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ABSTRACT

In many fields, including healthcare, marketing, and online platform design, A/B
tests are used to evaluate new treatments and make launch decisions based on aver-
age treatment effect (ATE) estimates. But this workflow can overlook distributional
risks, such as a large fraction of individuals affected negatively by the treatment.
Prior work in this setting has estimated partial identification bounds—known as
Makarov bounds—on the cumulative distribution function of the treatment effect
by making restrictive assumptions on the outcome distribution. In this paper,
we propose a novel method for estimation and inference on Makarov bound that
guarantees accurate estimation and valid asymptotic inference of the Makarov
bounds for any outcome distribution under weaker assumptions. Our main tech-
nical contributions are to develop smoothed surrogates for the Makarov bounds,
derive semiparametrically efficient estimators of these surrogates, and propose a
procedure for optimal selection of the smoothing parameters. We show empirically
on synthetic and semi-synthetic datasets that, by not relying on the assumptions
made by other methods, our estimators achieve a better bias-variance trade-off and
lower mean-squared error. Finally, we deploy our method on real A/B test data
from a large social media platform, and show how estimates of the treatment effect
distribution can inform decision-making.

1 INTRODUCTION

Randomized controlled trials (RCTs) and A/B tests are crucial for evaluating the impact of treatments
or product changes on a target outcome. Examples include medical treatments aimed at improving
patient health (Feuerriegel et al., [2024)), advertising placement to increase revenue (Varian, [2016),
and interventions on digital platforms to boost user engagement (Swaminathan & Joachims, 2015)).
By randomly assigning units to treatment and control, A/B tests enable unbiased comparisons of
outcomes between groups. A common decision rule is to estimate the average treatment effect (ATE)
and adopt the new treatment when the ATE is statistically significantly positive (Athey et al., 2020).

In many settings, the ATE is not sufficient for decision-making and practitioners in fact need estimates
of distributional quantities beyond the average (Kallus & Zhoul 2021). In sensitive applications it is
vital to understand the fraction of individuals that are affected negatively by the treatment, even when
the average treatment effect is positive. For example, a minor tweak to a platform’s ranking algorithm
may lift overall engagement yet reduce engagement for new or low-activity users, increasing early
churn. Such business-critical decisions motivate estimating the entire distribution of the treatment
effect, rather than merely the mean.

Estimating the treatment effect distribution is challenging. Even in RCTs, where randomization rules
out unobserved confounding, the joint distribution of potential outcomes is not identified (Fan &
Park, |2010). Consequently, the treatment-effect distribution is only partially identified: its cumulative
distribution function (c.d.f. ) is bounded by the sharp Makarov bounds (Makarov, [1982). These
bounds are obtained by optimizing over all possible joint distributions of treatment and control that
are consistent with the the observed marginal distributions of treatment and control. Hence the
Makarov bounds are complex functionals of the data-generating distribution that involve suprema
and infima over the outcome space. The non-smoothness of these suprema and infima complicates
estimation of the bounds and especially complicates the application of standard tools from efficiency
theory, such as debiased estimation (Kennedy, |[2022).
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Existing methods for efficient statistical inference on Makarov bounds either address stylized settings,
such as a binary outcome (Kallus et al., 2022 [Zhang & Richardsonl 2025)), or rely on a margin
assumption (Semenova, 2025). The margin assumption requires the suprema and infima in the
Makarov bounds to be attained at unique points, and is often violated in practice. For example, if the
treatment effect is constant or nearly constant for a subset of users, the margin assumption will fail or
nearly fail to hold. This naturally occurs when outcomes are discrete or exhibit zero inflation, which
is a common occurrence in applied work. In this case, existing estimators are biased or high-variance,
leading to inaccurate estimates and sub-optimal decisions.

In this paper, we propose a novel, assumption-lean, method for inference on Makarov bounds for
the treatment-effect distribution. Our key idea is to replace the non-smooth suprema and infima that
define the bounds with smooth surrogates, allowing us to apply semiparametric efficiency theory to
obtain debiased estimators. We then derive an upper bound on the bias introduced by smoothing
and incorporate it into both the selection of the smoothing parameters and the construction of our
confidence intervals. Our method offers three key advantages: (i) it provides lower mean-squared
error (MSE) estimates of Makarov bounds under violation of the margin assumption; (ii) it is model-
agnostic and can be combined with arbitrary black-box learners to exploit covariates and tighten the
bounds; and (iii) it admits data-driven procedures for selecting the smoothing level optimally.

Our contributions ar (i) We propose debiased estimators of smoothed versions of the Makarov
bounds and quantify the induced smoothing bias; (ii) We propose a new data-driven procedure to
tune the smoothing parameters of our method; and (iii) We validate the effectiveness of our method
using synthetic, semi-synthetic, and real-world data.

2 RELATED WORK

Quantile treatment effects. One stream of literature focuses on estimating quantile treatment effects
(QTEs) (Abadie & Angrist, {1998 |Chernozhukov & Hansenl 2005} [Firpo, [2007). These are contrasts
of quantiles of the potential outcomes distributions, defined via

QTE(r) = F;(ll)(T) — F;(IO) (1),

which compares the 7-quantile of Y'(1) to the 7-quantile of Y'(0). Note that QTEs do not quantify
quantiles of the treatment effect distribution: QTEs describe how treatment shifts the marginal distri-
butions of potential outcomes across individuals (for example, how the 7-quantile under treatment
differs from the 7-quantile under control), while the latter would characterize the distribution of
individual-level causal effects Y (1) — Y (0) in the population. In contrast to QTEs, the treatment
effect distribution is generally not identifiable from observed data without additional assumptions,
and is the focus of our paper.

Distributions of treatment effects. There are two main streams of work on statistical inference
for treatment-effect distributions. The first stream aims at constructing prediction intervals for the
individual treatment effect (ITE), typically based on conformal prediction (Lei & Candes) 2021; |Alaa
et al.| 2023} |Schroder et al., |2024). These methods provide valid predictive intervals for individual-
level effects, but do not allow for inference on the full treatment-effect distribution (e.g., estimating
its c.d.f. or density).

The second stream focuses on inference on the c.d.f. of the treatment-effect distribution. However, this
distribution is not identifiable under standard assumptions (Rubin, |1974; |Robins}|1986; Fan & Park,
2010), even with experimental data. Two approaches to overcome this obstacle have emerged. The
first is to impose additional assumptions on the data-generating process to achieve point identification,
as in |Post & Van Den Heuvel| (2025). Such assumptions, however, are unrealistic and untestable.
The second is to take a partial identification approach and estimate upper and lower bounds on the
cumulative distribution function. For example, sharp bounds and corresponding estimators have been
proposed for binary outcomes (Kallus et al.l 2022} Zhang & Richardson, [2025).

For general outcomes, sharp bounds are given by the Makarov bounds (Makarovl, [1982)). Estimation
and inference methods for these bounds are mostly based on plug-in approaches (Fan & Parkl 2010;
Ruiz & Padilla), 2022} |[Fava, 2024} |Leel |2024; (Cui & Han, [2023}; |[Liang & Wul, 2025)), which do
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not leverage semiparametric efficiency theory (Kennedy, 2022). The resulting estimators are not
guaranteed to be asymptotically normal and confidence intervals are often constructed via invalid
bootstrap procedures. Beyond Makarov bounds, |Firpo & Ridder| (2019) introduced uniformly sharp
bounds for the treatment-effect distribution, but these are computationally challenging as no closed-
form expressions are available. Similarly, Ji et al.|(2023)) proposed a dual-optimization framework for
partial identification, but this framework can yield overly conservative bounds when strong duality
fails (see their Sec. 6.2).

Efficient es-
timation of
non-smooth

causal esti- | Other causal estimands | Makarov bounds

mands. A key Margin Policy value (Luedtke & Van Der Laan![2016); | (Melnychuk et al.|[2024)
technical dif-  assumption | Intersection bounds (Semenova)2025); (Semenoval[2025)

ﬁCL}lty . in the Smoothin Optimal policy value (Park/[2024);
estimation of the € | IV bounds (Levis et al.]2025). Ours.
Makarov bounds

is that the bounds involve suprema and infima over the outcome space. These suprema and infima are
non-differentiable, precluding the use of standard theory.

Table 1: Approaches for debiased estimation of Makarov-bounds and other
non-smooth causal estimands.

One literature stream attempts to remedy this by making a so-called margin assumption (Kitagawa
& Tetenov, 2018), which essentially requires that the suprema and infima are attained at a single
point only. This assumption has been used in the estimation of various other statistical estimands
with similar non-differentiability issues: the optimal policy value (Luedtke & Van Der Laan| |2016)),
covariate-conditional Makarov bounds (Melnychuk et al., 2024), and more general intersection
bounds (Semenoval, 2025)) which include Makarov bounds as a special case. However, the margin
assumption is violated even in simple settings, like that of a constant treatment effect, making these
methods unreliable in practice.

A second stream of work handles non-differentiability by approximating non-differentiable functions
(e.g., the supremum) with smooth functions. This approach has been developed for inference on
the optimal policy value |Park| (2024) and on bounds on average treatment effects in instrumental
variable settings [Levis et al.| (2025). To the best of our knowledge no prior work has proposed a
similar method for estimation and inference of Makarov bounds, which is the scope of our paper.

3 PROBLEM SETUP

3.1 SETTING

Data: We consider a causal inference setting using either randomized or observational data. That
is, we consider a population Z = (X, A,Y) ~ P, where X € X C R4 are covariates, A € {0,1}
is a binary action, and Y € R is a continuous outcome of interest that is observed after taking
the action A. For example, X may be user demographics, A may be a binary decision of whether
a policy is implemented, and Y may be a user engagement metric. We provide extensions of all
our results to discrete outcomes in Appendix [C] We also assume that we have access to a dataset
D = {(x4,a,y;) Y of size n € N sampled i.i.d. from PP.

Notation. We define the propensity score as m(x) = P(A = 1 | X = x). The propensity score
characterizes the treatment assignment mechanism and is often known in randomized experiments,
e.g., m(x) = 0.5. Furthermore, we define the response distributions as the conditional outcome c.d.f.s
Fo(ylz) =PY <y|X =z,A=a)fora €0,1. Weletn = {m, F1, Fy} be the collection of these
nuisance functions. For any v € R, we write vy = max(v,0) and v_ = min(v, 0).

Target estimand. We use the potential outcomes framework of [Rubin|(1974) and denote Y (a) as the
potential outcome corresponding to the treatment A = a. The parameter of interest is the cumulative
distribution function of the treatment effect evaluated at a single point,

p(8) = B(Y (1) - Y(0) < 9). ()

The c.d.f. p(d) characterizes the entire treatment effect distribution. For example, p(0) is the fraction
of users negatively affected by the treatment (Kallus et al., 2022).
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Partial identification bounds. We impose the following standard causal inference assumptions
(Rubinl [1974).

Assumption 3.1 (Standard causal inference assumptions). For all a € {0,1} and € X’ we have:
(i) consistency, Y (a) = Y whenever A = q; (ii) overlap, 0 < 7(z) < 1 whenever P(X = z) > 0;
and (iii) ignorability, A L. Y(1),Y(0) | X = «.

Conditions (ii) and (iii) are automatically satisfied in randomized experiments where the propensity
score 7 is known and can be controlled (and is often the constant function 7(z) = 0.5). Condition (i)
prohibits interference between individuals and excludes the possibility of spillover effects. Together,
these assumptions allow us to partially identify the treatment effect distribution p(9) via the Makarov

bounds (Makarovl, |1982))
p~(8) < p(8) < p™(9), )

where

p~(6) =E |sup (F1(y|X) — Fo(y — 0|X)), | and p*(9) = 1+E yigg(Fl(le)—Fo(y—tSIX))_

yey

3
The Makarov bounds p~ (&) and p™(d) only depend on the marginal response distributions £ and Fy
and are thus identified from the observation distribution P. Intuitively, the Makarov bounds quantify
the stochastically smallest and largest distributions that can be obtained by maximizing or minimizing
over joint distributions of the potential outcomes that are compatible with the observed marginals
F1 and Fjy. (They are also generalizations of the bounds from (Kallus}, 2022} for the fraction of
negatively affected users in the case of binary outcomes.)

3.2 BACKGROUND ON ESTIMATING MAKAROV BOUNDS

Plug-in estimation. The simplest estimator of the Makarov bounds is the so-called plug-in estimator
(Fan & Parkl[2010): one first obtains nuisance estimators 7 = (Fl, FO, 7) of the response distributions
F, and propensity score 7 (in the observational setting). Then, one substitutes the estimated nuisance
functions into the expression for the bound from Eq. (3) to obtain

ppi(6) = %ZSUP (E(yl%) —Fo(y—5|:1ci))+. )

=1 YEY

However, it turns out that the plugin estimator pp;(d) has two drawbacks (Kennedy, [2022): (i) plug-in
bias, which makes it asymptotically suboptimal, and (ii) difficulty establishing asymptotic normality
under reasonable conditions on the nuisance estimators, which prevents reliable confidence interval
construction.

Semiparametric efficient estimators. To address these limitations, a major line of work in causal
inference leverages semiparametric efficiency theory to construct debiased estimators. Debiased
estimators are of the form

n

1
Parerw(0) = Ppr(0) + ~ > Wy (2007 i (0)) )

i=1

where U5 . (Z,n, p~(0)) is the so-called efficient influence function (EIF) of the target estimand.
Adding the EIF term debiases the plug-in estimator, yielding an estimator that is asymptotically
efficient and normally distributed, i.e., yielding the lowest possible asymptotic variance given
by E[W5 . (Z,n,p~ ((5))2] Hence, debiasing using the EIF enables valid and efficient statistical
inference.

Envelope estimators for Makarov bounds. For the lower Makarov bound, the efficient influence
function is given by (Melnychuk et al.| 2024} Semenova, |2025)):

U5y (20,07 (9)) = din(y'1X) = p7(8) + 1dsn (y"| X) > 0) (w&)

ey A0 ST =0 = Ryl = 01x)) ), a

1Y <y") - F(y'|1X)) ©)
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where ds ,,(y| X) = Fi(y|X) — Fo(y — 6|X) and y* € argmaxyecy ds,(y| X).

For each observation z;, y* can be computed (e.g., via grid search) and plugged into the debiased
estimator from Eq. (5). This approach is known as an envelope estimator (Semenova, [2025).

Margin assumption. Debiased estimators rely on several 10 _

assumptions, including pathwise differentiability (van der ] i 1?’ ; [ 3;:22 1)+ 51

Laan & Rubin, [2006). For Makarov bounds, this essen- g 0.8 Fjé): Foly) '

tially translates to requiring the supremum and infimum £ ¢

y* to yield unique solutions, which is known as the margin

assumption (Kitagawa & Tetenov} 2018). However, this -4

assumption is violated even for the simple case of con- &, / ______ N

stant treatment effects for a subset of users. Indeed, if the \\
00 —— :

treatment effect is constant for users with some values of
X, then the treatment c.d.f. Fy(y | X) for these users is 0.00 025 050 075 1.00 125
a constant vertical shift of the control c.d.f. Fo(y | X), . oo

and the supremum/ infimum y* can be attained at many Figure 1: Example for violating the
values of y (see Fig. [T] for an illustration). Importantly, Margin assumption. Depicted are two
such (near-) constant effects are not just a feature of styl- Shifted (uniform) c.d.f.s that violate the
ized toy examples. They naturally occur when outcomes ~Margin assumption, leading to a plateau
are discrete or exhibit zero inflation, which is a common Where the argmax in not unique.
occurrence in applied work. For instance, in A/B tests with binary or highly skewed outcomes such as
clicks, conversions, or purchases (many units with exactly zero events). Thus, the margin assumption
fails and the envelope estimator is no longer efficient. This inefficiency can manifest a sub-optimal
mean-squared-error, because the margin assumption can inflate the variance of the estimator which
can lead to suboptimal bias-variance trade-off as we will show later.

We emphasize that the failure of the margin assumption is not restricted to pathological edge cases.
Constant treatment effects are a basic model of causal inference, and since effect sizes are often
extremely small in digital experiments, we are often very nearly in the setting of a constant zero
treatment effect. We cannot confidently use estimators that rely on a margin assumption when
analyzing real-world data, necessitating the development of new methods.

4 ESTIMATING MAKAROV BOUNDS IN THE PRESENCE OF MARGIN
VIOLATIONS

In this section, we present our methodology for valid inference on Makarov bounds when the margin
assumption is violated. Our strategy proceeds in three steps. First, in Sec4.1} we introduce a smooth
surrogate approximation of the Makarov bounds that is amenable to debiased estimation. Next, in
Secld.2] we derive debiased estimators for these smoothed bounds and construct confidence intervals
that achieve valid coverage. Finally, in Sec.[d.3] we propose a data-driven procedure to select the
smoothing parameters in a principled way.

4.1 A SMOOTH APPROXIMATION FOR THE MAKAROV BOUNDS

Two key components of the Makarov bounds in Eq. (3]) prevent debiased inference in the presence
of margin violations: (i) the supremum and infumum operators, sup, cy and inf,cy, and (ii) the
positivity and negativity operators, (-); = max(-,0) and (-)- = min(-,0). Both components
are non-smooth in the presence of margin violations. Intuitively, when the optimizer has multiple
solutions, even small estimation errors in the nuisance functions can lead to large and unstable
variation in the estimator, as well as bias in the wrong direction. This instability is what invalidates
asymptotic efficiency and reliable confidence intervals.

Bound approximations. Our key idea is to replace these problematic components with smooth
approximations that return unique values, even when the original functions are flat or multi-valued.
This smoothing restores pathwise differentiability, enabling debiased estimation and valid inference
without requiring the margin assumption. For the suprema and infima, we adapt the approximation
from (Levis et al., [2025) for discrete maxima to continuous variables and define the continuous
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log-sum-exp operator (LSE) g, : F — R via

() = - log ( [ et dy) ®)

For (ii), we replace v and v_ with the softplus function h:,: R — R via hs, (u) = i log(1+ e'2").
The following lemma shows that replacing the components in (i) and (ii) with g;, and h;, gives good

approximations of the Makarov bounds.

Lemma 4.1 (Makarov bound approximations). Assume that ) is compact with finite Lebesque
measure |)|. For any t1,ts > 0, we define the smoothed Makarov bounds via

t

_ 1 ta 1 ta
pins(0) = | 10 (14 1500 ) | andpf,(6) =12 | Low (14 L s00)#) .
t2 t2

©)
where
Ls(o) = [ exp(tlFi(yla) = Foly — 8lo)]) dy, (10)
Then, it holds that g
Pi 1 (8) = blt1, t2) < p~ () and p*(8) < pyf 4, (6) + b(t1,t2), (11)

where b(t1,1t2) = 10%2(2) + % quantifies the approximation bias. Furthermore, p;, ; (0) —

p~(0) and p;\ 1, (8) — pT(6) as t1,t; — o

Proof. See Appendix [A] O

Intuitively, this smoothing replaces the “hard max” operation of the supremum with a “soft max.”
Instead of arbitrarily selecting one of multiple equally optimal points, the approximation takes a
smooth weighted average that changes gradually as the nuisance estimates shift. This makes the

estimator more stable and allows for establishing asymptotic normality of debiased estimators.

4.2 DEBIASED ESTIMATORS

We now derive the debiased estimators for the smoothed bounds in Lemma[.1] The following result
establishes the efficient influence functions (EIF) of the lower and upper approximation.

Theorem 4.2. The efficient influence functions of the smoothed Makarov bounds py, ,,(6) and
Py, 1, (8) are given by

_ _ _ [ A 1-A
lIltl,t2,5 (Z,’I], Pty ,t2 (6)) = Utl,tzﬁ(X) W(X) ‘I)tlhé(X, Y) B 1-— W(X) q>gl76(X’ Y):| (12
1 ] wy
4 tog (14 Lo (07 ) = i, 0), (13)
+ + + A o 1-4 40
U s (Zm,pthtz(é)) =07 1, 5(X) X O, 5(XY) — = 7(X) o7, (X Y)| (14)

1 ta
1~ log (1+ Lty 5(X) ) = pf; 1, (0), (15)
2
where we denote

@ (XY = /y wn sy | X) (1Y <y~ (1—a)s} - Faly — (1—a)s | X)) dy,  (16)

exp(t1 (F1(ylz) — Fo(y — d]x)))
Ii, s(x) ’
Iftl,g(iv) ta/t1
1+ I—t1,6(x) 2/t

(a7

wtl,(s(y|x) =

It1,5(x) f2/ta
1+ Ith(;(z) t2/t1’

O 16() = and a;,w(x) = (18)
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Proof. See Appendix [A] O

The smoothed EIFs from Theorem [.2] are of similar structure as the envelope EIF from Eq. (6).
Cruicially however, the terms involving the argmax/argmin y* are replaced by smooth weighted
integrals @7 5(X,Y’), and the indicator 1(ds,(y*|X) > 0) is replaced with one of the smooth

approximations o, +(X).

Using Theorem [4.2] we can now obtain debiased estimators for the smoothed Makarov bounds.
Following Eq. (B), these are given by

iy, (0) = = Z 5 log (1 + I, s(x)™ ) + 6, 1.5(T0) {fr(;;(—l% @?15(95“%)} ,
(19)
i, 4, (0) = %f:l — —log (1 + 1y, s(x)™ ) +6; 12.6(1) {M @(ﬁtl,é(xi,yi)} )

Correcting for approximation bias. Using above debiased estimators enables efficient and asymp-
totically normal inference, and thus construction of confidence intervals for the smoothed Makarov
bounds. However, it remains to translate these intervals to the non-smoothed Makarov bounds,
as the smoothing may introduce bias. Luckily, we can leverage Lemma [4.1] to upper bound this
approximation bias via the term b(¢1,t2). We can then add this term to the one-sided confidence
intervals for the upper and lower Makarov bounds, yielding valid confidence intervals as follows.

Corollary 4.3 (Asymptotic confidence interval for the treatment effect distribution). Assume the
nuisance estimators 1 are obtained on an independent sample from D (e.g., via sample splitting or
cross-fitting). Under standard regularity and rate conditions for orthogonal/debiased estimation (e.g.,
Chernozhukov et al.| 2018, it holds for each fixed § that

lim P(c; 1y 50(Pn) < 0(6) < 1y 50(Pa)) = 10, 20)

n—oo

where

1 « 2
c?:l,tz,é,a<D )= Ptihtz(‘s) * z21-a/2 72( t1,ta,8 Zzﬂ? i, tz(é))) + b(t1,t2), (2D

b(ty,t2) is from Lemma \I/tihtzﬁ are given in Theorem and z1—g denotes the 1 — 5 standard
normal quantile.

Proof. See Appendix [A] O

4.3 SMOOTHING PARAMETER SELECTION

Bias-variance trade-off. Our smoothed debiased estimators from Eq. (T9) depend on the smoothing
parameters t; and ¢5 that quantify the approximation quality of the non-smooth bound components.
This implies a trade-off between the approximation-induced bias and the variance reduction under
margin violation. Formally, a standard MSE decomposition yields

B (0 0) = 0~ O] = (pnsl®) =07 0)° + LE[w o (Zmpi )] + o 1) @)

L . .o - - N——
approximation (smoothing) bias’ asymptotic variance /n remamder

As a consequence, choosing the smoothing parameters ¢; and to correctly is crucial to obtain a low
MSE that optimizes the bias-variance trade-off. We propose two different methods for data-driven
smoothing-parameter selection: (i) minimizing an upper bound on the MSE, and (ii) using Lepski’s
method. Our full proposed procedure is shown in Algorithm I}
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Algorithm 1: Smoothed estimation of

Makarov bounds with sample splitting. Minimizing an upper bound on the MSE. Us-

ing L 1 h h-

o e~ (s Lo 1) v ol te s
2: Stage 0: Split the data D randomly into two ]Ogg(2) (log ‘ yl) 4 : ' L2, =
disjoint datasets D; and Ds. + +, which yields the data-

. . . ta
3: Stage la: Estimate nuisance functions driven tumng rule argminy, ;, b(tl,tg)Q +

ij = (F1, Fy, #) on Dy ; obtain predictions on Ds. 1 - PP 2 .
4: Stage 1b: Obtain tuned smoothing parameters £ 7 Z?:,l \I,It1=t2"? (zl,'n, Pty o (6)) » which can
s be minimized via grid search.
and t5 on Dj.
5: Stage 2: Compute debiased estimators pt_ o (0)  Lepski’s method. Lepski’s method (Lepskiil
45 5 L 1992} [1993) selects the smallest amount of
an Pur o+ (6). : . . .. . g
. o ita smoothing whose estimate is statistically indis-
6: Output: gy and . tinguishable from estimates obtained with less
smoothing, thereby controlling approximation

bias without paying unnecessary variance. We start by ranking all candidate pairs (tgk), ték)) within

the grid by the size of their associated bias term By, = b(t(k) t(k)) in descending order (more smooth-
ing first). Scanning in this order, for each k& compare the corresponding estimates p~ e (0)

to a small set of less—smoothed candldates r with B, < Bj and accept the first k such that
) 40 () — ﬁt_(,.) N (5)’ < Zi—a)2 SE(k,r) for all such r, where the tolerance uses EIF
1 "2 1 "2

differences S/E(k:,r) = l/ﬁsdn(\flgm o5 5(Z,;,ﬁ,,6;k) t(k)(5)) —
1 v2 > 1 2
and sd,, (+) is the empirical standard deviation overi = 1,...,n.

~

\Ijtgv-)ytg-)_’(;(zian P( e )(5))),

5 EXPERIMENTS

We now confirm the effectiveness of our proposed method empirically. As is standard in causal
inference (Shalit et al.|[2017;|Curth & van der Schaar, [2021)), we evaluate our method on synthetic and
semi-synthetic data where we have access to ground-truth values of causal quantities. We also provide
experimental results using real-world A/B tests. Additional experimental results are in Appendix Il

Nuisance estimation. We estimate the treatment-specific conditional c.d.f.s Fi, (- | ), a € {0, 1}, via
likelihood-based gradient boosting with sample-splitting. For continuous outcomes we fit covariate-
dependent Gaussian mixtures; for discrete outcomes we use a multinomial classifier and obtain the
c.d.f. by cumulatively summing predicted class probabilities; and for nonnegative counts with excess
zeros we employ a zero-inflated Poisson with covariate-dependent rate and zero-inflation. Training
uses early stopping on held-out log-likelihood. Each learner outputs Fa(y | ) on an arbitrary grid in
Y of size k = 300 that is used for numerical integration. Details are in Appendix [F}

Baselines. We compare our method with the plug-in estimator from Eq.(@) and the envelope estimator
from Eq. (6). To ensure a fair comparison, we use the same nuisance estimators for F (y|x) and
Fy(y|x) from above. Additionally, we also report results for our method and the baselines targeting
the marginal Makarov bounds (corresponding to not using any covariates X). For the marginal
bounds, we use the standard empricial c.d.f. on a holdout dataset as a nuisance estimator. We use
Lepski’s method for selecting the smoothing parameters.

Evaluation. For synthetic data with available ground-truth we report the estimation error |p*(5) —
p*(0)| averaged over K = 2500 Monte Carlo runs for both the lower and the upper Makarov bound.
For real-world data without ground-truth we report the estimated bounds and confidence intervals.

5.1 (SEMI)-SYNTHETIC DATA

Fully synthetic data. We simulate data from a synthetic data-generating process (DGP) that violates
the margin assumption by having a constant treatment effect for some users. This leads to plateaus
like those in Fig[T]in the difference between the treatment and control c.d.f. (see Appendix [G).

We consider two variations of this DGP: (i) a variation with a smaller plateau width corresponding
to only small assumption violation, and (ii) a variation with a larger plateau width corresponding
to larger assumption violation. A comparison of our method to existing methods for both of these
DGPs, for both the upper and lower bounds, with and without covariates, is given in Table. [2|(top)
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Small assumption violation Large assumption violation

Data Bound Side Plugin Envelope Ours Plugin Envelope Ours
Mareinal lower 3.98+£0.11 2.00£0.05 1.81+0.04 559+0.11 1.354+0.08 0.82+0.06
Synthetic g upper 4.53+£0.11 1.99+0.06 1.92+4+0.05 5.55+0.11 1.40+0.08 0.83+0.06
y Cov.-adiusted lower 5.02+£0.12 1.86+0.05 1.81+0.04 6.42+0.13 1.28+£0.07 0.90 £ 0.06
-adus upper 4.67+0.11 1.93+£0.05 1.84+0.04 6.29+£0.12 1.25+0.07 0.86+0.06
Mareinal lower 1.954+0.06 1.214+0.03 0.76+0.02 2.22+0.06 1.14+£0.03 0.77£0.02
OHIE g upper 240+£0.07 146+0.04 1.09+0.03 2.52+£0.07 1.31+£0.04 0.97+0.03
Cov.-adiusted lower 4.88+£0.09 1.46+0.03 1.44+0.03 4.71+£0.09 1.09+£0.03 1.00=+0.02
-adus upper 529+0.09 1.50+0.04 1.41+0.03 4.31+0.09 1.2840.03 1.08+0.03

Table 2: Average mean-squared error of estimators of p(0) across settings. Error bars are 95% Cls
across 2500 replications. Our method consistently attains the lowest mean-squared error.

and shows that our method achieves the best estimation performance across all bound types and
settings. Furthermore, the gap between our estimator and the baselines widens under stronger margin
violation, highlighting that our method efficiently handles these violations when the baselines do not.

Semi-synthetic data. For our semi-synthetic experiments, we use covariate data from the Oregon
health insurance experiment (OHIE) (Finkelstein et al.,|2012). The OHIE was a randomized experi-
ment meant to assess the effect of health insurance on outcomes such as health or economic status
(see Appendix [H]for details). We use the following covariates: age, gender, language, the number
of emergency visits before the experiment, and the number of people the individual signed up with.
We then simulate treatment and outcomes such that the margin assumption is violated. Again, we
consider two different settings with different the severities of assumption violation. The results are
shown in Table. ] (bottom). Again, our method achieves the best estimation performance across
all bound types and settings and the gap between the smoothing and envelope estimators widens
when the degree of assumption violation increases.

5.2 REAL-WORLD DATA

A/B tests from a consumer technology company. Finally, we apply our method to three real A/B
tests from a large consumer technology company. All three A/B tests have constant propensity score
m(x) = 0.5 and have on the order of tens of millions of observations. The first experiment is an
experiment that boosts certain content in a ranking context, and the outcome metric is a measure of
engagement. The second experiment demotes certain content in a (different) ranking context, and
the outcome metric is a (different) measure of engagement. The third experiment tests a treatment
meant to increase visitation, and the outcome metric is a visitation metric. Basic statistics for these
experiments are reported in Table[3] For each experiment, we estimate the Makarov bounds to obtain
a partial identification region for the c.d.f. of the treatment effect.

Results. The results are shown in Figure 2] For the first
experiment, we see that the partial identification region
Samplesse,n_ % ATE Upper bound on p(—1)(*) is relatively narrow. We are confident that P(Y;(1) —
B2 = inw e Y;(0) < —1) = P(Y;(1) — Y;(0) < 0) is no more than
S T S =T e .25, meaning that there are very few users for whom
the treatment is decreasing engagement. Since we are confident this treatment does not negatively
affect a significant fraction of users, and the ATE estimate in Table[3]is positive, this treatment would
be safe to launch. (On the other hand, the vertical jump in the identification region at 0 and the high
lower bound on P(Y;(1) — Y;(0) < 0) suggest that—despite the positive ATE estimate—the treatment
is actually having no effect on most users, likely due to the dynamics of the ranking, meaning that we
may want to search for more effective treatments.)

Table 3: Experiment statistics summary.

For the second experiment, the partial identification region is wider—our upper bound on P(Y;(1) —
Y;(0) < 0) is now 0.74, suggesting that this treatment may in fact affect a majority of users negatively,
and we should conduct further analysis before launching it. Finally, for the third experiment, the
partial identification region is extremely wide: our upper bound on P(Y;(1) — Y;(0) < 0) is now 0.99,
suggesting that this treatment could potentially have a negative effect on nearly all users, and would
be inadvisable to launch. Note that this experiment has a positive average treatment effect, as seen in
Table (3] and so this recommendation to not launch contradicts the standard decision-making process.
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Figure 2: Estimated Makarov bounds for three A/B tests from a consumer technology company.
Based on these bounds, we are confident that Experiment 1 does not negatively impact many users,
and thus is safe to launch, whereas Experiments 2 and 3 may negatively impact many users.

Taken together, these three examples highlight how our methods can be used in real world settings to
characterize treatment effect distributions more completely than the average treatment effect, and
thus inform launch decisions. We also provide additional comparisons with baselines in Appendix [T}

6 DISCUSSION.

In this paper, we proposed a new method for inferring Makarov bounds on the treatment effect
distribution without making a margin assumption.

Limitations and future work. Our current approach is limited to static binary treatments. Future
work may consider extending our approach to continuous or time-varying treatments and outcomes.
Additionally, future work may also consider extensions to unbounded outcome spaces or settings
with unit interference (common in A/B testing).

Broader impact. Our method enables practitioners to make inferences about treatment effect
distribution without relying on untestable assumptions, thus improving the reliability of established
methods.

Ethics statement. We adhere to the ICLR Code of Ethics and acknowledge this during submission.
Our work analyzes synthetic, semi-synthetic, and anonymized A/B-test data; no personal data are
released or re-identified. The methods aim to improve safety by quantifying the fraction poten-
tially harmed, but misuse is possible; we therefore emphasize risk-aware reporting and recommend
subgroup audits when sensitive attributes are used.

Reproducibility Statement. An anonymized repository (linked in the submission) provides code
to train/evaluate our estimators, select smoothing parameters, and compute one-sided confidence
intervals. The paper specifies assumptions and estimands (Problem Setup), the smoothing/bias bounds
and EIF-based estimators (Method), and evaluation protocols (Experiments), with full proofs and
additional details in the appendix. We release synthetic and semi-synthetic generators, document
preprocessing, model classes, hyperparameters, seeds, and scripts to recreate all synthetic and semi-
synthetic figures/tables. Proprietary A/B data cannot be shared, but we plan to release anonymized
data and code upon acceptence.
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A PROOFS.

A.1 PROOF OF LEMMA [41]

Proof. Recall that the LSE operator is defined as

() = - og ( [ esstts) dy> 23)

and that softplus function is defined as

1
hi, (u) = 5 1og(1 + et2“). (24)

We can now write the smoothed Makarov bounds as
_ 1 to
Pinia(6) = E [t tog (1+ L1, 5(X) )} = E [, (90, (R (1X) = Fo(- = 81X)))] 29)
and

Pha(0) =1-F [tt log (1+ In,(s(X)i?)} = 1+E [hs, (91, (FL(1X) = Fo(- = 9]X)))] .
(26)

We now employ standard bounds on the softmax and LSE functions. For all u € R, t5 > 0, it holds
that

log 2 log 2
he, (u) — Otg < (u)4 and (w)_ < h_y, (u) + Otg . 27)
2 2
For bounded f : ) — R on compact ) and ¢; > 0, it holds that
log |V . log |V
g () — B < up () and nt () < g () + 22 28)
1 yey yey t

In the following, we prove the theorem for the lower Makarov bound but the argument for the upper
bound follows analogously. We apply the inequalities in and (28) to Eq. (23)) and obtain

_ *) log |V
pins(0) £ B [, (sup(F01X) = Ry - 013)) + <221 9)
y
log |V log 2
< | (sup(Filyl) - Foly - 6130) + 52T |4 8 60)
yey tv ) t2

(%) 1 log 2

< 07(5)4-%4—&, 31)
t1 to

where (*) follows from monotonicity of h:, and (xx) follows from (a + b))+ < ai + b4. O

A.2 PROOF OF THEOREM [4.7]

Proof. We start by deriving the efficinet influence functions (EIFs) of the component 4, 5(z). By
employing the chain rule for influence functions (Kennedy et al.,[2023]), we obtain

EIF{I,, 5(x)} = tl/y exp<t1 [Fi(y | z) — Fo(y— 0 | x)]) EIF{F(y|x)— Foly—06 | z)} dy.

(32)
Hence, it holds that

tg t ta
BIF{l,5(@) 7} = 21 s(@) 5 BIF {52} (33)

= tzftl,a(fﬂ)% /ywtl,é(y|$) EIF{Fi(y|z)—Foly—6|z)}dy, (34

15
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and for the upper bound analogue

ty t ty
EIF{I 4 s(x)7 } = ifftl,é( 2) 5 BIF{Iy, 5(x)} (35)
R S /y W 5(yle) EIF{Fi(y | 2) — Foly — 6| 2)) dy.

(36)

The efficient influence functions for the treatment and control c.d.f. are of standard form (Melnychuk
et al.,[2024), i.e

BIF{F,(y—6|X)} =

Plugging everything together, the EIF for the lower smoothed Makarov bound is

VU, 6 (Zim) (38)
- / @EIF log (1 + Itlyé(x)i*?) do (39)
2

1og (14 1, s(X) ) = 075 1, 0) (40)

_ / IP’(X = 1) EIFL:l,[s(x):; de + llog (1 + [thé(x)%) — P14, (0) 41)
R R APTCOL I

_ /pr(x ) % [/ w s{yl) BIF(E: — Fo} dy]do 42)

T y

1+It17 ( )
%,_/
T4y 12.5(%)

IOg (]- + Itl s(X ) Pty t2 (43)

:/Pr(X—x o7 15 [/ywth (yl) (‘45_();1@ 5 (1Y <9) = Fi(yle) dy)dz

(44)

= [Pex =) 0] [ o) E T = (Y <y ) = Foly = o) ]
(45)
+ 2 og (141,50 %) = g7, (6) (46)

A

= s X[ [ 10,501) 755 (Y <9) - Fi01X)) ] @)
= s [ 0, 013) {35 (Y <= ) = Ry = 1)) ) @)
- og (14 L s (07 ) = i, 0) (49)
(50)
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Analogously, we obtain the EIF for the upper smoothed Makarov bound as

V106 (Z:7) (51)
_ /IP’(X — 2)EIF {1 _ tilog (1 n I_th(;(x)%) } dz (52)
2
1 t2
1 log (14 Ly, (X)) = pf; 1, (0) (53)
2
_ / P =2) o plog (1 + Lthg(x)%) de (54)
—t5
1 ta
+1- - log (14 L)) = o 1, 6) (55)
2
_ / P(Xt: D EFLns@)n g4y tllog (14 T s (0% = 5,1, 0) (56)
—T9 1 _’_I7t175($)t1 2
_ /pr(X — ) % [/ w_s, 5(ylz) BIF{F; — Fo}dy} dz (57)
1 +I—t175(‘r)§ Y
;,tz,g(@
1 tz +
- to log (1 + Ly 5(X)0 ) — Piye, () (38)
2
AS(X =
= [Pr( =) o @] o s gy (ALY <) = Fall) du]s
(59
1 A)5(X =
— [Pe = 0) o) [ 0o stole) G (Y <= ) = Rty — o) o]
(60)
1 By
+1_t710g (1+Ift17§(X)t1) _pt1,t2(6) (61)
2
A
= s X[ [ -0801) 5 (1Y €9) = Fiy1X)) ] (©2)
— 0 a0 [ 00 130 L Y <y = 8) - Py = 01%) ao] 63
1,2, v 1—7m(X)
1 ta
+1-— t—log (1+Lt1,5(X)t1) = P 0, (6). (64)
2
O

A.3 PROOF OF COROLLARY [4.3]

Assumption A.1 (Regularity and rate conditions for Corollary f.3). Fix § € R and smoothing
parameters t1,t2 > 0. Let Z = (X, A,Y") ~ IP denote a generic observation and let n = (Fy, Fy, )
denote the collection of nuisance functions.

1. Causal assumptions. Assumption [3.1]holds: consistency, overlap, and ignorability.

2. Outcome support and boundedness. The outcome support ) is compact with finite
Lebesgue measure, as in Lemma The efficient influence functions \I/ft1 10,621, 6%(6))
in Theorem [4.2] are square-integrable with strictly positive and finite variance

0 < V() = Var(Ti, 5(Z.n,0%(5))) < cc.

ty,t2,0
3. Cross-fitting. The estimators 7} = (Fo, F, ) are obtained with sample splitting / K-fold

cross-fitting: for each observation 4, the corresponding nuisance estimates 7(~*(1) are
trained on all folds except the one containing 7.
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4. Rate conditions for nuisances. For a € {0,1},
1Fy = Fallz = 0e(n™ ), |l& = 7lla = 0p(n™/%),

where || - ||2 denotes the Lo (IP) norm.

Proof of Corollary@.3] Fix § € R and abbreviate

0=(0) = pit ,,(0),  0F(0) = pi 4, (0),

for the smoothed lower and upper Makarov bounds and their debiased estimators in (T9). For
readability we suppress the dependence on ¢ where no confusion arises.

Step 1: Oracle influence function representation. By Theorem [4.2] and Assumption [AT|v),
the smoothed functionals #* are pathwise differentiable at Pwith efficient influence functions

\Ifti1 10,5025, 6*(0)). Consider the oracle estimator

n

TEO) = 0 (040) + U, 52005 0))),

which satisfies
- 1 <&
05(0) = 0%(0) = — > W, 5(Zin, 0(0)).
i=1

By Assumption ii), the summands are i.i.d. with mean zero and variance V*(§) € (0, 00), so
the Lindeberg—Feller central limit theorem yields

Vi(0£(8) — 6%(5)) = N(0,VE(9)). (65)

Step 2: Effect of plug-in nuisance estimation with cross-fitting. Let the sample be partitioned
into K folds and denote by 7(—*) the nuisance estimates trained on all folds except fold k. For each
i, let k(%) be the index of the fold containing Z,. The debiased estimators with cross-fitting can be
written as

. 1 — 4 g

0=0) = =7 (0%0) + W, (201D, 0%(0))) + BE,

i=1

where R collects the higher-order terms arising from replacing 6% (8) by 0% (9) inside the influence
function.

By Neyman orthogonality of the score in Theorem 2] and Assumption [A-Tfiii)—(iv), standard
arguments for orthogonal / debiased estimation (see, e.g.,|Chernozhukov et al.|(2018))) imply that

n

1 N -
72 (\I’i,tz,é(zivn( K ))79i(6)> - “I]i,m,a(ziﬂ%ei(&)))’ = 0]}»(71 1/2)a

n <
i=1

and that R;'f = o[p(nfl/ 2) by a Taylor expansion in §. Hence we obtain the linear expansion
R 1< _
0=0) = 0%(0) = = DU 5(Zn,650) + rE, = oenTV2). (66)
i=1

Comparing with the oracle representation shows that the leading term is identical and the
remainder is negligible at the /n scale. Combining (63) and (66) and applying Slutsky’s lemma
gives, for each fixed 6,

VR (6£(5) — 0%(5)) = N(0,VE(9)). (67)
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Step 3: Consistency of the standard error estimator. Define

n

= 1 A—K(D)) A - 2
VEO) = = > (Wh 520 7H0D,0%(6)) - 9%(9))

i=1
where

- 1 — Al A
TEO) = = Wiy, 5(Zin i M 05(0)),
i=1

t1,t2,0
and set &6 (8) = \/V=(6)/n.

By the same orthogonality and rate conditions as in Step 2, the difference between

U s(Zi D, 0%(8)) and W (Ziin.67(6))

t1,t2,

is op(1) in Ly uniformly in ¢. A law of large numbers under cross-fitting then yields
VE©) = VH).

50 56~ (6) 3 vE (0)/n. Combining this with (67) and using Slutsky’s lemma again, we obtain
the studentized central limit theorem

0= (5) — 0*(5)

s’\ei(é) = N(0,1). (68)

Step 4: One-sided intervals for the smoothed bounds. From (68), for each fixed 4,
Pr{@’(é) > 6= (8) — zl_a/2s%—(5)} 51— a/2,

and
Pr{9+(5) <O (0) + 21-apo @*(5)} 11— a2,

where z1_,/5 is the (1 — a/2) quantile of the standard normal distribution.

Step 5: Translating to the original Makarov bounds. By Lemma[d.] for all fixed ¢, ¢ > 0,
07 (0) — b(t1,t2) < p(8) < O7(3) + b(ty,t2),

where b(t1, t2) is the approximation bias bound. On the intersection of the two one-sided events from
Step 4, we have

07(8) = 21-a/25¢7 (8) = b(t1,t2) < p(8) < OF(8) + 2102587 (8) + b(ty, t2).
By the definition of ¢;, , 5 ,(D») and chl t2.6.0(Dn), this event is precisely

Ctadia(Dn) < P0) < €4, 5.0(Dn)-

A Bonferroni argument then yields

lim Pr{c;,t2,§,a(pn) < p(a) < c;,tQ,S,a(Dn)} > 1- a,

n— 00

which proves the corollary. O
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B EXTENDED RELATED WORK

Semiparametric efficient causal inference. Semiparametric efficiency theory (van der Vaart, [1998)
and efficient-influence function-based estimators have a long tradition in causal inference (Kennedy,
2022). Examples include the AIPTW estimator (Robins et al.,|1994), Targeted maximum-likelihood
estimation (TMLE) (van der Laan & Rubin, 2006). These frameworks have been extended to various
causal quantities and are the de-facto standard for modern causal effect estimation in many settings
(van der Laan & Gruber], [2012; |Chernozhukov et al., 2018}, [Foster & Syrgkanis), 2023}, [Kennedy,
2023).

Bounds for partially identified causal quantities In many situations, the causal parameter of interest
is only partially identified. That is, we need to obtain bounds on the parameter of interest which we
can then estimate with observational data [Manski|(1990). Several works have proposed methods
for partial identification of causal quantities, including treatment effects in instrumental variable
settings |Balke & Pearl (1997); |[Kilbertus et al.| (2020) and more general causal graphs|Duarte et al.
(2023)); IBalazadeh et al. (2022); |Chen et al.| (2023)); [Padh et al.| (2023)), and treatment effect risk
Kallus|(2023). A related stream of literature obtains bounds under so-called sensitivity models, which
impose assumptions on the degree of non-identifiability [Tan| (2006); Jesson et al.| (2021)); Dorn &
Guo|(2022); Dorn et al.| (2024); [Y1in et al.|(2022); Frauen et al.|(2023); Jin et al.| (2023); |Frauen et al.
(2024).
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C EXTENSION TO DISCRETE OUTCOMES.

Here we provide minimal changes needed to extend our methodology to discrete outcomes. Let
Vi ={y1 < -+ < yum} denote a finite ordered support. For a € {0, 1}, write F,,(- | «) for the
right—continuous conditional CDF of Y | (A = a, X = ) on V4. All other notation is as in the main
text.

Discrete log-sum-exp and softplus. The softplus A, (u) = t; " log(1 + ef2*) is unchanged. We
replace the continuous log-sum-exp with its discrete analogue

1
gl (1) = —log( Y exp{tif(v)})- (©9)
! YyEVa
Accordingly, define the discrete normalizer

1@ = Y expt[Fily | 2) — Foly =6 | )] ). (10)

y€Va

Smoothed Makarov bounds (discrete). Replacing the operators in Sec.[d.1]by (69)—(70) yields
the discrete smoothed bounds

—(d 1 d ta/ta (d 1 d ta/t
6 = o1 (1,000 a0 = 1| Lo+ (1 4030) ")
(71)
The analogue of Lemma 4.1 holds with the discrete approximation bias
log2 log M
batr ta) =~ + o, (72)
to t1

;atp;’é?@) — ba(ty,t2) < p~(6) and p* (8) < p[ P (8) + balts, t2). with p (D (8) — p*(6) as
1,l2 — OQ.

Efficient influence functions (discrete). The EIFs in Theorem [4.2] carry over after replacing all
integrals over y by sums over );. Define the discrete softmax weights

exp(t1[Fi(y | z) — Fo(y — 6 | )]
Wiy | x) = ( o ) . yeED (73)
t1,(5

and the discrete analogue of ®f 5,

o P y) = 3wy X) (1Y <y-(1-a)f} - Fu(y- (1-a) | X)). (74
YyEVa

d)

With atf’tz’ () defined exactly as in the main text but using Iith (), the EIFs are

—.(d —.(d _ A (d 1-A (d
U (2o 0 0)) = 07,4 5 (X) | = 20D (X,Y) - —— < @) P (X,Y)
m(X) 1—7(X) 5)
1 d ta/t e
o log(1+ (I5(X0) ") — 07 0).
+,(d) o(d) o) A 1) 1-A o)
q’tl,tg,é (Za m, pt1,t2 (6)) - O-;:,tQ,é(X) |:7T(X) ®7t1’5(X, Y) - 1— 7T(X) cpfthé(Xa Y):| (76)

1 d ta/t (d
+1 - g1og(1+ (1D 5())™) = o).

21



Under review as a conference paper at ICLR 2026

Debiased estimators (discrete). The one-step estimators in Eq. (I9) become

ﬁ;’,gj) (6) == Z{ 10g<1 + I( ) (:cz))tz/tl) + 0y, 1,.5(T0) fr(x?)i{_l W(:_i()xi)} é?f,’éd)(m,yi)
(7N

s IS~ L (@ oy L at gy BT F@) s
i ()= 7.2_;{ ta og( + *“75(%)) ) 0012, (72) #(x){l —#(zy)}  — o (Ti:9:)
(78)

Here :(i:t) 5 wgd)(;, and <I>a1 -(d) s replace (70 , and (74) with estimated nuisances. Cross-fitting
and variance estimation via the sample variance of the estimated EIF proceed unchanged.
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D EXTENSION TO UNIFORMLY VALID CONFIDENCE INTERVALS

In this section, we extend Corollary [4.3] to construct confidence intervals for the treatment effect
distribution that are simultaneously valid for all values of § in a compact set A C R. The construction
proceeds in two steps. First, we establish a functional central limit theorem (CLT) for the smoothed
debiased estimators ﬁfm (&) viewed as stochastic processes in §. Second, we use a multiplier
bootstrap to approximate the distribution of the supremum of the corresponding Gaussian limit
and combine this with the approximation bias bound b(¢1, t2) from Lemmato obtain uniform
confidence bands for the original Makarov bounds.

D.1 UNIFORM ASYMPTOTIC LINEARITY AND FUNCTIONAL CLT

We focus on a compact interval A C R of values of § that are of substantive interest. Throughout this
section, we treat the smoothing parameters (¢1,t2) as fixed and suppress their dependence where it is
notationally convenient. We write

6l = = g(ﬂzi) E[f(2))

for the empirical process indexed by a function f, and consider the class of efficient influence

functions ) N i
FE = (W, Compi,(0) 16 € A
as given in Theorem [{.2]

We impose the following regularity condition, which is a uniform version of the high-level conditions
used in Corollary 4.3

Assumption D.1 (Uniform regularity of the EIF process). Let A C R be compact and let
vt (2, ptil’t2 (6)) be as in Theorem Assume:

t1,t2,6

1. Uniform bounded second moments:

SB[V, (2.1 1., (9))°] < ox.

2. Stochastic equicontinuity in §: there exists a semi-metric d on A such that, for any € > 0,

lim limsu ]P>< su G, (Ut —vt >€> =0.
40 n—>oop d(6,6/§)§7‘ ”( ty1,t2,0 tl,t2,5)|

3. Donsker-type condition: the class F + is P-Donsker (or, more generally, satisfies an
entropy condition that guarantees a functional CLT for G,, indexed by F%).

4. Uniform orthogonality and nuisance rates: let 7) be obtained via sample splitting as in
Corollary 3] The asymptotic linear expansion

) IRS
Pir s (0) = pis e (O) + 2D Wi 5(Zism: i 1, (0)) +777(0)
i=1

holds with a remainder satisfying

sup /n |riE(5)] 0.
dEA

Under Assumption [D.I] we obtain a functional CLT for the smoothed lower and upper bounds
following standard arguments in empirical process theory (Van Der Vaart & Wellner, [1996)).

Theorem D.2 (Functional CLT for smoothed Makarov bounds). Let Assumption[D 1] hold and let
A C R be compact. Then, in the space £>°(A) of bounded real-valued functions on A,

{V1(pr, 4,(0) = i, 1,(0)) Fsen ~ {G7(0)}se, (79)
{(Vn(pf ., (0) - p;,tz((s))}seA ~ {G*(8)}sen, (80)
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where G* are mean-zero tight Gaussian processes with covariance functions
Cov(G*(61), G*(62)) = B[V, 1, 5, (Z1. 911, (50) V5, 1, 5, (Z.0. 035 1,(62))]
Sforall 51,05 € A.

As a consequence of Theorem [D.2] the random variables

sup |\/ﬁ(ﬁi,t2 () - Ptil,tg (5)) ’
JEA

converge in distribution to sups A |G*(0)|. We now describe how to approximate the distribution of
these suprema via a multiplier bootstrap.

D.2 MULTIPLIER BOOTSTRAP FOR UNIFORM BANDS OF SMOOTHED BOUNDS

Define the estimated influence function contributions

07 (0) =V 4 o(Zis i b1, (8)),  i=1m, €A,

K3

where ) and p;- +,(0) are obtained as in Eq. (T9). Let

denote the empirical mean of these contributions.

Let&y, ..., &, beiid. multiplier weights with E[¢;] = 0 and E[¢?] = 1 (e.g., Rademacher or standard
normal). The multiplier bootstrap process is defined by

Gt (0) = = 6D - ). seA @)

We then consider the sup-norm statistic

TE" = sup‘é’f’*(é) |.

seA
Repeating this construction B times with independent multipliers {fi(b) T, b=1,...,B,yields
bootstrap draws
+, % +,%
i1 g

Let ¢, denote the empirical (1 — «) quantile of {Tni)l’)*}f:l. Under standard conditions for
the validity of the multiplier bootstrap for suprema of empirical processes (which are implied by
Assumption[D.T]and mild additional technical assumptions), this quantity consistently estimates the
(1 — «) quantile of supsex |GE(0)).

The following corollary summarizes the resulting uniform confidence bands for the smoothed bounds
pfﬁ ., (0), following standard multiplier bootstrap theory for empirical processes
[1996).

Corollary D.3 (Simultaneous confidence bands for smoothed Makarov bounds). Suppose the condi-
tions of Theorem@hold and the multiplier bootstrap described in Eq. 1) is valid for the processes
in (T9)—@0). Let ¢, be the empirical (1 — ) quantiles of T:£* as defined above. Then,

At
3 . At _* Cl_a B
HILH;OP<V5 €A |Pt1,t2(5) Ptl,t2(5)| < Jn ) > 1-a.

Equivalently, the bands
At éia At éit—a
d— [ptl,t2(5) VR Pis 1, (6) + 7 ]
are asymptotically valid (1 — «) simultaneous confidence bands for the smoothed Makarov bounds
pih (0), uniformly over § € A.
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D.3 UNIFORMLY VALID BANDS FOR THE ORIGINAL MAKAROV BOUNDS

We now translate the simultaneous bands for the smoothed bounds p,tj[ht2 (9) into simultaneous bands
for the original Makarov bounds p*(§). Recall from Lemmal4.1]that

iy 1,(8) = b(t1,t2) < p~(6) and  pT(8) < pf ,,(8) + b(ts, t2), (82)

for every 0, where

log(2) | (log|¥])+
+
to tq
does not depend on §. Hence, the inequalities in (82) hold uniformly for all § € A.

Combining Corollary [D3] with (82) yields the following result.

Corollary D.4 (Simultaneous confidence bands for the treatment effect distribution). Fix o € (0,1)

and a compact set A C R. Let él__l;n/l; and é;r_ugl/]; denote the bootstrap critical values obtained as in

Corollary for the lower and upper smoothed bounds, respectively, with level a/2. Define, for
each 6 € A,

b(ti,t2) =

~—,unif

60 (8) = P, (8) — 222 ity 1), (83)
n t1,t2 \/ﬁ

~+,unif

C —Q
n(8) = pi 4, (8) + — \/ﬁ” + bty 1) (84)

Then
liminfP(Vé € A: ¢,(0) < p(d) <2,(0)) > 1 —a.
n—oo

In particular, the pair of bands {c,(6) }6€A and {6”(6)}66A defines an asymptotically valid (1 — «)
simultaneous confidence band for the treatment effect distribution p(0) uniformly over § € A.

Practical implementation. In practice, the set A is approximated by a finite grid {01, ...,0x} C
A. The procedure then reduces to:

1. Compute ﬁtilh (0x) and 1[1?:(50 forallk=1,..., K.

2. For each bootstrap replication b = 1, ..., B, draw multipliers {gi(b)};;l and form
~ 1 n b, ~ =
GEron) = —=>_ &V (EOR) — D6
n,b( k) \/ﬁ v gz (¢7, ( k) wn ( k))’

3. Let éi‘;n/‘; be the empirical (1 — a/2) quantiles of {Tni,g)*}l]?:l, and construct ¢,, (05 ) and

¢, (0r) as in (B3)—(B4).

For a sufficiently dense grid, the resulting discrete bands provide an accurate approximation to the
uniform confidence bands over A.
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E EXTENSION TO MULTIVALUED TREATMENTS

In this appendix, we briefly describe how our methodology extends to settings with multivalued
treatments. Let the treatment take values in a finite set A C R with |.A4| > 2, and let

Z = (X,AY)~P, AcA,

where X € X C R? and Y € R as in the main text. For each a € A we denote the potential outcome
by Y (a) and define the generalized propensity scores and response distributions by

ma(z) = P(A=a| X =2), Flylz) = PY <y|X=2x2,A=a).

E.1 TARGET ESTIMAND FOR A PAIR OF TREATMENT LEVELS

In many applications, the primary goal is to compare two specific treatment levels ay, ag € A. For
any such ordered pair (a1, ag) we define the treatment effect distribution

Par,a0(0) = P(Y(a1) — Y(ag) <96), §eR. (85)
This is directly analogous to the binary-treatment estimand in the main text, where (a1, ag) = (1,0).

Under the natural multivalued analogue of Assumption [3.I] namely:

1. Consistency: Y (a) =Y whenever A = a forall a € A,
2. Overlap: 0 < 7,(X) < 1 almost surely for all a € A,
3. Ignorability: A 1 {Y(a):a € A} | X,

the treatment effect distribution pq, 4, () is again partially identified by Makarov-type bounds based
on the pair of marginals (Fy, , Fy, ):

Par.ao(0) < Parian(0) < pif 40 (6), (86)

where, for each fixed pair (a1, ag),

P aa(8) = B sup (B (0| X) = Foly =1 ), |. )
Y
and
P aa(8) = 14 B 06 (Fos(y | X) = gy =1 ))_|. s

which are obtained by replacing F and Fj in Eq. @ with F,, and F,,.

E.2 REDUCTION TO THE BINARY CASE

Our proposed estimators and theoretical results for the binary-treatment case extend directly to this
multivalued setting by a simple recoding argument. For a fixed pair (a1, ag), define the binary
indicators

Aalﬂo = l{A = al}, 1-— Aal,ao = 1{A = (10},
and the corresponding generalized propensity scores
7oy (X) = P(A=a; | X), Tao (X) = P(A=aqag | X).

Conditional on X, the distribution of (A4,, 4,,Y") restricted to the subset {A € {a1,aop}} is alge-
braically identical to the binary-treatment setup in the main text with treatment A = 1 and control
A = 0, after replacing:

A~ 1{A=a1}, 1-A v 1{A=qap}, 7(X) ~ 7 (X), 1-—7(X) ~ 7 (X),
and

B[ X) ~» Fo, (1 X)), Fo( [ X) ~ Foo(- | X).
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E.3 INFLUENCE FUNCTIONS AND DEBIASED ESTIMATORS

Let pai] a0t ts (6) denote the smoothed Makarov bounds obtained by applying the smoothing con-
struction from Lemmaf.1to (F,,, F,,) instead of (Fy, Fp). The corresponding efficient influence
functions follow by the same substitutions in Theorem [.2]

Remark E.1 (EIF for multivalued treatments). Fix a1, ag € A and define

dal,aoﬁm(y | X) = Fa1(y | X) _Fao(y_5 | X)7

al,a ai,a, +,(a1,a
and It(’(;' 0)(;c), wilfé 0)(y | ), Utl,gzjé 0)(33) analogously to I, 5(x), wy, 5(y | =) and aitm(x)
in Theorem .2} but with Fy, Fy replaced by F,, , Fy,,. Then the efficient influence functions for the

smoothed multivalued bounds pi \ao.t1.1, () are obtained from Theorem {.2|by replacing
A—=1{A=a1}, 1-A—=1{A=ap}, m(X) = 7e,(X), 1-7(X) = 74, (X), F1 = Fo,, Fo — Fy,.

In particular, the debiased estimators in Eq. (I9) extend verbatim to the comparison of any pair
(a1, ap) after making these substitutions.

Because the derivation of the EIF in Theorem [.2] relies only on the binary nature of the comparison
(treated vs. control) and not on the cardinality of A, the same arguments imply that all results
on asymptotic normality, confidence intervals, and uniform confidence bands (Corollary 3] and
Appendix carry over to the multivalued setting for any fixed pair (a1, ag).

In practice, a practitioner who wishes to compare the treatment levels a; and a simply specifies
these two values and applies our binary-treatment procedure to the recoded data with A replaced by
1{A = a1} and the nuisance functions (Fy, Fy, 7) replaced by (Fy, , Fay, Ta, ) and 7,,, as described
above.
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F DETAILS ON NUISANCE ESTIMATION

We estimate the response c.d.f.s F,(y | ), a € {0, 1}, by fitting separate conditional distribution
models within each arm (A = a). All learners return the entire conditional c.d.f. evaluated on an
arbitrary grid y € Y, which is required by the EIF in (4.2).

Training protocol (common to all learners). For each arm a we split the data into two folds
as outlined in Algorithm 1| On each fold, we train on the complement and predict Fa(- | z;) for
held-out 7. Models are trained by gradient boosting (LightGBM) with early stopping on a validation
set and a likelihood-based metric. Monotone transformations 7" of Y can be applied for numerical
stability; since 7" is monotone, Fy (y | ) = Fp(y)(T'(y) | x). In particular, we use standardization

and log-transformation where appropriate. Given a grid {y;} 3’:1, each learner returns the matrix

(Fa(yj | xl))” These values feed the smoothed operators in (9) and the weighted integrals

¢ (i, i) in (9.

Continuous outcomes: conditional Gaussian mixtures. ForY € Rwemodel T(Y) | X =«
as a K-component Gaussian mixture with covariate-dependent weights 7, (), means py(x) and
variances o7 (). Boosting optimizes the (negative) log-likelihood with a custom objective

K
lom(z,y) = — log ( > (@) o(T(y); ual), 0%(%))) :
k=1

where ¢ (y; p, 02) is the N'(u, o2) density. The log-likelihood loss supplies per-parameter gradients
and diagonal Hessians. Derivatives are rescaled to balance curvature across logits/means/variances.
Initialization uses k-means on T'(Y") (cluster means/variances feed the intial score matrix. The
resulting c.d.f. is

K N
Foly ] 2) = - sty o (T B
k=1

&k(a:)

Discrete outcomes: multinomial classifier. For discrete Y taking finitely many values {¢; <
.-+ < cpr} we fit a multiclass boosted classifier returning p, (¢, ) = Pr(Y = ¢, | X = ). The

c.d.f. is the cumulative sum .
Fa(y|z) = Z Pa(cm),

m: cm <Y

implemented by summing predicted class probabilities over classes < y.

Counts with excess zeros: zero—inflated Poisson (ZIP). For nonnegative counts we fit a covariate-
dependent ZIP with rate A\(x) and zero—inflation ¢ (z), learned via a custom objective for the ZIP
log-likelihood and stabilized derivatives. Initialization uses the empirical mean for A and the observed
zero rate for 1. The c.d.f. (right-continuous) is

0, y <0,

Foly | 2) = {¢($) + (1 —1(x)) PoisCDF([y); A(z)), y > 0.
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G DETAILS REGARDING SYNTHETIC DATA

Data generating process.

We sample uniform covariates X ~ Unif[0, 1] and define p(z) = 1z? + 3. We then define the
c.d.f. for the treatment arm as
0, y <0,
Y(1)| X =2~ Unif ([0, p(2)]),  Fialy) = %x), 0<y < pla),
1, y > plx).

For the control arm, we define for a parameter ~y
Li(z) = —%:1:, Lo(z) = %p(x)—k%x.

Then, we define the control arm c.d.f. as

0, y < Ly,

y_le, Ly <y <Li+3p,
Fopa(y) = § 3> Ly+3p <y < Lo,

%+y—7pL27 Ly <y<Ly+3p,

1, y> Lo+ ip,

where, for brevity, L; = L;(z) and p = p(z). The gap between the two control components is

G(z) = L27<L1+%p) = gx

To model a joint distribution leveraging the marginals above, we draw (U;, Up) from a Gumbel
copula Cy with § = 5 (dimension 2), and set

Y(1) | X =Fx(Uh), Y(0)|X = F;xUo).
Finally, the observed outcomeis Y = AY (1) + (1 — A) Y(0).

Quantifying margin violation. The difference D, (y) = F1,(y) — Fy)»(y) admits two plateaus that
attain supremum and infimum and thus violating the margin assumption. The left, negative one is
givenfor0 <y < 1p— Jzas

—L L
Dy(y) = 44— 20 21 0%
p p p 4p
Its width is PR
The right, positive plateau is given for % p+ir<y<pas
y (1, y— Lo Ly—3p Yy
Dwy):——(f—k )— = 4+-—.
( p o \? p P dp

Averaging over X yields E[p(X)] = 2, E[X] = 1, and
1
o] :/ 2% gy = In2.
o0 Ty
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Hence, obtain average plateau widths

B[ (X)) =E[Wa(0)] =3 - 1, E[6(x0)] =1,
and normalized
Wi(X)] _ o [Wr(X)] 1 ~ I G(X) T
[p(X)]_E[ p(X)]_2 i E[p(X)} p 2

Thus, when descreasing v, we maximize the average platenau width and correspondingly the degree
of margin violation.
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H DETAILS REGARDING SEMI-SYNTHETIC DATA

Real-world covariate data. The so-called Oregon health insurance experimenﬂ (OHIE) (Finkelstein
et al.,|2012) is a randomized experiment that was intentionally conducted as a large-scale effort in
public health to assess the effect of health insurance on several outcomes such as health or economic
status. In 2008, a lottery draw offered low-income, uninsured adults in Oregon participation in a
Medicaid program, providing health insurance. Individuals whose names were drawn could decide to
sign up for the program.

In our analysis, we extract the following covariates X: age, gender, language, the number of
emergency visits before the experiment, and the number of people the individual signed up with.
The data collection in the OHIE was done as follows: after excluding individuals below the age
of 19, above the age of 64, and individuals with residence outside of Oregon, 74,922 individuals
were considered for the lottery. Among those, 29,834 were selected randomly and were offered
participation in the program. Out of these, we randomly select n = 3000 data points.

Synthetic treatment and outcome generation. We define the empirical mean covariate

-2

and introduce two covariate-dependent shape functions:

1
p
1

p(x) = 3m(2)* +po,  g(z) = m()’,

where pg > 0 is a constant hyperparameter (in our experiments py = 0.5). The treatment is
randomized with constant propensity:

m(z)=P(A=1|X=2)=3,  A; ~Bernoulli() independently of X;.

We define the treatment c.d.f. as

0, y < 0,
Y(1) | X =2~ Unif([0, p(2)]),  Fily) = ﬁ 0<y < pla),
1, y > p(x).

For the control arm c.d.f., we define

Li(z) = —1g(z),  Lao(z)=3p(z)+ 1g(z),

and
07 y<L17
— L
pl, Li<y<Li+ip,
Fopa(y) = § 3> Li+3p <y < Lo,
— L
%+yp27 Ly <y<Ly+3p,
1, y>L2+%P7

where, for brevity, L; = L;(z) and p = p(z).

To couple Y (1) and Y'(0) while preserving the marginals above, we draw (Uy, Up) from a Gumbel
copula Cy with § = 5 (dimension 2), and set

Y(1) = Fx(Uh),  Y(0) = Fyx (Vo).

Finally, the observed outcomeis Y = AY (1) + (1 — A) Y(0).

’Data available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-
experiment

31



Under review as a conference paper at ICLR 2026

Quantifying margin violations. The c.d.f. difference D, (y) = Fi|,(y) — Fy).(y) again admits two
plateaus attaining the supremum and infemum, thus violating the margin assumption for both lower
and upper bound.

For0 <y < 1p— 1g. the left plateau is

y _y—L Ly g
Dyy) = L0t o 2o
p p p dp
with an associated width of Wy, (z) = g - %
For %p + ig < y < p, the right plateau is
1
Yy (1, ¥~ Le Ly —3p g
D) = U (14 Vly Sl o
p o \? p p 4p
with a width of Wi (z) = g — % The average widths are given via

E[W1.(X)] = E[Wr(X)] = E[ (500 + £ (m(X)? - m(X)")). .

Hence, the widths of the plateaus and thus also the degrees of margin violations increasing in pg.
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I ADDITIONAL EXPERIMENTS

I.1

(SEMI)-SYNTHETIC DATA

Here, we report full results for the synthetic and semi-synthetic datasets from Appendix [G] and
Appendix [H|for a range of parameters  (synthetic) and p (semi-synthetic) to complement the results
from Tabl% Recall that increasing vy decreases margin violation, while higher p increase margin
violation. The results for all methods are bound types are reported in Fig[3] For both datasets, larger
margin violation leads to a larger gap between our method and the baselines. Importantly, our

method consistently outperforms the baselines.
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Figure 3: Results for synthetic and semi-synthetic data over a range of parameters quantifying margin
violation.

1.2 TWINS DATASET

Here, we use the binary outcome TWINS dataset from [Louizos et al.|(2017). The covariates X are
measurements and demographic attributes of various twin pairs below 2000 grams. The treatment A
is being born as the heavier twin, and the outcome Y denotes infant mortality within the first year
of life. As both counterfactual outcomes are observed, we can estimate the ground-truth treatment
effect c.d.f., which we plot along the estimated Makarov bounds in Fig[l] We see that the estimated
bounds are tight and cover the ground-truth treatment effect c.d.f. , thus confirming the validity of our
estimator.
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Figure 4: Estimated bounds and treatment effect c.d.f. for the TWINS dataset.
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.3 ADDITIONAL RESULTS FOR CONSUMER COMPANY A/B TESTS
In Figure[5] we compare both the results of our smoothed estimator with the results of the envelope

baseline. The upper Makarov bound estimates mostly coincide, however, our estimator is more
conservative and estimates a smaller lower bound than the baseline. As our estimator is obtained by
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minimizing MSE over various smoothing parameters (including the special case of large smoothing
parameters coinciding with the envelope), this indicates that the ground-truth Makarov bound is
smaller than the envelope estimate. In particular, this may indicate envelope estimator is too confident
and may undercover the ground-truth treatment effect c.d.f. , leading to potentially wrong conclusions.
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Figure 5: Estimated bounds and confidence intervals for Experiment 1.
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