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Abstract

This paper confronts the challenge of detecting increasingly sophisticated deepfake1

audio from advanced Text-to-Speech (TTS) systems with voice cloning. We posit2

that achieving high-accuracy, long-term detection of synthetic audio, particularly3

against motivated adversaries, is likely an unrealistic goal. This stance is sup-4

ported by two primary observations. Firstly, the ongoing advancements in TTS5

and Synthetic Speech Detection (SSD) mirror an offline Generative Adversarial6

Network dynamic, with TTS as the generator and SSD as the discriminator. This7

suggests an eventual convergence towards synthetic speech that is nearly indis-8

tinguishable from human speech, making detection inherently challenging, if not9

impossible, especially as SSD development inherently lags behind TTS progress10

because SSD relies on TTS to generate training data. Secondly, current SSDs11

demonstrate a critical vulnerability to active, malicious evasion attacks, where12

the audio is carefully edited to bypass the target SSDs. Consequently, addressing13

deepfake audio demands a more systematic and multifaceted strategy, integrating14

approaches such as detection, legislative frameworks, watermarking technologies,15

robust enforcement mechanisms, and fostering cultural awareness.16

1 Introduction17

Text-to-speech (TTS) generation technologies are advancing rapidly. Modern systems [12, 3, 15, 21,18

22, 26, 4, 5, 29, 7, 14, 18], readily available through open-source projects and commercial service19

APIs, now often include powerful zero-shot voice cloning capabilities (Table 1). This allows for the20

creation of convincing voice impersonations from mere seconds of audio, democratizing a technology21

once confined to specialized labs.22

However, this accessibility brings profound ethical and societal risks. The potential for misuse23

is vast, ranging from sophisticated fraud and copyright infringement to the deliberate spread of24

misinformation via deepfaked voices of public figures / acquaintances. High-profile incidents, such25

as the use of an AI-generated voice clone of President Biden in illegal robocalls to disrupt the New26

Hampshire Presidential Primary Election [6], underscore the tangible threat and the urgent need for27

countermeasures.28

Synthetic Speech Detectors (SSDs) [24, 23, 11], which distinguish between real and AI-generated29

speech using acoustic and linguistic cues, have emerged as the primary defense against such misuse.30

Yet, a critical question remains: Can these detectors reliably identify deepfake speech in practice?31

This paper, however, presents a more cautious, even pessimistic, outlook, positing that the inherent32

efficacy of SSDs may be fundamentally limited by two intertwined and co-evolving dynamics:33

the co-evolving nature of SSDs and TTSs, and the perpetual adversarial contest between34

deepfake creators and SSDs.35
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Table 1: Summary of SOTA TTS systems and their
support for voice-cloning capability.  means full
support. G# means partial support. # means no
support.

System Voice-cloning
Commercial Platforms
ElevenLabs  

Descript  

Murf AI  

LOVO AI  

WellSaid G#

Google Could TTS G#

Amazon Polly #

Azure AI Speech G#

Resemble AI  

Play.ht  

Listnr.ai  

Fliki  

Synthesys  

NaturalReader #

Speechify #

Hume AI  

Open-Source
Coqui TTS  

StyleTTS2  

Bark  

Tortoise TTS  

Spark-TTS  

Kokoro TTS  

ChatTTS  

Firstly, the natural progression of TTS systems36

leads to generated audio becoming increasingly37

indistinguishable from genuine human speech,38

which consequently heightens the difficulty of39

detection for SSD. This has been repeatedly40

demonstrated [16]: more advanced TTS sys-41

tems can produce outputs that readily circum-42

vent SSDs trained on data from older, less so-43

phisticated TTS systems. This inherent dynamic,44

where TTS technology continually evolves to-45

wards greater realism, suggests a trajectory to-46

wards a state where distinguishing generated47

audio from real human audio may become com-48

putationally prohibitive or even fundamentally49

infeasible, thereby necessitating watermarking50

technologies. Compounding this, SSD devel-51

opment inherently lags behind advancements52

in TTS technology because SSD systems fun-53

damentally rely on access to data generated by54

new and improved TTS systems to learn their55

evolving characteristics and update their detec-56

tion models. While an ideal approach might57

involve fostering a responsible innovation cul-58

ture—whereby developers ensure a correspond-59

ing detector is feasible or developed before60

publicly releasing significantly more advanced61

TTS systems—such a synchronized framework62

presents substantial practical hurdles in today’s63

fast-paced technological ecosystem, especially64

given the immense research interest and rapid65

innovation cycles in TTS development.66

Second, current SSD systems often lack the67

necessary robustness for reliable, real-world de-68

ployment, a vulnerability highlighted by their69

performance degradation when faced with nat-70

ural perturbations [28]. For example, variations71

in background noise, room acoustics, micro-72

phone characteristics, different audio compres-73

sion techniques, or even the sheer diversity of74

human speech—encompassing different accents,75

ages, genders, and emotional states—can signif-76

icantly alter the input features these detectors77

rely on, leading to an increase in false positives78

or false negatives. However, while existing re-79

search acknowledges that SSD performance de-80

grades under such "natural" conditions like transcoding artifacts or background noise (a phenomenon81

known as test domain shift), this focus often overlooks a more critical vulnerability: an adversary will82

not rely on incidental distortions but will deliberately manipulate synthetic audio with the specific in-83

tent to deceive detection systems. The potential for success in such malicious scenarios is significantly84

higher, yet systematic research into these active attacks has been notably lacking. Consequently,85

this work takes the position that current state-of-the-art SSDs are demonstrably unreliable when86

confronted with dedicated adversarial attacks. We provide the first systematic study examining the87

vulnerability of leading open-source detectors to active malicious perturbations, investigating various88

attack scenarios from white-box attacks (full knowledge of the detector) to black-box and even89

transfer-based agnostic attacks (no direct access). Our evaluation considers not just the success rate90

of evasion but also the perceptual quality (stealthiness) of the attacked audio using both objective91

metrics and human assessment. Ultimately, these combined vulnerabilities to both environmental/data92

variations and the potential for targeted evasion, particularly demonstrated by our findings of signifi-93
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cant security gaps, mean that current SSD systems cannot yet be considered consistently robust and94

argue for a fundamental rethinking of deepfake audio detection robustness in the face of determined95

adversaries.96

2 Evolving TTS Naturally Evades Detection97

2.1 The accuracy of SSD systems varies on different TTS systems98

The accuracy of SSD systems is demonstrably not uniform when confronted with synthetic speech99

from different TTS systems. Instead, it exhibits significant variations contingent upon the specific100

TTS technology employed to generate the audio. An analysis [16] in Table 2 of average SSD101

performance across a suite of detection models reveals a considerable spread in accuracy based on the102

TTS source. For instance, when evaluating attacks from the PromptTTS2 [15] system, SSD models103

achieved an average accuracy of 80.00%. The average accuracy dropped to 71.87% for VALL-E [26],104

60.51% for NaturalSpeech3 [22], and reached its lowest point at 47.27% for speech generated by105

OpenAI’s TTS system. This wide spectrum of accuracy unequivocally underscores that the choice of106

TTS system is a critical factor influencing the accuracy of SSD systems.107

Table 2: Averaged SSD performance on different TTS systems. Adapted from Table 4 in [16].

System Accuracy (↑) AUROC (↑) EER(%) (↓)
PromptTTS2 0.8000 0.8372 20.000
NaturalSpeech3 0.6051 0.6289 39.489
VALL-E 0.7187 0.7774 28.134
VoiceBox 0.7780 0.8294 22.203
FlashSpeech 0.6918 0.7468 30.817
AudioGen 0.6527 0.6654 34.455
xTTS 0.7376 0.8299 23.515
Seed-TTS 0.5711 0.5806 42.849
OpenAI 0.4727 0.3941 52.667

This observed variance in detection accuracy may also hint at a deeper, more intuitive challenge in108

the field of synthetic speech detection: the relationship between the perceived naturalness of synthetic109

speech and the difficulty of its detection. It is a prevailing hypothesis that as TTS technologies advance110

and produce speech that is increasingly indistinguishable from genuine human utterances—both in111

terms of acoustic quality and prosodic naturalness—they inherently become more formidable for112

SSD systems. The underlying logic is that highly natural synthetic speech often minimizes or113

eliminates the subtle artifacts, unnatural cadences, or metallic reverberations that traditional114

SSD systems are trained to identify as tell-tale signs of spoofing. While the provided dataset does115

not include explicit metrics for the naturalness of each listed TTS system, the accuracy patterns are116

thought-provoking when viewed through the lens of this hypothesis. The TTS systems against which117

the SSD suite performed relatively poorly, such as OpenAI, Seed-TTS [2], and NaturalSpeech3 [22],118

are often colloquially associated with producing highly natural and human-like speech. If these119

systems indeed generate more perceptually convincing audio, their lower corresponding SSD accuracy120

figures would lend support to the notion that increased naturalness directly correlates with a heightened121

challenge for detection. Conversely, systems against which SSDs achieved higher average accuracy,122

might be producing speech with more readily discernible synthetic markers, thus making them easier123

for detection algorithms to flag. This observation suggests a co-evolving dynamic between TTS124

and SSD technologies. As TTS systems evolve to create ever more realistic synthetic voices, SSD125

systems must concurrently advance to develop more sophisticated techniques capable of identifying126

these highly naturalistic spoofs.127

2.2 TTS systems are evolving too fast for SSD to catch up128

In the last section, we observed that SSD is likely to fail on more advanced TTS systems, and the129

co-evolving dynamic between TTS and SSD. The next question to answer naturally is:130

How fast is the development of TTS? Can we afford to always develop a reliable SSD for every131

TTS system before publicizing them? The anwer is unfortuantely negative.132
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Table 3: Key TTS System Updates & New Releases in 2025

System Date Key Details/Focus
Kokoro TTS Jan 27, 2025 Kokoro v1.0 model released.
Azure AI Speech Feb 2025 HD Neural TTS upgrade.
Spark-TTS Feb 2025 Paper on new LLM-based TTS model.
Hume AI Feb 26, 2025 Octave TTS launched.
Spark-TTS Mar 19, 2025 Spark-TTS-0.5B model details updated.
ChatTTS Apr 29, 2025 baseline models updated/released.
Google Cloud TTS May 2025 New controllable TTS models.

The rapid evolution of TTS technology in 2025 is undeniable as shown in Table 3, with a continuous133

stream of new models and significant updates pushing the boundaries of synthetic speech. However,134

this progress presents a significant challenge for SSD. Detection systems inherently rely on being135

trained with data produced by the newest TTS systems. As new TTS models with novel architectures136

(like Spark-TTS’s single-stream decoupled speech tokens [27]) or significantly improved quality137

emerge, existing detectors trained on older or different types of synthetic speech may become less138

effective. Research into defensive frameworks like SafeSpeech [30], which aims to protect audio139

before it can be used for high-quality synthesis by embedding imperceptible perturbations, highlights140

the difficulty of post-synthesis detection. The ability of modern TTS to achieve high-quality voice141

cloning from minimal samples, further amplified by LLMs generating human-like text prompts,142

means that detectors are in a constant state of catch-up. Each new breakthrough in TTS realism143

requires a corresponding update and retraining of detection models, creating an inherent lag.144

If we take a longer-term perspective, the trajectory of TTS development is clearly aimed at achieving145

indistinguishability from real human voices. The emphasis across the industry is on creating voices146

that are not just intelligible but also convey genuine emotion, tone, and attitude. Systems like147

Hume AI’s Octave TTS [1] explicitly aim to "understand what it’s saying" to produce nuanced148

emotional expression, while models like StyleTTS 2 [17] strive "Towards Human-Level Text-to-149

Speech". The goal is to produce speech that is "smarter, faster, and more human than ever". This150

relentless pursuit of realism, while offering immense benefits in various applications, also intensifies151

the ethical concerns surrounding deepfakes and the potential for misuse, further underscoring how152

close synthetic speech is to becoming perceptually identical to human speech. Ultimately, achieving153

this indistinguishability will render detection impossible, necessitating proactive approaches like154

safeguards or watermarking—potentially at the cost of some quality—to prevent spoofing, alongside155

legislation to mandate these protective measures.156

3 SSD Systems Are Vulnerable to Malicious Perturbations157

It’s already well known that current SSD systems are vulnerable to natural perturbations, such as158

different codecs [28]. In this section, we aim to answer the more radical question:159

Can deepfake audio be maliciously altered in ways nearly imperceptible to the human ear, but160

sufficient to bypass state-of-the-art detectors?161

Unlike previous research that focused on natural perturbations [20, 28], we consider a malicious162

attacker who deliberately optimizes the perturbation to evade detection. We examine this scenario163

under various levels of access to the detection systems, from having full knowledge (white-box), to164

partial knowledge (black-box), to no knowledge (agnostic).165

3.1 Experiment Setup166

We train four SOTA open-source SSDs from scratch: AASIST [11], AASIST-L [11], RawNet2 [24]167

and RawGATST [23] on ASVSpoof2019-LA train split [25]. Their equal error rates (EERs) without168

attacks on ASVSpoof2019-LA test split are reported in Table 4, and closely match the reported169

numbers in their original papers.170
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Table 4: Baseline EERs of SSDs on the ASVSpoof2019-LA test split without attacks.

AASIST AASIST-L RawNet2 RawGATST
0.83% 0.99% 4.88% 3.29%
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Figure 1: Attack success rate and ViSQOL vs. perturbation step size in PGD.
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Figure 2: Attack success rate and ViSQOL vs. ℓ∞-norm constraint in PGD.
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Figure 3: Attack success rate and ViSQOL vs. PGD #iterations across red-team sets.

We launch attacks on three synthetic datasets: ASVSpoof2019-LA test split [25], WaveFake [8] and171

In-the-wild [20]. In consideration of compute resources, we randomly sub-sample 100 examples172

from each dataset for the attacks.173

We use the attack success rate (i.e. the ratio of attacked examples bypassing the target detector) to174

measure the effectiveness of the attacks. To ensure the attack does not degrade audio quality, we use175

both VisQOL [10] and human ratings to confirm that the attacked audio still sounds similar to the176

original synthetic audio, which we refer to as “stealthiness”.177

3.2 White-box Attack178

We first study white-box attack, where the adversary has full access to the model. We choose two179

white-box attacks: Projected Gradient Descent (PGD) [19] and I-FGSM [13].180

Projected Gradient Descent: PGD crafts adversarial examples by iteratively taking small steps in181

the direction that maximizes the model’s error, while projecting the perturbed example back within182

a certain boundary around the original input to maintain a balance between attack success rate and183

stealthiness.184

PGD has three major hyper-parameters: perturbation step size, ℓ∞-norm constraint, and the number185

of iterations. We conduct hyper-parameter search and summarize the results in Figure 1, 2, and 3.186

In Figure 1, we can tell that on WaveFake and In-the-wild, the attack success rate is almost always187

100% while on ASVSpoof2019-LA test the attack success rate hovers between 60% and 100%188

depending on the learning rate used. This reflects the fact that the detectors are more robust on189

test data generated by the same TTS systems as the training data (i.e. in-domain data), but are still190

vulnerable under white-box attacks with a few steps of hyper-parameter search. On the other hand,191

VisQOL scores keep decreasing as the perturbation step size grows. Usually, VisQOL score above192

3.0 is considered reasonable quality. Thus, there exists a sweet spot of perturbation step size striking193

balance between attack effectiveness and stealthiness.194
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Table 5: Human ratings of speaker similarity between the original and PGD attacked audio.
ASVspoof WaveFake In-the-wild

AASIST 0.970 ± 0.063 0.971 ± 0.046 0.985 ± 0.030
AASIST-L 0.979 ± 0.037 0.979 ± 0.045 0.975 ± 0.036
RawNet2 0.971 ± 0.077 1.000 ± 0.000 0.967 ± 0.063
RawGATST 0.997 ± 0.008 0.986 ± 0.030 0.997 ± 0.008
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Figure 4: Attack success rate and ViSQOL vs. perturbation step size in I-FGSM.
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Figure 5: Attack success rate and ViSQOL vs. ℓ∞-norm constraint in I-FGSM.
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Figure 6: Attack success rate and ViSQOL vs. I-FGSM #iterations.
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Figure 7: Attack success rate and ViSQOL vs. SimBA perturbation batch size.

In Figure 2, the observation of SSDs being more robust on ASVSpoof2019-LA test holds true.195

However, we observe that the VisQOL scores are pretty consistent despite the changing ℓ∞-norm196

constraint, which says that audio quality is insensitive to ℓ∞-norm constraint within a certain range.197

Figure 3 shows that white-box attacks are efficient, reaching maximum attack success rates and stable198

VisQOL scores after just 50 iterations.199

We also collect human ratings on whether the PGD-attacked audio with the best hyper-parameter200

combination sounds like the original synthetic audio, and the results are summarized in Table 5. We201

can see that most human raters think the two audio sound like the same person, underscoring the202

potential threat of using the attacked audio for impersonation.203

Iterative Fast Gradient Sign Method: I-FGSM only differs from PGD in that it only uses the sign204

of the gradient to perturb the input audio. It shares the same set of hyper-parameters as PGD, for205

which the grid search results are summarized in Figure 4, 5, and 6 and human ratings are summarized206

in Table 6, and the findings are similar to PGD.207
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Figure 8: Attack success rate and ViSQOL vs. SimBA perturbation step size across datasets.
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Figure 9: Attack success rate and ViSQOL vs. SimBA #queries across datasets.

3.3 Black-box Attack208

For black-box attack, we choose the Simple Black Box Attack (SimBA) [9]. SimBA perturbs the209

input audio randomly and observes whether the prediction confidence score for “fake” class decreases210

or increases. If the confidence score decreases, SimBA will keep the perturbation. Otherwise,211

SimBA will try adding perturbation in the opposite direction and decide whether to keep or discard212

the perturbation just as above. SimBA iteratively perturbs the input until the SSD is successfully213

bypassed or the budget of queries/iterations is used up.214

SimBA has three hyper-parameters: perturbation batch size, perturbation step size, and the number215

of queries. Perturbation batch size decides how many timesteps are perturbed in each query, while216

perturbation step size decides which long one perturbation step on one timestep can be. The hyper-217

parameter search results are summarized in Figure 7, 8, and 9.218

In Figure 7, we observe that on ASVSpoof2019 test, RawNet2, the least capable SSD model is still219

broken almost 100% but all the other 3 models are only broken 60% of all the tested examples. This220

draws a positive correlation between model capability and robustness. On WaveFake and In-the-Wild,221

all SSDs are broken more than 90% of the time, which confirms the previous observation that current222

SSD models are brittle when facing synthetic audio from TTS systems never seen during training.223

Also in Figure 7, 8, and 9, we observe that ASSIST-L is the most robust model consistently, which is224

surprising because it’s the smallest model within the 4 (See [11] for the size of these models.). This225

observation aligns with the principle of Occam’s razor, which suggests that simpler models often226

generalize better. A potential explanation could lie in the raggedness of the decision boundaries.227

Larger models, with their increased complexity, might create more intricate and potentially overfit228

decision boundaries. In contrast, ASSIST-L, being smaller, may form smoother decision boundaries,229

leading to better generalization and robustness against perturbations.230

Human ratings of audio similarity is summarized in Table 7. Again the attacked audio sound highly231

similar to the original ones to human ears.232

3.4 Agnostic Attack: Transferability of Above Attacks233

The above attacks all assume different levels of access to the SSD model which might not be accessible234

in practice. As a result, we want to understand whether the above attacks are transferrable: Can a235

successfully attacked example on one model transfer to a different model? If this is true, then the236

adversary can craft a proxy model themselves, attack it, and expect it to bypass the real SSD as well.237

Table 6: Human ratings of speaker similarity between the original and I-FGSM attacked audio.
ASVspoof WaveFake In-the-wild

AASIST 0.984 ± 0.020 0.960 ± 0.052 0.985 ± 0.024
AASIST-L 0.987 ± 0.022 0.986 ± 0.023 0.967 ± 0.054
RawNet2 0.980 ± 0.040 1.000 ± 0.000 0.991 ± 0.012
RawGATST 0.989 ± 0.024 0.858 ± 0.141 0.985 ± 0.024
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Table 7: Human ratings of speaker similarity between the original and simBA attacked audio.
ASVspoof WaveFake In-the-wild

AASIST 0.984 ± 0.020 0.960 ± 0.052 0.985 ± 0.024
AASIST-L 0.987 ± 0.022 0.986 ± 0.023 0.967 ± 0.054
RawNet2 0.980 ± 0.040 1.000 ± 0.000 0.991 ± 0.012
RawGATST 0.989 ± 0.024 0.858 ± 0.141 0.985 ± 0.024

(a) PGD on ASVSpoof (b) PGD on WaveFake (c) PGD on In-the-Wild

(d) I-FGSM on ASVSpoof (e) I-FGSM on WaveFake (f) I-FGSM on In-the-Wild

(g) SimBA on ASVSpoof (h) SimBA on WaveFake (i) SimBA on In-the-Wild

Figure 10: Transferability of attacks on different datasets.

The results are summarized in Figure 10. First, we find that on out-of-domain data, some SSDs are238

extremely vulnerable. For example, on WaveFake, RawNet2 is extremely vulnerable under all attacks;239

on In-the-wild, ASSIST and AASIST-L are more vulnerable than the other two models. Second, we240

find that on in-domain data, black-box attacks are much more transferrable than white-box attacks.241

This is because 1) black-box attacks tend to add larger perturbation than white-box attacks; 2) the242

SSDs’ decision borders are alike for in-domain data. Thirdly, we also observe high similarity between243

the transferrability heatmap between PGD and I-FGSM, which might be due to different white-box244

attacks taking gradient paths in similar directions despite small differences.245

4 Conclusions and Open Problems246

This paper has argued that the pursuit of high-accuracy, long-term detection of sophisticated deepfake247

audio, particularly in the face of motivated and adaptive adversaries, is an increasingly challenging,248

and perhaps ultimately unrealistic, endeavor. This position is supported by two primary lines of249

reasoning.250

Firstly, the rapid and continuous advancements in TTS technologies are fundamentally driving251

synthetic audio towards a point of near-indistinguishability from genuine human speech. This252

dynamic mirrors an adversarial relationship where TTS generators constantly improve, making the253

task for SSD discriminators progressively harder. The inherent lag in SSD development, which relies254

on access to newer TTS outputs for training, further exacerbates this challenge.255
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Secondly, our findings, along with emerging research, demonstrate a critical vulnerability of current256

state-of-the-art SSDs to deliberate adversarial perturbations. We have shown that it is possible to257

introduce subtle, often imperceptible, modifications to synthetic audio that can successfully deceive258

leading detection models across various attack scenarios (white-box, black-box, and transfer-based).259

This susceptibility, even when audio quality is maintained, underscores the fragility of current260

detection paradigms against determined attackers.261

Therefore, while detection remains a component of the response, relying on it as the primary or sole262

defense against the misuse of deepfake audio is a precarious strategy. The "arms race" is heavily263

skewed, and the evidence suggests that perfect, or even consistently reliable, detection is unlikely to264

be a stable long-term solution.265

The challenges highlighted in this paper point to several critical open problems and avenues for future266

research:267

Proactive Defense Mechanisms: What are the most effective and scalable methods for audio water-268

marking (both perceptible and imperceptible) that are resilient to removal or alteration? Can “audio269

immune systems” or pre-emptive perturbation techniques (akin to SafeSpeech [30]) be developed to270

make original audio recordings inherently more difficult to clone or manipulate convincingly?271

Understanding and Countering Adversarial Strategies: Further systematic study is needed on272

the evolving tactics of adversaries in creating and deploying deepfakes, including more sophisticated273

attack algorithms and their transferability. How can we develop dynamic defense mechanisms that274

can adapt to new attack vectors in real-time?275

Human Perception and Media Forensics: How do humans perceive and differentiate highly real-276

istic deepfake audio from genuine speech, and can these perceptual cues be leveraged for detection?277

How can we improve media literacy to equip individuals with the skills to critically evaluate audio278

content? Developing reliable and accessible forensic tools for verifying audio authenticity remains a279

key challenge.280

Ethical Frameworks and Responsible Innovation: How can we foster a culture of responsible281

innovation within the TTS development community, encouraging the proactive consideration of282

misuse and the integration of safeguards? What ethical guidelines and standards should govern the283

development, deployment, and accessibility of powerful voice synthesis technologies?284

Attribution and Legal Recourse: Developing techniques for attributing the source or creator of a285

deepfake audio clip is crucial for accountability. How can legal and regulatory frameworks be adapted286

to effectively address the creation and malicious dissemination of deepfake audio while protecting287

freedom of expression?288

5 Alternative View289

While this paper posits a pessimistic outlook on the long-term efficacy of SSD systems, an alternative290

perspective holds that the "arms race" between TTS generation and SSD may not inevitably lead to291

the obsolescence of detection. This view is predicated on several possibilities:292

1. Current SSDs primarily analyze acoustic and linguistic cues to distinguish between real293

and AI-generated speech. However, future research could unveil entirely new categories294

of tell-tale signs inherent to synthetically generated audio. These might be exceptionally295

difficult for TTS models to mimic or for adversaries to successfully perturb.296

2. The trajectory of TTS development aims for synthetic voices that are virtually indistinguish-297

able from human speech. However, human speech is the product of incredibly complex298

biological, physiological, and cognitive processes. Achieving true indistinguishability –299

capturing every nuance, subtle imperfection, and the inherent variability of genuine human300

vocal production – might be a far more intractable problem for AI than currently anticipated.301

3. The paper notes that SSD development inherently lags behind TTS advancements because302

SSD systems rely on data from new TTS systems for training. However, a more concerted303

and perhaps preemptive research effort in SSD could shift the dynamic.304
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