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The Inevitable Evasion? We Need More Than
Detection to Combat Deepfake Audios.
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Abstract

This paper confronts the challenge of detecting increasingly sophisticated deepfake
audio from advanced Text-to-Speech (TTS) systems with voice cloning. We posit
that achieving high-accuracy, long-term detection of synthetic audio, particularly
against motivated adversaries, is likely an unrealistic goal. This stance is sup-
ported by two primary observations. Firstly, the ongoing advancements in TTS
and Synthetic Speech Detection (SSD) mirror an offline Generative Adversarial
Network dynamic, with TTS as the generator and SSD as the discriminator. This
suggests an eventual convergence towards synthetic speech that is nearly indis-
tinguishable from human speech, making detection inherently challenging, if not
impossible, especially as SSD development inherently lags behind TTS progress
because SSD relies on TTS to generate training data. Secondly, current SSDs
demonstrate a critical vulnerability to active, malicious evasion attacks, where
the audio is carefully edited to bypass the target SSDs. Consequently, addressing
deepfake audio demands a more systematic and multifaceted strategy, integrating
approaches such as detection, legislative frameworks, watermarking technologies,
robust enforcement mechanisms, and fostering cultural awareness.

1 Introduction

Text-to-speech (TTS) generation technologies are advancing rapidly. Modern systems [[12} 3 [15} 21}
22,126, 14,15, 29, 7, 14} [18]], readily available through open-source projects and commercial service
APIs, now often include powerful zero-shot voice cloning capabilities (Table[I)). This allows for the
creation of convincing voice impersonations from mere seconds of audio, democratizing a technology
once confined to specialized labs.

However, this accessibility brings profound ethical and societal risks. The potential for misuse
is vast, ranging from sophisticated fraud and copyright infringement to the deliberate spread of
misinformation via deepfaked voices of public figures / acquaintances. High-profile incidents, such
as the use of an Al-generated voice clone of President Biden in illegal robocalls to disrupt the New
Hampshire Presidential Primary Election [6], underscore the tangible threat and the urgent need for
countermeasures.

Synthetic Speech Detectors (SSDs) [24} 23, [11]], which distinguish between real and Al-generated
speech using acoustic and linguistic cues, have emerged as the primary defense against such misuse.
Yet, a critical question remains: Can these detectors reliably identify deepfake speech in practice?
This paper, however, presents a more cautious, even pessimistic, outlook, positing that the inherent
efficacy of SSDs may be fundamentally limited by two intertwined and co-evolving dynamics:
the co-evolving nature of SSDs and TTSs, and the perpetual adversarial contest between
deepfake creators and SSDs.
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Firstly, the natural progression of TTS systems Table 1: Summary of SOTA TTS systems and their
leads to generated audio becoming increasingly  support for voice-cloning capability. @ means full
indistinguishable from genuine human speech, support. © means partial support. O means no
which consequently heightens the difficulty of support.

detection for SSD. This has been repeatedly
demonstrated [16]]: more advanced TTS sys- System ‘ Voice-cloning
tems can produce outputs that readily circum-
vent SSDs trained on data from older, less so-

Commercial Platforms

phisticated TTS systems. This inherent dynamic, ElevenLabs \ o
where TTS technology continually evolves to- .

; . Descript \ )
wards greater realism, suggests a trajectory to-
wards a state where distinguishing generated Murf Al \ [
audio from real human audio may become com-
putationally prohibitive or even fundamentally LOVO A | b
infeasible, thereby necessitating watermarking WellSaid ‘ ©
technologies. Compounding this, SSD devel-
opment inherently lags behind advancements Google Could TTS ‘ ©
in TTS technology because SSD systems fun- Amazon Polly \ O
damentally rely on access to data generated by
new and improved TTS systems to learn their Azure Al Speech ‘ o
evolving characteristics and update their detec- Resemble Al \ [ )
tion models. While an ideal approach might Play.ht | °
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ing detector is feasible or developed before Fliki | °
publicly releasing significantly more advanced
TTS systems—such a synchronized framework Synthesys ‘ ®
presents substantial practical hurdles in today’s NaturalReader | 0O
fast-paced technological ecosystem, especially -
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Second, current SSD systems often lack the Open-Source
necessary robustness for reliable, real-world de- -
ployment, a vulnerability highlighted by their Coqui TTS | d
performance degradation when faced with nat- StyleTTS2 ‘ °
ural perturbations [28]]. For example, variations
in background noise, room acoustics, micro- Bark ‘ d
phone characteristics, different audio compres- Tortoise TTS ‘ )
sion techniques, or even the sheer diversity of
human speech—encompassing different accents, Spark-TTS | hd
ages, genders, and emotional states—can signif- Kokoro TTS \ [
icantly alter the input features these detectors ChatTTS | ®

rely on, leading to an increase in false positives
or false negatives. However, while existing re-
search acknowledges that SSD performance de-
grades under such "natural” conditions like transcoding artifacts or background noise (a phenomenon
known as test domain shift), this focus often overlooks a more critical vulnerability: an adversary will
not rely on incidental distortions but will deliberately manipulate synthetic audio with the specific in-
tent to deceive detection systems. The potential for success in such malicious scenarios is significantly
higher, yet systematic research into these active attacks has been notably lacking. Consequently,
this work takes the position that current state-of-the-art SSDs are demonstrably unreliable when
confronted with dedicated adversarial attacks. We provide the first systematic study examining the
vulnerability of leading open-source detectors to active malicious perturbations, investigating various
attack scenarios from white-box attacks (full knowledge of the detector) to black-box and even
transfer-based agnostic attacks (no direct access). Our evaluation considers not just the success rate
of evasion but also the perceptual quality (stealthiness) of the attacked audio using both objective
metrics and human assessment. Ultimately, these combined vulnerabilities to both environmental/data
variations and the potential for targeted evasion, particularly demonstrated by our findings of signifi-
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cant security gaps, mean that current SSD systems cannot yet be considered consistently robust and
argue for a fundamental rethinking of deepfake audio detection robustness in the face of determined
adversaries.

2 Evolving TTS Naturally Evades Detection

2.1 The accuracy of SSD systems varies on different TTS systems

The accuracy of SSD systems is demonstrably not uniform when confronted with synthetic speech
from different TTS systems. Instead, it exhibits significant variations contingent upon the specific
TTS technology employed to generate the audio. An analysis [16] in Table 2] of average SSD
performance across a suite of detection models reveals a considerable spread in accuracy based on the
TTS source. For instance, when evaluating attacks from the PromptTTS2 [15]] system, SSD models
achieved an average accuracy of 80.00%. The average accuracy dropped to 71.87% for VALL-E [26]],
60.51% for NaturalSpeech3 [22], and reached its lowest point at 47.27% for speech generated by
OpenAl’s TTS system. This wide spectrum of accuracy unequivocally underscores that the choice of
TTS system is a critical factor influencing the accuracy of SSD systems.

Table 2: Averaged SSD performance on different TTS systems. Adapted from Table 4 in [16].

System Accuracy () AUROC (1) EER(%) ()
PromptTTS2 0.8000 0.8372 20.000
NaturalSpeech3 0.6051 0.6289 39.489
VALL-E 0.7187 0.7774 28.134
VoiceBox 0.7780 0.8294 22.203
FlashSpeech 0.6918 0.7468 30.817
AudioGen 0.6527 0.6654 34.455
xTTS 0.7376 0.8299 23.515
Seed-TTS 0.5711 0.5806 42.849
OpenAl 0.4727 0.3941 52.667

This observed variance in detection accuracy may also hint at a deeper, more intuitive challenge in
the field of synthetic speech detection: the relationship between the perceived naturalness of synthetic
speech and the difficulty of its detection. It is a prevailing hypothesis that as TTS technologies advance
and produce speech that is increasingly indistinguishable from genuine human utterances—both in
terms of acoustic quality and prosodic naturalness—they inherently become more formidable for
SSD systems. The underlying logic is that highly natural synthetic speech often minimizes or
eliminates the subtle artifacts, unnatural cadences, or metallic reverberations that traditional
SSD systems are trained to identify as tell-tale signs of spoofing. While the provided dataset does
not include explicit metrics for the naturalness of each listed TTS system, the accuracy patterns are
thought-provoking when viewed through the lens of this hypothesis. The TTS systems against which
the SSD suite performed relatively poorly, such as OpenAl, Seed-TTS [2], and NaturalSpeech3 [22],
are often colloquially associated with producing highly natural and human-like speech. If these
systems indeed generate more perceptually convincing audio, their lower corresponding SSD accuracy
figures would lend support to the notion that increased naturalness directly correlates with a heightened
challenge for detection. Conversely, systems against which SSDs achieved higher average accuracy,
might be producing speech with more readily discernible synthetic markers, thus making them easier
for detection algorithms to flag. This observation suggests a co-evolving dynamic between TTS
and SSD technologies. As TTS systems evolve to create ever more realistic synthetic voices, SSD
systems must concurrently advance to develop more sophisticated techniques capable of identifying
these highly naturalistic spoofs.

2.2 TTS systems are evolving too fast for SSD to catch up

In the last section, we observed that SSD is likely to fail on more advanced TTS systems, and the
co-evolving dynamic between TTS and SSD. The next question to answer naturally is:

How fast is the development of TTS? Can we afford to always develop a reliable SSD for every
TTS system before publicizing them? The anwer is unfortuantely negative.
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Table 3: Key TTS System Updates & New Releases in 2025

System Date Key Details/Focus

Kokoro TTS Jan 27, 2025 Kokoro v1.0 model released.

Azure Al Speech Feb 2025 HD Neural TTS upgrade.

Spark-TTS Feb 2025 Paper on new LLM-based TTS model.
Hume Al Feb 26, 2025 Octave TTS launched.

Spark-TTS Mar 19, 2025 Spark-TTS-0.5B model details updated.
ChatTTS Apr 29, 2025 baseline models updated/released.
Google Cloud TTS May 2025 New controllable TTS models.

The rapid evolution of TTS technology in 2025 is undeniable as shown in Table[3] with a continuous
stream of new models and significant updates pushing the boundaries of synthetic speech. However,
this progress presents a significant challenge for SSD. Detection systems inherently rely on being
trained with data produced by the newest TTS systems. As new TTS models with novel architectures
(like Spark-TTS’s single-stream decoupled speech tokens [27]]) or significantly improved quality
emerge, existing detectors trained on older or different types of synthetic speech may become less
effective. Research into defensive frameworks like SafeSpeech [30], which aims to protect audio
before it can be used for high-quality synthesis by embedding imperceptible perturbations, highlights
the difficulty of post-synthesis detection. The ability of modern TTS to achieve high-quality voice
cloning from minimal samples, further amplified by LLMs generating human-like text prompts,
means that detectors are in a constant state of catch-up. Each new breakthrough in TTS realism
requires a corresponding update and retraining of detection models, creating an inherent lag.

If we take a longer-term perspective, the trajectory of TTS development is clearly aimed at achieving
indistinguishability from real human voices. The emphasis across the industry is on creating voices
that are not just intelligible but also convey genuine emotion, tone, and attitude. Systems like
Hume AI’s Octave TTS [1]] explicitly aim to "understand what it’s saying" to produce nuanced
emotional expression, while models like StyleTTS 2 [[17] strive "Towards Human-Level Text-to-
Speech". The goal is to produce speech that is "smarter, faster, and more human than ever". This
relentless pursuit of realism, while offering immense benefits in various applications, also intensifies
the ethical concerns surrounding deepfakes and the potential for misuse, further underscoring how
close synthetic speech is to becoming perceptually identical to human speech. Ultimately, achieving
this indistinguishability will render detection impossible, necessitating proactive approaches like
safeguards or watermarking—potentially at the cost of some quality—to prevent spoofing, alongside
legislation to mandate these protective measures.

3 SSD Systems Are Vulnerable to Malicious Perturbations

It’s already well known that current SSD systems are vulnerable to natural perturbations, such as
different codecs [28]]. In this section, we aim to answer the more radical question:

Can deepfake audio be maliciously altered in ways nearly imperceptible to the human ear, but
sufficient to bypass state-of-the-art detectors?

Unlike previous research that focused on natural perturbations [20, 28], we consider a malicious
attacker who deliberately optimizes the perturbation to evade detection. We examine this scenario
under various levels of access to the detection systems, from having full knowledge (white-box), to
partial knowledge (black-box), to no knowledge (agnostic).

3.1 Experiment Setup

We train four SOTA open-source SSDs from scratch: AASIST [[11], AASIST-L [11], RawNet2 [24]
and RawGATST [23] on ASVSpoof2019-LA train split [25]. Their equal error rates (EERs) without
attacks on ASVSpoof2019-LA test split are reported in Table [ and closely match the reported
numbers in their original papers.
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Table 4: Baseline EERs of SSDs on the ASVSpoof2019-LA test split without attacks.
AASIST | AASIST-L | RawNet2 | RawGATST

0.83% 0.99% 4.88% 3.29%
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Figure 3: Attack success rate and ViSQOL vs. PGD #iterations across red-team sets.

We launch attacks on three synthetic datasets: ASVSpoof2019-LA test split [25], WaveFake [8] and
In-the-wild [20]. In consideration of compute resources, we randomly sub-sample 100 examples
from each dataset for the attacks.

We use the attack success rate (i.e. the ratio of attacked examples bypassing the target detector) to
measure the effectiveness of the attacks. To ensure the attack does not degrade audio quality, we use
both VisQOL [10] and human ratings to confirm that the attacked audio still sounds similar to the
original synthetic audio, which we refer to as “stealthiness”.

3.2 White-box Attack

We first study white-box attack, where the adversary has full access to the model. We choose two
white-box attacks: Projected Gradient Descent (PGD) [19] and I-FGSM [[13]].

Projected Gradient Descent: PGD crafts adversarial examples by iteratively taking small steps in
the direction that maximizes the model’s error, while projecting the perturbed example back within
a certain boundary around the original input to maintain a balance between attack success rate and
stealthiness.

PGD has three major hyper-parameters: perturbation step size, {.,-norm constraint, and the number
of iterations. We conduct hyper-parameter search and summarize the results in Figure[T} 2] and[3]

In Figure[T] we can tell that on WaveFake and In-the-wild, the attack success rate is almost always
100% while on ASVSpoof2019-LA test the attack success rate hovers between 60% and 100%
depending on the learning rate used. This reflects the fact that the detectors are more robust on
test data generated by the same TTS systems as the training data (i.e. in-domain data), but are still
vulnerable under white-box attacks with a few steps of hyper-parameter search. On the other hand,
VisQOL scores keep decreasing as the perturbation step size grows. Usually, VisQOL score above
3.0 is considered reasonable quality. Thus, there exists a sweet spot of perturbation step size striking
balance between attack effectiveness and stealthiness.
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Table 5: Human ratings of speaker similarity between the original and PGD attacked audio.

ASVspoof WaveFake In-the-wild
AASIST 0.970 £0.063 | 0.971 +£0.046 | 0.985 + 0.030
AASIST-L 0.979 £0.037 | 0.979 £ 0.045 | 0.975 + 0.036
RawNet2 0.971 £0.077 | 1.000 £ 0.000 | 0.967 & 0.063
RawGATST | 0.997 + 0.008 | 0.986 £ 0.030 | 0.997 £ 0.008
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Figure 7: Attack success rate and ViSQOL vs. SimBA perturbation batch size.

In Figure [2] the observation of SSDs being more robust on ASVSpoof2019-LA test holds true.
However, we observe that the VisQOL scores are pretty consistent despite the changing ¢.,-norm
constraint, which says that audio quality is insensitive to /,,-norm constraint within a certain range.

Figure[3]shows that white-box attacks are efficient, reaching maximum attack success rates and stable
VisQOL scores after just 50 iterations.

We also collect human ratings on whether the PGD-attacked audio with the best hyper-parameter
combination sounds like the original synthetic audio, and the results are summarized in Table@ We
can see that most human raters think the two audio sound like the same person, underscoring the
potential threat of using the attacked audio for impersonation.

Iterative Fast Gradient Sign Method: I-FGSM only differs from PGD in that it only uses the sign
of the gradient to perturb the input audio. It shares the same set of hyper-parameters as PGD, for
which the grid search results are summarized in Figure @] [5] and [f]and human ratings are summarized
in Table [] and the findings are similar to PGD.
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3.3 Black-box Attack

For black-box attack, we choose the Simple Black Box Attack (SimBA) [9]]. SimBA perturbs the
input audio randomly and observes whether the prediction confidence score for “fake” class decreases
or increases. If the confidence score decreases, SImBA will keep the perturbation. Otherwise,
SimBA will try adding perturbation in the opposite direction and decide whether to keep or discard
the perturbation just as above. SimBA iteratively perturbs the input until the SSD is successfully
bypassed or the budget of queries/iterations is used up.

SimBA has three hyper-parameters: perturbation batch size, perturbation step size, and the number
of queries. Perturbation batch size decides how many timesteps are perturbed in each query, while
perturbation step size decides which long one perturbation step on one timestep can be. The hyper-
parameter search results are summarized in Figure[7} [§ and 0]

In Figure |7} we observe that on ASVSpoof2019 test, RawNet2, the least capable SSD model is still
broken almost 100% but all the other 3 models are only broken 60% of all the tested examples. This
draws a positive correlation between model capability and robustness. On WaveFake and In-the-Wild,
all SSDs are broken more than 90% of the time, which confirms the previous observation that current
SSD models are brittle when facing synthetic audio from TTS systems never seen during training.

Also in Figure[7][8] and[0] we observe that ASSIST-L is the most robust model consistently, which is
surprising because it’s the smallest model within the 4 (See [ 1] for the size of these models.). This
observation aligns with the principle of Occam’s razor, which suggests that simpler models often
generalize better. A potential explanation could lie in the raggedness of the decision boundaries.
Larger models, with their increased complexity, might create more intricate and potentially overfit
decision boundaries. In contrast, ASSIST-L, being smaller, may form smoother decision boundaries,
leading to better generalization and robustness against perturbations.

Human ratings of audio similarity is summarized in Table[/} Again the attacked audio sound highly
similar to the original ones to human ears.

3.4 Agnostic Attack: Transferability of Above Attacks

The above attacks all assume different levels of access to the SSD model which might not be accessible
in practice. As a result, we want to understand whether the above attacks are transferrable: Can a
successfully attacked example on one model transfer to a different model? If this is true, then the
adversary can craft a proxy model themselves, attack it, and expect it to bypass the real SSD as well.

Table 6: Human ratings of speaker similarity between the original and I-FGSM attacked audio.

ASVspoof WaveFake In-the-wild
AASIST 0.984 £ 0.020 | 0.960 £ 0.052 | 0.985 + 0.024
AASIST-L | 0987 +£0.022 | 0.986 £ 0.023 | 0.967 £ 0.054
RawNet2 0.980 £ 0.040 | 1.000 £ 0.000 | 0.991 + 0.012
RawGATST | 0.989 +0.024 | 0.858 £ 0.141 | 0.985 £ 0.024
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peaker similarity between the original and simBA attacked audio.
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Figure 10: Transferability of attacks on different datasets.

The results are summarized in Figure @ First, we find that on out-of-domain data, some SSDs are
extremely vulnerable. For example, on WaveFake, RawNet2 is extremely vulnerable under all attacks;
on In-the-wild, ASSIST and AASIST-L are more vulnerable than the other two models. Second, we
find that on in-domain data, black-box attacks are much more transferrable than white-box attacks.
This is because 1) black-box attacks tend to add larger perturbation than white-box attacks; 2) the
SSDs’ decision borders are alike for in-domain data. Thirdly, we also observe high similarity between
the transferrability heatmap between PGD and I-FGSM, which might be due to different white-box
attacks taking gradient paths in similar directions despite small differences.

4 Conclusions and Open Problems

This paper has argued that the pursuit of high-accuracy, long-term detection of sophisticated deepfake
audio, particularly in the face of motivated and adaptive adversaries, is an increasingly challenging,
and perhaps ultimately unrealistic, endeavor. This position is supported by two primary lines of
reasoning.

Firstly, the rapid and continuous advancements in TTS technologies are fundamentally driving
synthetic audio towards a point of near-indistinguishability from genuine human speech. This
dynamic mirrors an adversarial relationship where TTS generators constantly improve, making the
task for SSD discriminators progressively harder. The inherent lag in SSD development, which relies
on access to newer TTS outputs for training, further exacerbates this challenge.
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Secondly, our findings, along with emerging research, demonstrate a critical vulnerability of current
state-of-the-art SSDs to deliberate adversarial perturbations. We have shown that it is possible to
introduce subtle, often imperceptible, modifications to synthetic audio that can successfully deceive
leading detection models across various attack scenarios (white-box, black-box, and transfer-based).
This susceptibility, even when audio quality is maintained, underscores the fragility of current
detection paradigms against determined attackers.

Therefore, while detection remains a component of the response, relying on it as the primary or sole
defense against the misuse of deepfake audio is a precarious strategy. The "arms race" is heavily
skewed, and the evidence suggests that perfect, or even consistently reliable, detection is unlikely to
be a stable long-term solution.

The challenges highlighted in this paper point to several critical open problems and avenues for future
research:

Proactive Defense Mechanisms: What are the most effective and scalable methods for audio water-
marking (both perceptible and imperceptible) that are resilient to removal or alteration? Can “audio
immune systems” or pre-emptive perturbation techniques (akin to SafeSpeech [30]) be developed to
make original audio recordings inherently more difficult to clone or manipulate convincingly?

Understanding and Countering Adversarial Strategies: Further systematic study is needed on
the evolving tactics of adversaries in creating and deploying deepfakes, including more sophisticated
attack algorithms and their transferability. How can we develop dynamic defense mechanisms that
can adapt to new attack vectors in real-time?

Human Perception and Media Forensics: How do humans perceive and differentiate highly real-
istic deepfake audio from genuine speech, and can these perceptual cues be leveraged for detection?
How can we improve media literacy to equip individuals with the skills to critically evaluate audio
content? Developing reliable and accessible forensic tools for verifying audio authenticity remains a
key challenge.

Ethical Frameworks and Responsible Innovation: How can we foster a culture of responsible
innovation within the TTS development community, encouraging the proactive consideration of
misuse and the integration of safeguards? What ethical guidelines and standards should govern the
development, deployment, and accessibility of powerful voice synthesis technologies?

Attribution and Legal Recourse: Developing techniques for attributing the source or creator of a
deepfake audio clip is crucial for accountability. How can legal and regulatory frameworks be adapted
to effectively address the creation and malicious dissemination of deepfake audio while protecting
freedom of expression?

5 Alternative View

While this paper posits a pessimistic outlook on the long-term efficacy of SSD systems, an alternative
perspective holds that the "arms race" between TTS generation and SSD may not inevitably lead to
the obsolescence of detection. This view is predicated on several possibilities:

1. Current SSDs primarily analyze acoustic and linguistic cues to distinguish between real
and Al-generated speech. However, future research could unveil entirely new categories
of tell-tale signs inherent to synthetically generated audio. These might be exceptionally
difficult for TTS models to mimic or for adversaries to successfully perturb.

2. The trajectory of TTS development aims for synthetic voices that are virtually indistinguish-
able from human speech. However, human speech is the product of incredibly complex
biological, physiological, and cognitive processes. Achieving true indistinguishability —
capturing every nuance, subtle imperfection, and the inherent variability of genuine human
vocal production — might be a far more intractable problem for Al than currently anticipated.

3. The paper notes that SSD development inherently lags behind TTS advancements because
SSD systems rely on data from new TTS systems for training. However, a more concerted
and perhaps preemptive research effort in SSD could shift the dynamic.
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