, η, ρ−(δ)

)
= dδ,η(y

∗|X)− ρ−(δ) + 1(dδ,η(y
∗|X) > 0)

( A

π(X)
(1(Y ≤ y∗)− F1(y

∗|X)) (6)

− 1−A

1− π(X)
(1(Y ≤ y∗ − δ)− F0(y

∗ − δ|X))
)
, (7)

where dδ,η(y|X) = F1(y|X)− F0(y − δ|X) and y∗ ∈ argmaxy∈Y dδ,η(y|X).

For each observation xi, y∗ can be computed (e.g., via grid search) and plugged into the debiased
estimator from Eq. (5). This approach is known as an envelope estimator (Semenova, 2025).
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Figure 1: Example for violating the
margin assumption. Depicted are two
shifted (uniform) c.d.f.s that violate the
margin assumption, leading to a plateau
where the argmax in not unique.

Margin assumption. Debiased estimators rely on several
assumptions, including pathwise differentiability (van der
Laan & Rubin, 2006). For Makarov bounds, this essen-
tially translates to requiring the supremum and infimum
y∗ to yield unique solutions, which is known as the margin
assumption (Kitagawa & Tetenov, 2018). However, this
assumption is violated even for the simple case of con-
stant treatment effects for a subset of users. Indeed, if the
treatment effect is constant for users with some values of
X , then the treatment c.d.f. F1(y | X) for these users is
a constant vertical shift of the control c.d.f. F0(y | X),
and the supremum/ infimum y∗ can be attained at many
values of y (see Fig. 1 for an illustration). Thus the margin
assumption fails and the envelope estimator is no longer
efficient. This inefficiency can manifest a sub-optimal
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mean-squared-error, because the margin assumption can inflate the variance of the estimator which
can lead to suboptimal bias-variance trade-off as we will show later.

We emphasize that the failure of the margin assumption is not restricted to pathological edge cases.
Constant treatment effects are a basic model of causal inference, and since effect sizes are often
extremely small in digital experiments, we are often very nearly in the setting of a constant zero
treatment effect. We cannot confidently use estimators that rely on a margin assumption when
analyzing real-world data, necessitating the development of new methods.

4 ESTIMATING MAKAROV BOUNDS IN THE PRESENCE OF MARGIN
VIOLATIONS

In this section, we present our methodology for valid inference on Makarov bounds when the margin
assumption is violated. Our strategy proceeds in three steps. First, in Sec.4.1, we introduce a smooth
surrogate approximation of the Makarov bounds that is amenable to debiased estimation. Next, in
Sec.4.2, we derive debiased estimators for these smoothed bounds and construct confidence intervals
that achieve valid coverage. Finally, in Sec. 4.3, we propose a data-driven procedure to select the
smoothing parameters in a principled way.

4.1 A SMOOTH APPROXIMATION FOR THE MAKAROV BOUNDS

Two key components of the Makarov bounds in Eq. (3) prevent debiased inference in the presence
of margin violations: (i) the supremum and infumum operators, supy∈Y and infy∈Y , and (ii) the
positivity and negativity operators, (·)+ = max(·, 0) and (·)− = min(·, 0). Both components
are non-smooth in the presence of margin violations. Intuitively, when the optimizer has multiple
solutions, even small estimation errors in the nuisance functions can lead to large and unstable
variation in the estimator, as well as bias in the wrong direction. This instability is what invalidates
asymptotic efficiency and reliable confidence intervals.

Bound approximations. Our key idea is to replace these problematic components with smooth
approximations that return unique values, even when the original functions are flat or multi-valued.
This smoothing restores pathwise differentiability, enabling debiased estimation and valid inference
without requiring the margin assumption. For the suprema and infima, we adapt the approximation
from (Levis et al., 2025) for discrete maxima to continuous variables and define the continuous
log-sum-exp operator (LSE) gt1 : F → R via

gt1(f) =
1

t1
log

(∫
exp(t1f(y)) dy

)
(8)

For (ii), we replace v+ and v− with the softplus function ht2 : R → R via ht2(u) =
1
t2
log
(
1+ et2u

)
.

The following lemma shows that replacing the components in (i) and (ii) with gt1 and ht2 gives good
approximations of the Makarov bounds.
Lemma 4.1 (Makarov bound approximations). Assume that Y is compact with finite Lebesque
measure |Y|. For any t1, t2 > 0, we define the smoothed Makarov bounds via

ρ−t1,t2(δ) = E
[
1

t2
log
(
1 + It1,δ(X)

t2
t1

)]
and ρ+t1,t2(δ) = 1− E

[
1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)]
,

(9)
where

It,δ(x) =

∫
Y
exp
(
t[F1(y|x)− F0(y − δ|x)]

)
dy. (10)

Then, it holds that

ρ−t1,t2(δ)− b(t1, t2) ≤ ρ−(δ) and ρ+(δ) ≤ ρ+t1,t2(δ) + b(t1, t2), (11)

where b(t1, t2) =
log(2)
t2

+ (log |Y|)+
t1

quantifies the approximation bias. Furthermore, ρ−t1,t2(δ) →
ρ−(δ) and ρ+t1,t2(δ) → ρ+(δ) as t1, t2 → ∞.

Proof. See Appendix A.
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Intuitively, this smoothing replaces the “hard max” operation of the supremum with a “soft max.”
Instead of arbitrarily selecting one of multiple equally optimal points, the approximation takes a
smooth weighted average that changes gradually as the nuisance estimates shift. This makes the
estimator more stable and allows for establishing asymptotic normality of debiased estimators.

4.2 DEBIASED ESTIMATORS

We now derive the debiased estimators for the smoothed bounds in Lemma 4.1. The following result
establishes the efficient influence functions (EIF) of the lower and upper approximation.

Theorem 4.2. The efficient influence functions of the smoothed Makarov bounds ρ−t1,t2(δ) and
ρ+t1,t2(δ) are given by

Ψ−
t1,t2,δ

(
Z, η, ρ−t1,t2(δ)

)
= σ−

t1,t2,δ
(X)

[
A

π(X)
Φ1

t1,δ(X,Y ) − 1−A

1− π(X)
Φ0

t1,δ(X,Y )

]
(12)

+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ), (13)

Ψ+
t1,t2,δ

(
Z, η, ρ+t1,t2(δ)

)
= σ+

t1,t2,δ
(X)

[
A

π(X)
Φ1

−t1,δ(X,Y ) − 1−A

1− π(X)
Φ0

−t1,δ(X,Y )

]
(14)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ), (15)

where we denote

Φa
t1,δ(X,Y ) =

∫
Y
wt1,δ(y | X)

(
1{Y ≤ y − (1− a)δ} − Fa(y − (1− a)δ | X)

)
dy, (16)

wt1,δ(y|x) =
exp
(
t1(F1(y|x)− F0(y − δ|x))

)
It1,δ(x)

, (17)

σ−
t1,t2,δ

(x) =
It1,δ(x)

t2/t1

1 + It1,δ(x)
t2/t1

, and σ+
t1,t2,δ

(x) =
I−t1,δ(x)

t2/t1

1 + I−t1,δ(x)
t2/t1

. (18)

Proof. See Appendix A.

The smoothed EIFs from Theorem 4.2 are of similar structure as the envelope EIF from Eq. (6).
Cruicially however, the terms involving the argmax/argmin y∗ are replaced by smooth weighted
integrals Φa

t1,δ
(X,Y ), and the indicator 1(dδ,η(y∗|X) > 0) is replaced with one of the smooth

approximations σ±
t1,t2,δ

(X).

Using Theorem 4.2, we can now obtain debiased estimators for the smoothed Makarov bounds.
Following Eq. (5), these are given by

ρ̂−t1,t2(δ) =
1

n

n∑
i=1

1

t2
log
(
1 + Ît1,δ(xi)

t2
t1

)
+ σ̂−

t1,t2,δ
(xi)

[
ai − π̂(xi)

π̂(xi)(1− π̂(xi))
Φ̂ai

t1,δ
(xi, yi)

]
,

(19)

ρ̂+t1,t2(δ) =
1

n

n∑
i=1

1− 1

t2
log
(
1 + Î−t1,δ(xi)

t2
t1

)
+ σ̂+

t1,t2,δ
(xi)

[
ai − π̂(xi)

π̂(xi)(1− π̂(xi))
Φ̂ai

−t1,δ
(xi, yi)

]
.

Correcting for approximation bias. Using above debiased estimators enables efficient and asymp-
totically normal inference, and thus construction of confidence intervals for the smoothed Makarov
bounds. However, it remains to translate these intervals to the non-smoothed Makarov bounds,
as the smoothing may introduce bias. Luckily, we can leverage Lemma 4.1 to upper bound this
approximation bias via the term b(t1, t2). We can then add this term to the one-sided confidence
intervals for the upper and lower Makarov bounds, yielding valid confidence intervals as follows.
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Corollary 4.3 (Asymptotic confidence interval for the treatment effect distribution). Assume the
nuisance estimators η̂ are obtained on an independent sample from D (e.g., via sample splitting or
cross-fitting). Under standard regularity and rate conditions for orthogonal/debiased estimation (e.g.,
Chernozhukov et al., 2018), it holds for each fixed δ that

lim
n→∞

P
(
c−t1,t2,δ,α(Dn) ≤ ρ(δ) ≤ c+t1,t2,δ,α(Dn)

)
≥ 1− α, (20)

where

c±t1,t2,δ,α(Dn) = ρ̂±t1,t2(δ) ± z1−α/2

√√√√ 1

n2

n∑
i=1

(
Ψ±

t1,t2,δ

(
zi, η̂, ρ̂

±
t1,t2(δ)

))2
± b(t1, t2), (21)

b(t1, t2) is from Lemma 4.1, Ψ±
t1,t2,δ

are given in Theorem 4.2, and z1−α
2

denotes the 1− α
2 standard

normal quantile.

Proof. See Appendix A.

4.3 SMOOTHING PARAMETER SELECTION

Bias-variance trade-off. Our smoothed debiased estimators from Eq. (19) depend on the smoothing
parameters t1 and t2 that quantify the approximation quality of the non-smooth bound components.
This implies a trade-off between the approximation-induced bias and the variance reduction under
margin violation. Formally, a standard MSE decomposition yields

En

[
(ρ̂−t1,t2(δ)− ρ−(δ))2

]
=
(
ρ−t1,t2(δ)− ρ−(δ)

)2︸ ︷︷ ︸
approximation (smoothing) bias2

+
1

n
E
[
Ψ−

t1,t2,δ

(
Z, η, ρ−t1,t2(δ)

)2]︸ ︷︷ ︸
asymptotic variance/n

+ o

(
1

n

)
︸ ︷︷ ︸
remainder

. (22)

As a consequence, choosing the smoothing parameters t1 and t2 correctly is crucial to obtain a low
MSE that optimizes the bias-variance trade-off. We propose two different methods for data-driven
smoothing-parameter selection: (i) minimizing an upper bound on the MSE, and (ii) using Lepski’s
method. Our full proposed procedure is shown in Algorithm 1.

Algorithm 1: Smoothed estimation of
Makarov bounds with sample splitting.

1: Input: Dataset D = {(xi, ai, yi)}ni=1

2: Stage 0: Split the data D randomly into two
disjoint datasets D1 and D2.

3: Stage 1a: Estimate nuisance functions
η̂ = (F̂1, F̂0, π̂) on D1; obtain predictions on D2.

4: Stage 1b: Obtain tuned smoothing parameters t̂±1
and t̂±2 on D1.

5: Stage 2: Compute debiased estimators ρ̂−
t̂−1 ,t̂−2

(δ)

and ρ̂+
t̂+1 ,t̂+2

(δ).

6: Output: gθ and αϕ.

Minimizing an upper bound on the MSE. Us-
ing Lemma 4.1, we can replace the smooth-
ing bias term in Eq. (22) with b(t1, t2) =
log(2)
t2

+ (log |Y|)+
t1

, which yields the data-
driven tuning rule argmint1,t2 b(t1, t2)

2 +
1
n

∑n
i=1 Ψ

−
t1,t2,δ

(
zi, η̂, ρ̂

−
t1,t2(δ)

)2
, which can

be minimized via grid search.

Lepski’s method. Lepski’s method (Lepskii,
1992; 1993) selects the smallest amount of
smoothing whose estimate is statistically indis-
tinguishable from estimates obtained with less
smoothing, thereby controlling approximation
bias without paying unnecessary variance. We

start by ranking all candidate pairs (t(k)1 , t
(k)
2 ) within the grid by the size of their associated bias term

Bk = b(t
(k)
1 , t

(k)
2 ) in descending order (more smoothing first). Scanning in this order, for each k com-

pare the corresponding estimates ρ̂−
t
(k)
1 ,t

(k)
2

(δ) to a small set of less–smoothed candidates r with Br <

Bk and accept the first k such that
∣∣ρ̂−

t
(k)
1 ,t

(k)
2

(δ)− ρ̂−
t
(r)
1 ,t

(r)
2

(δ)
∣∣ ≤ z1−α/2 ŜE(k, r) for all such r,

where the tolerance uses EIF differences ŜE(k, r) = 1/
√
n sdn

(
Ψ̂−

t
(k)
1 ,t

(k)
2 ,δ

(Zi, η̂, ρ̂
−
t
(k)
1 ,t

(k)
2

(δ)) −

Ψ̂−
t
(r)
1 ,t

(r)
2 ,δ

(Zi, η̂, ρ̂
−
t
(r)
1 ,t

(r)
2

(δ))
)

, and sdn(·) is the empirical standard deviation over i = 1, . . . , n.
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Small assumption violation Large assumption violation

Data Bound Side Plugin Envelope Ours Plugin Envelope Ours

Synthetic
Marginal lower 3.98± 0.11 2.00± 0.05 1.81± 0.04 5.59± 0.11 1.35± 0.08 0.82± 0.06

upper 4.53± 0.11 1.99± 0.06 1.92± 0.05 5.55± 0.11 1.40± 0.08 0.83± 0.06

Cov.-adjusted lower 5.02± 0.12 1.86± 0.05 1.81± 0.04 6.42± 0.13 1.28± 0.07 0.90± 0.06
upper 4.67± 0.11 1.93± 0.05 1.84± 0.04 6.29± 0.12 1.25± 0.07 0.86± 0.06

OHIE
Marginal lower 1.95± 0.06 1.21± 0.03 0.76± 0.02 2.22± 0.06 1.14± 0.03 0.77± 0.02

upper 2.40± 0.07 1.46± 0.04 1.09± 0.03 2.52± 0.07 1.31± 0.04 0.97± 0.03

Cov.-adjusted lower 4.88± 0.09 1.46± 0.03 1.44± 0.03 4.71± 0.09 1.09± 0.03 1.00± 0.02
upper 5.29± 0.09 1.50± 0.04 1.41± 0.03 4.31± 0.09 1.28± 0.03 1.08± 0.03

Table 2: Average mean-squared error of estimators of ρ(0) across settings. Error bars are 95% CIs
across 2500 replications. Our method consistently attains the lowest mean-squared error.

5 EXPERIMENTS

We now confirm the effectiveness of our proposed method empirically. As is standard in causal
inference (Shalit et al., 2017; Curth & van der Schaar, 2021), we evaluate our method on synthetic and
semi-synthetic data where we have access to ground-truth values of causal quantities. We also provide
experimental results using real-world A/B tests. Additional experimental results are in Appendix G.

Nuisance estimation. We estimate the treatment-specific conditional c.d.f.s Fa(· | x), a ∈ {0, 1}, via
likelihood-based gradient boosting with sample-splitting. For continuous outcomes we fit covariate-
dependent Gaussian mixtures; for discrete outcomes we use a multinomial classifier and obtain the
c.d.f. by cumulatively summing predicted class probabilities; and for nonnegative counts with excess
zeros we employ a zero-inflated Poisson with covariate-dependent rate and zero-inflation. Training
uses early stopping on held-out log-likelihood. Each learner outputs F̂a(y | x) on an arbitrary grid in
Y of size k = 300 that is used for numerical integration. Details are in Appendix D.

Baselines. We compare our method with the plug-in estimator from Eq.(4) and the envelope estimator
from Eq. (6). To ensure a fair comparison, we use the same nuisance estimators for F1(y|x) and
F0(y|x) from above. Additionally, we also report results for our method and the baselines targeting
the marginal Makarov bounds (corresponding to not using any covariates X). For the marginal
bounds, we use the standard empricial c.d.f. on a holdout dataset as a nuisance estimator. We use
Lepski’s method for selecting the smoothing parameters.

Evaluation. For synthetic data with available ground-truth we report the estimation error |ρ±(δ)−
ρ̂±(δ)| averaged over K = 2500 Monte Carlo runs for both the lower and the upper Makarov bound.
For real-world data without ground-truth we report the estimated bounds and confidence intervals.

5.1 (SEMI)-SYNTHETIC DATA

Fully synthetic data. We simulate data from a synthetic data-generating process (DGP) that violates
the margin assumption by having a constant treatment effect for some users. This leads to plateaus
like those in Fig.1 in the difference between the treatment and control c.d.f. (see Appendix E).

We consider two variations of this DGP: (i) a variation with a smaller plateau width corresponding
to only small assumption violation, and (ii) a variation with a larger plateau width corresponding
to larger assumption violation. A comparison of our method to existing methods for both of these
DGPs, for both the upper and lower bounds, with and without covariates, is given in Table. 2 (top)
and shows that our method achieves the best estimation performance across all bound types and
settings. Furthermore, the gap between our estimator and the baselines widens under stronger margin
violation, highlighting that our method efficiently handles these violations when the baselines do not.

Semi-synthetic data. For our semi-synthetic experiments, we use covariate data from the Oregon
health insurance experiment (OHIE) (Finkelstein et al., 2012). The OHIE was a randomized experi-
ment meant to assess the effect of health insurance on outcomes such as health or economic status
(see Appendix F for details). We use the following covariates: age, gender, language, the number
of emergency visits before the experiment, and the number of people the individual signed up with.
We then simulate treatment and outcomes such that the margin assumption is violated. Again, we
consider two different settings with different the severities of assumption violation. The results are
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Figure 2: Estimated Makarov bounds for three A/B tests from a consumer technology company.
Based on these bounds, we are confident that Experiment 1 does not negatively impact many users,
and thus is safe to launch, whereas Experiments 2 and 3 may negatively impact many users.

shown in Table. 2 (bottom). Again, our method achieves the best estimation performance across
all bound types and settings and the gap between the smoothing and envelope estimators widens
when the degree of assumption violation increases.

5.2 REAL-WORLD DATA

A/B tests from a consumer technology company. Finally, we apply our method to three real A/B
tests from a large consumer technology company. All three A/B tests have constant propensity score
π(x) = 0.5 and have on the order of tens of millions of observations. The first experiment is an
experiment that boosts certain content in a ranking context, and the outcome metric is a measure of
engagement. The second experiment demotes certain content in a (different) ranking context, and
the outcome metric is a (different) measure of engagement. The third experiment tests a treatment
meant to increase visitation, and the outcome metric is a visitation metric. Basic statistics for these
experiments are reported in Table 3. For each experiment, we estimate the Makarov bounds to obtain
a partial identification region for the c.d.f. of the treatment effect.

Table 3: Experiment statistics summary.
Sample size, n % ATE Upper bound on ρ(−1)(∗)

Exp. 1 ≈ 30m 16.25% 0.37
Exp. 2 ≈ 5m −1.76% 0.76
Exp. 3 ≈ 10m 0.45% 0.99

Sample sizes approximate millions (m). (∗) Setting δ = −1 implies negative treatment effect.

Results. The results are shown in Figure 2. For the first
experiment, we see that the partial identification region
is relatively narrow. We are confident that P(Yi(1) −
Yi(0) ≤ −1) = P(Yi(1)− Yi(0) < 0) is no more than
0.25, meaning that there are very few users for whom

the treatment is decreasing engagement. Since we are confident this treatment does not negatively
affect a significant fraction of users, and the ATE estimate in Table 3 is positive, this treatment would
be safe to launch. (On the other hand, the vertical jump in the identification region at 0 and the high
lower bound on P(Yi(1)−Yi(0) ≤ 0) suggest that—despite the positive ATE estimate—the treatment
is actually having no effect on most users, likely due to the dynamics of the ranking, meaning that we
may want to search for more effective treatments.)

For the second experiment, the partial identification region is wider—our upper bound on P(Yi(1)−
Yi(0) < 0) is now 0.74, suggesting that this treatment may in fact affect a majority of users negatively,
and we should conduct further analysis before launching it. Finally, for the third experiment, the
partial identification region is extremely wide: our upper bound on P(Yi(1)−Yi(0) < 0) is now 0.99,
suggesting that this treatment could potentially have a negative effect on nearly all users, and would
be inadvisable to launch. Note that this experiment has a positive average treatment effect, as seen in
Table 3, and so this recommendation to not launch contradicts the standard decision-making process.
Taken together, these three examples highlight how our methods can be used in real world settings to
characterize treatment effect distributions more completely than the average treatment effect, and
thus inform launch decisions. We also provide additional comparisons with baselines in Appendix G.

Discussion. In this paper, we proposed a new method for inferring Makarov bounds on the treatment
effect distribution without making a margin assumption. Limitations and future work. Our current
approach is limited to static binary treatments. Future work may consider extending our approach
to continuous or time-varying treatments and outcomes. Broader impact. Our method enables
practitioners to make inferences about treatment effect distribution without relying on untestable
assumptions, thus improving the reliability of established methods.
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Ethics statement. We adhere to the ICLR Code of Ethics and acknowledge this during submission.
Our work analyzes synthetic, semi-synthetic, and anonymized A/B-test data; no personal data are
released or re-identified. The methods aim to improve safety by quantifying the fraction poten-
tially harmed, but misuse is possible; we therefore emphasize risk-aware reporting and recommend
subgroup audits when sensitive attributes are used.

Reproducibility Statement. An anonymized repository (linked in the submission) provides code
to train/evaluate our estimators, select smoothing parameters, and compute one-sided confidence
intervals. The paper specifies assumptions and estimands (Problem Setup), the smoothing/bias bounds
and EIF-based estimators (Method), and evaluation protocols (Experiments), with full proofs and
additional details in the appendix. We release synthetic and semi-synthetic generators, document
preprocessing, model classes, hyperparameters, seeds, and scripts to recreate all synthetic and semi-
synthetic figures/tables. Proprietary A/B data cannot be shared, but we plan to release anonymized
data and code upon acceptence.
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A PROOFS.

A.1 PROOF OF LEMMA 4.1

Proof. Recall that the LSE operator is defined as

gt1(f) =
1

t1
log

(∫
exp(t1f(y)) dy

)
(23)

and that softplus function is defined as

ht2(u) =
1

t2
log
(
1 + et2u

)
. (24)

We can now write the smoothed Makarov bounds as

ρ−t1,t2(δ) = E
[
1

t2
log
(
1 + It1,δ(X)

t2
t1

)]
= E

[
ht2
(
gt1(F1(·|X)− F0(· − δ|X))

)]
(25)

and

ρ+t1,t2(δ) = 1− E
[
1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)]
= 1 + E

[
h−t2

(
g−t1(F1(·|X)− F0(· − δ|X))

)]
.

(26)

We now employ standard bounds on the softmax and LSE functions. For all u ∈ R, t2 > 0, it holds
that

ht2(u)−
log 2

t2
≤ (u)+ and (u)− ≤ h−t2(u) +

log 2

t2
. (27)

For bounded f : Y → R on compact Y and t1 > 0, it holds that

gt1(f)−
log |Y|
t1

≤ sup
y∈Y

f(y) and inf
y∈Y

f(y) ≤ g−t1(f) +
log |Y|
t1

. (28)

In the following, we prove the theorem for the lower Makarov bound but the argument for the upper
bound follows analogously. We apply the inequalities in (27) and (28) to Eq. (25) and obtain

ρ−t1,t2(δ)
(∗)
≤ E

[
ht2

(
sup
y∈Y

(F1(y|X)− F0(y − δ|X)) +
log |Y|
t1

)]
(29)

≤ E

[(
sup
y∈Y

(F1(y|X)− F0(y − δ|X)) +
log |Y|
t1

)
+

]
+

log 2

t2
(30)

(∗∗)
≤ ρ−(δ) +

log |Y|+
t1

+
log 2

t2
, (31)

where (∗) follows from monotonicity of ht2 and (∗∗) follows from (a+ b)+ ≤ a+ + b+.

A.2 PROOF OF THEOREM 4.2

Proof. We start by deriving the efficinet influence functions (EIFs) of the component t1,δ(x). By
employing the chain rule for influence functions (Kennedy et al., 2023), we obtain

EIF
{
It1,δ(x)

}
= t1

∫
Y
exp
(
t1 [F1(y | x)− F0(y − δ | x)]

)
EIF

{
F1(y | x)− F0(y − δ | x)

}
dy.

(32)
Hence, it holds that

EIF{It1,δ(x)
t2
t1 } =

t2
t1
It1,δ(x)

t2
t1

−1EIF{It1,δ(x)} (33)

= t2It1,δ(x)
t2
t1

∫
Y
wt1,δ(y|x)EIF

{
F1(y | x)− F0(y − δ | x)

}
dy, (34)
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and for the upper bound analogue

EIF{I−t1,δ(x)
t2
t1 } =

t2
t1
I−t1,δ(x)

t2
t1

−1EIF{I−t1,δ(x)} (35)

= −t2I−t1,δ(x)
t2
t1

∫
Y
w−t1,δ(y|x)EIF

{
F1(y | x)− F0(y − δ | x)

}
dy.

(36)

The efficient influence functions for the treatment and control c.d.f. are of standard form (Melnychuk
et al., 2024), i.e.,

EIF{Fa(y − δ|X)} =
1(A = a)δ(X = x)

P(X = x,A = a)
(1(Y ≤ y − δ)− Fa(y − δ|x)) . (37)

Plugging everything together, the EIF for the lower smoothed Makarov bound is

Ψ−
t1,t2,δ

(Z, η) (38)

=

∫
P(X = x)

t2
EIF log

(
1 + It1,δ(x)

t2
t1

)
dx (39)

+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ) (40)

=

∫
P(X = x)

t2

EIFIt1,δ(x)
t2
t1

1 + It1,δ(x)
t2
t1

dx+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ) (41)

=

∫
Pr(X = x)

It1,δ(x)
t2
t1

1 + It1,δ(x)
t2
t1︸ ︷︷ ︸

σ−
t1,t2,δ

(x)

[∫
Y
wt1,δ(y|x)EIF{F1 − F0} dy

]
dx (42)

+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ) (43)

=

∫
Pr(X = x) σ−

t1,t2,δ
(x)
[∫

Y
wt1,δ(y|x)

Aδ(X = x)

P(X = x,A = 1)
(1(Y ≤ y)− F1(y|x)) dy

]
dx

(44)

−
∫
Pr(X = x) σ−

t1,t2,δ
(x)
[∫

Y
wt1,δ(y|x)

(1−A)δ(X = x)

P(X = x,A = 0)
(1(Y ≤ y − δ)− F0(y − δ|x)) dy

]
dx

(45)

+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ) (46)

= σ−
t1,t2,δ

(X)
[∫

Y
wt1,δ(y|X)

A

π(X)
(1(Y ≤ y)− F1(y|X)) dy

]
(47)

− σ−
t1,t2,δ

(X)
[∫

Y
wt1(y|X)

(1−A)

1− π(X)
(1(Y ≤ y − δ)− F0(y − δ|X)) dy

]
(48)

+
1

t2
log
(
1 + It1,δ(X)

t2
t1

)
− ρ−t1,t2(δ) (49)

(50)
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Analogously, we obtain the EIF for the upper smoothed Makarov bound as

Ψ+
t1,t2,δ

(Z, η) (51)

=

∫
P(X = x)EIF

{
1− 1

t2
log
(
1 + I−t1,δ(x)

t2
t1

)}
dx (52)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ) (53)

=

∫
P(X = x)

−t2
EIF log

(
1 + I−t1,δ(x)

t2
t1

)
dx (54)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ) (55)

=

∫
P(X = x)

−t2
EIFI−t1,δ(x)

t2
t1

1 + I−t1,δ(x)
t2
t1

dx+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ) (56)

=

∫
Pr(X = x)

I−t1,δ(x)
t2
t1

1 + I−t1,δ(x)
t2
t1︸ ︷︷ ︸

σ+
t1,t2,δ

(x)

[∫
Y
w−t1,δ(y|x)EIF{F1 − F0} dy

]
dx (57)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ) (58)

=

∫
Pr(X = x) σ+

t1,t2,δ
(x)
[∫

Y
w−t1,δ(y|x)

Aδ(X = x)

P(X = x,A = 1)
(1(Y ≤ y)− F1(y|x)) dy

]
dx

(59)

−
∫
Pr(X = x) σ+

t1,t2,δ
(x)
[∫

Y
w−t1,δ(y|x)

(1−A)δ(X = x)

P(X = x,A = 0)
(1(Y ≤ y − δ)− F0(y − δ|x)) dy

]
dx

(60)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ) (61)

= σ+
t1,t2,δ

(X)
[∫

Y
w−t1,δ(y|X)

A

π(X)
(1(Y ≤ y)− F1(y|X)) dy

]
(62)

− σ+
t1,t2,δ

(X)
[∫

Y
w−t1(y|X)

(1−A)

1− π(X)
(1(Y ≤ y − δ)− F0(y − δ|X)) dy

]
(63)

+ 1− 1

t2
log
(
1 + I−t1,δ(X)

t2
t1

)
− ρ+t1,t2(δ). (64)

A.3 PROOF OF COROLLARY 4.3

Proof (sketch). Fix δ and abbreviate θ±(δ) = ρ±t1,t2(δ) and θ̂±(δ) = ρ̂±t1,t2(δ). By Theorem 4.2 and
standard semiparametric arguments (Neyman orthogonality with sample splitting / cross-fitting and
the stated rate conditions; cf. Chernozhukov et al., 2018), the debiased estimators admit the linear
expansion

θ̂±(δ)− θ±(δ) =
1

n

n∑
i=1

Ψ±
t1,t2,δ

(
Zi, η, θ

±(δ)
)

+ r±n , r±n = o¶(n
−1/2).

Let V ±(δ) = Var
(
Ψ±

t1,t2,δ
(Z, η, θ±(δ))

)
∈ (0,∞). A Lindeberg–Feller CLT yields

√
n
(
θ̂±(δ)− θ±(δ)

)
⇒ N

(
0, V ±(δ)

)
.

Define V̂ ±(δ) = 1
n

∑n
i=1

(
Ψ±

t1,t2,δ
(Zi, η̂, θ̂

±(δ)) − Ψ̄±
)2

with Ψ̄± =

1
n

∑n
i=1 Ψ

±
t1,t2,δ

(Zi, η̂, θ̂
±(δ)) and set ŝe±(δ) =

√
V̂ ±(δ)/n. By a law of large numbers
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under cross-fitting, V̂ ±(δ)
p−→ V ±(δ), hence by Slutsky

θ̂±(δ)− θ±(δ)

ŝe±(δ)
⇒ N (0, 1).

Consequently,

P
{
θ−(δ) ≥ θ̂−(δ)−z1−α/2ŝe

−(δ)
}
→ 1−α/2, P

{
θ+(δ) ≤ θ̂+(δ)+z1−α/2ŝe

+(δ)
}
→ 1−α/2.

By Lemma 4.1, for all fixed t1, t2 > 0,

θ−(δ)− b(t1, t2) ≤ ρ(δ) ≤ θ+(δ) + b(t1, t2).

Therefore, on the intersection of the two one-sided events above, it follows that

θ̂−(δ)− z1−α/2ŝe
−(δ)− b(t1, t2) ≤ ρ(δ) ≤ θ̂+(δ) + z1−α/2ŝe

+(δ) + b(t1, t2),

i.e., c−t1,t2,δ,α(Dn) ≤ ρ(δ) ≤ c+t1,t2,δ,α(Dn). A Bonferroni bound gives

lim
n→∞

Pr
{
c−t1,t2,δ,α(Dn) ≤ ρ(δ) ≤ c+t1,t2,δ,α(Dn)

}
≥ 1− α,

which proves the result.
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B EXTENDED RELATED WORK

Semiparametric efficient causal inference. Semiparametric efficiency theory (van der Vaart, 1998)
and efficient-influence function-based estimators have a long tradition in causal inference (Kennedy,
2022). Examples include the AIPTW estimator (Robins et al., 1994), Targeted maximum-likelihood
estimation (TMLE) (van der Laan & Rubin, 2006). These frameworks have been extended to various
causal quantities and are the de-facto standard for modern causal effect estimation in many settings
(van der Laan & Gruber, 2012; Chernozhukov et al., 2018; Foster & Syrgkanis, 2023; Kennedy,
2023).

Bounds for partially identified causal quantities In many situations, the causal parameter of interest
is only partially identified. That is, we need to obtain bounds on the parameter of interest which we
can then estimate with observational data Manski (1990). Several works have proposed methods
for partial identification of causal quantities, including treatment effects in instrumental variable
settings Balke & Pearl (1997); Kilbertus et al. (2020) and more general causal graphs Duarte et al.
(2023); Balazadeh et al. (2022); Chen et al. (2023); Padh et al. (2023), and treatment effect risk
Kallus (2023). A related stream of literature obtains bounds under so-called sensitivity models, which
impose assumptions on the degree of non-identifiability Tan (2006); Jesson et al. (2021); Dorn &
Guo (2022); Dorn et al. (2024); Yin et al. (2022); Frauen et al. (2023); Jin et al. (2023); Frauen et al.
(2024).
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C EXTENSION TO DISCRETE OUTCOMES.

Here we provide minimal changes needed to extend our methodology to discrete outcomes. Let
Yd = {y1 < · · · < yM} denote a finite ordered support. For a ∈ {0, 1}, write Fa(· | x) for the
right–continuous conditional CDF of Y | (A = a,X = x) on Yd. All other notation is as in the main
text.

Discrete log-sum-exp and softplus. The softplus ht2(u) = t−1
2 log

(
1 + et2u

)
is unchanged. We

replace the continuous log-sum-exp with its discrete analogue

g
(d)
t1 (f) =

1

t1
log
(∑
y∈Yd

exp{t1f(y)}
)
. (65)

Accordingly, define the discrete normalizer

I
(d)
t,δ (x) =

∑
y∈Yd

exp
(
t
[
F1(y | x)− F0(y − δ | x)

])
. (66)

Smoothed Makarov bounds (discrete). Replacing the operators in Sec. 4.1 by (65)–(66) yields
the discrete smoothed bounds

ρ
−,(d)
t1,t2 (δ) = E

[
1

t2
log
(
1 +

(
I
(d)
t1,δ

(X)
)t2/t1)]

, ρ
+,(d)
t1,t2 (δ) = 1−E

[
1

t2
log
(
1 +

(
I
(d)
−t1,δ

(X)
)t2/t1)]

.

(67)
The analogue of Lemma 4.1 holds with the discrete approximation bias

bd(t1, t2) =
log 2

t2
+

logM

t1
, (68)

i.e. ρ−,(d)
t1,t2 (δ)− bd(t1, t2) ≤ ρ−(δ) and ρ+(δ) ≤ ρ

+,(d)
t1,t2 (δ) + bd(t1, t2), with ρ±,(d)

t1,t2 (δ) → ρ±(δ) as
t1, t2 → ∞.

Efficient influence functions (discrete). The EIFs in Theorem 4.2 carry over after replacing all
integrals over y by sums over Yd. Define the discrete softmax weights

w
(d)
t1,δ

(y | x) =
exp
(
t1
[
F1(y | x)− F0(y − δ | x)

])
I
(d)
t1,δ

(x)
, y ∈ Yd, (69)

and the discrete analogue of Φa
t1,δ

,

Φ
a,(d)
t1,δ

(X,Y ) =
∑
y∈Yd

w
(d)
t1,δ

(y | X)
(
1{Y ≤ y − (1− a)δ} − Fa

(
y − (1− a)δ | X

))
. (70)

With σ±
t1,t2,δ

(x) defined exactly as in the main text but using I(d)±t1,δ
(x), the EIFs are

Ψ
−,(d)
t1,t2,δ

(
Z, η, ρ

−,(d)
t1,t2 (δ)

)
= σ−

t1,t2,δ
(X)

[
A

π(X)
Φ

1,(d)
t1,δ

(X,Y ) − 1−A

1− π(X)
Φ

0,(d)
t1,δ

(X,Y )

]
+

1

t2
log
(
1 +

(
I
(d)
t1,δ

(X)
)t2/t1) − ρ

−,(d)
t1,t2 (δ).

(71)

Ψ
+,(d)
t1,t2,δ

(
Z, η, ρ

+,(d)
t1,t2 (δ)

)
= σ+

t1,t2,δ
(X)

[
A

π(X)
Φ

1,(d)
−t1,δ

(X,Y ) − 1−A

1− π(X)
Φ

0,(d)
−t1,δ

(X,Y )

]
+ 1 − 1

t2
log
(
1 +

(
I
(d)
−t1,δ

(X)
)t2/t1) − ρ

+,(d)
t1,t2 (δ).

(72)
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Debiased estimators (discrete). The one-step estimators in Eq. (19) become

ρ̂
−,(d)
t1,t2 (δ) =

1

n

n∑
i=1

{
1

t2
log
(
1 +

(
Î
(d)
t1,δ

(xi)
)t2/t1)

+ σ̂−
t1,t2,δ

(xi)
ai − π̂(xi)

π̂(xi){1− π̂(xi)}
Φ̂

ai,(d)
t1,δ

(xi, yi)

}
.

(73)

ρ̂
+,(d)
t1,t2 (δ) =

1

n

n∑
i=1

{
1− 1

t2
log
(
1 +

(
Î
(d)
−t1,δ

(xi)
)t2/t1)

+ σ̂+
t1,t2,δ

(xi)
ai − π̂(xi)

π̂(xi){1− π̂(xi)}
Φ̂

ai,(d)
−t1,δ

(xi, yi)

}
.

(74)
Here Î(d)±t1,δ

, ŵ(d)
t1,δ

, and Φ̂
ai,(d)
±t1,δ

replace (66), (69), and (70) with estimated nuisances. Cross-fitting
and variance estimation via the sample variance of the estimated EIF proceed unchanged.
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D DETAILS ON NUISANCE ESTIMATION

We estimate the response c.d.f.s Fa(y | x), a ∈ {0, 1}, by fitting separate conditional distribution
models within each arm (A = a). All learners return the entire conditional c.d.f. evaluated on an
arbitrary grid y ∈ Y , which is required by the EIF in (4.2).

Training protocol (common to all learners). For each arm a we split the data into two folds
as outlined in Algorithm 1. On each fold, we train on the complement and predict F̂a(· | xi) for
held-out i. Models are trained by gradient boosting (LightGBM) with early stopping on a validation
set and a likelihood-based metric. Monotone transformations T of Y can be applied for numerical
stability; since T is monotone, FY (y | x) = FT (Y )(T (y) | x). In particular, we use standardization
and log-transformation where appropriate. Given a grid {yj}Jj=1, each learner returns the matrix(
F̂a(yj | xi)

)
i,j

. These values feed the smoothed operators in (9) and the weighted integrals

Φ̂a
t1,δ

(xi, yi) in (19).

Continuous outcomes: conditional Gaussian mixtures. For Y ∈ R we model T (Y ) | X = x
as a K-component Gaussian mixture with covariate-dependent weights πk(x), means µk(x) and
variances σ2

k(x). Boosting optimizes the (negative) log-likelihood with a custom objective

ℓGM(x, y) = − log

(
K∑

k=1

πk(x)φ
(
T (y);µk(x), σ

2
k(x)

))
,

where φ(y;µ, σ2) is the N (µ, σ2) density. The log-likelihood loss supplies per-parameter gradients
and diagonal Hessians. Derivatives are rescaled to balance curvature across logits/means/variances.
Initialization uses k-means on T (Y ) (cluster means/variances feed the intial score matrix. The
resulting c.d.f. is

F̂a(y | x) =
K∑

k=1

π̂k(x) Φ

(
T (y)− µ̂k(x)

σ̂k(x)

)
.

Discrete outcomes: multinomial classifier. For discrete Y taking finitely many values {c1 <
· · · < cM} we fit a multiclass boosted classifier returning p̂x(cm) = Pr(Y = cm | X = x). The
c.d.f. is the cumulative sum

F̂a(y | x) =
∑

m: cm≤y

p̂x(cm),

implemented by summing predicted class probabilities over classes ≤ y.

Counts with excess zeros: zero–inflated Poisson (ZIP). For nonnegative counts we fit a covariate-
dependent ZIP with rate λ(x) and zero–inflation ψ(x), learned via a custom objective for the ZIP
log-likelihood and stabilized derivatives. Initialization uses the empirical mean for λ and the observed
zero rate for ψ. The c.d.f. (right-continuous) is

F̂a(y | x) =

{
0, y < 0,

ψ(x) + (1− ψ(x)) PoisCDF(⌊y⌋;λ(x)), y ≥ 0.
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E DETAILS REGARDING SYNTHETIC DATA

Data generating process.

We sample uniform covariates X ∼ Unif[0, 1] and define ρ(x) = 1
2x

2 + 1
2 . We then define the

c.d.f. for the treatment arm as

Y (1) | X = x ∼ Unif
(
[0, ρ(x)]

)
, F1|x(y) =


0, y < 0,
y

ρ(x)
, 0 ≤ y ≤ ρ(x),

1, y > ρ(x).

For the control arm, we define for a parameter γ

L1(x) = −γ
4 x, L2(x) =

1
2ρ(x) +

γ
4 x.

Then, we define the control arm c.d.f. as

F0|x(y) =



0, y < L1,

y − L1

ρ
, L1 ≤ y ≤ L1 +

1
2ρ,

1
2 , L1 +

1
2ρ < y < L2,

1
2 +

y − L2

ρ
, L2 ≤ y ≤ L2 +

1
2ρ,

1, y > L2 +
1
2ρ,

where, for brevity, Lj = Lj(x) and ρ = ρ(x). The gap between the two control components is

G(x) = L2 −
(
L1 +

1
2ρ
)

=
γ

2
x.

To model a joint distribution leveraging the marginals above, we draw (U1, U0) from a Gumbel
copula Cθ with θ = 5 (dimension 2), and set

Y (1) | X = F−1
1|X(U1), Y (0) | X = F−1

0|X(U0).

Finally, the observed outcome is Y = AY (1) + (1−A)Y (0).

Quantifying margin violation. The difference Dx(y) = F1|x(y)−F0|x(y) admits two plateaus that
attain supremum and infimum and thus violating the margin assumption. The left, negative one is
given for 0 ≤ y ≤ 1

2ρ−
γ
4x as

Dx(y) =
y

ρ
− y − L1

ρ
=

L1

ρ
= −γx

4 ρ
.

Its width is
WL(x) =

ρ

2
− γ

4
x.

The right, positive plateau is given for 1
2ρ+

γ
4x ≤ y ≤ ρ as

Dx(y) =
y

ρ
−
(

1
2 +

y − L2

ρ

)
=

L2 − 1
2ρ

ρ
= +

γx

4 ρ
.

Its width is given by
WR(x) =

ρ

2
− γ

4
x.

Averaging over X yields E[ρ(X)] = 2
3 , E[X] = 1

2 , and

E
[
X

ρ(X)

]
=

∫ 1

0

2x

x2 + 1
dx = ln 2.
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Hence, obtain average plateau widths

E
[
WL(X)

]
= E

[
WR(X)

]
=

1

3
− γ

8
, E

[
G(X)

]
=
γ

4
,

and normalized

E
[
WL(X)

ρ(X)

]
= E

[
WR(X)

ρ(X)

]
=

1

2
− γ

4
ln 2, E

[
G(X)

ρ(X)

]
=
γ

2
ln 2.

Thus, when descreasing γ, we maximize the average platenau width and correspondingly the degree
of margin violation.
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F DETAILS REGARDING SEMI-SYNTHETIC DATA

Real-world covariate data. The so-called Oregon health insurance experiment2 (OHIE) (Finkelstein
et al., 2012) is a randomized experiment that was intentionally conducted as a large-scale effort in
public health to assess the effect of health insurance on several outcomes such as health or economic
status. In 2008, a lottery draw offered low-income, uninsured adults in Oregon participation in a
Medicaid program, providing health insurance. Individuals whose names were drawn could decide to
sign up for the program.

In our analysis, we extract the following covariates X: age, gender, language, the number of
emergency visits before the experiment, and the number of people the individual signed up with.
The data collection in the OHIE was done as follows: after excluding individuals below the age
of 19, above the age of 64, and individuals with residence outside of Oregon, 74,922 individuals
were considered for the lottery. Among those, 29,834 were selected randomly and were offered
participation in the program. Out of these, we randomly select n = 3000 data points.

Synthetic treatment and outcome generation. We define the empirical mean covariate

m(x) =
1

p

p∑
j=1

xj .

and introduce two covariate-dependent shape functions:

ρ(x) = 1
2 m(x)2 + ρ0, g(x) = m(x)3,

where ρ0 > 0 is a constant hyperparameter (in our experiments ρ0 = 0.5). The treatment is
randomized with constant propensity:

π(x) ≡ P(A = 1 | X = x) = 1
2 , Ai ∼ Bernoulli

(
1
2

)
independently of Xi.

We define the treatment c.d.f. as

Y (1) | X = x ∼ Unif
(
[ 0, ρ(x) ]

)
, F1|x(y) =


0, y < 0,
y

ρ(x)
, 0 ≤ y ≤ ρ(x),

1, y > ρ(x).

For the control arm c.d.f., we define

L1(x) = − 1
4 g(x), L2(x) =

1
2ρ(x) +

1
4 g(x),

and

F0|x(y) =



0, y < L1,

y − L1

ρ
, L1 ≤ y ≤ L1 +

1
2ρ,

1
2 , L1 +

1
2ρ < y < L2,

1
2 +

y − L2

ρ
, L2 ≤ y ≤ L2 +

1
2ρ,

1, y > L2 +
1
2ρ,

where, for brevity, Lj = Lj(x) and ρ = ρ(x).

To couple Y (1) and Y (0) while preserving the marginals above, we draw (U1, U0) from a Gumbel
copula Cθ with θ = 5 (dimension 2), and set

Y (1) = F−1
1|X(U1), Y (0) = F−1

0|X(U0).

Finally, the observed outcome is Y = AY (1) + (1−A)Y (0).

2Data available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-
experiment
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Quantifying margin violations. The c.d.f. difference Dx(y) = F1|x(y)− F0|x(y) again admits two
plateaus attaining the supremum and infemum, thus violating the margin assumption for both lower
and upper bound.

For 0 ≤ y ≤ 1
2ρ−

1
4g, the left plateau is

Dx(y) =
y

ρ
− y − L1

ρ
=

L1

ρ
= − g

4 ρ
,

with an associated width of WL(x) =
ρ

2
− g

4
.

For 1
2ρ+

1
4g ≤ y ≤ ρ, the right plateau is

Dx(y) =
y

ρ
−
(

1
2 +

y − L2

ρ

)
=

L2 − 1
2ρ

ρ
= +

g

4 ρ
.

with a width of WR(x) =
ρ

2
− g

4
. The average widths are given via

E
[
WL(X)

]
= E

[
WR(X)

]
= E

[(
1
2ρ0 +

1
4

(
m(X)2 −m(X)3

))
+

]
.

Hence, the widths of the plateaus and thus also the degrees of margin violations increasing in ρ0.
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G ADDITIONAL EXPERIMENTS

G.1 (SEMI)-SYNTHETIC DATA

Here, we report full results for the synthetic and semi-synthetic datasets from Appendix E and
Appendix F for a range of parameters γ (synthetic) and ρ (semi-synthetic) to complement the results
from Table 2. Recall that increasing γ decreases margin violation, while higher ρ increase margin
violation. The results for all methods are bound types are reported in Fig.3. For both datasets, larger
margin violation leads to a larger gap between our method and the baselines. Importantly, our
method consistently outperforms the baselines.
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Figure 3: Results for synthetic and semi-synthetic data over a range of parameters quantifying margin
violation.

G.2 TWINS DATASET

Here, we use the binary outcome TWINS dataset from Louizos et al. (2017). The covariates X are
measurements and demographic attributes of various twin pairs below 2000 grams. The treatment A
is being born as the heavier twin, and the outcome Y denotes infant mortality within the first year
of life. As both counterfactual outcomes are observed, we can estimate the ground-truth treatment
effect c.d.f. , which we plot along the estimated Makarov bounds in Fig.4. We see that the estimated
bounds are tight and cover the ground-truth treatment effect c.d.f. , thus confirming the validity of our
estimator.
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Figure 4: Estimated bounds and treatment effect c.d.f. for the TWINS dataset.

G.3 ADDITIONAL RESULTS FOR CONSUMER COMPANY A/B TESTS

In Figure 5, we compare both the results of our smoothed estimator with the results of the envelope
baseline. The upper Makarov bound estimates mostly coincide, however, our estimator is more
conservative and estimates a smaller lower bound than the baseline. As our estimator is obtained by
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minimizing MSE over various smoothing parameters (including the special case of large smoothing
parameters coinciding with the envelope), this indicates that the ground-truth Makarov bound is
smaller than the envelope estimate. In particular, this may indicate envelope estimator is too confident
and may undercover the ground-truth treatment effect c.d.f. , leading to potentially wrong conclusions.
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Figure 5: Estimated bounds and confidence intervals for Experiment 1.
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