
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LORA-SWITCH: BOOSTING THE EFFICIENCY OF DY-
NAMIC LLM ADAPTERS VIA SYSTEM-ALGORITHM CO-
DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent literature has found that an effective method to customize or further improve
large language models (LLMs) is to add dynamic adapters, such as low-rank
adapters (LoRA) with Mixture-of-Experts (MoE) structures. Though such dynamic
adapters incur modest computational complexity, they surprisingly lead to huge
inference latency overhead, slowing down the decoding speed by 2.5+ times. In
this paper, we analyze the fine-grained costs of the dynamic adapters and find
that the fragmented CUDA kernel calls are the root cause. Therefore, we propose
LoRA-Switch, a system-algorithm co-designed architecture for efficient dynamic
adapters. Unlike most existing dynamic structures that adopt layer-wise or block-
wise dynamic routing, LoRA-Switch introduces a token-wise routing mechanism.
It switches the LoRA adapters and weights for each token and merges them into
the backbone for inference. For efficiency, this switching is implemented with an
optimized CUDA kernel, which fuses the merging operations for all LoRA adapters
at once. Based on experiments with popular open-source LLMs on common
benchmarks, our approach has demonstrated similar accuracy improvement as
existing dynamic adapters, while reducing the decoding latency by more than 2.4
times.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in language understanding
and generation. To customize the pretrained models to vertical domains or further enhance their
capabilities, various adapter techniques such as Low-Rank Adapters (LoRA) (Hu et al., 2021),
LLaMA-Adapter (Zhang et al., 2023), and Prompt Tuning (Lester et al., 2021) have been employed
with great success. These methods are acclaimed for boosting the accuracy of LLM without extensive
training, thus facilitating efficient model customization and performance enhancement. Among these,
dynamic adapters (Feng et al., 2024; Gou et al., 2024; Liu et al., 2023a; Luo et al., 2024) represent an
even more potent strategy to augment the capacity of adapters. By integrating conditionally computed
lightweight adapters into the pretrained model, dynamic adapters allow for selective fine-tuning of
adapter parameters. This technique not only maintains the original strengths of the model but also
substantially increases its adaptability and capacity.

However, we found that despite the relatively minor impact of dynamic adapters on parameter size
and computing complexity (typically adding only 1-5% of the origin model), they may introduce
significant latency overhead. For instance, the dynamic adapters that we studied all increase decoding
inference latency by 250-950%. The seemingly modest computational complexity of the low-rank
matrices employed results in substantial extra CUDA kernel execution latency, surpassing that of
models without dynamic adapters. This dramatic increase in latency is primarily attributed to the
prolonged execution time of context operations during CUDA kernel runs, which considerably
exceeds the actual computation time. Dynamic adapters often require four or more additional CUDA
kernel calls for each layer, in stark contrast to just a single call needed for the forward computation of
the original backbone matrix. This excessive number of context operations substantially amplifies the
latency overhead, leading to a severe escalation of inference latency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Reducing the inference latency overhead of dynamic adapters is challenging. Existing dynamic
adapters (Dou et al., 2024; Feng et al., 2024; Gao et al., 2024; Gou et al., 2024; Li et al., 2024; Liu
et al., 2023a; Luo et al., 2024; Wu et al., 2024a; Yang et al., 2024) adopt block-wise or layer-wise
routing structures, where activated LoRA adapters must be computed separately. If we were to
pre-merge activated LoRA adapters into the backbone weights for forward computation, akin to the
strategy employed by LoRA (Hu et al., 2021), it would fundamentally reduce the number of CUDA
kernel calls. However, this merging changes the parameters of the LLM model, and for the next input,
different adapters might be activated. Thus, after processing the current input, it becomes necessary
to unmerge the activated adapters from the LLM model that was altered. The routing dynamicity
involved in such merging processes becomes prohibitively costly. For instance, the widely adopted
dynamic adapter structure, the Mixture of Experts (MoE), determines the activated adapters based on
the output of the last layer. Each layer of dynamic adapters must then wait for its router to compute
the gating scores before it can proceed to merge the activated LoRA adapters. This fragmented
operational approach can inadvertently introduce even greater overhead costs.

Our approach to addressing the challenge is based on a holistic system-algorithm co-design. Specifi-
cally, we have developed a MoE-based dynamic adapters structure that facilitates token-wise adapter
routing. Each token is associated with k weighted paths of LoRA adapters, activated prior to the de-
coding of the token. This setup ensures that, although the model is enhanced with dynamic structures,
the inference process for each token remains relatively static due to the pre-determined adapters.
To further enhance the efficiency, we pre-merge the activated LoRA adapters into the pretrained
model’s backbone before each token’s decoding. This strategy fundamentally reduces the CUDA
kernel execution overhead, thereby significantly lowering latency. With this innovative setup, we have
re-engineered the inference process to seamlessly switch and merge adapters for each token, aligning
the process closely with the original pretrained LLM’s token decoding. Another pivotal component
of our system is the development of a fused CUDA kernel, named SGMM, which efficiently manages
the activated and inactivated adapters. This engineering solution ensures a smooth integration of
dynamic adapters, optimizing both performance and efficiency.

We evaluate our LoRA-Switch design across a range of benchmarks, comparing it against multiple
state-of-the-art dynamic adapter baselines. The experiment results demonstrate that our approach are
comparable with well-established strong baselines. Notably, our method significantly reduces the
running overhead associated with other dynamic adapter alternatives, achieving an average speedup
of 2.4 times in decoding latency.

In summary, our contributions are as follows:

• We uncover the high latency overhead introduced by dynamic adapters, which is a practical issue
usually neglected by existing approaches. We analyze the fundamental reasons behind such high
overhead, providing insights on the computational bottlenecks.

• We introduce a novel architecture for dynamic adapters, named LoRA-Switch. This design enhances
the capacity of LLM adapters while minimizing the latency overhead, thereby offering an optimal
balance between performance and efficiency.

• Through extensive experiments, we demonstrate that LoRA-Switch not only achieves accuracy on
par with existing dynamic adapters across a variety of general and domain-specific tasks, but it also
cuts down decoding inference latency by more than 2.4 times.

2 BACKGROUND AND MOTIVATION

2.1 DYNAMIC ADAPTERS

Given the strengths of both the Mixture of Experts (MoE) (Jiang et al., 2024; Shazeer et al., [n. d.];
Snowflake AI Research Team, 2024; The Mosaic Research Team, 2024; xAI, 2024) and Low-Rank
Adaptation (LoRA) (Hu et al., 2021), their integration has become a focal point of recent research
efforts. Recent studies (Feng et al., 2024; Gao et al., 2024; Gou et al., 2024; Liu et al., 2023a; Luo
et al., 2024) have explored combining these two techniques to further augment the capabilities of
large language models (LLMs). This integration leverages the scalability of MoE and the efficiency
of LoRA, proposing a promising pathway to meet the escalating demands for model performance and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

efficiency. Formally, the computation process of dynamic adapters can be formulated as Equation 1:

yl = f l(xl) +

N∑
i=1

Gl(xl)iE
l
i(x

l), (1)

where the superscript l means l-th layer, N represents number of adapters experts, Gl(xl) =
Softmax(TopK(W l

gx
l)) represents the top-k (typically top-2) router in the dynamic adapters block,

f l represents the pretrained backbone in l-th layer, and El(xl) = W l
up(W

l
down(x

l)) represents the
output of LoRA experts, where the matrix W l

g and W l
up/W

l
down are the trainable parameter matrix

of the router network and LoRA experts, respectively.

2.2 UNEXPECTED LATENCY OVERHEAD OF DYNAMIC ADAPTERS

Table 1: Inference cost of different dynamic adapters.

Method Decoding latency (ms/token) Parameter size (B) FLOPS (G)

Llama2-7B 2.4 6.74 6.61
MOLA (Gao et al., 2024) 25.3 (+954%) 7.07(+4.89%) 6.65(+0.61%)
PESC (Wu et al., 2024b) 8.5 (+254%) 6.97(+3.41%) 6.64(+0.45%)
MoRAL (Yang et al., 2024) 8.6 (+258%) 6.97(+3.41%) 6.67(+0.91%)

Although dynamic adapters can enhance accuracy and involve only a modest increase in parameter
size and computing complexity, they unfortunately introduce a substantial inference latency over-
head. We evaluate different dynamic adapters methods with Llama2-7B (Touvron et al., 2023a) on
ShareGPT (OpenChat, 2023) dataset for 50 queries one by one, and generate 200 new tokens for
each query. We report the decoding latency of processing the 50 queries. As demonstrated in Table 1,
existing methods involving dynamic adapters result in an approximate 1%-5% increase in parameter
count and less than a 1% increase in computing complexity measured in FLOPS. However, these
enhancements lead to a substantial increase in decoding latency, with overheads ranging from 200%
to 950%.

Pretrained
Backbone

Input token x

Adapters
Top-2
Router

Output y

...
0.03ms

0.05 ms/adapter

0.01ms

Total latency=0.03+0.05*2+0.01=0.14ms

Figure 1: Decoding phase execution time profiling of one dynamic adapters layer in MoRAL (Yang
et al., 2024). Note: The execution time results were preceded by a warm-up of 100 executions and
are obtained on the average of 300 executions.

To elucidate the sources of latency overhead introduced by dynamic adapters, we conducted a granular
analysis of latency within various components during the decoding phase. As illustrated in Figure 1,
it is evident that the execution time for the adapters (0.05ms) exceeds that of the pretrained backbone
(0.03ms). Despite the relatively modest computational complexity of the LoRA adapters employed in
dynamic configurations, each adapter necessitates dual launches of CUDA kernel context operations.
The execution time of these CUDA kernels does not correlate linearly with the size of the matrices
involved, leading to considerable latency in the adapter components. This, in turn, significantly
escalates the overall inference latency, highlighting a critical area for optimization in dynamic adapter
architectures. More profiling results can be found in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 CHALLENGE OF REDUCING LATENCY OVERHEAD OF DYNAMIC ADAPTERS

A straightforward way to reduce inference latency overhead is to reduce the times of CUDA kernel
context operations. Like LoRA (Hu et al., 2021), one couple pre-merge adapters into the original
matrix and then perform token decoding computation. We implement this simple strategy in MoRAL
by directly merging activated adapters layer by layer before computing, although it decreases the
number of CUDA kernel launches. However, the additional operations introduced higher latency,
where the decoding latency is 4.5 ms/token, which is still 88% higher than the original LLM model.
This is because merging a LoRA adapter into the backbone matrix requires an additional invocation
of a CUDA kernel to perform the matrix multiplication for the up and down projections. Due to these
inherent computational complexities, optimizing the existing structure of dynamic adapters further is
challenging.

To effectively leverage the structure of dynamic adapters, we introduce LoRA-Switch. Unlike the
existing layer-wise or block-wise dynamic routing mechanisms, our approach LoRA-Switch utilizes
token-wise routing strategy, which fundamentally reduces the number of CUDA kernel calls, thereby
reducing decoding inference latency.

3 DESIGN OF LORA-SWITCH

Fused adapter
switching Pretrained

 Backbone

Input token x

Top-2
Router

Output y

Adapters

x L

Fused
Backbone

Input token x

Top-2
Router

Output y

x L

Adapters

SGMM
kernel

(a) Finetuning phase (b) Decoding phase

Figure 2: Overview of LoRA-Switch.

3.1 OVERVIEW

As shown in Figure 2, given a pre-trained LLM, we first extend it with LoRA-Switch to enhance
its model capacity and then finetune it on either general or domain-specific datasets. During the
decoding phase, each token is initially processed through a router to compute the gating for each
layer. Then we implemented an SGMM kernel that facilitates fast fused adapter switching. This
advanced functionality enables the rapid merging of activated adapters into the backbone and the
efficient unmerging of inactivated adapters from the backbone, significantly reducing the number
of CUDA kernel calls. This process ensures that the decoding speeds are comparable to those of a
origin pretrained model, optimizing performance without compromising efficiency.

3.2 MODEL STRUCTURE

In LoRA-Switch, we extend adapters only in the linear layers of the pre-trained backbone, and we
insert a Top-2 router G1 only at the first expanded linear layer.

Finetuning phase. As shown in Figure 2 (a), during fine-tuning, the computation process of LoRA-
Switch can be written as Equation 2:

yl = f l(xl) +
N∑
i=1

G1(x1)iE
l
i(x

l), (2)

where LoRA-Switch only replaces the Gl(xl) with G1(x1) in Equation 1, where x1 denotes the input
in the first expanded linear layer. LoRA-Switch employs a token-wise pre-gated LoRA structure,
meaning that the routing weights for all layer adapters are identical. This design not only preserves
the model’s dynamicity but also facilitates latency optimization during inference.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Decoding phase. As depicted in Figure 2 (b), LoRA-Switch leverages the token-wise pre-gated
structure to reduce latency during the decoding phase. During the decoding phase of LLM generation,
where the input x is a single token, the Top-2 router G1 determines which experts’ adapters are
activated. Then the activated experts will be merged into pretrained backbone. Finally, The fused
backbone perform forward process and the decoding computation can be written as Equation 3:

yl = f l
∗(x

l) (3)

To efficiently calculate f l
∗ for all layers, we propose to perform fused adapter switching (Section 3.3)

with the SGMM (Section 3.4) kernel, which merge the parameters of all activated experts adapters
across all layers into the original parameters of pretrained model in a single CUDA kernel operation.
Finally, the fused backbone execute just like the initial pretrained backbone as shown in Equation 3.
This streamlined integration significantly enhances the efficiency of the decoding process.

Prefilling phase. The latency of LoRA-Switch during the prefilling phase is comparable to that of
existing dynamic adapters. For the prefilling phase, we have not implemented specific optimizations,
as the latency in the LLM generation stage primarily originates from the decoding phase.

3.3 FUSED ADAPTER SWITCHING

To calculate f l
∗ = f l +

∑N
i=1 G

1(x1)iE
l
i according to Equation 1 and Equation 2, we may merge

multiple experts adapters into backbone because one input token may activate multiple adapters
(typically Top-2). The experts in LoRA-Switch are LoRA adapters, which contain down projection
LoRA_DOWN and up projection LoRA_UP. Then we can compute f l

∗ as Euquation 4:

f l
∗ = f l +

N∑
i=1

G1(x1)i · (LoRA_DOWNl
i × LoRA_UPl

i), (4)

We only need to invoke the CUDA kernel k times instead of N times, as G1(x1) specifically targets
the top-k selections. To further reduce the number of CUDA kernel calls, we concatenate all LoRA
adapters before merging them into the original model parameters as Equation 5:

LoRA_DOWNl = concat([G1(x1)i · LoRA_DOWNl
i, i = 1, ..., N]),

LoRA_UPl = concat([LoRA_UPl
i, i = 1, ..., N]). (5)

Thus, we can merge the concatenated LoRA adapters into origin backbone as Equation 6:

f l
∗ = f l + LoRA_DOWNl × LoRA_UPl. (6)

Although Equation 4, Equation 5, and Equation 6 enable a reduction in CUDA kernel calls, they
necessitate the storage of f l to compute f l

∗, which approximately doubles the GPU memory overhead.
We observe that during the decoding phase, the activated adapters varying from one token to the
next. A simple way to obtain f l is to unmerge the activated adapters by the last token in the current
iteration as Equation 7

f l = (f l
∗)

t−1 − (LoRA_DOWNl)t−1 × (LoRA_UPl)t−1, (7)

where the superscript (t− 1) denotes the operations from the last input iteration. Then Equation 6
and Equation 7 can be rewritten as Equation 8

(f l
∗)

t = (f l
∗)

t−1 − (LoRA_DOWNl)t−1 × (LoRA_UPl)t−1

+ (LoRA_DOWNl)t × (LoRA_UPl)t. (8)

Then we concatenate the activated adapters of current input and inactivated adapters of last input as
Equation 9:

Fused_LoRA_DOWNl = concat([−(LoRA_DOWNl)t−1, (LoRA_DOWNl)t]),

Fused_LoRA_UPl = concat([−(LoRA_UPl)t−1, (LoRA_UPl)t]). (9)

So the concatenated LoRA adapter switching operation can be rewritten from Equation 8 to Equa-
tion 10:

(f l
∗)

t = (f l
∗)

t−1 + Fused_LoRA_DOWNl × Fused_LoRA_UPl. (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To calculate Equation 10, we utilize our efficiently designed CUDA kernel, SGMM, to seamlessly
integrate these fused adapters into the pretrained LLM backbone for all layers with only one CUDA
kernel call.

Finally, the whole decoding process of LoRA-Switch are shown in Algorithm 1.

Algorithm 1 The token decoding process of LoRA-Switch.

Inputs: x: input token at time t, and all model parameters.
Outputs: Logits prediction of the next token.

1: Calculate G1(x1) as Equation 2.
2: Concatenate current activated adapters as Equation 5.
3: Concatenate activated and inactivated adapters as Equation 9.
4: Perform fused adapter switching with SGMM as Equation 10.
5: Execute model forward as Equation 3 and obtain next token logits prediction.
6: Return logits prediction.

3.4 SGMM KERNEL

The straight-forward way to merge the LoRA adapter into the backbone is to merge them layer by
layer. This approach requires multiple calls to the CUDA kernel, which introduces additional latency
due to kernel launches. Moreover, smaller kernel computations underutilize GPU thread blocks,
leading to a low GPU throughput. We observe the layer-by-layer merging operations can be handled
concurrently and introduce a CUDA kernel called Segmented Gather Matrix Multiplication (SGMM)
to finally handle the merging of LoRA adapters of LoRA-Switch, adapted from the concept of SGMV
proposed by Punica (Chen et al., 2023).

SGMM is designed to execute a batched GEMM operations, which can be summarized by the
following Equation 11:

f∗ = f + Fused_LoRA_DOWN × Fused_LoRA_UP, (11)

where f∗ is the resultant updated matrix of the backbone; f is the original weight matrix of the
backbone; Fused_LoRA_DOWN and Fused_LoRA_UP are the adapter matrices for weight matrix
f . The addition operation within the SGMM kernel is performed in place, significantly reducing the
additional memory overhead. This optimization ensures that memory usage is minimized, enhancing
the overall computational efficiency of our system.

When wrapping these operations into a single CUDA kernel, taking full advantage of the GPU’s com-
putational resources is challenging. Each thread block should be fully utilized, and the computational
load needs to be balanced across them. To achieve this, we divide the matrix multiplication into
multiple GEMM tiles and assign them to different thread blocks. On the other hand, these thread
blocks must switch context with global memory/shared memory frequently, thus causing significant
latency. To tackle this, we adopt a pre-fetch buffer mechanism to hide loading latency. It fetches data
from higher-level memory before the next matrix operation to boost memory access efficiency.

The input parameters for SGMM are arrays of pointers to the LoRA matrices and the backbone
matrices, which respectively store the corresponding entries of each layer’s LoRA matrix and the
shape of each matrix segment. When launching the kernel, SGMM applies as many thread blocks as
possible and divides the large matrix multiplication into multiple GEMM tiles of the same shape,
with each tile operating matrix computation. Based on the input pointers and shapes of the original
matrices, SGMM calculates the address and size of each tile in global memory and assigns each
of them to a thread block. The optimal tiling scheme related to hardware is selected to ensure the
full utilization of each thread block. To hide the loading latency of tile switching, SGMM uses two
buffers in shared memory and CUDA core registers, respectively; one for the current tile’s matrix
computation and the other for pre-fetching the next tile’s data into the buffer. This design stems from
the same shape of sequential tiles, which makes us able to predict the next tile to be processed. In
our methodology, thread blocks are executed concurrently, facilitating the simultaneous processing
required for our computational tasks. This parallel execution enables the efficient merging and
unmerging of LoRA weights, a critical operation in our approach.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EVALUATION

In this section, we present the experimental results to show the superiority of the proposed LoRA-
Switch in accuracy and runtime efficiency performance.

4.1 EXPERIMENT SETUP

Datasets/benchmarks. To demonstrate the proposed LoRA-Switch could augment general ability of
LLM, we follow PESC (Wu et al., 2024b) and simultaneously fine-tuned the model on a diverse set of
skills, including encompassing coding, mathematical, and other general abilities from various subjects.
This training involved integrating three distinct datasets from varied domains during the instruction
tuning phase: SlimORCA (Lian et al., 2023), Magicoder (Wei et al., 2023), and MetaMathQA (Yu
et al., 2023) datasets. We utilize LM-Eval-Harness (Gao et al., 2023) as tool to evaluate general
ability on ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2021), TruthfulQA (Lin et al., 2022), WinoGrande (Sakaguchi et al., 2019), and MT-Bench (Zheng
et al., 2023) benchmarks and report the accuracy.

Also, to demonstrate the proposed LoRA-Switch could improve domain specific ability of LLM,
we follow MoLA (Gao et al., 2024) and fine-tuned the model on downstream task. We evaluate
three recent question-answering benchmarks, including ScienceQA(Lu et al., 2022), Common-
senseQA(Talmor et al., 2019), and OpenbookQA(Mihaylov et al., 2018). We follow the task-specific
fine-tuning framework to evaluate their effectiveness.

To evaluate runtime efficiency performance of LoRA-Switch, we utilize real-world sharegpt (Open-
Chat, 2023) dataset to simulate user queries, which is used in many LLM serving frameworks (Cai
et al., 2024; Kwon et al., 2023; Miao et al., 2024). We serve 50 queries from sharegpt dataset one by
one, and generate 200 new tokens for each query. Finally, we report the inference time of processing
the 50 queries.

Baselines. We compare LoRA-Switch with four PEFT approaches, including LoRA (Hu et al., 2021),
layer-wise gating dynamic adapters like MoRAL (Yang et al., 2024) and MOLA (Gao et al., 2024),
and block-wise gating dynamic adapters PESC (Wu et al., 2024b). We also compare full-parameter
fine-tuning. Due to the extensive fine-tuning requirements of both the MoLA and Full-Parameter
methods, which necessitate over a week of training in general LLM tasks, we find this duration to be
impractical. Consequently, we have opted not to include these methods in the comparisons within
general task comparison. We use LLama2-7B (Touvron et al., 2023b) and Mistral-7B (Jiang et al.,
2023) as the pretrained base LLM, which is the default base model for most dynamic adapters.

Implementation Details. For general tasks, we set the number of experts as 8 and LoRA rank
as 64 for all dynamic adapters methods, and LoRA alpha is set to 16 and LoRA dropout is 0.05,
following the default LoRA settings.. The models underwent instruction tuning for one epoch with
about 12 hours. We use a constant learning rate schedule with a warm-up ratio of 0.03, and the paged
AdamW (Dettmers et al., 2023; Loshchilov and Hutter, 2019) optimizer with a learning rate of 2e-4,
no weight decay, a batch size of 256, and a sequence length of 512 tokens. For domain specific tasks,
the number of experts is 8 and the rank of each LoRA expert is also 8, and we adopt top-2 for the
router. LoRA alpha is set to 16 and LoRA dropout is 0.05, following the default LoRA settings. we
trained 20 epochs for downstream task fine-tuning about 6 hours. We use AdamW (Loshchilov and
Hutter, 2019) as the optimizer with a learning rate of 3e-4. The cutoff length is set to 256 and the
batch size is 128. For LoRA baseline, We applied it to four weight matrices in the self-attention
module (Wq , Wk, Wv , Wo) and three weight matrices in the MLP module (Wgate, Wdown, Wup).
All the fine-tuning tasks were conducted on the servers with eight A100-80GiB GPUs. For runtime
performance evaluation, we use one A100-80GiB GPU as serving server.

4.2 ACCURACY COMPARISON

4.2.1 IMPROVING GENERAL CAPABILITY OF LLM

As depicted in Table 2, our approach considerably enhances the ability of LLMs to perform on
general tasks. On average, our method achieves an accuracy of 60.12%, which is an improvement
of approximately 0.5% over traditional LoRA fine-tuning techniques. Furthermore, our method’s
performance is highly competitive with existing dynamic adapters, trailing the average accuracy

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of the MoRAL method by a mere 0.1%. The accuracy of all dynamic adapter methods not only
surpasses that of the standard LoRA approach but is also significantly higher than that of the un-tuned
Llama2-7B model, affirming the effectiveness of dynamic adapters in boosting LLM performance.

Moreover, detailed evaluation on individual datasets reveals that our method surpasses LoRA on
the ARC, HellaSwag, MMLU, TruthfulQA, and Winogrande datasets. Notably, when compared to
other dynamic adapters, LoRA-Switch achieves the highest accuracy on the MMLU and TruthfulQA
datasets, highlighting its substantial potential and robust performance.

Table 2: Accuracy of incremental training achieved with different dynamic adapters.

Method ARC HellaSwag MMLU TruthfulQA Winogrande Avg

Llama2-7B (base) 51.71 77.74 48.30 45.31 72.45 59.10
LoRA 51.79 77.02 50.46 45.13 73.80 59.64
MoRAL (layer-wise) 52.13 77.57 51.10 45.93 74.35 60.22
PESC (block-wise) 53.58 77.27 51.07 46.04 74.27 60.45
LoRA-Switch (ours) 52.39 77.60 51.15 46.15 73.32 60.12

Table 3: Accuracy of incremental training achieved with different dynamic adapters on MT Bench

Methods MT Bench score

Llama2-7B (base) 6.07
LoRA 6.13
LoRA-Switch 6.25
MoRAL 6.26
PESC 6.28

Table 4: Accuracy of domain-specific fine-tuning achieved with different dynamic adapters on
Llama2-7B.

Methods ScienceQA CommonsenseQA OpenbookQA Avg

Llama2-7B (base) 53.19 47.82 45.80 48.94
Full-Parameter 93.12 77.48 80.40 83.67
LoRA 91.01 75.51 77.00 81.17
MoLA (layer-wise) 91.91 77.89 82.80 84.20
MoRAL (layer-wise) 90.74 76.41 76.60 81.25
PESC (block-wise) 90.02 76.00 78.40 81.47
LoRA-Switch (ours) 91.39 79.03 80.40 83.60

4.2.2 DOMAIN-SPECIFIC CUSTOMIZATION

Table 4 and Table 5 illustrates that our method markedly enhances LLM performance on specific
downstream tasks. Achieving an average accuracy of 83.58% on Llama2-7B, our approach shows a
notable improvement of 2.41% over traditional LoRA fine-tuning. Additionally, the performance
of our method remains highly competitive with other dynamic adapters, only slightly trailing the
average accuracy of the MoLA method by 0.62%.

This demonstrates the dynamic adapters’ ability to significantly outperform both the standard LoRA
method and the un-tuned Llama2-7B model, thereby verifying their effectiveness in refining the
performance of large language models. Our method also demonstrates resilience by achieving an
accuracy marginally lower by only 0.09% compared to Full-Parameter fine-tuning, further underlining
the efficacy of our proposed approach.

Further analysis on individual datasets shows our method outperforming LoRA on the ScienceQA,
CommonsenseQA, and OpenbookQA datasets. Our approach also achieves the highest accuracy on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Accuracy of domain-specific fine-tuning achieved with different dynamic adapters on
Mistral-7B.

Methods ScienceQA CommonsenseQA OpenbookQA Avg

Mistral-7B (base) 62.24 58.93 57.8 59.66
LoRA 94.15 79.85 84.2 86.06
MoRAL (layer-wise) 93.79 81.57 85.8 87.05
PESC (block-wise) 94.33 80.46 86.4 87.06
LoRA-Switch (ours) 93.82 81.29 86.6 87.24

the CommonsenseQA dataset when compared with other dynamic adapters, emphasizing both the
substantial potential and the robust performance of LoRA-Switch.

These findings solidify the effectiveness of our proposed dynamic adapter strategy, making a com-
pelling case for its adoption in enhancing the capabilities of LLMs across varied downstream tasks
and domains.

4.3 RUNTIME PERFORMANCE

As reported in Table 6, we have evaluated the inference latency and peak GPU memory usage of our
method and various baseline methods on the ShareGPT dataset in response to user queries. The results
show that our method exhibits significantly lower decoding latency compared to all other dynamic
adapter methods, being 2.7 times faster than the previously fastest method, PESC. Furthermore, our
method’s decoding latency is less than 30% higher than that of the original Llama2-7B model.

Overall, all dynamic adapter methods introduce additional decoding latency, ranging from 250% to
900%. MOLA exhibits the highest latency due to the incorporation of dynamic adapters at every
linear layer within the model, resulting in a substantial number of required CUDA GEMM operations.
In contrast, methods like PESC and MoRAL, which only add dynamic adapters to each MLP layer,
demonstrate considerably lower decoding latency compared to MOLA.

Table 6: Latency and memory overhead of different dynamic adapters.

Method Decoding latency (ms/token) Peak Memory (GiB)

Llama2-7B 2.4 12.9
MOLA (layer-wise) 25.3 (+954%) 26.3 (+104%)
PESC (block-wise) 8.5 (+254%) 13.1 (+2%)
MoRAL (layer-wise) 8.6 (+258%) 13.3 (+3%)
LoRA-Switch (ours) 3.1 (+29%) 13.8 (+7%)

Regarding peak GPU memory usage, the implementations of PESC, MoRAL, and LoRA-Switch
exhibit only a modest increase of 2%-7% compared to the original Llama2-7B model. This indicates
that our newly proposed dynamic adapter structures have minimal requirements for GPU memory. In
contrast, MOLA exhibits significantly higher GPU memory consumption, which can be attributed to
the extensive number of dynamic adapters it incorporates internally. This difference highlights the
efficiency of our approach in managing hardware resources while maintaining performance.

4.4 ABLATION STUDY

In our initial experiments, we rigorously assess the influence of diverse adapter configurations on the
fine-tuning accuracy of our system, henceforth referred to as LoRA-Switch. The empirical results
consistently demonstrate that LoRA-Switch significantly outperforms the baseline Llama2-7B model
across a variety of adapter setups such as adjustments of the LoRA adapter rank, the number of
adapter experts, and Top-K routing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Further investigation is conducted into the individual contributions of the components within LoRA-
Switch. Notably, the experimental findings reveal a substantial increase in latency when the fused
adapter switching mechanism is omitted, underscoring the efficacy of our proposed approach.

More details can be found in Appendix B.

5 RELATED WORK

Parameter efficient fine-tuning (PEFT). PEFT stands out as the optimal approach for fine-
tuning pretrained large language models (LLMs). Among the myriad of popular techniques are
Adapters (Houlsby et al., 2019), Prefix Tuning (Li and Liang, 2021), Prompt Tuning (Lester et al.,
2021), P-tuning (Liu et al., 2023b), and LoRA (Hu et al., 2021), each offering unique advantages.
This paper specifically explores the efficacy of LoRA, which has demonstrated superior performance
and have the most efficient inference performance.

Dynamic adapters. Existing dynamic adapters can be categorized based on their gating strategies
into block-wise and layer-wise types, where adapters are added either to every block or to every
layer, respectively. Block-wise methods such as MOLA (Gao et al., 2024), MoELoRA (Luo et al.,
2024), MoCLE (Gou et al., 2024), and MOELoRA (Liu et al., 2023a) integrate adapter branches
within a single Transformer block. Conversely, layer-wise approaches like MoRAL (Yang et al.,
2024), PESC (Wu et al., 2024b), and LoRAMoE (Dou et al., 2024) incorporate adapters within the
MLP’s linear layers. While these methods introduce a minimal amount of parameters, they typically
result in high inference latency. In contrast, our work introduces LoRA-Switch, a novel token-wise
dynamic adapter approach that effectively integrates with system optimizations to significantly reduce
inference latency. This innovation represents a substantial improvement over traditional dynamic
adapter configurations.

6 CONCLUSION

This paper addresses the significant challenge of inference latency in dynamic adapters for large
language models (LLMs). Through a comprehensive analysis, we have identified the underlying
factors contributing to increase latency in traditional block-wise and layer-wise adapter models. Our
proposed solution, LoRA-Switch, introduces a novel token-wise dynamic adapter configuration that
leverages system-level optimizations to dramatically reduce inference latency without compromising
the model’s adaptability and performance. The effectiveness of LoRA-Switch has been validated
through rigorous experiments, demonstrating substantial improvements in efficiency across both
general and domain-specific datasets. These findings not only enhance our understanding of dynamic
adapter architectures but also set a new benchmark for future research in efficient LLM tuning.

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774 (2024).

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. 2023.
Punica: Multi-Tenant LoRA Serving. arXiv:2310.18547 [cs.DC]

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. 2018. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. ArXiv abs/1803.05457 (2018).

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. QLoRA: Efficient
Finetuning of Quantized LLMs. arXiv:2305.14314 [cs.LG]

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2024. LoRAMoE: Alleviate World Knowledge Forgetting in Large Language Models via
MoE-Style Plugin. arXiv:2312.09979 [cs.CL]

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. 2024. Mixture-of-LoRAs: An
Efficient Multitask Tuning for Large Language Models. arXiv:2403.03432 [cs.CL]

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang,
Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. 2024. Higher Layers Need More LoRA Experts.
arXiv:2402.08562 [cs.CL]

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2023. A framework for few-shot
language model evaluation. https://doi.org/10.5281/zenodo.10256836

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T.
Kwok, and Yu Zhang. 2024. Mixture of Cluster-conditional LoRA Experts for Vision-language
Instruction Tuning. arXiv:2312.12379 [cs.CV]

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Massive Multitask Language Understanding. Proceedings of the
International Conference on Learning Representations (ICLR) (2021).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-Efficient Transfer Learning for
NLP. arXiv:1902.00751 [cs.LG]

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models. ArXiv abs/2106.09685
(2021). https://api.semanticscholar.org/CorpusID:235458009

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
2024. Mixtral of experts. arXiv preprint arXiv:2401.04088 (2024).

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory Management for Large Language
Model Serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691 (2021).

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and
Mingjie Tang. 2024. MixLoRA: Enhancing Large Language Models Fine-Tuning with LoRA
based Mixture of Experts. arXiv:2404.15159 [cs.CL]

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
arXiv:2101.00190 [cs.CL]

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and
"Teknium". 2023. SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces,
with Verification. https://https://huggingface.co/Open-Orca/SlimOrca

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. TruthfulQA: Measuring How Models Mimic Hu-
man Falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Dublin, Ireland,
3214–3252. https://doi.org/10.18653/v1/2022.acl-long.229

11

https://doi.org/10.5281/zenodo.10256836
https://api.semanticscholar.org/CorpusID:235458009
https://https://huggingface.co/Open-Orca/SlimOrca
https://doi.org/10.18653/v1/2022.acl-long.229

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
2023a. Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical
applications. arXiv preprint arXiv:2310.18339 (2023).

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2023b.
GPT Understands, Too. arXiv:2103.10385 [cs.CL]

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
arXiv:1711.05101 [cs.LG]

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Pe-
ter Clark, and Ashwin Kalyan. 2022. Learn to Explain: Multimodal Reasoning via Thought Chains
for Science Question Answering. In The 36th Conference on Neural Information Processing
Systems (NeurIPS).

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. 2024.
MoELoRA: Contrastive Learning Guided Mixture of Experts on Parameter-Efficient Fine-Tuning
for Large Language Models. arXiv:2402.12851 [cs.CL]

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen,
Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. 2024. SpecInfer: Accelerating Large Lan-
guage Model Serving with Tree-based Speculative Inference and Verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’24). ACM. https://doi.org/10.1145/
3620666.3651335

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a Suit of Armor
Conduct Electricity? A New Dataset for Open Book Question Answering. In EMNLP.

OpenChat. 2023. ShareGPT4 Dataset. Hugging Face Datasets. https://huggingface.co/
datasets/openchat/openchat_sharegpt4_dataset/blob/main/sharegpt_
clean.json Accessed: 2024-05-11.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. WinoGrande: An
Adversarial Winograd Schema Challenge at Scale. arXiv preprint arXiv:1907.10641 (2019).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. [n. d.]. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer. In International Conference on Learning Representations.

Snowflake AI Research Team. 2024. Snowflake Arctic: The Best LLM for Enterprise
AI — Efficiently Intelligent, Truly Open. https://www.snowflake.com/blog/
arctic-open-efficient-foundation-language-models-snowflake/. Ac-
cessed on April 26, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A
Question Answering Challenge Targeting Commonsense Knowledge. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran,
and Thamar Solorio (Eds.). Association for Computational Linguistics, Minneapolis, Minnesota,
4149–4158. https://doi.org/10.18653/v1/N19-1421

The Mosaic Research Team. 2024. Introducing dbrx: A New State-of-the-Art Open LLM. https://
www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm.
Accessed on April 26, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. 2023a. LLaMA: Open and Efficient Foundation
Language Models. arXiv:2302.13971 [cs.CL]

12

https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/blob/main/sharegpt_clean.json
https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/blob/main/sharegpt_clean.json
https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/blob/main/sharegpt_clean.json
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://doi.org/10.18653/v1/N19-1421
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023b. Llama 2: Open Foundation and Fine-Tuned
Chat Models. ArXiv abs/2307.09288 (2023). https://api.semanticscholar.org/
CorpusID:259950998

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. 2023. Magicoder: Source
Code Is All You Need. arXiv preprint arXiv:2312.02120 (2023).

Haoyuan Wu, Haisheng Zheng, and Bei Yu. 2024a. Parameter-Efficient Sparsity Crafting from Dense
to Mixture-of-Experts for Instruction Tuning on General Tasks. arXiv:2401.02731 [cs.AI]

Haoyuan Wu, Haisheng Zheng, and Bei Yu. 2024b. Parameter-Efficient Sparsity Crafting from Dense
to Mixture-of-Experts for Instruction Tuning on General Tasks. arXiv preprint arXiv:2401.02731
(2024).

xAI. 2024. Open release of grok-1. https://x.ai/blog/grok-os

Shu Yang, Muhammad Asif Ali, Cheng-Long Wang, Lijie Hu, and Di Wang. 2024. MoRAL: MoE
Augmented LoRA for LLMs’ Lifelong Learning. arXiv preprint arXiv:2402.11260 (2024).

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. MetaMath: Bootstrap Your Own Mathematical
Questions for Large Language Models. arXiv preprint arXiv:2309.12284 (2023).

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a Machine Really Finish Your Sentence?. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. 2023. Llama-adapter: Efficient fine-tuning of language models with
zero-init attention. arXiv preprint arXiv:2303.16199 (2023).

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi
Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023.
Judging LLM-as-a-judge with MT-Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]

A PROFILING LATENCY OVERHEAD OF DYNAMIC ADAPTERS

To meticulously investigate how the inference latency of LoRA adapters and the pretrained backbone
varies with increasing computational demands, we conducted tests across different input sequence
lengths and examined the relationship between adapter rank and inference latency.

As shown in Figure 3, regardless of whether it is during the prefilling or decoding phase, and
irrespective of the LoRA ranks being high or low, the latency of the LoRA adapters consistently
exceeds that of the backbone. This phenomenon is primarily attributed to the number of CUDA
kernel calls rather than the computing complexity involved in each call. The underlying reason is that
the latency associated with CUDA kernel calls does not scale linearly with computing complexity.
This insight highlights a crucial aspect of system behavior that significantly impacts the performance
of dynamic adapters.

13

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://x.ai/blog/grok-os

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

8 16 32 64
LoRA Ranks

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(m

s)

LoRA up_proj time
LoRA down_proj time
Backbone matrix time

(a) Prefilling phase: sequence length is 100.

8 16 32 64
LoRA Ranks

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(m

s)

LoRA up_proj time
LoRA down_proj time
Backbone matrix time

(b) Decoding phase: sequence length is 1.

Figure 3: Latency breakdown of one dynamic adapter layer under different settings.

B ABLATION STUDY EXTENSION

B.1 ABLATION STUDY ON MODEL PERFORMANCE

Firstly, we explore the impact of various adapter configurations on the fine-tuned accuracy of LoRA-
Switch. We experimented with four modified configurations: a) Setting the number of experts per
layer to 16; b) Setting the rank of each LoRA expert to 16; c) Setting the rank of each LoRA expert
to 32; d) Changing the Top-2 routing to Top-1 routing. Experiments were conducted on both general
and domain-specific tasks.

Table 7: Ablation study on general LLM ability improvements of LoRA-Switch.

Method ARC HellaSwag MMLU TruthfulQA Winogrande Avg

LLama2-7B 51.71 77.74 48.30 45.31 72.45 59.10
LoRA-Switch (16 expert) 51.71 77.34 50.42 45.33 73.95 59.75
LoRA-Switch (r=32) 51.11 77.16 50.30 44.63 73.01 59.24
LoRA-Switch (r=16) 51.28 76.91 49.82 43.95 74.11 59.21
LoRA-Switch (Top-1) 52.65 77.33 50.69 45.07 73.56 59.86
LoRA-Switch (origin) 52.39 77.60 51.15 46.15 73.32 60.12

Table 8: Ablation study on Domain specific LLM ability improvements of LoRA-Switch.

Methods ScienceQA CommonsenseQA OpenbookQA Avg

Llama2-7B 53.19 47.82 45.80 48.94
LoRA-Switch (16 expert) 92.09 76.90 77.60 82.20
LoRA-Switch (r=32) 89.93 77.23 79.60 82.25
LoRA-Switch (r=16) 91.64 76.25 76.80 81.56
LoRA-Switch (Top-1) 91.68 74.77 76.80 81.08
LoRA-Switch (origin) 91.39 79.03 80.40 83.60

As depicted in Table 7 and Table 8, the experimental results indicate that LoRA-Switch consistently
enhances model accuracy across various adapter configurations. When the rank r of the LoRA experts
is set to 32 or 16, the model exhibits relatively lower accuracy. This outcome suggests that a lower
rank might not provide sufficient model capacity to assimilate a broad spectrum of new information
effectively. Furthermore, using Top-1 routing results in a decrease in model accuracy compared to
the original Top-2 routing. This decline can be attributed to the fact that, in Top-1 routing, each
input token is directed to only one expert, whereas in Top-2 routing, tokens are processed by two
experts. Generally, the more experts a token interacts with, the better the expected performance
due to enhanced processing capabilities. Lastly, our findings reveal that increasing the number of
experts to sixteen per layer paradoxically leads to a decrease in accuracy. This suggests that while

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the model’s capacity is augmented, the available data for fine-tuning is insufficient to fully optimize
the expanded model capabilities. This discrepancy underscores the need for a balanced approach to
configuring dynamic adapters, where both the number of experts and the rank of adapters must be
carefully calibrated to the available training resources.

B.2 ABLATION STUDY ON RUNTIME LATENCY

Subsequently, we investigated the effects of different components within LoRA-Switch. Specifically,
we evaluated the impact of replacing the SGMM with a simple merge method to assess how such
changes affect the system’s performance. This part of our study is crucial for understanding the
contribution of each component to the overall effectiveness of LoRA-Switch.

Table 9: Ablation study for runtime latency of LoRA-Switch.

Method Decoding latency (ms/token)

Llama2-7B 2.4
MoRAL 8.5 (+254%)
MoRAL (With simple merge) 4.5 (+88%)
LoRA-Switch (With simple merge) 4.2 (+ 75%)
LoRA-Switch 3.1 (+29%)

As presented in Table 9, replacing the Sparse Generalized Matrix Multiplication (SGMM) in our
proposed LoRA-Switch with a simple merge approach results in a substantial increase in decoding
latency, rising from 3.1 ms/token to 5.1 ms/token. This represents a 113% increase compared to the
original Llama2-7B model, underscoring the significant efficiency gains achieved by SGMM during
the decoding phase and the consequent reduction in LoRA-Switch’s decoding inference latency.

We further explored the integration of the simple merge technique into the MoRAL method. Here,
after determining which experts to activate within each dynamic adapters layer, we first merge these
experts into the base model before inference. This method succeeded in reducing the decoding latency
to 4.5 ms/token; however, it still registered an 88% increase over the original Llama2-7B. These
findings highlight the efficiency of our LoRA-Switch framework, which synergistically optimizes
at both the algorithmic and system levels, demonstrating the effectiveness of our novel dynamic
adapters architecture.

15

	Introduction
	Background and Motivation
	Dynamic Adapters
	Unexpected Latency Overhead of Dynamic Adapters
	Challenge of Reducing Latency Overhead of Dynamic Adapters

	Design of LoRA-Switch
	Overview
	Model Structure
	Fused Adapter Switching
	SGMM Kernel

	Evaluation
	Experiment Setup
	Accuracy Comparison
	Improving General Capability of LLM
	Domain-Specific Customization

	Runtime Performance
	Ablation Study

	Related Work
	Conclusion
	Profiling latency overhead of dynamic adapters
	Ablation study extension
	Ablation study on model performance
	Ablation study on runtime latency

