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ABSTRACT

In this paper, we consider combinatorial reinforcement learning with preference
feedback, where a learning agent sequentially offers an action—an assortment of
multiple items—to a user, whose preference feedback follows a multinomial logit
(MNL) model. This framework allows us to model real-world scenarios, particu-
larly those involving long-term user engagement, such as in recommender systems
and online advertising. However, this framework faces two main challenges: 1) the
unknown value of each item, unlike traditional MNL bandits (which only account
for single-step preference feedback), and (2) the difficulty of ensuring optimism
with tractable assortment selection in the combinatorial action space. In this paper,
we assume a contextual MNL preference model, where mean utilities are linear,
and the value of each item is approximated using general function approximation.
We propose an algorithm, MNL-VQL, that addresses these challenges, making it
both computationally and statistically efficient. As a special case, for linear MDPs
(with the MNL preference feedback), we establish the first regret lower bound
in this framework and show that MNL-VQL achieves near-optimal regret. To the
best of our knowledge, this is the first work to provide statistical guarantees in
combinatorial RL with preference feedback.

1 INTRODUCTION

We first formally state the concept of Combinatorial Reinforcement Learning (RL), which we refer to
as a class of RL problems where the action space is combinatorial, meaning that the agent selects a
combination or subset of base actions from a set of possible base actions. Although some previous
studies have addressed problems within this setting—particularly in deep RL (Sunehag et al.| 2015}
He et al., [2016; Swaminathan et al.,[2017; Metz et al.| 2017; Ryu et al., 2019; |le et al.,[2019; Delarue
et al.| 2020; MclInerney et al., [2020; [Vlassis et al.| 2021} |Chaudhari et al.,[2024), with less emphasis
on theoretical RL—to the best of our knowledge, it appears that no prior work has formally and
theoretically defined the concept of combinatorial RLE] This framework is especially relevant for real-
world applications such as recommender systems and online advertising, where multiple items (base
actions) must be selected simultaneously, such as a set of products to recommend or advertisements
to display. The challenge in combinatorial RL lies in the exponentially large action space and the
need to efficiently optimize the agent’s action selection while balancing exploration and exploitation
(a challenge even for single action selection), while considering the long-term effects of these actions.

One of the most widely encountered settings in combinatorial RL is preference feedback over
combinatorial actions, commonly seen in streaming services, online retail, and similar platforms.
Despite the broad applicability of this setting, theoretical studies have predominantly focused on
the multinomial logit (MNL) bandit model (Rusmevichientong et al.| 2010; |[Sauré & Zeevi, [2013};
Agrawal et al., 2017;2019; |Oh & Iyengar, [2019; 2021} |Perivier & Goyal, [2022; |Agrawal et al.| 2023}
Zhang & Sugiyamal 2024} Lee & Oh,2024). The MNL bandit framework focuses on assortment (a
set of items) selection by selecting subsets of items and receiving feedback on chosen items, modeled
by the MNL model (McFadden, |1977). However, these studies take a myopic approach, optimizing
for immediate rewards without considering the long-term impact on user behavior.

!Surprisingly, this is in contrast to the rich theoretical literature in combinatorial bandits (Chen et al., 2013
Kveton et al.| 2015bza; (Combes et al.| 2015), which extend the multi-armed bandit problem.
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While MNL bandits have been widely studied, the myopic approach is limiting in many real-
world scenarios. For example in recommender systems, incorporating the long-term impact of
recommendations opens the door to balancing short-term engagement with long-term user satisfaction.
For instance, recommending junk product or content might lead to high immediate reward but it can
decrease user satisfaction over time due to fatigue. This trade-off between immediate and long-term
outcomes is not captured by traditional MNL bandit approaches. See Appendix [A]for a more details.

On the empirical side, several studies have explored long-term user engagement in recommendation
systems, particularly using deep RL (Swaminathan et al.| 2017 [le et al.,[2019; McInerney et al.,[2020;
[Vlassis et al.l 2021} [Chaudhari et al., 2024). However, there is a significant gap in the theoretical
understanding of combinatorial RL with preference feedback, particularly within the RL framework.
To the best of our knowledge, no theoretical work has yet explored this important problem setting.

In this paper, we aim to address this gap by rigorously studying the problem of combinatorial RL with
preference feedback. Our goal is to develop a provably efficient algorithm that maximizes long-term
user engagement by incorporating state transitions (e.g., historical behavior) in decision-making.
The key challenges in this framework are: (1) the unknown long-term value of each item due to the
stochastic nature of rewards and transitions, (2) the difficulty of selecting an assortment that ensures
optimism while considering tractable assortment optimization in the combinatorial action space.

To tackle theses challenges, we first decompose the Q-function of an assortment into two components:
the preference model and the item values, inspired by (2019). Since the long-term value of
each item is unknown (unlike in MNL bandits), we compute optimistic item values and select an
assortment based on those values. To ensure optimism (Lemma[D.9), we propose a novel method to
estimate the optimistic preference model by carefully alternating between optimistic and pessimistic
utilities (for the preference model) based on the optimistic item values (Equation [7]and [8). This
method requires a more sophisticated proof analysis to address both cases (Lemma and[D.7).
Finally, once the optimistic item values and optimistic (or pessimistic) utilities are established, we
avoid the need for naive combinatorial enumeration when selecting the assortment (Equation[9) by
reformulating the optimization problem as a linear programming (LP), inspired by [Davis et al] (2013).

In this paper, We consider the contextual MNL preference model with linear mean utilities
& Goyall 2013; [Cheung & Simchi-Levil [2017; [Agrawal et al.l 2019; [Oh & Tyengar, [2019; 2021}
Amani & Thrampoulidis, 2021; [Perivier & Goyal, 2022} |/Agrawal et al., 2023; Zhang & Sugiyama
2024;|Lee & Ohl 2024)) and use general function approximation to estimate item values (Jiang et al.
2017; [Wang et al., [2020; [Jin et al., 2021} [Du et al.l 2021} [Foster et al.l 2021} [Agarwal et al., [2023;
Zhao et al., 2023). Inspired by Agarwal et al.|(2023)), we use function approximation in the Q)-type
setting (Jin et al., 2021)), employing point-wise optimism for estimating item values. The algorithm
then constructs optlmlstlc choice probabilities based on optlmlstlc or pessimistic MNL utilities to
ensure sufficient exploration and guarantee optimism. Our main contributions are summarized as:

* We propose a computationally efficient algorithm, MNL-V(QL, that achieves a regret upper
bound of O(dH+/'K + v/dim(F)K H log | F|), where H is the horizon length, K is the
total number of episodes, d is the feature dimension of the MNL preference model, and
dim(F) is the generalized Eluder dimension (see Deﬁnition of the function class F, under
the parameterized contextual MNL preference model and general function approximation
for item values (Theorem|[T). To the best of our knowledge, this is the first theoretical regret
guarantee in combinatorial RL with preference feedback.

* For the special case of linear MDPs, MNL-VQL obtains a regret upper bound of O(dHVK +
d""/HK), where d"™ is the feature dimension of the linear MDPs (Theorem [2). Further-

more, we establish a regret lower bound of Q(dvHK + d'""/HK), demonstrating the
near-optimality of our algorithm for linear MDPs (Theorem 3). To the best of our knowledge,
this is the first regret lower bound in linear MDPs with preference feedback.

2 RELATED WORK

MNL bandits. The MNL bandits were initially studied in [Rusmevichientong et al.[(2010), followed
by a line of improvements (Filippi et al.,2010; Rusmevichientong et al., 2010; /Agrawal et al.l 2017
Oh & Tyengar, 2019} [Faury et al.,[2020; [Abeille et al., 2021} [Faury et al., 2022} (Oh & Iyengar, 2021




Under review as a conference paper at ICLR 2025

Perivier & Goyal, 2022; |Agrawal et al., 2023 [Lee & Ohl [2024). In MNL bandits, the goal is to
offer an assortment that maximizes the expected rewards, which are adaptively learned based on user
preference feedback from the offered assortment. However, there are no state transitions, and it is
assumed that the value of each item is known, with the value of the outside option fixed at zero. In
contrast, our study extends this by not only estimating the MNL model but also the item values.

Combinatorial RL with preference feedback. Recently, several studies have demonstrated the
empirical success of combinatorial RL with preference feedback (Swaminathan et al.,|2017} [Ie et al.,
2019; Mclnerney et al., 2020; |Vlassis et al., 2021} |[Chaudhari et al., [2024), where a set of items is
offered to a user, and (relative) choice feedback along with a reward is received, leading to a transition
to the next state. However, theoretical results quantifying the benefits of such methods are still few
and far between. A closely related work is cascading RL (Du et al.} 2024)), which also involves
selecting a set of items. However, in cascading RL, items are offered to the user one by one, and
the user decides only whether to choose the currently offered item. As a result, this framework does
not capture relative preference feedback across multiple items. Furthermore, in cascading RL, the
probability of choosing each item is independent of the others, which is not the case in our framework.

Another related line of work is preference-based RL (PbRL) (Akrour et al., 2012} |Wirth et al., 2017
Christiano et al., 20175 |Ouyang et al., [2022; Saha et al., 2023} [Zhu et al.,|2023; [Zhan et al., [2023)),
where the policy is optimized based on relative, rather than absolute, preference feedback. However,
our framework differs from PbRL in that our goal is not to offer just a single item, but to offer multiple
items—a combinatorial (base) action—at each timestep.

Provably efficient RL. with nonlinear function approximation. RL under nonlinear function
approximation has gained attention (Jiang et al., 2017; Wang et al., 2020; Jin et al., 2021} |Du et al.,
2021} [Foster et al., 2021} |/Agarwal et al.,|2023; [Zhao et al., 2023) for modeling complex function
spaces like neural networks. Among these, |Agarwal et al.|(2023)); Zhao et al.| (2023)) achieved the
best-known regret guarantees under general function approximation by introducing the concept of
generalized Eluder dimension to handle weighted regression. Inspired by their work, we estimate the
value of items (referred to as item-level (Q-value) using general function approximation in this paper.

3 PROBLEM SETTING

3.1 NOTATIONS

For an integer n >0, we denote [n]:={1,2,...,n}. For a positive semi-definite matrix A € R?*9,
the norm | - || on R? is defined as ||z|3 := 2T Az. Let | - | denote the cardinality of a set.

3.2 COMBINATORIAL MDPS WITH PREFERENCE FEEDBACK

In this paper, we consider a time-inhomogeneous episodic and combinatorial Markov decision
processes (MDPs) with preference feedback, M(S, T, A, M, {Pp}L | {Pp L, {rp}fL |, H). Here,
S is the set of states. Each state s € S reflects the user’s status, capturing both relatively static
user features (e.g., demographics, interests) and relevant user history or past behavior (e.g., past
recommendations, items purchased or clicked). Z := {aq,...,an,ap} is the ground set of items
(base actions), where a1, ..., ay are items and a refers to the “outside option”, meaning the user
has chosen none of the items from the offered set of items (referred to as an “assortment” throughout
the paper). It is included in every assortment by default. A is the set of candidate assortments that
always include the outside option ag, contain at least one item (other than ag), and have at most M
items (including ap), i.e., A = {A S Z : a9 € A,1 < |A\{ap}| < M}, where A is an assortment.
For any (s, A) € S x A, we denote P}, (a|s, A) as the probability of the user choosing on item a € A
(including the outside option ag). Furthermore, we let P, : S x Z — Agandr, : S xZ xS — R
characterize the transition kernel and instantaneous reward, respectively, at a given horizon h € [H].

Throughout this paper, we assume that ZhH=1 rh(Sh,an, sn+1) € [0, 1] for all possible sequence
(s1,a1,-.-,8H,aH,SH+1). H € Z4 is the length of each episode. A policy 7 : S — Aisa
mapping from the state space to the assortment space. Since the optimal policy is non-stationary in
an episodic MDP, we use 7 to refer to the H-tuple {mj, }Z .

In each episode k € [K], an initial state s¥ is picked arbitrarily (e.g., a user arrives at the system).
The agent then follows a policy 7" starting from s¥. At each step h € [H], the agent observes the
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current state s¥ (e.g., hrstorrcal behaviors of the user) and offers an assortment A¥ = 7% (sk). The
user’s preference feedback a rE Aﬁ is then observed, which is drawn based on the choice probability
Phu(-|sk, AF). Next, the system transitions to the next state sy, ~ Py(-|sF,af) and receives a
reward 7, (sf, af, sf, ;). After H steps, the episode terminates, and the agent proceeds to the next.

For any policy 7 = {m,} n—1> we define the value function of policy 7, denoted as V;" : § — R,
as the expected sum of rewards under the policy 7 until the end of the episode when starting from
sp=s,ie,V7(s):=E [Zg:hrh/(sh/, anpsy Shi41) | Sh = s] . Similarly, we define the action-value
function of policy 7, Q7 : S x A — R, as the expected sum of rewards under policy =, starting
from step h until the end of the episode after taking action A in state s; that is, Q7 (s, A) =
E [Zgzhrh/(shz,ah/, Sh+1)|sn =8, Ap = A] . Furthermore, we define the item-level Q-value

function (also called the Q-value) Qp, (s, a) := 3, Pu(s'|s,a)(r(s,a,s") + V71 (s')). Then, the
Bellman equation for assortment RL is denoted as follows:

Qr (s, A)= Z Prn(als, A) (Z Py (s'|s,a) (rh(s a,s") + Vi (s > Z Pr(als, A)Qh(s a).

acA s'eS acA
There exists an optimal policy 7*, which gives the optimal value function for all states (Puterman,
2014), i.e., V;™ (s) = sup, V;"(s) forall (s, h) € S x [H]. For notational simplicity, we abbreviate
V™ oas V*. Similarly, we define the optimal )-value function as Q* and the item-level optimal
Q-value function as @*. Then, Q* satisfies the following Bellman optimality equation:

Qi (s, A) = Zma|sA<ZPh 'Is,a) (ra(s, a,8) + Vil (s ) 2, Palals, A)Qi (s, ).

acA s'eS acA

Forany V : § — R and h € [H], we define the item-level Bellman operator of V as T,V : S x T —
R, such that for all (s,a) € S x Z, T,V (s,a) := By p,(|s,a) [Th(5;a,8) + V(s') | s,a]. The
definition of value functions ensures that they satisfy the equation Q) (s,a) = T, V}* 1(s,a). We
also define the second moment item-level Bellman operator of V as T2V : S x Z — R such that for
all (s,a) € S x I, T2V (s,a) := Eg <, (15,0)[(Tr (8, a,8") + V(s’))2 | s,a).

The agent’s objective is to find a policy that maximizes its expected cumulative reward over K
episodes. Equivalently, our goal is to minimize the cumulative regret over K episodes, defined as

Regret(M, K) i= 3, V7 (sf) = V7™ (s5).

3.3 MULTINOMIAL LOGIT PREFERENCE MODEL

In this paper we make a structural assumption about the MDP M, where the user’s choice probabrhty
{Pr}_, follows multinomial logit (MNL) model (McFadden, |1977) parameterized by {6} }/- .
We denote Pp,(|s, A; 05) as equivalent to Py (-|s, A), explicitly showing the dependence on the
parameter 6} . Throughout the paper, we use Py (+|s, A) and Py (-|s, A4; 6;,) interchangeably.

Assumption 1 (MNL preference model). Let there exist a known feature map ¢ : S x T — R4
and an unknown 0; € © for all h € [H]|, where © = {0 eR?: |02 < B}. Then, for any
(s,A,H) € S x A x [H], the probability of choosing any item a € A is defined as:

exp (¢(s,a)"05)
2aeaexp(9(s,a’)76})
Also, we assume that ||¢(s,a)|2 < 1 forall (s,a) € S x T and B = O(1).

Prlals, A) = Pplals, A; 6}) :=

Here, without loss of generality, we assume that ¢(s,ag) = 0 forall s € S E] which im-
plies that exp(¢(s,ao)' 6;) = 1. Thus, the preference model can be equivalently expressed as

Prlals, A;05) = exp (¢(s,a)"0}) / (1 + DA\ (o} EXP (o(s, a’)TH}*L)).

’By subtracting ¢(s, ag) from each ¢(s, a), where a € Z, and defining ¢'(s, a) := ¢(s,a) — ¢(s, ao), we
can ensure that ¢/ (s, ag) = 0. This implies that exp(¢’ (s, ag) ' 8};) = 1. This assumption is commonly made
in contextual MNL bandits (Oh & Iyengar, 2019; 2021} [Perivier & Goyal, 2022} |Agrawal et al.} 2023; Zhang &
Sugiyama, 2024; [Lee & Oh}2024).
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Following the previous MNL bandit literature (Chen et al., [2020; |Oh & Iyengar, 2021} |Perivier &
Goyal, [2022} [Zhang & Sugiyamal 2024; |Lee & Oh}|2024), we also introduce the following constant:

Definition 1 (Problem-dependent constant). We define the problem-dependent constant k as
K= min Prlals, A, 0)Pr(agls, A,0) > 0.
AeA,aeA\{ao},0€0,he[H]

A small « indicates a larger deviation from the linear model. Note that this value can be extremely
large, so it is crucial to avoid any dependency on x in the main term of our regret bound.

3.4 GENERALIZED FUNCTION APPROXIMATION FOR ITEM-LEVEL (Q-FUNCTION

We estimate the item-level Q-functions (referred to as Q-values) using general function approximation.
Specifically, the agent is given a function class F := {Fj,}/L_,, where each set F}, is composed of
functions f5 : S x Z — [0, L]. We assume L = O(1) throughout the paper. Since no reward is
collected in the (H + 1)™ steps, we set fr7,1 = 0. We denote A" as the maximal size of function
class,ie., N = maxpe[ ] | Fr|- We consider a class of episodic MDPs such that the value functions
satisfy the completeness and realizability assumptions under a function class F.

Assumption 2 (Completeness & Realizability). For each h € [H] and any V : S — [0,1], we
assume that @,*, € F, and there exists fy, fi € Fy, such that

fh(87(l) = EV(&(Z), and f}'/L(S7a’) = 7—;12‘/(870,)7 v(87(]') €S x 1.
Remark 1. The completeness and realizability assumptions are standard in RL with general function
approximation (Wang et al.| 2021} Jin et al.| 2021} Agarwal et al.| [2023; Zhao et al.| |2023). Our
assumption is the same as those in Agarwal et al.|(2023);|Zhao et al.|(2023), but stronger than those
in (Wang et al.| 2021} Jin et al.| | 2021)), especially, in terms of the second moment completeness.
However, this assumption is essential for using point-wise exploration bonuses and achieving a
tighter regret bound. Additionally, it naturally holds for both tabular and linear MDPs.

Since our results include the regret bound under the linear MDPs as a special case (in Section[5.2),
we formally define the linear MDP as follows:
Definition 2 (Linecar MDPs, [Yang & Wang||2019; Jin et al|2020). An MDP M is a linear MDP

if we have a known feature mapping ¢ : S x I — R, and there exist d'" unknown (signed)

measures |1y = (ug), . ,/A;Ldlm)) over S and unknown vector wj, € R, such that for any (s,a) €
S x I, we have Pp,(-|s,a) = {(Y(s,a), pu;(-)) and r(s,a) = {P(s,a),w;). We assume that

SUP(s,q)esxz [U(8: @)z < 1 max{|| Xoes |17, (3) 2 [Wh |2} < V™ for all h e [H].

We also assume that ZhH:1 rp, € [0, 1]. Proposition 2.3 of Jin et al.| (2020) shows that linear MDPs
satisfy Assumptionunder the linear function class 7" defined as follows:

Fi = { W) wn) s wn € R, Junly < 2Vd™ |, foranyhe [H]. (1)

To capture the complexity of exploration in the MDP, we define the generalized Eluder dimension,
which is a weighted regression version of the original definition by Russo & Van Roy|(2013).
Definition 3 (Generalized Eluder dimension, Agarwal et al.[2023}[Zhao et al.[2023). Let p > 0, a
sequence of state-item pairs Z = {2} where 2F = (s*, a¥), and a sequence of positive numbers
o = {o"}E_|. The generalized Eluder dimension of a function class F : S x T — [0, L] with
respect to p is defined as dim,, k (F) := Y.z ;.| 7|0, Gim(F, Z, ), where

K

1

dim(F,Z,0) := Z min (1, WDQI (zk; {27}k, {O'T}ﬁ%)) ,
k=1

TV k— T k— f < _f z 2

D% (5 {zT}2i o )21) == sup 1( 1(2) ~ /2(2)) —
Ji.f26F Q1 ICaL (f1(z7) = fa(27))" +p

We write d,, := % Z;I;I=1 dim,, g (Fp) when function class {F,}L_, is clear form context.

According to Theorem 4.6 of |Zhao et al.|(2023)), the generalized Eluder dimension is upper bounded
by the standard Eluder dimension (Russo & Van Roy, |2013) up to logarithmic terms.
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Algorithm 1 MNL-VQL, MNL Preference Model with Variance-weighted Item-level Q-Learning

1: Inputs: parameter space O, furlction class {}'h}hH:l, consistent bonus oracle 5.
2: Parameters: {c, B 1, B 5, B} (k,n)e[H]x [K]» {Uk}he1, > DONUS erTOT €5, 1, 6.
3: Initialize: confidence interval Cj = ©, dataset Df) = ¢ forall h € [ ].
4: Generate {D; }/L_ | from initial state s} by random policy and set o} = &} = 2 forall h € [H].
5: forepisode k =2,--- | K do
6 for horizon h = H H— ,1do
/I CONSTRUCT CI FOR MNL PREFERENCE MODEL
7: Update 0’C by Equatlon and the confidence interval C;! * by Equation I
// CONSTRUCT CI FOR OPTIMISTIC Q-VALUES
2
; . k—1 -
8: f}’f1 €argming, ¢z, 2, G r)z (fh(shaah) - th+1 1(3h+1)) .
9: by, — B ({ah}T 1, Dt .Fh,fh 0 BE1 Py 6b) (see Deﬁmtlon
10: Update £ () < min { f£1(-+) + 0 (), 1}
// CONSTRUCT CI FOR OVERLY OPTIMISTIC, PESSIMISTIC Q-VALUES
2
£ s k—1 T T T T -
11: f,’f Jeargming .z > (fh(sh,ah) —rp = VE, j(sh+1)) ,j = £2.
12: by, — B ({IT}T 1, Dt ]—'h,fh 22 B 20 Py Eb) (see DeﬁmtlonEI)
13: Update f£, () < min{ f () + 265 1 () + 0 (), 1.
14: Update ff_y(-,-) « max{f;;_Q(., SR -),o}.
// CONSTRUCT CI FOR VARIANCE ESTIMATOR 5
2
~ 3 k—1 T T T T
15: gili € argming, « r, 21 (gh(sh’ ay,) — (Th + V}f+1,1(5h+1)) ) .
// UPDATE VALUES
16: Update P} () by Equation
17: Update Qh,j( JA) < Xca Pf,j(a|-,A)f}’f,j(-,a),j =1,+2.
18: Update V)¥ () < maxaca Qf (-, A), j = 1, +2.
19: end for
20:  Receive initial state s¥.

// ROLLOUT POLICY
21: forh=1,2,...,H do

22: Offer A} by Equation |10|and receive af, ry, and s _ ;.
23: Update Dy « be_l U {sk, af, rf sk}

24: Update of and &§ by Equation]3).

25: end for

26: end for

4 ALGORITHM

In this section, we introduce an algorithm, which, to the best of our knowledge, is the first to provide
statistical guarantees in combinatorial RL with preference feedback while maintaining computational
tractability. Step 1 involves online parameter estimation for the MNL preference model, proposed
by (Zhang & Sugiyamal [2024} [Lee & Ohl [2024). Steps 2, 3, and 4 implement variance-weighted
regression to tighten the regret bound, as outlined in (Agarwal et al} [2023). Step 5, which is our
main contribution, ensures optimism in a computationally efficient manner, even with uncertainty in
item-level Q-values. Step 6, inspired by (Agarwal et al [2023), introduces an exploration step that
employs a modified threshold to account for estimation errors from the MNL preference model.

Step 1. Loss function for MNL preference model and online parameter estimation (Line [7).
At episode k and horizon h, g1ven the user’s choice feedback ¢ € AF, the response for each

1tem ai,, € A¥ is defined as yJ (a;,,) := 1(c}f = a;,,) € {0,1}. Therefore, the response variable
y¥ = (yF(ao), y(ai,), ... y¥(a;)), where | < M — 1, is sampled from a multinomial distribution:
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v ~ MNL{1, Pp(ao|sf, AF; 0%), ..., Pr(ai|sk, AF; 67 )}, where the parameter 1 indicates that y/
is a single-trial sample, i.e., y¥(ao) + 3 _, y¥(as,,) = 1. Then, for any (k, h) € [K] x [H], the
multinomial logistic loss function is defined as:
= Z yh a)log Pp, a|5haAh7 6).
aeA’“/

Inspired by Zhang & Sugiyama| (2024); Lee & Ohl(2024), for all (k, h) € [K] x [H], we use the
online mirror descent algorithm to estimate the true parameter 6; as follows:

oyt e argmln(Vﬁk(Bh) 0) + —||0 GhHHk , where ® = {0eR?: 0|, < B}, (2

where 17 = O(log M) is the step-size, HY := HF + V205 (0%), and HE := XL, + Y5~ ] V207(07+1).
Remark 2. This online estimator is efficient in both computation and storage. Using the standard
online mirror descent formulation (Orabonal [2019), Equation [2| can be solved efficiently with a
computational cost of only O(Md?>), which is completely independent of k (Mhammedi et al.l |2019;
Zhang & Sugiyama, 2024, Lee & Oh}|2024). In terms of storage, the estimator does not need to retain

all historical data, as both I:Iﬁ and Hﬁ can be updated incrementally, requiring only O(d?) storage.

Now, we define the confidence interval as follows:
Chi={0c©:]0- 6}y <al}, where af = O(Va). 3)
Then, with high probability, we have 85 € CF for all (k, h) € [K] x [H] (refer Corollary m
Step 2. Weighted regression and optimistic estimation for item-level QQ-function (Lme [8HT0).
Using the past dataset, we solve the following (weighted) regression problem to fit Tth R
k—1

£ M 1 T T T T 2
fflf,1 € argmin 2 ) (fh(sh»ah) —Th — th+1,1(3h+1)) ) “4)
fheFn 121 (Uh)

% is a variance upper bound, i.e., (55)% > V[r, + Vhﬁm ($ht1)|sF, af], which will be

where (&%)
specified later. Given f,’f,l, we define the version space FF as follows:
k=1 A 5 )
Fhyi= {fh € Fu: Y, —3 (falshvap) = fi1(shoal)) < (B5)) } ,
=1 (07)
where 3f | = O(y/log V). We can ensure that 7, V;F, , € FF with high probability (Proposition .
Then, an optimistic Q-value estimate at horizon h is defined as f,’;l = f}]f1 +b§, where bfL is the

optimistic bonus. The bonus is calculated as b} (s, a) =maxy, e 7, fr (s, a) — miny, c 7, fa(s,a). In
general, this uncertainty bonus has a high complexity, as the maximizing and minimizing functions
can differ arbitrarily for each (s,a) € S x Z. To address this, we introduce a low-complexity bonus
oracle that approximately dominates the value obtained from the point-wise maximization over Fp,.

Definition 4 (Oracle B for bonus function b}, |Agarwal et al[2023). For any (h,k) € [H] x [K],
sequence of {7 }5_} and dataset D} ~" = {(s},,a},, v}, s} 1) i1, function class Fy, with f, € Fi,

Bn, p > 0, error parameter €, > 0, the bonus oracle B({ah}T I,Dk L Fus Frs Br, ps €p) outputs a
bonus function by, (-) such that, for any zp, = (sp,ap) € S x I, we have

e by : S x T — R, belongs to a bonus function class W and denote Nj, = |W)|.

* bi(2n) = maX{|fh(2h) fr(zn)ls fu € F - Zk : (57%)2 (fh(ZZ) - fﬁ(zfi))2<(ﬂh)2}-

* bu(zn) < C- (th (2 2L AGTHE2D) A (B)* + o+ e m) with 0 < C < 0.

’
Further we say the oracle B is consistent if for any k < k" with consistent {57}"_1 < {7},

Dk_l c Dk,_l 5h non-decreasing in k for each h € [H| and f,’f as defined in Equation it holds
that B({gh}q— 1 Dk ! ‘F}L7 fh ) ﬂh? 12 65) ({6’}1}& 711a ,Dk 717 ‘Fha f}]fl7 B§/7 Ps Gb) Engent_Wise'
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With the oracle B, we can efficiently calculate the optimistic -value estimate f,’f with an error of ;.

Remark 3. Following |Kong et al.| (2021); \Wang et al.| (2020); Agarwal et al.| (2023), we use the
online sensitivity sub-sampling method for efficient implementation (refer Appendix|B).

Step 3. Overly optimistic and pessimistic estimation for item-level Q-function (Line TT{14). For
a sharp analysis of the convergence of the optimistic estimate fh 1> we define an overly optimistic
Q-value estimate fh72, as well as an overly pessimistic Q-value estimate fh7_2. Similarly to fh,l’ they

are calculated by solving an unweighted regression problem (Line[IT)), and by adding (or subtracting)
a bonus function, which is the output of the bonus oracle B (Line [I3{T4).

Step 4. Variance estimation (Line n 15/and [24). To calculate 57 introduced in Equation E], we first
estimate the second moment by solving the unweighted regress10n problem:
k=1

9\ 2
gr € arg min Z (gh shoan) = (T + Vi1 (s741)) ) :
9h€Fh —1

Then, denoting z,’j = (s’,ﬁ, a h) for simplicity, we calculate the estimated variance as follows (this is an
informal description; for the precise formulation, see Equation and Equation in Appendix):

<o,’i)2=min{4,g,’i<z£>—(fh_<zh>)+th<zh,{zh}k Lz o 1og/\wb)}

of =m {ah,yoaog/\//\/b \/max (k20 = o), D (s 1271501 (o7} )}}
)

where v serves as a lower bound on the variance estimate to ensure the stability of the algorithm.

Step 5. Efficient optimistic ()-value estimation based on unknown item values (Line [16}I8). In
this step, we address our main challenge: selecting an optimistic assortment based on the optimistic
(Q-values, which incorporate uncertainty, while ensuring computational tractability.

To introduce optimism and encourage exploration, we need to solve the following optimization
problem using the optimistic (or pessimistic) estimates of the Q-values, specifically fh for j =
1,+2:

A ; € arg max max Z Pr(alsk, A; 0)fr ](s,,, a), where CJ is defined in Equation[J] ~ (6)
AeA  6eCk )

One of naive approach to solvmg the optimization problem in Equation[6]is to add bonus terms to
Yuea Pr(alsy, A; 05) f . (sy, a) for each assortment A, and then enumerating all A € A to find the

maximum. However, this approach results in an exponential computational cost of O(|Z|).

To avoid this exponential computational cost, inspired by |(Oh & Iyengar (2019; 2021)), we use
optimistic MNL utilities instead of directly adding bonus terms to > , Py (alsy;, A; ) f . (s, a).
However, unlike MNL bandits (Rusmevichientong et al., 2010; Sauré & Zeevi, [2013;|Agrawal et al.,
2017;2019; Oh & Iyengar, 2019;[2021), simply using optimistic utilities does not always guarantee
optimism. Specifically, increasing the MNL utilities to their optimistic values (e.g., UCB) reduces
the probability of choosing the outside option ag, by definition. In MNL bandits, the item values are
known, and the value of the outside option ag is fixed at zero. Therefore, increasing the MNL utilities
(using the optimistic utilities) lowers the probability of choosing the outside option, which in turn
increases the expected value of the item values.

However, in our setting, using the optimistic utilities can decrease the expected value of f,’f ;- To

explain why: even if the true value of the outside option, @;(s, ag), is the lowest, its estimated value,
f,’fﬂ- (s,ap), can be the highest—i.e., j”,’f)j(s7 ag) > f,’f,j (s, a) for all a € Z\{ag}—due to uncertainty.

In this case, increasing the MNL utilities results in a decrease in the expected value of f,’f ;- This
challenge arises from the unknown item values, @; which is one of the main difficulties we face in
combinatorial RL with preference feedback.

Hence, since we must rely on the estimates f{f ; instead of the true values @Z, a more refined approach
is required to use the utility based on f,’f ;- Given the confidence interval in Equation (3} we define the
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optimistic utility UF (s, a) and the pessimistic utility UF (s, a) as:
V(s a)i= 6(s,a) 0% + af |6 (s, a)| ggyy 1+ Th(s,a)i= Bls,@) 0 — gl (s, ) gggy s @

We then use the optimistic utility only when f,’f j (s, ap) is not the highest estimate to calculate the

optimistic choice probabilities P jt

~k

. exp (Uh((fl;?)) 7 if 3a € T\{ao} s.t. fF(s,a) = fF (s, a0)
~k P a’e EXp (Up (S, a | |
Pri ;(als, A) = eﬁp (55(5%)) .

Za/eA exp (’Ull; (‘97 a/)) ,

otherwise.

Equipped with 75,’f ;» we select the assortments Aﬁ . for each j = 1, £2 as follows:

k k (.k k (ok
Ah,j € aririax Qh,j(sth), where th Sha Z Ph J a|$hv )fh,j(shv a). ©)
€ aceA

Here, we refer to Q,"; ; as the optimistic Q-values. This construction can induce sufficient exploration
and guarantee optimism (Lemma [D.9). Furthermore, by using the optimistic (or pessimistic) util-
ities for each item, instead of calculating bonus terms for each A € A, the optimization problem
in Equation [9]can be solved efficiently (Davis et al.| 2013).

Remark 4. The optimization problem in Equation[9can be transformed into a linear programming
(LP), thus making it solvable in polynomial time with respect to |Z| (see Appendzx@

Step 6. Exploration policy (Line . We then offer the assortment AZ to the user as follows:

Ak: — {Ail if f}lf’,l(sg/aah') fh’ (Sh/aah’) — Uk, vah' € Aﬁ/717Vh/ < h7

10
Aﬁﬁz otherwise, (10)

where uy is a carefully chosen threshold (see Table @] for the exact value). When the optimistic
sequence fh 1 and the overly optimistic sequence fh 5 diverge beyond a certain threshold, we offer

the assortment A% ,, which is selected based on f . This approach ensures that by occasionally
using fF ,, the variance upper bound &7, estimated from fF ,, does not become overly pessimistic.

5 MAIN RESULTS

5.1 NONLINEAR FUNCTION APPROXIMATION FOR ITEM-LEVEL (Q-FUNCTION

Theorem 1 (Regret upper bound of MNL-VQL, proof in Section[D]). Suppose Assumptions|[I|and 2]
hold. We assume that we have the generalized Eluder dimension dim,, i (Fy,), for h € [H], as defined
in DefinitionB|with p = 1, and access to a consistent bonus oracle B satisfying Definition @ with

e, = O(1/KH). Letd, = %Z}ILI dim, g (Fp) withv = A/1/KH, and set uj, = O(\/logW .

(log NN, - H52\/d,, + dH®/?>\/Tog N Nb)/\/R). Then, for any 6 < 1/(H? + 14), with probability
at least 1 — 6, the regret of MNL-VQL is upper-bounded by:

~ 1
Regret(M, K) = O(dH\/?+ ;dzH2 ++/d,HK log N + d,, H® logj\/log2(./\f./\/b))7

regret from MNL model regret from general function approximation ofa

where d is the feature dimension of the MNL preference model, N is the maximum size of the function
class, i.e., N' = maxyep) |Fn|, and Ny it the size of the bonus function class, i.e., Ny = |[W)|.

Discussion of Theorem |1} The first two terms arise from the regret of the MNL preference model,
while the other two terms come from the regret associated with the general function approximation
for item-level )-values. When H = 1, reducing our setting to MNL bandits (though not exactly
the traditional MNL bandits, as we consider a more general case where item values are unknown
and the value of the outside option can be non-zero), the first two terms of our regret simplify to
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@(d\/f + %d2). This matches the known minimax optimal regret established by [Lee & Oh|(2024).
Note that we avoid the detrimental dependence on x in our leading term. The other two terms of
our regret, incurred from estimating item-level (Q-values using general function approximation, are
identical to the regret proposed by |Agarwal et al.|(2023) are only slightly worse in the lower-order
terms compared to Zhao et al.|(2023). Since we haven’t focused on optimizing the lower-order terms,
we believe they could be easily improved with a more careful analysis, as done by |Zhao et al.| (2023).

With respect to computational cost, by using the online sensitivity sub-sampling method (Algo-
rithm [B.1), we can efficiently implement the bonus oracle B (see Remark [3), with log |W| =
log N, = O (maxhe[H] dim, g (Fp) - log N 'log|S x I|) Furthermore, we can avoid the exponen-
tial computational cost required to solve the optimization in Equation [J](see Remark ). As a result,
our algorithm is both computationally tractable and statistically efficient.

5.2 LINEAR FUNCTION APPROXIMATION FOR ITEM-LEVEL (Q-FUNCTION

In this subsection, we consider linear MDPs (see Definition[2) as a special case. To clearly indicate the
dependency on parameters, we denote the linear MDPs as Mgs j,+ w+, where 0* = {07 }1_, > =
{p3H_ |, and w* = {w} }2L || Note that the bonus oracle can be easily implemented using the
standard elliptical bonus, which satisfies all the necessary properties (refer Appendix [E)).

Theorem 2 (Informal, Regret upper bound for linear MDPs, complete version in Section[E). In
linear MDPs, under the same conditions as Theorem([l| with appropriately chosen parameters, the
cumulative regret of MNL-VQL is upper-bounded with probability at least 1 — ¢ as:

~ ]_ . ; 5
Regret (Mg« ,+ w+, K) = O < dHVK + EdQHQ +d™VHK + (d")°H® > .

regret from MNL model regret from linear MDPs

We also establish a regret lower bound for linear MDPs by constructing a novel multi-layered MDP
(see Figure [E.T) with a combinatorial action space and preference feedback.

Theorem 3 (Regret lower bound for linear MDPs, proof in Section|F). Suppose that d > 2, d™ > 6,
H > 3, and K > max{C - (d"" — 5)2H(H + 1)2,C" - (d — 1)*(1 + H)/HY} for some constant
C,C" > 0. Then, for any algorithm, there exists an episodic linear MDP Mg ,, w with MNL
preference feedback such that the worst-case expected regret is lower bounded as follows:

sup Eg uw [Regret (Mo v, K)] = Q (d\/HK + d”"\/HK) .

0,p,w

Discussion of Theorem 2|and 3} If K > O(d?H?/x?+(d"™)'H?), the regret upper bound for
linear MDPs scales as @(dH VK + d"™/HK). Comparing this to the lower bound, there is only
a gap of a factor of v/H in the regret term from the MNL model (the first term in each regret).
Therefore, if d™™ > d+/H, our algorithm achieves the minimax optimal regret (up to logarithmic
factors) of @(d““\/ HK). Note that if we rescale the rewards to be 1/H in the lower bounds of [Zhou
et al.| (2021a) to align with our setting, their regret bound becomes the same as the second term of
our regret bound, Q(d""\/H K), which is related to linear function approximation. To the best of our
knowledge, this is the first regret lower bound in linear MDPs with preference feedback.

Numerical Experiment. We empirically evaluate the performance of our algorithm in linear MDPs,
showing that it outperforms baseline algorithms while remaining computationally efficient even with
a large number of items |Z|. Due to space constraints, the results are provided in Appendix

6 CONCLUSION

In this work, we study combinatorial RL with preference feedback, extending MNL bandit problems
to account for the influence of user states and state transitions in applications like recommendation
systems. Assuming an MNL preference model with linear utilities and using general function
approximation for item values, we propose an efficient algorithm, MNL-VQL, which, to the best of
our knowledge, provides the first statistical guarantee. As a special case, in linear MDPs, MNL-VQL
achieves near-optimal regret, compared to our established lower bound.

10
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7 REPRODUCIBILITY STATEMENT

We provide all the assumptions necessary to derive our theoretical results in Section |3} and the
complete proofs of our main results and claims are included in the Appendix.
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A  JLLUSTRATIVE EXPLANATION FOR COMBINATORIAL RL WITH
PREFERENCE FEEDBACK
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Figure A.1: Illustration of combinatorial RL with preference feedback.

In this section, we provide additional explanation of our framework, combinatorial RL with preference
feedback, for better clarity. In this framework, at each episode, as a user arrives at the system (starting
in the initial state, e.g., high loyalty), a learning agent selects an assortment A (a set of items) and
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offers it to the user (the first figure in Figure[A.T). The user then chooses an item from the assortment
A (the second figure in Figure[A.T)). The agent receives a reward, along with preference (or choice)
feedback, and transitions to the next state (e.g., lower loyalty) (the last figure in Figure [A.T)). This
process repeats until the episode concludes.

The key advantage of this framework is its ability to capture the long-term value of choosing an item
by considering state transitions and avoiding myopic decisions. For instance, in Figure[A.T] a user
may choose a junk item that provides a high immediate reward. However, repeatedly recommending
such items can lead to user fatigue, resulting in a transition to a state of lower satisfaction or loyalty
to the system, ultimately leading to a lower cumulative reward.

We compare our framework with other related works.

vs MNL bandits. Our framework can be considered as a multi-step extension of MNL bandits (Rus;
mevichientong et al.|[2010; Sauré & Zeevil, 2013} |Agrawal et al.,[2017;/2019; |Oh & Iyengar, 2019
2021; Perivier & Goyal, 2022} |Agrawal et al.,[2023; Zhang & Sugiyama, |2024; Lee & Oh, [2024])). In
MNL bandits, there are no state transitions; thus, in Figure [E.1 the user exits the system immediately
after receiving a reward.

Another important difference is that, in MNL bandits, the value (reward) of choosing an item is
assumed to be known, and the value of choosing the outside option ag is always assumed to be zero.
In contrast, in our framework, the value of choosing an item is unknown due to the stochastic nature
of rewards and transition probabilities. Additionally, we allow the value of choosing the outside
option ag to be non-zero.

vs Cascading RL. In cascading RL (Du et al.l 2024)), the agent also selects a set of items, and state
transitions are taken into account when making decisions. However, these items are offered to the
user one by one, and the user decides whether to choose the currently offered item.

For example, in Figure [E.1] only the first item, item 2, is shown to the user. If the user chooses item
2, the agent receives a reward and transitions to the next state. If the user does not choose item 2, the
next item, item 4, is shown. If the user does not choose any item, the agent considers this as choosing
the outside option a¢ and transitions to the next state.

Cascading RL fundamentally differs from our framework because the user does not compare multiple
items at once, so it does not involve relative preference feedback. Another key distinction is that in
cascading RL, the probability of choosing each item is independent of the others in the chosen set of
items In contrast, in our MNL preference model, the choice probability of an item is influenced by
the other items in the assortment.

vs PbRL. In preference-based RL (PbRL) (Akrour et al., | 2012; Wirth et al., 2017} |Christiano et al.,
2017} |Ouyang et al.l 2022; |Saha et al.| [2023}; [Zhu et al.| [2023]; [Zhan et al.,|2023)), the agent learns not
from explicit numerical rewards, but through preferences as feedback. The user is presented with two
(or sometimes multiple) items and chooses a preferred one.

In our framework, if we treat the reward signal generated by the user’s choice as a preference
signal instead of a numerical reward, we can learn the policy based on user preferences, similar to
PbRL, without relying on explicit rewards. However, our framework differs fundamentally from
PbRL because our goal is not just to offer a single item, but multiple items—a combinatorial (base)
action—at each timestep.

B IMPLEMENTING BONUS ORACLE B USING ONLINE-SUBSAMPLING

The guarantees of Algorithm I|rely on a consistent bonus oracle, B, that satisfies Definition d To
implement this oracle, we use the online sensitivity sub-sampling approach described by |Agarwal
et al.[(2023)), which builds on the original sensitivity sub-sampling method proposed by |Kong et al.
(2021)) and Wang et al.| (2020).

For completeness, we include the sub-sampling procedure in Algorithm[B.T|and show its guarantees
in Proposition[B.2] Let z = (s,a) € S x Z. We first define the weighted data set Z, where each

16



Under review as a conference paper at ICLR 2025

element is (z,7(2)), and introduce the weighted sensitivity score as follows:

2
sensitivit (z) =min<{ sup 521(2) (f(z) = f'(2))
VI z Fyp\Z) =
Y f,.f'eF min {ZZ’EZ 6232’) (f(z/) _ f/(z/))Q ’ K(Iiig-lﬂ} i 72

Now we introduce the sub-sampling procedure.

1

Algorithm B.1 Online Sensitivity Sub-sampling with Weights

1: Inputs: function class F, current sub-sampled dataset ZcC 8 x Z, new state-action pair s, a,
parameter -, threshold v > 0, failure probability §.

2: Parameter: 1 < C < w

3: Let p, be the smallest real number such that

1/p. is an integer and p, > min {1, C - sensitivity 5 »_ ,(2) - log(KN/(S)} .

4: Independently add 1/p. copies of (z,5(z)) into Z with probability p. .
5: Return: Z.

r=1°

For the weighted dataset 2! = {(s},a}), 57 }%Z1, we defined HfHZZs,1 = Zzeszl %(z)fz (2),
i.e., weighted sum of /5-norm square. We denote Z,]f_l as the dataset sub-sampled from Z;f_l. At
every (k,h) € [K] x [H], we call Algorithmwith the current sub-sampled dataset Z =1 and the

new state action-pair z’,j = (s’fb, a’,j) to generate the next sub-sampled dataset 25

The following proposition shows that the distance of any two functions measured by the historical
dataset Z ;j ~1 is well approximated by the subsamping dataset Z ,]f ~1. Additionally, it shows that both
the number of distinct elements in \2 ,]f ~1| and its the total size (counting repetitions) do not scale
with poly(S).

Proposition B.1 (Guarantees of online sensitivity sub-sampling, Proposition 13 of |/Agarwal et al.
2023). Let z = (s,a) € S x I. When &(z) = v for any z, then with probability at least 1 — 0, it
holds that

sup |f1(2) = f2(2)] < sup |f1(2) — f2(2)]
flafl:Hfl_f2”2st72 f1»f11|\f1—f2\@k$10272
h h
< sup |f1(2) = f2(2)].

fr.frllfi—f2 H2Z;’§ <10%42

Further, for any (k,h) € [K] x [H), the number of distinct elements in sub-sampled dataset Z}
is always bounded by O (log % - maxXpeg) dim,, K(fh)) and the total size of Z}j is bounded by
O(K3/5).

We can assert that the predictive differences between the functions are preserved up to constant
factors, while requiring significantly less data. Then, the size of the bonus class WV in Definition []is
bounded as follows:

Proposition B.2 (Implementing B using online-subsampling, Corollary 14 of |/ Agarwal et al.[2023).
There exists an algorithm (see Algorithm|[B.1)) such that, with probability at least 1 — 6, implements a
consistent bonus oracle B with e, = 0 for all (k,h) € [K] x [H], where

KN K|S xT|
5 BT '

1 <0 dim,, -1
og |W| (}{rel[eg] im, g (Fp) - log

C EFFICIENT COMBINATORIAL OPTIMIZATION

In this section, we explain how to solve the combinatorial optimization problem in Equation [}
following the method outlined in[Davis et al.[(2013); [le et al.[(2019).
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To find an assortment A € .4 that maximizes the optimistic ()-value, a fundamental step in Q-
learning and crucial for inducing exploration, we must solve the following combinatorial optimization
problem:

acA

where 755 ]is the optimistic choice probability as defined in Equation [§| (also in Equation | , and
f}’f’ ; is the @-value estimate (item-level ()-values) as defined in Equation

Fix (k,h,s,j) € [K] x [H] x § x {1,2,—2}. For simplicity, we will abbreviate these indices.
Accordlngly, we denote w, = exp (U,’j(sﬁ, a)) or w, = exp (Uy(sk,a)), depending on the value of

j. Additionally, let f, = fF J(sh, a) for simplicity.

We can then express the optimization problem in Equation [C.T]in terms of w as fractional mixed-
integer program (MIP), with binary variables z, € {0, 1} for each item a € Z\{ao}, indicating
whether a is included in the assortment A:

Waq, fa + $awafa
T DaeT\fao) (C2)
Wa, + Za’EI\{ao} Lo/ Wa/
st Y @ =M-—1;
aeZ\{ao}

xq € {0,1}, Va € I\{ao}.

By|Chen & Hausman|(2000), the binary indicator in the MIP can be relaxed, resulting in the following
fractional linear program (LP):

A Wq, fao + ZaEI\{ao} fL'a'UJafa (C3)
Wy, + Za’eI\{ao} Lo Wq!
st Y me=M-—1
a€Z\{ao}
0 <zq <1, VaeT\{ap}.

Since this relaxed problem is a fractional linear program (LP), using the Charnes-Cooper
method (Cooper et al., [1962), it can be transformed into a (non-fractional) LP. To achieve this,
we introduce additional variables:

1 T

t = Yo = .
Wag + 2iaret\{ao} Ta War

b)
Wao + Za’el\{ao} Lo Wa!

Then, we can obtain the following LP:

max Z fawaya + fagwagt (C4)
aeZ\{ao}
S.t. 2 WalYq + Waot = 1;
a€Z\{ao}
aeZ\{ao}

t>07 0<xa<1, VGEI\{CLO}.

The optimal solution (y; ,...,y,,,t") to this LP in Equatio provides the optimal x; values
for the fractional LP in Equation by setting x, = y/t*. This, in ture, determines the optimal
assortment in the original fractional MIP (Equation by including any item where y; > 0. Thus,
the optimization problem is proven to be solvable in polynomial time.
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Table D.1: Summary of notations

Notation Meaning Remark
S, AT state space, action (assortment) space, item set
k,h k € [K] episode, h € [H + 1] horizon

r,]j, s’fb, A’fb, a’fL
Thy Shy An, @
z
Q:SxI—>R
i 77
Di—1
Fh
i
Firle)
w
€
N
Ny
D3 (5 (=" }21 {07 1io)
dim, g (F)
dy
04(0)

Ci
fia
i
Fha
Ji}]f,iz
f;f,iz
‘7:;5,4;2
an
G
59
&y
£<k

o sy, a), Bf (sF, a)
P,’f(a\s, A)
Ql}i,j (57 A)

ViEi(s)
Ak
A
Qi (s, A), ViE(s)
hy
ICO', ,COD
b
Ep[-[sf;, a}]. Ve[[sf, af]
Ep[[sy, Af]

reward, state, action and item at k, h
random reward, state, action and item h
shorthand for state-item pair (s, a)
item-level Q-value function

Bellman operator and second-moment operator

k—1
T=1

data set {(s7,,a},, 7%, 5% ,1)
function class for horizon h € [H]

linear function class for horizon h € [H]

ec-cover of linear function class 7"

bonus function class defined for bonus oracle B
error paremeter for bonus oracle

maximal size of function class, i.e., maxye[r] |Fh|
size of bonus function class [W|

— (f1(2)=f2(2))?
= SUPY foeF TR Gz (i) =F2(z7))+p
generalized Eluder dimension defined in Deﬁnition

= LS dim, g (Fp) (Deﬁnition

- ZaEA’fL y¥(a) log Py (alsk, A¥; 0), Toss for MNL model at k, h
= Mg+ YF V207 (07, = HE + nV2k(6F), respectively
confidence interval for MNL model at k, h

optimistic Q at k, h

solution of fitting weighted regression at k, h
version space of optimistic Q at k, b
overly optimistic (pessimistic) Q at k, h

solution of fitting unweighted regression at k, h
version space of overly optimistic (pessimistic) @ at k, h
solution of fitting second-moment regression at k, i
version space of second-moment estimates at k, h
event that {0} € Cf forallk > 1 and all h € [H]}
event that {T, V), ; € Ff ; for j = 1,42 and T2V, | € Gf}
joint event that (\*_, N/, &7
optimistic (pessimistic) utility defined in Equation
optimistic choice probability defined in Equation

= DA ﬁf’j(a\s, A)fF (s, a) for j = 1,£2

‘= maxecA Qﬁ,j(s, A)forj=1,+2

€ ArgMAX ge 4 Dge A P}f,j(a|sﬁ7 A)f}IZ,J (Sﬁv a)forj =1,42

chosen assortment at k, h by assortment selection rule in Equation

realized optimistic values determined by Equation El
random h when first taking action A¥ , at k, i.e., AY = A%,
disjoint subsets of [K] when hy, = H+1lor hi € [H ,
bonus term obtained in Line andusing B

Es;,+1 ~Py, (+|sF ,ak) [|5]};7 a’ﬁ]7V5h+1 ~Py (-|sF,ak) Hsﬁv ‘lﬁi]
Eah~7’h(-|5ﬁ7Aﬁ)['|Sﬁ7 Aj]

Ass.
Eqn.

Def.

p param.
v param.
v param.
Eqn.
Eqn.
Eqn.

Eqn.
Eqn.

EEpEHE

Eqn.|D.11
Eqn.|D.12
Eqn.|D.13
Eqn.|D.14

Ass.
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Table D.2: Summary of parameter choices

Notation Choice

Remark

) §e(0,1/(H? + 14))
5k 5/ ((K + 1)(H + 1))

n % log(M + 1) + B + 1, step-size parameter for OMD

A 84\/§dn, regularization parameter

ar O(V/dlog klog M), confidence radius of Cf
€c error due to taking covering of function class

v 1/KH
P 1
O((S) \/lOg N2(2log(4LK/V)‘g2)(IOg(SL/u2)+2)

L(5) 3\/10g NN, (2 105(4LK/V)6+2)(log(SL/y2)+2)

Eqn.
Eqn.

Def.
Def. ﬂ

N2(K+1)(H+1)(2log &

8L
Z12)

o 4/ (6y7+ 156) - log -

confidence radius of .7-",’1“71

Bl o \/2(24L +21)(/(6F))?, confidence radius of F .,

' (6) \/2 log ./\/Nb(Zlog(32LK§+2)(log(32L)+2)

Br \/8(11L +9)(¢”(6%))2, confidence radius of GF

(o) min{a. h(:H) - (f,':,_2<z,’:>)2

)

Eqn.

Eqn.|D.12

Eqn.|D.14

Eqn. H

+D%, (oh: {2721 {17 0) - (\/W—FQL\/W) }

o max{of \/Z(é;’i)\/f{fg(Z’ﬁ) ByNE)

(\/(Tk)-i-b 5 ) \/th Zh’{zh g " 1)} Eqn.

. C’-( lgNKH (logNNbKH F5/2 ﬁ_’_\fH(b)

+dH??log K log My /log W) /VE for C > 0 Eqn.

D PROOF OF THEOREM ]

D.1 NOTATIONS AND PRELIMINARIES

In this subsection, for easy reference, we introduce notations and definitions used throughout the
proof. The key notations are summarized in Table[D.I] and the specific parameter choices are listed

in Table[D.2]

Online parameter update and confidence interval for MNL preference model. We define the
multinomial logistic loss function at (k, k) € [K] x [H] as follows:

= 2 yh IOgPh a|sh7Ahv )

aEAk

20
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To achieve constant-time parameter estimation, we use the online mirror descent algorithm to estimate
the true parameter 6;;:

O+t € argmin(V/5 (0F), 0) + o H0 HhHHk , where ® = {0eR?: (0], < B}, (D2
6cO

where 7 = % log(M + 1) + B + 1 is the step-size parameter, and the related matrices are defined as:

k—1
H = ALy + ), V2077,
T=1
H) = HY + nV20F(0F), (D.3)

where

V205 (0) = ) Pulalsk, Af:0)¢(sf, a)p(sf, a) "

k
acAy

— 3N Pulalsk, AR 0)Pu(d|sk, A 0)¢(sk, a)e(sh,a) "

k 1 k
a€Aj} a’e Ay

By a standard online mirror descent formulation (Orabona, 2019), Equation can be solved using
a single projected gradient step through the following equivalent formula:

_ _ o\ 1 _
0} =0k —n (H})  Vehor), and 65+ e argmin[f — 6, |z, D4
€

which enjoys a computational cost of only O(Md?), completely independent of k (Mhammedi et al.,
2019} Zhang & Sugiyama, 2024} Lee & Ohl 2024).

We define the confidence interval at (k, h) € [K] x [H] as follows:
Chi={0c0: 106y <ok}, (D.5)

where the radius of the confidence interval C} is as follows:

ok — l%((:& log(1 + (M + 1)k) + B + 2) GZA +2vAlog (2\/16*72’“)

2
16 1o (BN ) ) o W (14 250 ) )

1/2
(D.6)

Then, we define the optimistic and pessimistic utility as follows:
’52(87 a) = ¢(37 a)Teili + O‘ZH(ZS(& a’)H(HIﬁ)—1> 65(‘97 a’) = ¢(8, a)TO}’j - OéZ”(b(S, a) H(H’fb)_l

Regression and confidence intervals for item-level functions. In this paper, we define N :=
maxXpe[7] | Fn| as the maximum size of the function classes 77, ..., Fy and N, = |W)] as the size
of the bonus function class W.

For all (k,h) € [K] x [H], the weighted regression problem for fitting the optimistic item-level
Q-functions, @, along with the version space of these functions, is defined as:

- 2
han) —rh = Vi1 (i) (D.7)

fh 1 € argmin
SN —] )

k=l . 9
Fhi= {fhefh:Z 5 (fu(shap) = fh (ko ap) <(ﬁ’;,1)2}. (D8)
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Let 2} = (sF,al). The parameters are as follows (for k > 2):
k)2 . sk k ik k)2
(o) :=min< 4, gp(z;) — (fh,—Q(Zh))

+ D, (2h; {2 }i=1, (1712 (\/(BE)2+P+\/(B;’§,2)2+,D> } (D.9)

ol = max {U,‘;, v, \/Z(a’;)\/f;;g(z;;) — 1 (=),
2( o(6F) + > /D, (s 1Ak (on) )}, (D.10)

ALK sL
Bhy = \/6\f+ 156) - log U DU + 1)(21?;; +2)(logix +2)
5 N2 (21og(4LK /v) + 2)(log(8L/v?) + 2) oo 5
o h) 52 » Op = mv

L(8F) = 3\/ NNy (2log(4LK [v) + 2)(log(8L/v?) +2)

5k

For all (k,h) € [K] x [H], the unweighted regression for fitting overly optimistic and overly
pessimistic item-level Q)-functions, along with the version space of them, is defined as follows:

k—1

- 2
fF 5 € argmin Z fu(shyah) =k = Vitiy sa(sh1)) (D.11)
fr€Fn
k—1 R 5 )
]:h +2 1= {fh € Fh 2 (fh<5;—wa;;) - f}’f,ﬂ(sﬁﬂﬁ)) < (ﬁllf,z) } : (D.12)
T=1

We choose the parameters as follows:

B 5 == 4/2(24L + 21)(/(35))?.

NNy (21log(18LK) + 2)(log(18L) + 2) sk )
ok T (K1) (H 4+ 1)

!'(3) =y [21log

For all (k, h) € [K] x [H], the unweighted regression for fitting second-moment function values to
item-level Q-functions, and their version space, is as follows:

k—1

2
gy, € arg min Z (gh shyap) = (rf, + Viﬁm(sﬁﬂ))z) ; (D.13)
[N —
k=1 .
Gy = {ghefh: > (on(sh.ak) = dh(sh.a7))” < (BF) } (D.14)
=1

We choose the parameters as follows:

B o= £/8(1LL + 9)((81))2,

NNG(210g(32LK) + 2)(log(32L) + 2)
6 b

" (0y) =1/ 2log
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Given the center of the constructed confidence intervals, f,’f j for j = 1, +2, we define the optimistic,
overly optimistic, and overly pessimistic (Q-values as follows:

FaCe) i= min {E (o) + B (o)1}
ffﬁ,Q(V ) = min {fi]LiQ(W ) + 2bfz71('7 ) + bll’i,?('a ')7 1} )
T o) = max { f () = 0 o ),0} (D.15)
Good events. We define the following good events:
E%:={Vk>1,Yhe [H]: 6} cC}, (D.16)
K H
E<k = ﬂk:1 ﬂh:l gll«fa
5}’7 = 5}’?,1 N g}lf,z N 5}?,72 N 5;:’
where 5,’1“,]- = {ﬂLV}ﬁLLl € ]-",’;j} forj = 1,42, and g;f = {Tth,f_H)l € g’,;}
Optimistic Q-values. For (k, h,s,A) € [K] x [H] x S x A and for j = 1, £2, we define the
optimistic choice probability as follows:
exp () (s,a))

e o Za’ A €XPp (52(8’ a,)) 7
Pr j(als, A) = exp (T4 (5, a)

Zaren oxp (Ty(s.a))’

if 3a € T\{ao} s.t. ff ;(s,a) = fF ;(s,a0)

otherwise,

(D.17)
where

’UE(S? CL) = ¢(S, a)TGZ + CYZH(b(S, a)” (Hf)il’ 65(87 a’) = (b(S, a)Tellfb - OéZH(Z)(S, a)” (Hf)71 .
Next, we define the optimistic ()-values for j = 1, £2, each constructed using f}’f’ ; and 735 jt
k _ Sk 2 k _ k
Qh,j(st) = ;‘Ph,j(a|57A)fh,j(5aa)v Vh,j(s) = fgg} Qh,j(saA)-

For convenience, we also define the realized optimistic value functions at (k, h) € [K| x [H] as
follows:

Q5. 4) = { DpalsA) T 4G = A
Qf o(s, A)  otherwise,
where AZ is the assortment offered to the user by the assortment selection rule in Equation 10| (or
equivalently in Equation|D.19). Therefore, we write 7} (s) = arg max 4 4 QF (sf, A).

Vii(s) = maxQji(s, ), (D.18)

Design of exploration policy. At each episode k, the agent collects data using both A’,jﬁl and
Af . where Af . € argmax u. 4 Yo 4 PE(alsk, A)fE (sF,a) for j = 1,2. Given a sequence of
pre-specified {uy}&_,, at episode k, the agent select an assortment based on the following rule:

Ak _ {Az,l if f}]f,’l(sﬁ,, ah/) = f}]f’,2(5§” ah/) — Uk, Yay € Aﬁ,’l, Vh' < h.

D.1
A’,§72 otherwise. (D-19)

We denote hy, € [H + 1] as the (random) horizon at which the agent first begins offering the
assortment Aj ,. More formally, for i < hy, the assortment offered is Ay = A}, |, and for h > hy,
the assortment offered is A} = A’,f@. We then divide the set of episodes [ K| into two disjoint subsets:
Ko and Koo, such that
Ko:={ke[K]:hy=H+1}, and Ky :={ke[K]: hy < H}.

Later in the proof, we separately bound the regret for each case.

Other notations. Throughout the proof, we use z = (s,a), z, = (sp,an) and zF = (s, af)
interchangeably. We sometimes use P, (-|s, A; 0}) instead of P, (+|s, A) to explicitly indicate the de-
pendence on the parameter ;. For simplicity, we denote E[-|sy, af] = Eq, ., <5, (st oty [|5E, @},
V]P’["Sfu aécz] = Vsh+1~Ph(~\s’;,a’;) ['|5§’ CLZ], and ]EPHS;CN Ag] = Ea;L~77;L('|S’,j,A’}j) [|S;€w A;Cz]
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D.2 CONFIDENCE INTERVALS AND GOOD EVENTS

In this subsection, we show that, given the construction of confidence intervals C,’i and ]-",’f’ j for
j = 1,42, the good events £7 and £ i occurs with high probability.

Proposition D.1 (Online parameter confidence interval, Lemma 1 of|Lee & Oh|2024). Ler é € (0, 1).
Under Assumption[I} for the confidence interval defined in Equation[3|with

ok = [277 ((3 log(1+ (M + 1)k) + B +2) GZA +2vAlog (@)

+ 16 ( log 21+ 2k 2 +7\—fd1 1+u +2| +AB?
(o2 (*5)) ) (1+55)

1/2

2\

= O(Vdlog klog M),
n = 3log(M + 1) + B + 1 and X\ = 84~/2dn, and for any h € [H], we have
Pr[Vk > 1,05 €Cf>1—0.

Now, we define the good event for the preference model £¢ as follows:
.= {Vk>1,Yhe[H]:0;cC}}.

Then, by applying proposition and using a union bound over h € [ H|, we obtain the following
corollary:

Corollary D.1 (Good event for MNL preference model). Under the same assumption and settings as
in Proposmon- Soré € (0, 1) with probability at least 1 — 6, the good event for the preference
model E° happens, i.e., 05 € CF forall k > 1 and all h € [H].

The following proposition shows that T,V;F, | ; for j = 1,£2, and T2V}l | lie within their
respective confidence intervals.

Proposition D.2 (Good event for general functions, Proposition 33 of |Agarwal et al.|[2023). Suppose
Algorithm |Il|uses a consistent bonus oracle satisfying Definition 4} Let 0 € (0,1/5). Then, with

probability at least 1 — 56, the good event E< i = ﬂiil ﬂ,llil EF happens, that is, ﬁLthH,l € f,’f,l,
TVt 40 € Fii 4o and TRV, | € GF forall (k, ) € [K] x [H].

D.3 BOUND FOR MNL PREFERENCE MODEL

In this subsection, we provide proofs for several properties of the MNL preference model.

The following lemma presents both the optimistic and pessimistic utilities.

Lemma D.1. For any (k,h,s,a) € [K]| x [H] x S x I, let ¥f(s,a) := ¢(s,a)'0F +

af|e(s, a)H( Fp) ! and 0% (s,a) = ¢(s,a)TOF — ah\|¢(s,a)\|(Hk) 1. Under the good event £°
h

defined in Equation|D.16] it holds that

0 < D (s,a) — ¢(s,a) 0} < 2af]¢(s, G)H( £y
and 0 < ¢(s,a)" 0}, — Uj(s,a) < 205 (s, a) ()

Proof of Lemma|D.1} Conditioning on the good event £ % holds, we have
6(5,0)" 6% — (5, )7 03] < 105, ) g1 165 — O gy < @ 1605, )] g1

where the first inequality holds by Holder’s inequality, and the last inequality holds by Corollary
Therefore, it follows that

52(57 a’) - ¢(8a a)TB;L = ¢(Sa a)TB}Ii - ¢(8, a)TO;L + aiH(ﬁ(S, a)” (Hﬁ)71
< 20, ||¢(5aa)“(Hlﬁ)*1 :
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Furthermore, since ¢(s,a)"0F — ¢(s,a)T0; > —ak |¢(s, a)||(Hk)_1, we also get
h

Up(s,a) — d(s,a) 65, = ¢(s,a) "0} — ¢(s,0)" 0} + g (s, a)ll gy = 0.

The second statement directly follows from the results mentioned above. O

Lemmamls useful for proving optimism (Lemma[D.9) and bounding the approximation error of
the optimistic Q) (Lemma|D.14).

Lemma D.2. Forall (k,h,s, A) € [K] x [H] x S x Aand any j € {1, 2}, under the good event o
defined in Equation there exists a subset A = A such that A € A and

max { Z Ph(a|57A)f;f,j(sa a)7 Z 75i]f,j/(a’lsa A)f}}f,j(57a)} < Z ,ﬁili,j(abvle)fi]f,j(sa a)v
acA agA acA

where j' # j.

Proof of Lemma([D.2] First, recall that, without loss of generality, we assumed that ¢(s, ag) = 0 for
all s € S. Therefore, the true preference model and the optimistic preference model can be written as

exp (qb(s, a)TO;;)
1+ Za’eA\{ao} €xp ((b(sv al)Tg;;) '
exp (17,’3(5, a))

~ 14+, exp (0F(s,a’))’
k _ a’eA\{ao} h\®»
Ph.; (als, 4) exp (17,’?(5, a))

14 X e\ ag) €XP (T (5,0))

Pulals, A) =

if 3a € T\{ao} s.t. ff ;(s,a) = fF ;(s,a0)

otherwise.

3

(D.20)

Fix s € S and A € A. We now present the proof by considering two cases: (i) f;f,j(s, ag) > f,’f,j (s,a)
forall a € A and (i) 3a € A\{ao} such that f§ (s, a0) < fF ;(s,a).

Case (i) fy ;(s,a0) > fy ;(s,a) foralla € A.

We denote a € arg max,e 4\ (4.} f,’f’j (s,a). Let A = {ag,a}. Since f,’f’j (s,a0) > f,’f’j(s,a) for all

a € A and qag is always included in A, removing any item a € A\{ag} from A increases the expected
value of fy .. Thus, we get

> Pulals, A)fE ;(s,a) < Pulals, A)fE (s, a)

acA acA
and Z ’Phj (als, A)fhj s,a) 2 Phj (als, A fhj(s a). (D.21)
acA acA

By the definition of Ph in Equation |8 we use the pessimistic utility ¥ (s, a) in this case. Since

Uk (s,a) < ¢(s,a)T 0} by Lemma. using this utility, ¥ (s, a), reduces the probability of selecting

a (compared to the true choice probability Pp,). Moreover, we know that f,’f(s, ag) = f,’f (s,a), we
have

Z Prlals, A)fhj s, a) 2 Phj (als, A)fhj(s a). (D.22)
acA acA
Furthermore, if P , is constructed using the pessimistic utility Uf (s, a), then, Pf ., = P ..

However, if Ph j» is constructed using the optimistic utility j; ¥(s,a), replacing ¥ (s, a) with 0% (s, a)
(which is equivalent to replacing Ph’ j with Ph’ ;) decreases the probability of choosing a, meaning
increase the expected value of f}’f .. Thus, we get

ZPhJ \sAch s,a) ZP,” (als, A)fh](s a). (D.23)
acA acA
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Combining Equation[D.2T} Equation[D:22] and Equation|[D.23] we have

max { Z 7)h(a’|s7 A)f}’f,j (Sa (1)7 Z /ﬁflf,j’(al& A)ff,;,j(& CL)} < Z ﬁﬁ,g (a’|57 A)fllz€7j(87 a)'
acA acA acA

Case (i) Ja € A\{ag} such that f} ;(s,a0) < fF ;(s,a).

Let A = {A' S A:fli(s,a) = ff ;(s,a0),Va € A’}. Note that |A| > 2 and ag € A by definition

of action space A. By selecting A instead of A, we exclude items with the small values of f,f’ j (s,a),

thereby increasing the expected value of f}]f RIRECH

2, Pulals, A)fiij(s,) < 3 Pulals, A)f 5(s,a)

acA acA
and > PF i (als, A)fF ;(s,0) < D P i (als, A)FE (s, a). (D.24)
acA acA

By the definition of 755 ; in Equation ﬁ we use the optimistic utility 9% (s, a) in this case. Since
#(s,a)T0; < UF(s,a) by Lemma|D.1} this choice of utility increases the probability of choosing
item a # A\{ao} compared to the true Pp,), implying that
Z Prlals, A)fhj s, a) Z Phj (als, A)fhj(s a). (D.25)
acA acA
Moreover, if 75,%, is constructed using the pessimistic utility U (s, a), replacing U (s, a) with
D% (s,a) (which is equivalent to replacing 755 j+ with 735 ;) increases the probability of choosing
item a # A\{ao}. However, if 755 ;+ is constructed using the optimistic utility D% (s,a), we have

73,% = 75,%,. To this end, we get

Z 'Ph] als, A)fh] s, a) Z Ph] (als, A)fhj(s a). (D.26)
acA acA

Combining Equation [D.24] Equation[D.23] and Equation|[D.26] we have
max { > Pulals, A)ff 5(s,a), Y] P;;j/(a|s,,4)f§7j(s,a)} < Y. PF lals, A) £ (s, ).

acA acA acA
This concludes the proof of Lemma[D.2] O

Lemma [D3]is an elliptical potential lemma used for bounding the regret incurred from the MNL
preference model (Lemma|[D.6|and [D.7).

Lemma D.3 (Elliptical potential lemma, Lemma E.2 and H.3 of [Lee & Oh|2024). Assume that
A = 2and ¢(s,ap) = 0 forall s € S. Forany (k,h,a) € [K] x [H] x Z, we define ¢(sF,a) =
P(sk,a) — Ea'~7>h(-\s§,A’;;0’,j“)[‘15(52’ a)]. Then, for HY defined in Equation and for any
h € [H], the following statements hold true:

k
T T T T T T T k
D X Pilalsh 4707 1) Paaols AT 07 ) 1o(sh ) -+ < 2tog (145 ).

T=1a€eA]

k
k
T 0T+1 2 3 <2d1 1 A
2, 2, Palalsh, AT O7™) 10T, )l -+ < 2408 (14 57 )
h

k
< 2 k
g max{max (s, a )H?H;)_l’geli};f ¢(sh,a)||?H;)_1} < ;dlog (1 + d)\>

Lemma[D-4]is used to derive the tight bound for the second-order regret term of the MNL preference
model (LemmaD.7).
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Lemma D.4 (Lemma E.3 of Lee & Oh[2024). Let M € Z*. Define R : RM — R, such that for any

M Xp(Um, XP(Um
v=(v1,...,on) € RM R(v) = > _, %. Let pp(v) = %. Then, for

all m € [M], we have

R < 3pm(v) if m=n,
omon| | 20m(V)pn(v) if m # n.

Lemma[D.3]is crucial for deriving the x-improved bound for the MNL preference model (LemmaD.7)),
enabling the analysis.

Lemma D.5 (Overly optimistic choice probability). We define
T o* k
exp ((b(s, a)' 05 + 2ah\|q§(s,a)H(Hﬁ)_1)
Seacxp (#(s,)70; + 205 [6(s,0)] (g 1)
To* _ k )
exp (#(s,0)70; 204 [6(5, )] gz )
Swea exp (9(5,0)70; 205 ]6(5,0) | )1 )

, ifdae I\{ap} s.t.
i j(s.a) = ff ;(s,a0),

P j(als, A) =

, otherwise.

(D.27)
Let A’fm € argmax ge g 2 uca 73,’fyj(a|s’f“A)f,’;j(s’fL,a), where j € {1,2}. Then, under the good
event £9, for all (k, h, j) € [K] x [H] x {1,2}, we have
Z 73}1:,]‘(0"827Aﬁ,j)filf,j(siaa) < Z 75}?,]’(6”82’AZ,j)f}]lc,j(SZ7a')'

k K
‘IEAh,,j aEAh,j

Proof of Lemma Fix (k,h,j) € [K] x [H] x {1,2}. We consider the two cases: (i)
Ih ;(skya0) > fF ;(sk, a) forall a € Z and (i) 3a € T\{ao} such that [ ;(sf;, a0) < fF ;(sf, a).
Case (i) f; (s}, a0) > fhj(sh, a) forall a € 7.

Recall that, by the definition of Ph in Equatlonl we use the pessimistic utility v,’f (s, a) to construct
Ph, j in this case. Note that the outside option ay must be included in the assortment, i.e., ag € A’,?L.
Moreover, under the event £, by Lemma , we have

B (shoa) = 6(s} )7 07 — 20§9(s. )] (g

Thus, since we assume, without loss of generality, that ¢(sF 5,ao) = 0 (refer Equatlon , using
Ph j instead of P,lf J decreases the probability of choosing any item a € A¥ P\{ao}. As aresult, the
expected value of fh) ; increases, since fh) ;(s,a0) = fh} ;(s;a) foralla e A¥. Formally, we have

Z Pi]f,j(a‘sliiv Az,j)f}]f,j (5]}2a a) < Z 755] (a|5§a A’ﬁ,j)fl{f,j(sﬁv a).
aeAﬁ_j aEAﬁ’j
Case (i) Ja € T\{ao} such that fF (s}, a0) < fF (s}, a).
First, we show that for all a € A¥\{ao}, we have f}’fj(slfb, a) = ZaeAk ﬁﬁj(a|s]h“, A ])f}’fj(sﬁ, a).
ha) < ZaeAk Phj(a|3haAZJ)fh3(3hv a).
Then, removing item a from the assortment A¥ ¢ results in the increase in the expected value of fh) -
Consequently, this contradicts the optimality of AZ. Hence, we get

fflf,j(sfua) = Z 7’5;?,]'(0’|827Aﬁ,j)fﬁ,j(si7a)a Va e A \{0’0}

k
ac Ay

Suppose that there exists a € A¥\{ao} for which fF (s,

On the other hand, recall that, by the definition of 73,6 ; in Equation E we use the pessimistic utility
m, we know that

Dk (s, a) to construct P} ; in this case. Furthermore, by Lemma

Bh(shs @) < 6(s} )7 07 + 20§ 9(s5. )] (g -
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If we increase OF (s¥, a) to ¢(sF, a) T 05 + 20k o (s, a)||( ~1 forall a € A¥\{ao}, the probability

H})
of choosing the outside option decreases (because gi)(sﬁ7 ag) = 0). In other words, the sum of probabil-
ities of choosing a € Af\{ao} increases. Since fy ;(sy, a) > ZaeAﬁ,j Pri j(alsy, Ay ) fE sk, a)

for all @ € A¥\{ao}, the expected value of f,’j ; increases. Formally, we get

Z P}lf,j(a"sﬁvAZ,j)f}lf,j(sl}iaa)< Z ,P}lf,j(a|5;€uAﬁ,j)f}]f,j(sﬁva)'

k k
aeAh,_’j aEAh)j

This concludes the proof. O

Lemma will be used to carefully bound the sum of bfm (Lemma|D.17). Note that the following

MNL bandit regret improves upon the one proposed in (Oh & Iyengar, [2021) by a factor of 1/4/k,
which can be exponentially large.

Lemma D.6 (Crude bound for MNL bandits). For any h € [H], j = {1,2, —2} and subset K € [K],
under the good event £° defined in Equation we have

~ 1
> | X (Phalsh, A%) — Palalsh, A)) £ sk, )| < O (—=dv/IK] -log K log M )
= T ! Vv

where M is the maximum size of the assortment.

Proof of Lemma[D.6] We denote M} as the size of the assortment at horizon  in episode k, i.e.,
M,’f = |Am For any j € {1, 2, —2}, we define a function R; : RM: > R such that, for all v € ]RM:,
My EXp('Um,)f]i '(Skvaim,)
R7 (U) = anil M;cwJ - .
1+, exp(vr)

For simplicity, we denote v;’j j (s, a) as the utility, which can represent either the optimistic utility

Ty (s, a) or the pessimistic utility Ty (s, a), as determined by Equation |8, depending on fy .. Let
k (kY — (ok (ok My * (kY _ L My

vy, i(sp) = (Uh’j(sh’a)>ae,4k e RMw and v} (s)) = (¢(s}, a) eh)aeA’; € R™x. Then, by the

h
mean value theorem, there exists a vector oy, ;(sj;), which is a convex combination of vy} (s}) and

v} (sF), such that

33| 2 (P j(alsk, A%) = Palalsh, AR)) £ (sh, )

keK |ac Ak
= D0 Ry (vi;(s0) = R; (vi (1))
kel
-y ‘VR]- (85 ()T (0 (s8) — v;(s’g))‘ ,
kel
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Therefore, we get

S [V R @k, (55) T (05 (55) —vi(sh))|

kel
k(K k (k
exp (vh A(sh,a)) fh’j(sh,a) .
- Z Z & (’UEJ(SE,G) - d)(s}l?ua)—rgh)
kek | acAk Dgne Ak ©XP (Uhj(siwa’”))

exp (h sk, ) Jh, (k) exo (of,(sh, )

(vk i(sk.a') — o(sy,d')"6})

-2 X

2
ac Ak a’e Ak (Za,,EAZ exp (ﬁﬁ,j (sk, a”)))
k ko (.k k
2 2 73h ‘sthhaUhg(sh)) (Uh,j(shva) - ¢(5h>a)T01’;)
keK | ac Ak

' (ﬂf’j (%:0) = Eqrp, (1o agiof o) Lt (55 al”)
<2) > Pul(alst, Af;0f ;(sh)) ‘(Uﬁ,j(slﬁ,a) - ¢(Si,a))T92 ,

kel ac Ak

(D.28)

where the inequality is from f}’f’j < 1. Recall that v} j(si7 a) can be either UF (s¥, a) or UF(s¥, a).
Then, by Lemma w we have ’(U,’j,j(sﬁ, a) — d(sk,a)T0r| <

can further bound the right-hand side of Equation[D.28]
2 Z 2 Ph ( Sh7Ah7Uhj(S]f€L)) ’(v;’i,j(SZ, a) — ¢(Sha )) oy,

2a’fLHq§(s§,a)||(H;€),1, Hence, we

keK ac Al
<daf Y 3 Pu(alsh, Af 0 (1) 90k )| g
keK acAk "
<dofS (3737 Pulalsh, Afsof (sF) D1 D Pu(alsh, Al of (s g))\|¢(s§,a)|\?m),l
keK ae Ak keK ae Ak h
k= 1a€Ak
VIR, | D) 3, Dl A O P ol A0
= 4« . —
VTN LB Plalsh AL 6T P ol A5 67T (1)
1 K
< 4oy, \/W \ - Z ( \sh,Ak 9k+1)Ph(a0\8h,Ak 9k+1)H¢(st,a)H?HE),1
k=1 LLEA’;;
K
< 4olN\/IK] - 2d10g 1 + ) (D.29)
where the first inequality holds because o < -+ < a{f , the second inequality follows from the

Cauchy-Schwarz inequality, the second-to-the last inequality holds due to the definition of «, and the
last inequality holds by Lemma[D.3]

Combining Equation and Equation |D.29} and plugging in the value of of, we derive that

~ 1
S| 3 (Bh alsh, AR = Patalsh, A5)) £ sk, )| = © (ﬁde - 1ogK10gM) :

keK |acAl

29



Under review as a conference paper at ICLR 2025

Lemma[D.7]is crucial for obtaining a x-independent regret in our leading term. While the proof is
largely inspired by |[Lee & Oh|(2024)), extending their result to our setting is non-trivial because the
unknown item values f}’f’ ; add complexity to the analysis.

Lemma D.7 (x-improved bound for MNL bandits). For any h € [H] and subset K € [K], let
J(k,h) : K x [H]—{1, 2} be the one-to-one function that maps from KC x [H] to the index set {1, 2}
such that A} = AZ7J(k7h) € argmax qc 4 D uea P,’l“7](k7h)(a|s§, A)f}’f,J(k,h)(sl,fb, a). Then, under the
good event EY defined in Equation we have

>0 X (Ph e alshs AR) = Pulalsh, AR)) £ s (55 0)
keK ac Al

=0 (d\/|IC| -log K log M + ld2 (logKlogM)2> .
K

Proof of Lemma(D.7] We begin by defining 735 ;(als, A) as given in Then, by Lemma we
have

>0 (P s (alsh, A%) = Pualsh, AD)) S s (shs @)
keK ae Al

< Z 2 (ﬁif,,l(k,h)(ﬂsﬁa Aﬁ) - Ph(a|sﬁ, A’ﬁ)) fi’f,J(k,h)(SZa a).
keK ac Al

We denote M} as the size of the assortment at horizon & in episode k, i.e., M} = |A¥|. We define a

~ - k K k-
function R : RM% — R such that for all v € RMA, R(v) = Mr | P0m)ngwm (ntin)
L3 exp(un)

For any (k,h) € K x [H] and all a € Z, we denote v (sF, a) as the utility, which can be either
B(sk,a)TOr +2aF |o(sk, a)H(HE)A or ¢(sf,a) 05 —2ak|p(sk, a) H(H;Cl)—l, determined determin-

istically based on the history up to (k, h):
B(sh, )0 + 2051005k, @)l gy if 30 T{ao)

s.t. f}]f7j(k7h)(sﬁa a) = fﬁj(k,h)(sl}ﬂ“ ao)
¢(sy;,a) " 0; — 205 |o(sy,, )l gggy-1>  if Vae I\{ao}

f;lf,J(m)(Sﬁv a) < f}’fJ(k,h) (sk,ao)-

Let vy (sy) = (vf(sf, a))aeAﬁ e RMi and v (sh) = (o(sy, a)TO;)aeAﬁ € RM% . Thanks to exact

second-order Taylor expansion, we obtain that

Z Z (ﬁ§7J(k,h) (a\sia/ﬁi) - P;,,(a\sﬁ,Aﬁ)) f}lzc,J(k,h)(Sﬁv a)

FeK aeak
— 3 Rw)(sh) - Rwi(sh)
kel
= 3 VRICHT (vheh) —eileh)
- (€]
20 (whsh) — i) VR@EH) (of(sh) —viCsh).  ©30)

ke

>

®)

where of (sf) = (0 (sf, a))aeAZ e RM is the convex combination of v} (s) and v} (s%).

30



Under review as a conference paper at ICLR 2025

We first bound the term (A) in Equation[D.30]

3 VR () (vh(sh) - vi(sh)

kel

ex Sh> )Te* fh kh(slfw )
Z Z p ) J(k,h) (

ik aar e P (9(57, ") T6)

_ Z Z exp ( Sh»a)Tai*L)fh,J(k,h)(SZ»a)eXp(¢(Shv a')'6;)

UE(SZa a) - QS(SZ? a)Te}:)

(v (shs a') — 6(s};, a') 7 6;)

2
weAf a'eny (Surear exp (6(5},a7)76;) )
= Z Z Pn (a|s’,§,A§;02) f}]f,J(k,h)(Sﬁ’a)
keK ac Ak
~ ((v2<s£7a> (s a)T08) — S P (] AL 0F) (oh(sh. ) —¢<s£,a’>Tez)).
a’eA;‘;

(D.31)

We bound the right-hand side of Equation[D.31|by examining two separate cases.
Case (i) For (k,h) € K x [H] such that v} (s, a) = ¢(s5,a)T0; + 28 |¢(sk, a )”(Hk)‘l
h

In this case, by denoting Eg: [-] = Eq/ .p, (|5t ak;0r)[ ] for simplicity, we get

VR(vj(sp))" (vF(sk) — vi(sh))

=20} 3 P (alsh, 4565) 78 0) (10X6E 0l g+ — B (160650 ] )

aeA;C
Y

<20f X Pualsh AL0) (106650l gap) o ~ By [1o6ek )l gy 1] )

k,+
acA,

<20f Y] i (olsh Ak:0 )(|¢<s§,a>|<Hﬁ)1HEa; EERI

(LGAk o+
< 204’; Z P (a|s’,§,A Bh) H(b — Eo: [¢(s§,a’)]”(Hﬁ)4

k,+
acA,

<2ay Y Py (alsf, Af; 6}) |6(sh, a) — Ee: [qs(sﬁ,a')]u(H,ﬁ),l, (D.32)

k
acAy

where, in the first inequality, we define AZ”L < AF as the subset of items in A% such that the
term | ¢(s¥, Q)H(Hg)’l — Eo; [Hd)(sﬁ, a)|| (H,;),l] > 0 and f}’fJ(k,h) € [0, 1], the second inequality

holds due to Jensen’s inequality, and the second-to-last inequality holds due to the fact that ||a]| =
J]a—b +b| < |a—Db| + |b| for any vectors a, b € R%.

For simplicity, we abbreviate the expectations as Egr+1[-] = B opy (st Ak 0541 [-]. Additionally,
h h’*"h'"h
let p(s¥,a) = ¢(sF,a) — Eox [¢(sF,a’)] and (s}, a) = ¢(sf,a) — IEB;«H [¢(sF,a’)]. Then, we
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have
Z Pr (G\SI;L»AZ§ 9}:) qu(sﬁ,a) — Eo; [(b(siaa’/)]H(Hﬁ)’l

aeA;“l

= > Pu(alsy, A}; 65) (|¢‘s(s’,§,a)|\(Hm,l
aEA;“1 :

< X Pulalsh A 67) (k. 0) - sk,
aeA;“l ( h)

+ Z (Ph (a|sﬁ,A§;0;) — Py, (a|s]fL,AZ;OZ+1)) “&(SQ,Q)H(H’C)_l
acAf h

+ Y] Pa(alsh, A5 05 |35k, 0)| . (D.33)
aeAfL ( h)

where the inequality holds by the triangle inequality. Now, we bound the terms on the right-hand side
of Equation [D.33|individually. For the first term, we get

> P (alsk, Af; 63)
aeAﬁ

= 33 P falsh A5 00) [Bop 6068 )] = Boy [o(sh )]

aeAi€
Y

ZCAORICA]

= > Pulalsy, A5:05) | Y (Pu (d'Ish, A 0FFY) — Py (a'|sy, A} 07)) é(sh. )

aeAﬁ a’GAﬁ (Hk)—l
h

By the mean value theorem, there exists £&f = (1 — ¢)8} + 7! for some c € (0, 1) such that

D0 (Pu(a'|sy, A; 05) — Pi (d/|sF, AL 03)) d(sh,a)
a’eAﬁ (H§)71

= 0 P (a/|sh. ALz €E) T (85— 67) é(sh. o)

a/eAﬁ (H’fh)71
’ T N
< \VPh (a|sh. A €8) " (O} — 07) |16 (sh, o) )
a’EA’fL )
<2 |Pu(@Ish, A% €) o(sh. )T (617 — 67) (s )| gy
a’eAE

+ 20 (P (alsh AR €R) DL Pu(a”lsh, ARs€0)(sh, )T (857! = 03) | [6(shs @) gqy )

a’eA¥ a’e Ak
<aitt X Pu(Wlsh, AL £5) 190, ) fge

a’e Ak "

2
+ (@i X Pu(alsh, AR €R) 905k, )] gy
a’eAfL '

<20f0 N Py (a'|sy, AR €F) |\¢(sﬁ7a’)|\2Hk 1 < 204 max Hd)(s’,i,a’)Hsz ~1, (D.34)

ek ( h) a’e AR ( h)

h

where the third inequality by Holder’s inequality under the good event £%, and the second-to-last
inequality follows from Jensen’s inequality.
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Similarly, we can also bound the second term of Equation [D.33]by the mean value theorem. By the
mean value theorem, there exists £f = (1 — )@}, + ¢/, for some ¢’ € (0, 1) such that

2 (Pu (alsf 453 07) — o (alsf 45 0171)) [S(sk ) Ly

acA¥
= 3 VP (alsh.AkER) " (01— 0[Sk,
aeA’fL h
= 3 Pifalsh, AL &) olshoa)" (01— 047 [ Ly
aeAk h
- Z Ph a|5h’ Ahvgh H¢ Shy @ H Z Ph (a,|5]i€w Aivéi) (b(siv a/)T (92 - OZ-H)
acAy a'€ AR
< a];‘"—l ma)k( Hib(slﬁ, a)” Hk 5( Sp, @ H Hk)
+a féix H¢ (sp.a H - Ihax [(shs )] ez
k+1 Tk 2 2
< 204" max {(Ilrelix H(b(sh, a)H(H’; Hc}i)]f H¢ sh.a |(H’;;)_1} , (D.35)

where the last inequality holds by applying the AM-GM inequality to each term:

mase |05 ) ey

é(sf,a)

) , + max
(Hﬁ aeAk

Jotet, o) gy + [0k

o) g+ 6 ) g

< max
aeA’,ﬁ; 2
~ 2 2
(InaXaEA’c ¢(5h7 (Hk)_1> + (maXaEAﬁ }‘QZ)(SZ?G’) H(Hﬁ)il)
+ h

2

kg -t g |

< 2max {max

aeA;“L
Combining Equation[D.32] Equation[D.33] Equation[D.34]and Equation [D.35] we obtain that
VR(vj(si))" (vh(sh) =i (s7))

<20f Y Pu(alsh, Afs05°) (s, a)|

‘(Hi‘;)*1

aEAZ
2
k k+1 Tk k 2
+ 80[ max {Zreli}g Hd)(sh? a)H(thc)_1 7(1361%},; ”Q/)(Sim Q)H(H;‘L)71 } : (D36)

Now, we consider the second case to bound the term (A).
Case (ii) For (k,h) € K x [H] such that vf(sk,a) = ¢(s¥,a) 70} — 2a§|\¢(s§,a)H(Hk)fl
h

In this case, we know that f¥ ;.\ (st @) < ff ;. ) (sk, ao) for all a € T\{ao}. This implies that
|A¥| = 2, since adding any item a € Z\{ao} to the set {ao} always decreases the expected value of
s J(k,ny- Furthermore, since we assume #(sk, ag) = 0 (which also implies v} (s¥, ag) = 0), and
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denoting A¥ = {ag, @}, we have:
VR(v}(si)) " (vi(sh) — vh(sh))
= 2a§7)h (&mslfi)Alﬁ; 9;) ffﬁ,](k,h)(5§7 di}i)
(165 g P b A8 07) (1065 2 ] )
= ZaEPh (&EIShaAh; 9h) P (a0|s’,j, Alﬁ? ‘92) ff]f J(k, h)(sﬁa dﬁ)\w(s’é, dﬁ)H( By
< 205, Py (ay] sy, Ay 03) Pr (aolsy;, AR; 07) [6(sh, @) | a1 (D.37)
(Hh)

where the last inequality is due to the fact that f,’f Ty S 1. Now, we bound the term

Pr, (é,";\sﬁ, Ak 0,*1) Pr, (a0|s’fb, A 02) by the mean value theorem. Recall that we can express
the term as follows:

€Xp (¢(Shv ah)Te*) .
(1 + exp (qb(sh, ah)TG*))

Then, by the mean value theorem, there exists £F = (1 — ¢/)@; + ¢ 67! for some ¢ € (0, 1) such
that

Ph (ar|sk, Af; 63) Pr (aolsk, Af; 65) =

Phn (d§|sﬁ,A Oh) Ph (a0|sh,A ) Phn ( Z|52,Aﬁ;0,’§+1) P (adsﬁ,Aﬁ;@ﬁH)
_ exp(g(s.ap)"0n)  exp(o(shap) 05T
(1 + exp (qi)(s’fb, dﬁ)TO;L))Q (1 + exp ((b(sz, ~Z’)T02+1))2
exp (@(sf, ar) &x exp (@(sf, ar) " &x
- (ot ot }i) ;|12 m ’i> o(sh.af)T (67— 65+
(1 + exp (qﬁ(s’g, &E)TE,";)) 1+ exp ( B(sf, &E)Tfﬁ)

exp (6(sh, ) TE)
<
k ~k\T ¢k ?
(1 + exp (¢>(Sh, ay) £h>>
o 1Py (aflsh, AL €5) P (aolsh A% €8) 16(sh, )l g
k+1 k
<apt max [ 6(shs )l gy (D.38)

exp(p(sh,af) &f)
(1+cxp(¢>(s’C ak )Tgh))2
inequality holds due to Holder’s inequality, conditioned on the good event £, Plugging Equation
into Equation|D.37] we get

VR(vj,(s3)) " (v (sh) — vir(sh))
< 205 Ph (af|sh, A%; 04"") Pr (aolsh, A%; 0,7 [ 6(sh, a1) | gy

1-2

where the first inequality comes from the fact that < 1, and the second

k+1 k
+ QOLhOé mi)g H¢(Sh,a)H(Hlﬁ)’l

=2af; 3} Pu (alsh, AL 6,71) Pa (aolsi, AR 011) 195, 0)] gy
aeAk
okl k
+ 2ajay; mi’g lo(sh, a)H(Hz)*% (D.39)
where the equality holds due to the assumption that ¢ (s, ag) = 0.

Now, we are ready to bound the term (A). For any fixed h € [H], let IC(i) denote the set of episodes
where Case (i) holds, and K (;;) denote the set of episodes where Case (ii) holds. More formally, we
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define:
Kooy = {k e K vof(sh ) = 0(sh.0) 65 + 205 |6 (58 )] gy |
Ky = {k e K v(sh,a) = 6(s}h,a)T6; — 20} [9(s}, a) “(Hz)“} .

Then, by combining Equation and Equation [D.39} using the fact that o} < --- < o, and

summing over k € C, we obtain that

> VR (s) " (vh(sh) — vi(sh))

ke

< 2af Z Z P, (a\si’,Aﬁ;Hﬁ“) H(E(slﬁ,a)H -
ke (i) ac AR ( )

+ 2ahK Z 2 P, (a|3’1§7AZ§9£+1) Pr, (a0|5’1§aAﬁ;92+1) |\¢(5£7G)H(H5)71
kek(iiy ag Ak )

N 2
+ 10 ah Z max{zrel%ci o(sk,a H Hp)” ei},’; ”‘?(827(1)(}12)—1}

< 20t VKT (2 3 P alsh, 4k 05°1) [otsh o

k=1acA¥

K 1/2
+30 % P alsh. Af: 07) Pu (aolsh, A% 0}) |¢(sﬁ,a>|§ﬂg)1>

k=1aeAk

+ 10 ozh Z max{ggli)k( o(sh,a H ) E%g Hqﬁ(sh,a)’(Hﬁ)1}
=0 (d\/IC| log K log M + 1 (log K log M)Q) , (D.40)
K

where the second inequality follows from the Cauchy-Schwarz inequality, and the last equality holds
by applying Lemma and substituting in the value of aZ.

exp (05 (sf;,a))
l+2u,,EA§ cxp(@ﬁ (s’fb,a”)) :

Now, we bound the term (B) in Equation [D.30} Let p, (0 (sF)) =

1
B (Uh(sh) - 'Uh(Sh))T VZR(’DE(%)) (Uh(sh) - UZ(Sh))
kekC
82 k
5 Z Z Z Uh ¢( ﬁ’a)-reh) % (Uﬁ(sfwal) - ¢(Sﬁ’a/>-r0;;)
kE’C aeAk a eA"
aQR —k(.k , .
SINS ) (whsh ) — sk 8) TR (k) osh ) 6})
kEICae ka/e k
. a;fa
N2 82]%(13’“(5’“))
PP R

<> Z |0 (s, @) = 6(sh. @) " 04| pa (5 (55))pa (DR (s1)) [UF (s5, @) — d(sh,a') "6}

keK ae Ak o/c Ak
a';ﬁa

+3 Z 3T (vh(ska) — 6(s5,a)T05)” pa(@f (s])), (D.41)

kGIC ac Ak
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where the inequality holds by Lemma and f¥ ;. ) < 1. To bound the first term in Equation|D.41]
by applying the AM-GM inequality, we get

Z Z Z |Uh Sh’ Shv Teh‘pa Uh(sh))pa (Uh Sh |Uh Shv /)*QS(SZ’CLI)TQN
keK ac A o'c Ak
a/?&a
Z 2 Z ‘Uh Sh7 Sfm Teh’pa Uﬁ(sh))pa (vfli sh |Uh shv ,) _Qb(sfwal)—rem
k?GICaEAkaGA"
* 2 = —
Z DT (vR(sk a) = é(sh,a)T03) pa(©F (sF))par (OF (s7))
kE’CaeAkaeAk
P30S S ek e @k (sh) (vh(sh, @) — olsh @) 61)”
kEKaEAkaeAk
=3 N (uhi(sha) — d(sh.a)T63)” pa(0f(sh). (D.42)
kG’CaeA’}j

Plugging Equation into Equation [D.41] we have

- Z of(s) —vi(sh) | V2R(E(s])) (vE(sh) — vi(s])

keIC
*\ 2
Z Z pa(05(s1)) (i (s a) — é(sy,a) " 6})
kE’CaeA’C
<10 (ar) Z > pa(®h(sh))o(sh >”(H’£)_1
keK ae Ak
1
<1 , 1 =0 =d?(log K log M)? ), D.43
)" 3 malotoh, 0l = O ([ GogKlogh0?) . 043

where the second inequality holds since o} < -+ < o, and the last inequality holds by Lemma
Combining Equation[D.40]and Equation [D.43] we conclude the proof of Lemma[D.7] O
D.4 OPTIMISM

In this subsection, we prove the optimism of our value estimates th .

Lemma D.8 (Point-wise monotonicity, Lemma 31 of [Agarwal et al|2023). Suppose Algorithm|]]
uses a consistent bonus oracle satisfying Definition[d} For any fixed (k,h) € [K] x [H], conditioning

on events E<i,_1 () (ﬂh,:hg;]f,),for all (sp,ap) € S x I, we have

L. Qp(sn,ap) < T (sn,an);
2. fF i (snyan) < Qp(sn,an);

3. f7 o(sn,an) = max {EV,{ﬂrLl(sh,ah),f,’fyl(sh,ah)}, vr e [k].

Lemma D.9 (Optimism). Let th be the realized optimistic value function defined in Equation
Suppose Algorithm|l|uses a consistent bonus oracle satisfying Definition 4| On the even conditioning
on the good event £° (| E<k, for all (k,h) € [K] x [H], we have

Vi () = Vil (s)-
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Proof of Lemma|D.9, We denote AZ’* € argmax 4 Y., 4 Pn(alst, A)@;(sf, a). If Ak = Aﬁ,p by
the definition of the optimal value function V', we have

Vi (sh) = max > Pulalsy, A)Qy sk, a)

aEA
—k

= Z Pulalsk, Ay*)Qn(sk, a)

aeAfL’*
k

< Z ,Ph(a‘SZ7Ah7*)fflf,1(3i7a)
aEA;‘;’*

< Z PE,I(G|SZ7AZ)J0}I§,1(S§7@)
acAk

< Z Pllf,l(a|sﬁ’Aﬁ,l)f}lfJ(Sﬁ’a)
aEAk

:I}‘laXZPhl alsy;, A fhl(sha) Vi (sh),
eA

where the first inequality holds by Lemma [D.§] in the second inequality, we use the fact that, by
Lemma there exists a subset A;j c AZ’* with AZ € A such that the inequality holds, and the last
inequality holds by the definition of A§,1

The case where AZ = A}fb 5 can be proven using the same reasoning. O

D.5 VARIANCES

In this subsection, we present properties related to variances.

Lemma D.10 (Upper bound of variance estimator, Lemma 34 of |Agarwal et al.|[2023). Ler

28 = (sk,af). We denote Ep[-|sF,af] = By, i ~Bh (st al )[ |si,ak] and Vp[-|sf,a¥] =

Ve ianmn( |5k ak [ |sk, a¥], where the expectation in only taken over sy, 1 due to the model transition

for shorthand Suppose Algorithm[I|uses a consistent bonus oracle satisfying Definition[d] For any

episode k > 2 conditioning on the good event E< i, the variance estimator G‘Z satisfies

(02)2<V[rh+vhm<sh+1>|zh]+4(fh2<zh> ()

+4min{1 D}'h(’zhv{zh T= 1) 17—} ( \V Bh +P+4Lm>}

Lemma D.11 (Sum of variances, Corollary 50 of Agarwal et al.[2023). Let z¥ = (s§,aF). We denote
]E]P’[ |Sh’ ah] = ]Esh+1~IF’h(-\sh',a2)[ |Sh7 ah] and V]P’[ |Sha ah] = Vsh+1~Ph (~\sh,ah)[ |sh’ ah]’ where
the expectation in only taken over sy, due to the model transition for shorthand. When L = O(1),
with probability at least 1 — §, we have

K H

Z Z V [ra + th+1,1(3h+1)\211§]

k=1h=1

K H KH
<0 (H Z Z FrozR) = fF_o(2h)) + K + KH?6 + H?|Kop| + H* log? 5) .
k=1h=1

D.6 APPROXIMATION ERROR OF OPTIMISTIC, OVERLY OPTIMISTIC (PESSIMISTIC)
(QQ-VALUES

In this section, we provide some inequalities for bounding the optimistic values, overly optimistic
values, and overly pessimistic values sequence, which are useful for the proofs in Subsection|[D.7]

Lemma D.12 (Approximation error of overly pessimistic Q). Suppose Algorlthml uses a consistent
bonus oracle satisfying Definition[d] Conditioning on the good event E<, for any (k, h) € [K] x [H],
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it holds that

(fi]f,—Q Qh 3h7ah Z Z (Ph’ — /|SZ’5 AZ’) - Ph’ (a/‘sz’vAk’)> f}]f’,—Q(SlfL’val)

h+1aeAk
-2 Z bl 2 (shr, ais) + Z Chra + Z < —25
h'=h =h+1 =h+1
where Gy i= Ea|(Vif_y = Vi)(sn) | sh_ysahoy| = (Vi_p = Vi)(sh) and &, =

p[(Fe = Q) (shoan) | sh, k| = (75 o — Q1Y) (shab).
Proof of Lemma([D-12] Under the event E< i, we have
(fi—2 — Qn")(sk, af)
= (f;’f -2~ 7-thk+1 72)(5127%) (77th+1 - Qh )(Shaah)

> —2bf, (Sh»ah) + Ep [(Th —rp) + (Vh+1,72 — Vit ) (8he1) |S’;§,aﬁ]
= _Qbh,2(3h7ah) + (Vh+1,—2 - szrf1)(8]ﬁ+1) + C}lf+1,—2
= —2b’fb,2(s,’§,a§f) + (Qzﬂ,—z - QZil)(SZHaAIfLH) + C§+1,—2

Sk k k k k k k \ATE [k
Z (Ph+1772(a/|5h+1a Ah+1)fh+1,72(5h+1a a’) - Ph+1(a,|3h+17Ah+1)Qh:1(Sh+lva/))
GIEAZ+1
- QbE,Q(SfLa ap) + C}]f+1,—2
Sk k k k k k k
= Z (Ph+1,72(a/|5h+1a‘4h+1) - Ph+1(a/|sh+17Ah+1)) fh+1,72<sh+1’a/)

’ k
a’€Ay

+ Ep [(f}]fﬂ,fz Qh+1> (Sh+17 ah+1)|5h+17Ah+1] 20}, Z(Shvah) + Ch+1 2

= 3 (Phoral@lshin Al ) = Puoa (@lsh 1 Ak 1)) S —a(shinsa)

a EAh+1

ATk k k k o[k Kk k R
+ <fh+1,—2 - Qh+1) (Sht1s@ht1) = 20p o(sh,ap) + Crir,—o + Chlyq —as

where the first inequality holds because T, V)", | _, € F¥ _, under the event < and definition of
by 5. and the last inequality holds since Vi, _,(sf_ 1) = Q1 _o(sk 1, AF ).

Hence, by recursion we obtain that

H
(k= Qi shoal) = D5 3 (P aldlsh, Al) = Pur(@lsh, AR)) b a(shysa)
h!= h+1a€A"

-2 Z bh/ (skr,af,) 2 Ch/ —2t Z i« —2

h'=h =h+1 =h+1
O
Lemma D.13 (Approximation error of overly optimistic Q). Suppose Algorithm|]| I uses a consistent

bonus oracle satisfying Deﬁmtlonl 4| Conditioning on the good event E< i, for any k € [ K| and any
h = hy, it holds that

H
(ko= QNshal) < Y D (Phoaldlsh, Ab) = Pulalsh, A%)) (ks a')
h'= h-&-laeA’C

+ 2 Z bh’ sh,7ah, +2 Z bh/ Sh’ a’h’ Z Ch’2 + Z Ch’ 25

h'=h h'=h =h+1 =h+1
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where C’,fz = Ep [(V}fzf‘/”’c)(sh)|s§71,a£71] — (V}f)2 — Vh”")(sﬁ) and C}’fz =
P [(f}lfz Qh ) (Shvah) | sthk] - (f}’fQ Qh ) (shvaﬁ)

Proof of Lemma[D.13] Under the event <k, at h > hy,, we have
(ff]iz )(512’ ak) = (filfz - 77Lth41 2)(51i§a aﬁ) + (Thvfﬁrl,z - @Zk)(sfw@fl)
Qbh 1(31fma )+ 2bh 2(5;“ ah) +E [(th+1,2 - V;er1)(3h+1)|51;§’ GZ]
= Qbh 1( )+ 2bh o(sh,ap) + (Vh+1,2 - V}Zﬁl)(sﬁ+l) + C}]f+1,2
= 2bh 1(3;3,@ )+ 2bh 2(sh7 aﬁ) (QZ+1,2 Qh+1)(3h+1a Ah+1) + C}If+1,2

~ =T
= Z (Pi]fﬂ,z(@ |5h+1v Ah+1)fﬁ+1,2(32+17a ) = Phii(a |3}L+1:A2+1)th1(55+1a a’))
a’e Ak

h
k
h

k _k
Spyap,
k
h

h+1

+ 2bh V(shoar) + 2bh 2(sh,af) + Ch+1 2

= Z (Ph+1,2(a |5h+1aAh+1) - ’Ph+1(a/|52+1a14}]§+1)> f}lf+1,2(5ﬁ+1va/)

a EAh_*_1

- k k k ko ok Kk k ok K k
+Ep [(fh+1,2 - Qh+1> (Sht1s ah+1)|5h+1>Ah+1] + 2bp, 1 (sh, ap,) + 20; o(sp, ap) + (i o

Sk k k k k k k
= Z (Ph+1,2(a/|sh+17Ah+1) - Ph+1(al|sh+1aAh+1)> fh+1,2(8h+1va/)

a/€Af

+ (fh+1,2 Qh+1> (5h+17ah+1) + 2bh sy af) + 2bh S (sk,ap) + Ch+1 o+ Ch+1 2

where the first inequality holds based on the assumption that 75, V;* 12 €F ,71972 and definition of bﬁ’Q,
and the third equality holds because for h > hy,, we know that A} | € argmax, QF ,(sf, |, A) =

argmax  Y,eu PFoqolalst, 1, A)fF, 1 5(sk, 1, a) by the data collection policy in Equation

Therefore, by recursion we get

(ff]fz Qh Sh’ah Z Z(Ph’ |sZ,,Aﬁ,)—Ph/(a’|sﬁ,,Aﬁ,)>fh, (Sh’ )

=h+1gq EA’C
+ 2 Z bh' Sh/ ah/ + 2 Z bh' Sh/ ah/ Z Ch’ 2 + Z Ch'
h'= =h =h+1 =h+1

O

Lemma D.14 (Approximation error of optimistic Q). Suppose Algorzthm I uses a consistent bonus
oracle satisfying Deﬁnmon Conditioning on the good event £9 (\ E<x, for any k € [K| and any
h < hy, we have

(fi1 = Q") (s al)

< 2 X (Phaish, Ab) = Putalsh, L)) 1l (k)

h'=h+1aeAk,

H r\/
+ 3 D (Bhoa(@lsh, AL — Pu@lsh 48)) (k@)

h'=hy a’e A

h—1 _ H )

o S o) 2 D) thatshoaf) ¢ O] (Cha bt D) (Gt Cha)

h'=h h'=hy h'=h+1 h'=hy
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where
Gy i=Ep [(Viey = Vi) (sn) | sk_p,ar 1] = (ViFy = Vi )(sh),
é;’f@ =Ep (ff’f1 k) (s, an) | ShaAh] (f;lfJ ) (s
Gz o= Ep [(Vifa = ViT)(sn) | sho1sah—1] = (Vita = ViT)(sh),
Cho =B | (fha— Qi) (shoan) | sk, AL | = (2 = Q5F) (k).

Here, following the convention, we use the empty sum notation, i.e., Zf:a z; =0, whenb < a

Proof of Lemma Under the event E< ¢, by Lemma m it holds that f}il (s,a) < f,’f}z (s, a) for
all (s,a) € S x Z. Therefore, for h = hy, by Lemma|D.13| we get

(fi]:,l *@Zk)(SlﬁaaZ) < (fi]fz Qh )(shvah)
Z 5 (Bl oIk, Al) = Purlallshy, AR)) i (s, )

=h+1g eAk

+2 Z bh, (sF,,ak) +2 Z bh, (sk,,ak) Z Ch/2+ Z g“h, . (D.44)

h'=h h'=h =h+1 =h+1

For h = h;, — 1, we have

(ff]f,1 —@Zk) Spy @ ) (fhl 77sz5+1 1)(%&“2) (77Lth+1,1 Qh )(Shvah)
)+ E[(Viira = Vi) (snan)l g ar ]

) +E [(th+1 2~ )(5h+1)|3h’a2]

) + (Vifﬂ s — Vi )(SZ+ )+ Ch+1 2

) + (Qh+1 2= QpF)(shins Ajyy) + Ch+1 2

Sk k k
< Z ( h+12( |Sh+1aAh+1)fh+1,2(sh+17a)_Pthl( |Sh+1vAh+1)Qh+1(sh+1v /))

a EA} 41

ko k k
+ 25h,1(5ha ap) + Chit0

Sk k k k k
Z (Ph+1,2(a,|sh+1aAh+1) —Pryii(a \5h+1,Ah+1)) fh+1,2(sh+1va/)

a eAh+1

ATk k k k k ok k k
+Ep [(fh+1,2 - Qh+1) (Sh1s ah+1)|5h+17Ah+1] + 2bp, 1 (s, ap) + Cpy1 o

Sk k k k k k k
= Z (Ph+1,2(a/|5h+1a Ah+1) - Ph+1(a/‘3h+1ﬂ4h+1)) fh+172(5h+1v a’)

a EAh+1

+ (fh+1 2 Qh+1) (Shy1sani1) + 2bh 1(shyaf) + Ch+1 o+ Ch+1 2 (D.45)

where the first inequality holds based on the assumption that 75, V}* 11 €F ,’f’l and definition of bﬁ,r
and the second inequality holds because for any s, 1 € S, we have

Vif+1,1(5h+1) = 2 Pllzc+1,1(al|5h+1; Ah+1,1)fi]f+1,1(3h+1» a/)

a’€Ant+11

< Z P;f+1,1(a/|8h+1, Ah+1,1)f;]f+1,2(3h+1, a’)

a,EAh,+111

< D PEa(dlsner, Anii ) fi o(sne,a)

a/GAh+1,1

< Z Pf’f+1,2(a/|5h+1aAZ+1,2)fi]f+1,2(3h+1,a/):th+1,2(5h+1)7

a EAh+1 2
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where in the first equality, we denote Ay, 11 € argmax /4 75,’f+1 (@ [spi1, AV fE Ly 1 (She, ),
for the first inequality, we use the fact that f, | ;(s,a) < fF,; 5(s,a) (Lemma , the second

inequality holds for some Ah+1,1 < Apy1,1 (Lemma , and the last inequality follows from the
definition of A}, ,. Moreover, the third equality of Equation holds because for A + 1 = hy,
we know that Ay, = A}, , by the data collection policy in Equation

Therefore, by recursion, we have

—T

(f}]fJ Q@ )(Sz’ a’,j)

H

< O 3 (Pholalsh, Af) — Pulallsh AR)) £ a(sh )

h'=h+1q eAk

+22bh, (s¥,,ak) +2 2 b o (skr ) 2 Gy + Z (o (DA6)

h'=h h'=h+1 =h+1 =h+1

Finally, we consider the case where h < hy, — 1.
(f;’f,1 —@Z’“)(si,ai) = (f}lf,l - ThV;i“H,l)(sZ,ai) + (771th’+171 Qh )(Shaah)
2bh 1( Sprap) +E [(th+1 1= V;er1)(3h+1)|5§aaz]
= 2bj, (sﬁ,aﬁ) + (V}{C-J—l,l Vh+1)(52+1) + C}lf+1,1
( ’;i )+ (QZ+1,1 - Qh+1)(511§+1aA§+1) + Cf]f+1,1

-
Z (Pﬁ+171(a’|52+1, Alfb+1)f}lf+1,1(5]fi+1a a') - ’Ph+1(a/|3]ii+17 AZ+1)Q}L’-€-1(S;€L+17 a’))
a’e Ak

aj

h+1
+ Qbh,l(slﬁa ap) + Ci]f+1,1
Z (Pﬁ+171(a’|s,’j+1, Al}i+1) - Ph+1(a/‘5£+1714]1§+1)) f}]f+1,1(3§+17 a')

a’€Af

+Ep [(fh+1,1 Qh+1) (5h+17 ah+1)|5h+17Ah+1] + 2bh sy ak) + Ch+1 1

Sk k k k k k k
= Z (Ph+1,1(al|sh+1aAh+1) - Ph+1(a/‘5h+1vAh+1)> fh+1,1(sh+1va/)

a GA}L+1

+ (fh+1,1 Qh+1> (5h+17ah+1) + th ((skoap) + Ch+1 1t Ch+1 1

where the first inequality holds based on the assumption that 75, V;¥ 11 € Fr 1.1 and definition of bh 1
and the third equality holds because for b + 1 < hy, we have Ay | = A}, | by the data collection
policy in Equation [I0}

Hence, by recursion we have

hr—1

(fi]f,l Qh ) Shaah Z Z (Ph’ |5§/7A§/) *Ph'(a'|52/af4]1§/)> fh/ (Sh’ )

=h+1g EAk

+ Z Z (7’5}]:/,2((1452/,142/) — Ph (a/‘32,7A§,)) f}IfQQ(SZ/,a/)

h'=hy a’eA¥,
hp—1
k ke
+2 Z bh’ Sh/ Clh/ +2 Z bh’ Sh/ ah/) + Z (Ch',l +Ch',1)
W =hg h'=h+1
+ Z (Cki g+ CF o) (D.47)
W =hy
Combining Equation Equation and Equation [D.47] we conclude the proof. O
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D.7 BOUNDS ON BONUSES AND |Kqo|

In this subsection, we provide proofs for the bounds on the sum of bonuses (Lemma [D.T5]
Lemma|[D:16] and Lemma[D.17) as well as the bound on the size of Ko, (Lemma[D-T8).

Lemma D.15 (Crude bound on bh 1» Lemma 39 of Agarwal et al.|2023). Let 2} = (s§,aF). Given

b () <C- (D;h( {ryEzl o)) (Bh 1) +p+ebﬁ§71> when p = 1,v < 1, it holds

that for any subset K € [K], we have

H
2 Z min{l + L,bﬁ’l(z’,i)}

keK h=1
KH KH KH
=0 \/logN- \/logm-H«/dV|IC|—|—10gNM-d,,H+|IC|H6b .
Ve v v
Lemma D.16 (Crude bound on b}, ,, Lemma 38 of Agarwal et al|2023). Let z = (s, ay;). Given

b’;&(.) <C- <D].-h( ETS L kL . (5}’12> +p+eb6,’f,1> when p = 1,v < 1, it holds

that for any subset K € [K], we have

H
1D min {1+ L, ,(2f)} = O («/ NNZKH : (H«/dV|IC| +d,H + |IC|Heb>>.

ke h=1

Lemma D.17 (Fine-grained bound on b 1) Let 28 = (sF,af). Recall that the bonus oracle BB outputs

a bonus function such that bj ,(-) < C - (th( (ryezi o)) (,6”,;”1) +p+ 6},,6}]?’1).

When p = 1,v =1/vVKH, § < (0,1/7) and the event E< i holds, with probability at least 1 — 76,
we have

2 Zmln{l—i—L bhl zh}

k=1h=1

KH 1
=0 <\/dUHK . 1ogN5 + Tde«/dy log K log M - log
K

5 - A /log 5

NN,KH N KH)

3/2
w(dyH?/zlogAff;ff.(lOgW) i\ frog VEH

: - (KHeb n \/dDKHL”’é))
\/logN{;HlogNNgKH-«/dl,H- [H2 3wy, + /H2[K0|
kelkC,

Proof of Lemma|D.I7] By the definition of the oracle B (Definition ), we have

2 Z mm{l + L,b¥ 1(zh)}

K H 5
_O<,; g 1n{1 D;,L(zh,{zh . 1,{0 ) (65,1) +p}+KHeb-ngixﬁﬁ,1>

KH K H
=0 <q/log 5 31> min{1, D, (2 {27 1521, {o}e2)) } + KHeb> , (D.48)
k=1h=1

where the last equality holds by the definition of ﬂ,’f’l.
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Now, we bound the summation terms

2 g min {1, Dz, (=f; {z7}*21, {51521}

k=1

Ko
= > > mi {1 o - (o) D (5 (21} (o ’ﬁj)}
by dividing into the followi kgz s;
—{(k. 1) € [K] x [H]: (o}) " D, (ehs {2 }i2 Ao bim)) = 1,
I, ={(k,h) € [K] x [H] : 5} = v, (k,h)
T ={ (k1) € (K] 1) of = 2 (y/oloh) + 00 ) -y D, (o G o)),
(k1) # T},
Ty ={(k, ) € [K] x [H] : 7k = V2udE)/ £l o () = FE o), (ko) # T}

Is ={(k.h) € [K] x [H] : 6} = o), (k,h) # 1} ,.

For the case of Z;, we have

. _ _E\ 1 _ Ay ke—
> min {1,055 () D, (s (1102 01D |

(k,h)eTy

\

H
< Y (@h) T DR (o gertn)) < Y dimy ke (F) = dyH. (D.49)
(k,h)eIl h=1

For 75, we use the Cauchy-Schwarz inequality to get

>) min {1,055 (k) D, (o8 112 002D |

(k,h)eZ2

<VRKH - | D1 (aF) P D%, (e (o)t (a)hh) <

=1 =1
(k?,h)GIQ

H
> dimy, k(Fn) = +/dH.

h=1
(D.50)

For Z3, we have

Z min{l,&’ﬁ-(&h) Dy, (21 (=0 }521, (a2 )}

(k,h)eT3

< Z (80(52) + L2((5Z)) - min {1, (5’,2) D]_-h (zh, {zh}T s {J} )}

(k,h)EZs
KH KH\ &
=0 log N + log M . Z dim,, g (Fp)
1) 0 = ’
=0 (( log NI;H + log N‘N‘SKH> dl,H> , (D.51)

where the inequality holds because, by dividing both sides of 55 = 2( o(6%) + L(5§)) .
\/D]:h (zF; {27 }521, {57 }521) by 4/GF and rearranging terms, we get:
oy < (80(0F) +42(67)) D, (2F: {=n}h—1, {a}Ez]) .

We also use the property that (6’;)_1 Dz, (2F: (=5 }i2], {o}hC ) < 1for (k, h) € Z3, which follows
directly from the definition of Z3.
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For 7,4, we have

Z min{l,&’ﬁ-(&,ﬁ) D]-'h(z}w{zh = 1,{0 )}
(k,h)eTs

< Z oy (o1) D]'—h(zhﬂ{zh}k LAY

(k,h)€I4

S V2T Ha(h) = £ o) - (5) T D, (ks 171 (1))

(k,h)ETy

NNEKH | & &
<O [ \flog === | 37 D fha(eh) = f¥ (k) - Vo H | (D.52)
k=1h=1

where the last inequality holds by the Cauchy-Schwarz inequality together with the definition of
L(8F).

Lastly, restricting on Zs, if the event £« x holds, we have

Z min{l,&ﬁ-(&;z) D}‘h(zhv{zh}T 17{‘7} )}

(k,h)eZs
< Z 6}13' (52) th (Zh’{zh T= 17{0 )
(k,h)€Zs
2 (ef) [ X (ah) D, (s (it o)
(k,h)eTs (k,h)eTs
<O XV [+ Viualonen) | 2]+ 2 (Fhaleh) = £ o)) - Va I
k,h k,h
+0 me{1 D, (zF: {zp1 21, (1732} logww/d,H . (D53)

0

where the second inequality holds by the Cauchy-Schwarz inequality, the last inequality holds by
Lemma[D.T0land the definition of Eluder dimension.

To further bound the first term on the right-hand side of Equation [D.53] we apply Lemma [D.T1]
Therefore, with probability at least 1 — J, we have

Z min{l,&ﬁ~(5}f) D]:h(zhv{zh r= 1,{0} )}

(k,h)eTs

KH
<0 \/HZ(szh — ff o)) + K + KH6 4+ H2|Coo| + H* log? === - \/d, H

(\/ Frae) = 1, 2(%)) Vd,H |+ 0 \/(d,,H—i—H\/d,jiK) 10g%£KH.\/dV7H
kh

k.h
+ 0O <dyH1‘5« [log /\/NgKH> , (D.54)
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where the first inequality holds by the fact that

Zmln{l Dz, (zrs {zn}ic, (M)} < 4 H
e h

Zmln{l Dz, (25 {zp}f 21, (172} < VKH ZD%- (zF {2p )izt (17} 2)) < HVAUK,
b

k,h

and the last inequality holds by the AM-GM inequality such that

Hw.dylogmm < Fot B2 lop VAGEH

5 S VI8 Ts
Combining Equation[D.49] [D.50} [D.51] [D.52} and [D.54] we get

K H
Z Z mm{l oy (oF) D}‘h (Zh,{zh}f LAYz )}

NNKH Sk
<0 log+ N H -\ H YL Y () = fEo(zF)

k=1h=1

+O<\/K+KH2§+H2|/COO+H4log 5 \dyH + d,H*>; /1o NNZKH>. (D.55)

Now, we bound the term };; ,, (f;f2( k) — fh 2(zh)) For k € Koo, we have

N

H
Z Z thZh fh 2(25))=O(|’C00|H)-

keKo h=1

Otherwise, for episodes k € K,, we know that it holds true that f,’fﬁl (zF) = f,’f’Q(z’,f ) — uy, by Equa-
tion[I0] Therefore, under the event E< k., we have

Z Z Fro(z8) = 7 _o(21)) Z Z Fra(zh) = fr _o(21) +H2Uk

ke, h=1 ke, h=1 ke,
H
k ATk
= Z ((fh,l - Qp )(zh) (Qh —fh o) Zh ) + H Z U,
ke, h=1 ke,
H H N
<3N N X (Phal@ sk AR — Pu@lsh, A%)) £ (s )
keKo h=1h'=h+1a'c Ak,
H H N
- NN Y N (Bhal@lsh AR — Puralsh, AR)) £ _a(sha)
keKo h=1h=h+1a'c Ak,

H
—1—22 Zmln{l—l—L th, Sh’ ah, }4—22 Zmln{l—l—[/ th, sh, ah,}

kello h=1 kekCo h=1
H
k & E e
+ Z Z Z (Ch’,l + Chrr — Chr—2 — Ch/,—z) +H Z Up, (D.56)
keK, h=1h'=h+1 ke,

martingale difference sequences (MDSs)

where the second inequality holds by Lemma[D.12]and [D.14]

To further the right-hand side of Equation[D.56] we apply Lemma[D.6] (which holds with probability
at least 1 — 26) to the first and the second terms, Lemma[D.T3]to the third term, Lemma[D.T6|to the
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forth term, and we bound the fifth term using the Azuma-Hoeffding inequality (which holds with
probability at least 1 — 44). As a result, absorbing the low-order terms, we obtain that

K H
SN (Fhaleh) = £Fo(20)
iﬂdHQ\/E -log K log M)

+0 (\/IogN{;H . (\/IogA/A/gKH 'HQ\/dVK+logAM . dl,H2>>

)

KH / KH
_|_(’)< log%-KHQGb—FH KHlogT+|ICoo|H—|—HZ uk>, (D.57)

kelCo

where the last inequality holds by the AM-GM inequality.
Plugging Equation to Equation[D.55] we have

K H
>, Y min {105 () D, (8 G )ETh o1 D) |

<O wMM-\/dVH- <\/de3logK10gM-\/§+H2 > uk>>

kelo

3/4
<0 (1 MK .mH.J il R R ey

e
I
—
>
I
-

+0O K+KH25+H410g2K5H.m+dyH1'5 IOgW>
KH K 1 KH
logjw\[fi'*/CZTH'\/INNKH+Clzlﬁfﬁ(logKlong-logNNfS )
og=——%t=—— K

2
log NiNbKH . \/d,,iH . J d, Hblog NEH (log NNbKH) + H? Z uk)

0 ke,

<0

log % A/dyH - \/H?|Koo| + KHey +/dy H - \/KH25>

1
d,HK + Tde«/dl, log K log M - log
K

3/2
@ <d,jH7/24 [log /Lg( 7. <1og NN KH SK " ) )

+0 1ogw /d,H - ( [H2 Y+ H2|ICOO) + KHe, + \/dDKHffé),
ke,

(D.58)

N/\/}J(H)
]

J’_

where the second inequality holds by applying the AM-GM inequality and absorbing the lower-order
terms.
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Finally, plugging Equation[D.58|to Equation [D.48] we derive that

NKH 1
6 VK

3/2
+O (dyH”z logg~ <log W) +4/lo N{EH (KHebJr\/d KH3 ))

KH KH
\/ng(S logNNg ‘\d,H- | [H? Z U + A/ H? | Kool
kelkC,

This concludes the proof of Lemma O

dH"?7/d, log K log M - log

N
§)
=
&
T
=
U%T

log ———

NN, KH NKH
5 5

Lemma D.18 (Bounding size of o). Suppose v < 1 and we set

*,

log NKH . (1og NNKH . pr5/2, /d, + \/EHeb) dH*?log K log M \/@
up = C- 7
k vk vk

for some large enough constant 0 < C' < oo, when the event E< i holds true, then with probability at
least 1 — 26, it holds that

K d, d*(log K log M)*
Kool KO —4—— 75 + = +
Kool <H3 105% H3 K2d, H3 - log NIﬁH (1og NA%(H)2

Proof of Lemma|D.18] By the definition of hy, for each k € Ky, we have f}’fk,Q(sﬁk,a,}jk) >
fE 1 (sk ,af ) + ug, which implies that

k
Z (fhk, fhk Shk7a’hk Z Uk

keoo keloo
NKH NN,KH [Cool
= : 1 - L : H5/2 v© = 00 H
C ( g — (og 5 Vd Nice + [Koo| Hep
NNMEKH Kool
5/2 b . 00
+ dH”*log K log M4 [log 5 —\/? . (D.59)
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Furthermore, under the event £« ¢, by Lemma it holds that fF, (sn,an) > Q) (sn,an) =
Q" (sn,an) forall (s, ar) € S x Z. Thus, we get

Z (filka fhk )(shk,a’ik) 2 (fhk2 @Z:)(sik»alflk)

k)G}COO kelcoo

H
2 Z Z (73;13',2(a/|82/714§/,2)—”Ph/(a/‘gﬁuAﬁ,g)) £ o(shr,ad)

keEKo h'=hr+1 g EA’:L

H
+2 Z Z min{l+L,bk,71(s’,§,,a’,§,)}+2 Z Z min{l+L,bZ,72(s’,§,,al;§,)}

keloo h'=hy keloo h'=hy

SYS (dhatha)

keKoo h'=hj+1

1 / KH
] (dH«/UCOoI -log K log M + ;dQH (log K log M)? + 4/ |Koo H log —— 5 >

KH KH —— KH
+ @ ( IOg Ny(s : <\/1Og./\wybé~ -H dl’l’C00| +IOgAL ' dVH+ |K00|H€b>> )

vé
(D.60)

where in the first inequality, we note that A¥, = Aﬁ,,Q for b’ = hy, the second inequality follows
from And for the third inequality, we apply Lemma to the first term, Lemma
to the second term, Lemma @ to the third term. Finally, we bound the last term using the
Azuma-Hoeffding inequality with probability at least 1 — 26.

Thus, in order for the two inequalities [D.59]and [D.60] to hold simultaneously, the following condition
must be satisfied:

K
|Koo‘ < O(max {HﬂogNNbéKH’

(dl,q/logNKH 1ogNNbKH lcl2(logKlogM)2> VK })
H3/2\/10g NN KH <\/d log MEH 100 NNKH 4 100 K log M)

Using the AM-GM inequality, we can further bound the second term inside the max operation.

(dy log NKH log NNbKH édQ(logKlogMV) VK

O
H3/2\/log%5KH (\/dylog NUI%H log NA%(H +dlogKlogM)
2
K N dyy/log MEH 100 NNoKH 4 L 32(1og K log M)?
Hglogw H3/2,/d, log/\/KH log./\//\/bKH
2
K N d7”+ d*(log K log M)?
H?3 log MALEH H? K- H3/2y/d, log MEH 1og NNLKH
K N dy N d*(log K log M)*
Hslogw H3 Ii2d H3 . logNKH (1OgNN;,KH)

where the second inequality also follow from the AM-GM inequality and the last inequality holds
due to the fact that (a + b)? < 2a® + 2b? for any a,b € R*. This concludes the proof. O

D.8 PROOF OF THEOREMII]

Now, we are ready to provide the proof of Theorem I}
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Proof of Theorem[I} When the event £% (| E<x happens (with probability at least 1 — 26), we can
bound the regret as follows:

K K
Regret(M, K) Z — V™) Z — V™) (s) = Z (QF — QT*) (51, A)
k=1 k=1 k=1
K
<01 Z ™ sl,Ak)
k=2
Z (Ql ) (slfa A’f) + Z (Ql ) (81 ) Ak)
keko\{1} kekoo\{1}

(D.61)
where the first inequality holds by Lemma[D.9]

For k € Ko\{1}, recall that Q% (s, AF) = ZaleA’; 73,?!1(@1\5, AR) [y (sy,aq) for all h e [H], as
defined in Equation[D.I8] Therefore, we have

(Ql )(SlaAk)
= > Pii(arlsh, AN (sh ) — D Pilan]sh, ADHQT" (sF, an)

QIEAIf aleA’f
= Z (7’5{671(a1|811€714]1€) - Pl(a1|811€, AT)) f]lil(827al)
aleA’f
+ Z Pl(a1|5’f3A’f) (f{c,l Q1 ) (sl,al)
a1eA¥
= > (75{“,1(a1|s’f,z4’f) - P1(a1|s]f,A]f)) fa(sy an) + (ffl Qr ) (s%,a1)
a1€A]f

+Ep [(flkl Q1 ) (51aa1) | 317Ak] <f1k1 —@71%) (slf,a).
Then, by applying Lemma with hy, = H + 1, we have

(Qlf— 1 51aAk Z Z (Pm ah|5haAh) Ph(ah|sﬁ,Aﬁ)>f;’f’1(s’,§,ah)

h= 1(1;L6Ak
H H H
+2 )b (sh,af) + Z Z ¢k (D.62)
h=1 h=1 he2
where C}’h = Ep [(Vhl Vir*) (sn) |5h 1»% 1] Vfﬁl - Vn)(sh) and C}’f1

P[(f}]fl Qh)(shvah)lsthk] (fhl )< )

Now, we consider the case where k € Koo\{1}. In this cases, note that hj, € [H]. Similar to the above
analysis, by Lemma[D.T4] we get

(QF — Q) (51, 47)

hk 1
< 2 X (Phatanlsh, AR) — Palanlsh, A5)) S (sh.an)
h= 1(J,hEAIC

+ Z Z (Ph ah‘s}l?nAlfi) - ,Ph(ah|8quﬁ)> f}]f,Z(SZaah)

h=hy (lhEAk
hp—1 hr—1

+2th15h7ah +2Z:bh25haah ZCh1+ZCh1+ZCh2+Z<h2,

h=hy h=hy h=hyg
(D.63)
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where CFo = Ep[(VE = Vi)n) [sfopaf i | = (W, = Vi)(sh) and &, =
P (Fho— Q) (shoan) s Ab] = (#h2 = @0 (shoaf).

Plugging Equation and Equation into Equation [D.61} and denoting J(k, h) : [K] x
[H]— {1, 2} as the one-to-one function that maps from [K] x [H ] to the index set {1, 2} such that

A = A om € A8MAX 4 Doea PR oo (@lsh, AV 5oy (855 ), we obtain that
Regret(M, K)

K H
Z Z Z (Phj(kh ah|5haAh) Ph(ah\slﬁw‘lﬁ» f}]f,J(k,h)(SZ’ah)
k=2h=1q,ecA

K H H
+22 Z min {1 + L, bhl sp,ap)} +2 Z 2 min{lJrL,bﬁ,z(st,aZ)}
=2 h=1 kKoo h=hy,

-1

hi K hp—1 K H
delJFZZ +22<]}«f,2-
h=1 k=2 h=2

k=2 h=hy

K
452

&Mm

k
K
2
k=2

Now, by applying the results from Lemma [D.7to bound the first term (which holds with probability
at least 1 — ¢), Lemma for the second term (which holds with probability at least 1 — 79),
Lemma [D.T6] for the third term, and applying the Azuma-Hoeffding inequality to the remaining terms
(which holds with probability at least 1 — 46), we get

Regret(M, K)

O (dHVK -log K log M + d2 (logKlogM)Q)

+O< d,HEK - 1gM§H +%dH7/2 ﬁdylogKlogM.logNNgKH_ 10gNI;H>
K

3/2
NKH <1onggKH> + logA/KH~(KHeb+\/dl,KH35)>

1)
KH KH
+O< logN gNNg N d,H - |H? Z ug + A/ H2| Koo
ke,

+0 | d,H?log

KH 1 KH KH
+(’)<\/d HK - logN +\/EdHWQ\/dylogKlogM.logNNb . logN )

5 B B
3/2
+0 [ d,H?log H : <1og'/v'/ngH) +4/lo NNZKH (KH b+ d, KH36 ))
+0 \/ NKHngNbKH Ve H - [H? Y |, (D.64)
ke,

where the second inequality holds by Lemma with probability at least 1 — 26, and
use the fact that [Koo|He, < KHe,. Now, we apply the AM-GM inequality to the term

50



Under review as a conference paper at ICLR 2025

(’)(ﬁdHWQ\/@logKlogM-lOgW' ]OgNKH>,thusweget

4
1 NN,KH NKH
—dH"?\/d, log K log M - log =——2""" .y [log =——
@ (\/Ed dy log K log og 5 g —5 )
1 KH\? KH
<O <d2H2 (log K log M) + d,, H® <log NN;) g Y > . (D.65)
K

Furthermore, by substituting the chosen values of u; and applying the AM-GM inequality, we get

@) \/logN{;H logNNgKH “Ad,H - |H? Z U,

kelkC,

log

=0 <\/ d,HK -log fofH + d?H? (log K log M)* + d, H® log 5

+0 ( log N {;( a, KHeb> . (D.66)

Then, by plugging Equation and Equationinto Equation|D.64} and setting § < 717, we

derive that

Regret(M, K)

NEH < NNbKH)2>
5

NKH
0

1
-0 (dH\/? -log K log M + \/d,,HK -log + EdQHQ (log K log M)2>

2
+0 (d,,H5logNKH . (logA[M’KH) + logM -KHeb> .

0 0 0
We conclude the proof of Theorem|[I] O
E PROOF OF THEOREM 2]

In this section, we introduce several properties of linear function class. For linear MDPs, let F1"(e..)
be an e.-cover of .7-'};“ under the /., norm, so that

24/ dlin
€

c

log |.7-",'li“(ec)| =0 (d“" log

) =0 (d™). (E.1)

Then, the definition of generalized Eluder dimension for the linear function class F}" can be expressed
as:

Lemma E.1 (Lemma 3 of |Agarwal et al.|2023). For the class f,{bi” defined in Equation|l| letting
f,lf"(ec) be the €.-cover of]:}f” for some €, > 0, we have

. . . K ~
dim,, ;e (Fi"(e.)) < dim, x (F}") = O (d”” log <1 + u2,o)> = O(d"™).

The bonus oracle for linear MDPs can be easily instantiated using the standard elliptical bonus, and,
as demonstrated in the next lemma, satisfies all the required properties for a bonus oracle.

Lemma E.2 (Bonus oracle 5 for linear MDPs, Lemma 7 of |Agarwal et al.[2023). Given K, H € Z,
suppose all BF < f and BF is non-decreasing in k € [K] for each h € [H]. For any
k = 1,h € [H] variances {c]}'_, satisfying 67 > v for some v > 0, dataset D" =
(W(sp,af),ah, 7, (sh 1y af 1) YL, function class Ff and fF € FF defined via weighted re-
gression in Equation 4} and parameters p,e. > 0, let B({5]}" D’Zil,ff,f}’f,ﬁﬁ,p,ec) =

T=1>
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2 k—1 .
(s, Q)H(Zﬁ)—l’\/ (BE)" + p. where Xf = 621+ 7] ﬁ@/}(sﬁ, al)y(sh,al)T. Forany choice
of covering radius €. < v+/p/8K, the oracle satisfies all the properties of Deﬁnition with

log Ny = log[W| = O ((d”")Qlog (1 + d’fnmﬁ/(pei))) = O ((d"™?).

Theorem E.1 (Regret upper bound of MNL-VQL for linear MDPs, proof in Section[E). Under the
same conditions with Theorem[l} suppose that the underlying MDP has linear transition probabilities
and rewards, so that the function class for linear MDPs, F, ,IL’”, satisfies Assumption|2| Let F; }Z”(ec)

be an €.-cover of Fi" under €, norm. We set p = 1, uy, = © ((d"™)>H? + d(d'"™)32H5?)/VK),
v=+/1/HK, ¢, = ¢. < 1/(8HK) and § < 1/(H? + 14). Then, with probability at least 1 — 6, the
cumulative regret of MNL-VQL, with bonus oracle defined in LemmalE.2] is upper-bounded by

N 1 . .
Regret (Mg« ,+ w+, K) = O ( dHVK + EdQHQ +d"™VHK + (d"™)H® )

regret from MNL model regret from linear MDPs

Proof of Theorem 2] We apply the above results to linear MDPs Mgx ,« w+ with function class
Flin(e.), h € [H], and bonus oracle B. From Equation we know that /' = O(d'"). Additionally,

Lemma shows that d, = O(d'™). Therefore, by combining these results with Theorem and
Lemma [E.2] we can establish the upper regret bounds for linear MDPs.

. . 1 .
Regret (Mo e v, K) = o(dH\/? + d"VHE + —d*H? + (dl‘“)6H5>,

where we set p = 1, up = © ((d™)>H?2 + d(d™)32H?) /K, v = \/1/HK, & = € <
1/(8HK)and 6 < 1/(H? + 14). O

F PROOF OF THEOREM [3]

In this section, we provide a regret lower bound for linear MDPs with preference model. We construct
a hard instance M(S,Z, A, M, {Py}2_ | {Py}L | {r[L |}, H), illustrated as in Figure This
instance is based on an H + 1-layered structure, where each layer is a variation of the hard-to-learn
MDPs introduced in |[Zhou et al.| (2021b).

Without loss of generality, we assume that d"" > 6 and that @' — 5 is divisible by 2F| Let i € [H + 2]
represent the layer index. For each layer i € [H + 2], there are H — i + 3 states, denoted as
:cl@, e ,xg_l]) +o» Where zg) 1o is the absorbing state. Furthermore, there is a global absorbing state xo,
which can only be reached at any state and horizon through the user’s choice of the outside option
ag (not choosing any item in the assortment). Thus, there are (H + 1)(H + 2)/2 + 1 states in total
in the set of states S. There are 2(2"~5)/2 4 1 items, so the item set is Z = {—1, 1}(@"=5)/2 { {a,}.
The set of candidate assortments follows the definition in Section[3| i.e., A= {A S Z:ap€ A, 1 <
[A\fao}| < M}.

F.1 CONSTRUCTION OF LINEAR TRANSITIONS AND REWARDS

At each episode k € [ K|, the agent starts from the fixed initial state xgl). We define aj as an item
such that aj, € arg maXuex\ (a,}{Pn, &), Where py € {—A, AY"=5)/2 with A = \/5/K/(4v/2)
andd = 1/H.

If the state is ng) with i € [H + 1] and h € [, H + 1], and the user chooses the item a},, the agent

remains in the same layer 7 and receives a reward of 4*~1 /H, where vy = HLH The next state will be

either xﬂh H 41 OF 2\ o> With probabilities 1 — (6 + {p,, a)) and 6 + {uy, a), respectively. If the

user chooses an item a # ag, aj, in the state zg) withi € [H+1] and h € [i, H 4 1], the agent obtains

31f d' — 5 is not divisible by 2, we can set d™™ «— d'™ + 1 by adding zero padding.
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1—0—{pn,ajp),
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G|\ R/
r=1/Hv \ S
\\\
)
\
\
\
\
‘\\
8 + (. ay)
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1,r=0

Figure E.1: Inhomogeneous, hard-to-learn linear MDPs with MNL preference model. The solid line
indicates the transition caused by the user choosing the item a} (with a reward of rj, = 7*~!/H), the
dashed line shows the transition caused by the user choosing any item a # aj , ag (with a reward of
r, = ~'/H), and the dotted line represents the transition caused by the user choosing the outside
option ay (with a reward of r;, = 0). The blue solid line indicates a transition from the absorbing
state back to itself, caused by the user choosing any item (with a reward of r;, = =1 /H), and the
red dotted line indicates a transition from the global absorbing state back to itself, caused by the user
choosing any item (with a reward of r;, = 0).

areward of 7!/ H and transitions to 335;11H+1 or nglJfQAHH) with probabilities 1 — (6 + {up, a))

and § + (pp, a), respectively. If the user does not choose any item, i.e., chooses the outside option
ay, in the state ng) with ¢ € [H + 1] and h € [¢, H + 1], the agent will deterministically transition to
the global absorbing state x( and receive no reward.

If the agent is in any of the absorbing states—xg) o fori € [H + 2]-the agent will remain in the same

state and receive a reward of 4*~1/H, regardless of which item (including the outside option) the
user chooses.

Formally, we construct transition probabilities Py, (s'|s, a) = (¢ (s, a), u} (s")), with

(a, Ba’,0,0,0,0, f), s=2" a=atic[H+1],heliH~+1];

(s a) = 0,0,a,8a7,0,0, 25)7, s=m,(:),a7éa;,ao,ie[H+1],he[i,H-i—l];
(0,07,0,07,0,1,0)7, s=2") a=agic[H+1],heli,H+1];
(0,07,0,07, 2,0,%)1 s=al . ie[H+2],

FD
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and
T
(1(1;5, ﬁ 0,0,0,0,0)7, s =), s
(2,4 0,0, V2007, = 2@
N;l(s/) — < (0,0717;6 _7' O O O) 5 S/ = xg;:ll)7 (F.2)
5 @ T ’ (Z+2/\H+2)
(ana a’ B ,07070) 3 S Tpyo 3
(0,07,0,0,0,1,0)7, s’—xo,
(0,07,0,0,0,0,0)7, otherwise,

where we denote 0 € R(?"—5)/2 g5 the zero vector of dimension (d" — 5)/2, and set v = ot
as the discount factor for transitioning to the next layer. Additionally, we choose § = 1/H,

pn € {=A,AYI"9/2 with A = (/6/K/(4v/2), a = \/1/2+A-(d™ —5)), and 8 =
A2+ A (din - 5)).

And the parameter vectors for the linear rewards 7, (s, a) = (¢ (s, a), w}, ) are as follows:

wh =(0,07,0,0,0,0,v2/H)",
which ensures that the reward function satisfies:

vi=1/H, s-xgl) a=aj,ie[H+1],he[i,H+1];

o (5,0) = v'/H, s = a:é),a #aj,ag,i€[H+1),he[i,H+ 1];
s 0, s-xé),a—ao,ze[H+1],he[i,H+1];
v~1/H, 5—x%)+2,z€[H+2],
where 0 < v < HLH is the discount factor for transitioning to the next layer.

This parameter setting satisfies the boundedness assumption of linear MDPs (refer Definition [2).
First, we show that [(s,a)> < 1:

d"“ —5 ., 1
[(s,a)2 < a® + B2+ 3= =1, (the first and second cases of Equation[FT),
|(s,a)|2 =1 (the third case of Equation[F.),
1 1
[4(s,a)]2 < ;ts= 1, (the fourth case of Equation [FI)),
Moreover, since d'" > 6 13(d"™™—5)%/H, we ensure that max {| > g pr(5) ]2, [[W} ]2} <

A /dlin:

2(1-0)* +20°  |pnl2
= = et 3

<2(2+A-(d™—5)) +2A - (d™—5) (2+ A - (d"™ - 5))
< (2424 (d™ —5))? < d,
2

and |wi|3 < 2 < dm.

Z I (s)

seS

F.2 CONSTRUCTION OF MNL PREFERENCE MODEL

Inspired by the lower bound proposed in|[Lee & Oh|(2024)), we construct an adversarial setting for the
MNL preference model.

We assume that d > 2 and that d — 1 is divisible by 4 (without loss of generality). Let ¢ €

(O, m) be a small positive parameter. Throughout the proof, we set € = ﬁ . (H;UZ ,

for some C' > 0. For every subset W < [d — 1], we define the corresponding parameter Oy € R4~
as [Ow]; = eforall j € W, and [@y]; = Oforall j ¢ W.
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Next, for any h € [H], we define the parameter set as:
;€0 :={(0y,—logH)" : WeWy_1)}
= {(6yy,—logH)" : W < [d—1],|W]| = (d — 1)/4},
where Wj; denotes the class of all subsets of [d — 1] of size k.

The feature vector ¢(s, a) is invariant across the state s. For each U € Wi(d—1)/4, we define vectors
2z € R91 ag follows:
[zu]; =1/vVd—1 forjeU; [zy]; =0 forj¢U.

Let Z := {zy : U € W(q_1)/4}. We define the function Z : T — Z, so that Z(a) € Z. Then, the
feature vector ¢(s, a) is constructed as follows:

aT T a an:
¢(S,a):{(Z() ?O) ) # ap;

(0,1)7, a = ag,

where 0 € R?~!. Forall V € V,/, and (s,a) € S x Z, it can be verified that 8y and ¢(s, a) satisfy
the boundedness in Assumptionﬁ]as follows:

lp(s,a)la <A/(d—1)-1/(d—1) =1
1672 < +/(d—1)e + (—log H)? < V2log H =: B.

Let aj (defined in the previous subsection) also have the maximum utility, ie., aj €
arg Max 7 (a,} {05, #(s,a)) (note that ¢(-, -) is identical for all s € S).

F.3 PROOF OF THEOREM[3]

A good policy is one that quickly reaches the state x%) o While remaining in the lower layers (i.e.,
with lower ¢). Recall that the item aj has the highest utility and, therefore, the highest choice
probability. It also has the best chance of quickly reaching the state x%) +o While staying within
the same layer. In other words, a good policy encourages the user to frequently select the item
aj, € argMaX,e7\ (a,}\Mh, &) = A MAX,4e7 (010}, #(5, a)). Note that aj is unique due to the

way the action space and transition probabilities are constructed.

Proof of Theorem[3] Fix 6 and p so that we can omit the parameter dependency of P and P through-
out the proof. Based on the construction of the hard instance M discussed in the previous subsections,
the following lemma shows that the optimal assortment at horizon h € [H] is {ag, a} }.

Lemma F.1. Forany h € [H), we have A} = {ag,a} }.

Furthermore, we can bound the expected value of @* for any assortment as follows:

Lemma F.2. Forany (A,i,h) € A x [H| x [H], let é;li) € arg MaXae 4\ (ag} ¢(x,(f), a)'o;, /Nl;f) =

{égf% ag}, and égf) € arg MaXae 4\ (a,} Q; (mﬁf), a). For any a’ # a,, we define

Qr(z,ap,a")

—1
) {wH +P, (Jch+1|xh ,ah)VhH(x%J}l)+Ph(a:H+2)\x 1
—t i+2 H—h)~'~ «
T+ Pa(e h+1|33h cap) Vil () + P ( TH+2 |$h ,a)%, a' # aj.

H—h)y !
)( H)’Y , a/ a*

Then, for any policy , if K > 4(d"™ — 5)2H(H + 1)2, we have
> Pulala), )@ (1), 2) < Pu(ay|ef, A5 (x) o a))).

acA
Now, we are ready to provide the proof of Theorem 3]

For any h € [H] and any A, € A, let &, € argmaxuca,\(a,} ¢(m§f),a)T0,*L. We also denote
Ay = {an, a0} and &y, € arg max,, A\fao} @Z(xh, a). Recall that the index ¢ can be omitted for ay,
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because the transition and choice probabilities are identical across all x21)7 e xELH) given a € Z. The

change in layer 4 only affects the scaling of rewards, and consequently the Q-values, but the item that

maximizes Q(xﬁb ), a) remains the same across layers.

By applying Lemma | the value of policy 7 in state o:( ) can be bounded as follows:

(@) = D] P2l 4)Q7 (21", a) < Pi(ar]2{), 4)Qf («(", af, a1). (F.3)

acA,

Moreover, according to Lemma|F1] the optimal assortment for horizon h € [H] is A} = {ao, a}, }.

(1)

Thus, the optimal value function in state 21’ can be written as follows:

Vi) = Y Pialal, ADQ) (21, a) = Pi(af]al”, ANQ) (21, a)),

*
acAj

where the last equality holds because @Z(mﬁf)

xSH)JrQ, depending on whether the item (for transition) is aj or any a # a; , ag. Then, we have

,ag9) = 0. We denote sy 4o can be either xglg or

v =) (@)
> Pi(affat”, ADQ (21, a]) — Pr(aifat”, A)Qf (21, at, &)

Q
= (Piatlal”, A7) = Pr(@rlal”, A1) @1V, a)
+ P al\xl),Al ( :c(ll),al Qh(ﬂfl ,aj,a)
— (Pi@tlal”, A7) - Pr(@nlal”, A1) @1 (", a)

1
H

(H-1)
H

+P1<alx§”,fh>< + Py (2 |2, ap) Ve (@) + Py (2, o2, af)

- (13] +P1(x2 ‘351 ,an) Vo (x (1))+P1(SH+2|961 ’al)(HI; 1)>>

= (Pu(ailat” A} = Pr(@rlal”, A1) Q) o1, a})
+Py(an|2), APy (a3 2, al) (Vs — Vi) (a8

-1

T (F4)

+Pu(an |2V, Ay) <P1($2)+2|$51)7 a}) — Py (speolat”, 51))

where the first inequality holds by Equation Note that, by construction, for any h € [H], we have

H—-h+1
Qh(xhl)aah) g

1 H
I/H+1 1+H

Pi(wft)y |2y a0) = 1- 6 — (@™ = 5)A,
Py (2] ol ay) — Pr(spialzl”, @) = (d™ = 5)A — (un, ap). (F.5)

Ph(ah|xh s Ah)
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Hence, by plugging Equation[F.5]into Equation [F.4]and applying recursion, we get
* ™ 1
Vi =) (1)

. S NH-h+1 H \"!
+§ it~ ) EL (1)

(1= — (d"™ — 5)A))h’1

H h
+h; (@™ — 5)A - <uh,ah>) h (;il) ((1=6—(d™ —5)A))""
W) (H N e Ay (F.6)

Furthermore, since H > 3 and 3(d"™ — 5)A < 6 = 1/H, we have

H \" H \"*t' 3
= e
H+1 H+1 10

H
(1=5— (@™ —5a)"" > (1 = 4;) > % (F7)

Therefore, by substituting Equation[F.7)into Equation|F.6] and considering the terms where h > H /2,
we obtain

v = V) (@)
H/2 H/2

1 * = A 1 in a
> 55 ) (Pul@ilel, A7) = Pat@nlaf An) + 55 ) (@™ = 5)A = pan,an)
h=1 h=1
L L
D e O i
=50 Z:: ( ah|xh A7) — Pr(an|z), ,Ah)) +% };1 <I£g£<<uh,a> — <uh,ah>> . (F8)

MNL bandit regret linear bandit regret

On the right-hand side of Equation[F.8] the first term corresponds to an MNL bandit problem. Recall
that |A} | = |Ay| = 2 and, by construction, we have

exp (0(a}. a7)"6;)
1/H + exp (qS(xELl),ah)TH,*L) 7
exp (gzﬁ(;vg ),ah)TG*)

1/H + exp (qs(x; >,ah)T9,§) '

Hence, this corresponds to an MNL bandit problem with a maximum assortment size of M = 2,
where the attraction parameter for the outside option (the constant in the denominator) is 1/H.

Pu(ag |zl A7) =

’Ph(éhwg)y /Ih) =

Furthermore, the second term on the right-hand side of Equation represents a linear bandit
problem. To sum up, the learning problem is not harder than minimizing the regret on Q(H /2) MNL
and linear bandit problems.

To bound each term of Equation we introduce the following propositions:

Proposition F.1 (Regret lower bound of MNL bandits, Lee & Ohl[2024). Let vy denote the attraction
parameter for the outisde option. Let d be divisible by 4. Suppose K > C - d*M /(M — 1) for some
constant C > 0. Then, in the uniform reward setting (where rewards are identical) with the reward
for the outside option being zero, for any policy and the MNL preference model parameterized by 0,
there exists a worst-case problem instance such that the worst-case expected regret is lower bounded
as follows:

M
sup Eg [MNLBanditRegret(0, K )] = Q M WE
6 vo+ M —1
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Proposition F.2 (Lemma C.8 inZhou et al.|[2021a). Fix 0 < § < 1/3. Consider the linear bandit
problem parameterized with a vector p € {—A, A} and action set T = {—1,1}%. And the reward
distribution for taking action a € T is a Bernoulli distribution denoted as B(6 + {u, a)). Let K be

the number of time steps playing this bandit problem. Assume K > d*/(20) and A = \/5/K /(4v/2).
Then, for any bandit algorithm B, there exists p such that the expected pseudo regret of B over K
steps is lower bounded as follows:

dvVK$
8V2

where the expectation is with respect to the reward distribution that depends on (.

E,,[LinearBanditRegret(p, K)| >

Now, by using Proposition [F.I]and [F2] we can bound the regret as follows:
sup Eg . w [Regret (Mg ,, w, K)]

o, w
H/2 K
* = 1) 3
= 20 hglﬁupE g (Ph ah|xh s h) _P}L(ah|xh ,Ah))]
1 H/2 K
+ @}; sup i, [Z (maX<uh,a> <uh,ah>)1
— Q(aVHK +d"VHEK)

where, in the last equality, we use vo = 1/H, M = 2, and 6 = 1/H. This concludes the proof of
Theorem 3 O

F.4 PROOF OF LEMMAS FOR THEOREM [3]

F.4.1 PROOF OF LEMMA[ET]
Proof of Lemmal[F1} For any i € [H], we can write the optimal Q-value in state ng) at horizon
h € [H] as follows:

@;<mij’,a>

* i H—h)y"t *
o Ph(xh+1|x )Vh+1(x§w)rl) + ]P)h(‘rHJr2|‘r a)(TM“v a=ag;
- 1 1 2 H—h)~' *
=314 n»h(xgjjmx(” AV (D) Py (D) a) = a = ar a;
0, a = agp.
First, we show that for any (i, h) € [H] x [H], we have
Qny) a) = D Pz, A3)Q (2 ), Vae Ap\{a}. (F.9)

’ *
a’eAy

We prove this by contradiction. Suppose there exists a € A7 such that @Z(xs),a) <
; —* i . .
Za,eA;’ Ph(a’|zs), A;)Qh(:rgf), a’). In that case, removing the item a from the assortment Aj

results in a higher expected value of @; This contradicts the optimality of Aj. Therefore, Equa-
tion [E9] must hold.

By the definition of @;(ng)7 a), for any a € 7\{a} }, we have

i—1 i—1
(i ¥ i . i i+2)| (i (H —h)y
Q) a) < o 4 Pl ) ) Vi () + Pl e a)
i—1 i—1
0 . i i i) ey (H—h)y
< H +]Ph(mh+1|$h ’ah)Vthl(sz-)‘rl)+Ph(x5ﬁl)+2‘xﬁl)’ah)7H

= Qn(z)),a}),
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where the first inequality holds since V)", (xs:ll )) < Vi (mgﬁrl) and the second inequality holds
due to the fact that Vh*ﬂ(ngil) < % and P (x%fz \xh ,a) < IPh(xH+2|xh ,ar).
Since Q h(x 5 > @) has the highest value among all items, the optimal assortment A} should include

a},. Thus, we have ay, ag € A}, In other words, when A} = {a} a0}, the condition in Equation|[F.9)
is satisfied. Thus, we begin with A} = {a}, ao} and check if there exist an item a # aj , a, that can

increase the expected value of Q. To this end, for A = {a},ao}, we get

3 Pu@lay), 4@ () &) = Pulaplal’, 45)Q5 () ah) = 4@ () ah),  (F10)

a’eAy

where the equality holds since @; (xg), ap) = 0, and the inequality holds by the definition of :

= il = 1 min min min in b (¢(S a)TQ’:)
TTivH 1/H + 1S he[H] s€5 AeAacA\{ao} 1/H + exp (¢(s,a)T6F)

_ o <¢(m§f),aZ)T92)
/H +exp (0(af),27) 76

Here, we rely on the fact that the sigmoid function is monotonically increasing to establish the
inequalities.

= Pu(aj ey, A7). (E11)

On the other hand, for any item a # aj , ag, we have

(i 7 it+1 i+1 i+2) (H = h)y*!
Qhla) a) = o7 + Pule 10 o) a) Vit (e 1)) + Bl ) a) = —
’yi 1 " i+2 % (H B h)’yl
< g Bl Vi @) + Bl ) a)
7 i+1 i i) ey (H—h)y
< q +P (xh+1|xh ’ah)Vthl('rgLI])) + Ph(miq)“\x;),ah)T
i D) () e (H —h)y !
- (% O, at)Vita (af0) + Bl lat?, ap) TV
=1Qi (), a). (F12)
where the second inequality holds because V}:+1(35§::11)) < (H_;)A/i, IP’h(:E(IfIfQ)M(i a) <

Py, (xH+2 |xh ,a} ), and the second equality follows from the fact that vV}, (37;31) =V, (a:ﬁfjll))
by construction.

Combining Equation and Equation|[F.12| when A} = {aj, ao}, for any item a # aj , ag, we get
>, Pulalay), 43)Q5 (@) &) > Qa7 ).

a’eAy
Since @; ($§Z ), a) for a # aj, ap is not greater than the expected value of @; for A, adding any
item a # aj,ag to A; does not increase the expected value of @,: This confirms the optimality of
Aj. O
F.4.2 PROOF OF LEMMA[EZ2]
Proof of Lemmal|F2] For any i € [H], we can write the Q-value for the policy 7 in state J?E:)
horizon h € [H] as follows:

Qnley,a)
i1 , , _ . H et .
e Ph(x;fiﬂx ; )Vh+1($§3rl) + Ph(ff([?+2|$ ; a)%, a=ag;

i +1 - +1 +2 H—h)~t1 N )
=35 + P e a) v () Pl ) el a) EERT s = ar ay;

Oa a = Q.

at
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We provide a proof by considering the following cases:
Case (i) aj € A.
Recall that, by Equation [F.1T} we have

g e (o))
1+H 1/H + exp (gf)(mﬁz), a;L)TG}*L)

N = (F.13)

By multiplying @Z(x,(f) ,ay,a’) on both sides of Equation we get

exp <¢($§z)vah)T0*) Qh(fch ,a;,a’)
1/H + exp (0la})) a3) 76;)

~

S| Y ew(o@)76;) |- Qe apa) (1/8 + exp (alaf 27)767))

acA\{a} a0}

<| X e (0@ a)76) |ew (s ai)70;) Gr el a. )

aeA\{a;’,ao}

< exp(¢(x§f)7afl)T0,*l)+ Z y.exp( xh, TH*) T ay,a’)
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. (1/H + exp <¢(x§j),a2)—r0;>>

< (vH +exp (ol an)T0;) + Y exp (o)) 76;) |exo (e}, 27)70)
acA\{a} ,ao}

Q7))
€xXp (¢($§:)aa’ﬁ)T9;}) 62 (xh ;a,a )+Za€A\{a;‘L,a0}eXp (¢($§L ) )TO*) ’YQ}L(:I;}L ,ay,a’)
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(F.14)

On the other hand, by the definition of @Z(xﬁj), aj,a’), for any a’ # aj, ag, we have

VQp (), ap, a)

i1 ;
v i * T 2 (H — h,)")/
- ( * Ph(azéﬁﬁx(’) ah)vh+1(x§2rl) + Py (551312”5”(1) a')—————

H H
'Y. i+1 i+2 (H — h’)fyl
= H + HDh(%"h+1|51“h aah)Vh+1($§L:1)) + Py (fUHi )|93h ,a) H
'Yi T i+1 i+2 [ (H — h)’yiJrl
E + IP)h(fl”h+1|xh ) )Vh+1($§1:1)) + Ph(xgqiz) E:)a a’)iH
= Qn(a),a), (E.15)
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where the second equality holds since 7Vh“+1(x§liil) =Vr +1(m§f +11 )), and the inequality holds

because, for K > 4(d"™ — 5)2H (H + 1)?, the following inequality holds:
(H _ h)’yiJrl

H
(H —h)y'

H
3 * U 2 (H_h) 2
= (Balafllof) @) = Palal), lof) a) ) ViTy < Palaly3 ol ) = (7' -

Specifically, if the upper bound of the left-hand side is less than or equal to the lower bound of the
right-hand side, the inequality holds. To demonstrate this, we have:

(i) 2t &) = Puefl) i, a7) ) Vi, < 2d™ = 5)A

) i H+1
and, since " = (HLH) > (%) > 13—0, we get

T [ 1+2 i
Po (i) |2y, @)WV (aif) + P (a3 |2, &)

7 7 * T 1+1 1+2
< Ph(xgz-)s-ﬂmi(z)aah)VhH(ng:)) + Py (CUHi )|$h ,a)

i+1) .

(H —h)
o )

(F.16)

v H-h i i i H—-h)
Py, ((EH':LQ)| )(711) ('7 _,y+1) 2(5—(dlm—5)A) %’Y (1_7)
L (H-n) 3 1
> | 7 —([d"=5)A ey . (F17
<H (o) > 7 10w &
Combining Equation [F.16]and Equation [F17] and rearranging the terms, we get

. 3 3
lin _ 5 <
(d™ = 5)A (2 T ToE + 1)) ST0HH 1)

which holds when K > 4(d'™ — 5)2H(H + 1)2. This explains how the inequality in Equation
is satisfied.

Let égj) € argMaXae 4, \(ao} @Z(ng), a) = aj. Note that ég) is unique due to the way the action
space and transition probabilities are constructed. Then, by combining Equation [F.14] and Equa-
tion | and using the fact that @Z(wﬁf), ag) = 0, we obtain that

Z Pr a\x A)Q( xh ,a 2 P a\x Qp(x h),al(l))

acA acA
exp (¢($§L)a ah)TOh) Qﬂ(xh)’ ah,agf))

1/H +exp (o(cf,a3)76;)

<

maXac A\ (o) P ($(a,2) 705 ) Qr (ol a7, a1
1/H + maXae 4\ {a} €XP (gzﬁ(xg’), a)T9;>
(7)

where the first inequality holds since éh is the action that maximizes the Q-value. The second

1nequahty follows from Equation |F.14{and Equation [E.15] and from the fact that Q}, (sc P agl)) =
Qr (x nan) = Qr y (x PRE- L a;; )) Flnally, the last equality holds by the definition of aj.

Case (ii) a; ¢ A.
Again, by Equation[F1T] for any A € A, we have
exp (6(xf,2)"6;)
min

w0} 1/H + exp (o2, 2)76; )

MaXae A\ (a0} EXP (qﬁ(xﬁj), a)T9*>
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(i) Ta* 1/H i) Ta*

MaXac A\ (a0} €XP ( @(7),, @) JH + 2 ac A\ (ag) €XP oz}, a)

1/H + maxac o) o5 (0@ 2)76)  aciaygag o0 (0(af.2)76; )

v <

<

<
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where the second inequality holds since the sigmoid function is a monotonically increasing function.

We denote égf) € argMaXue4,\(a} Q, (ng),a). Then, multiplying Q7 (ng ,a, ah ) (note that

é,(f) # aj , ag) on both sides and rearranging terms, we get
Yacfan) 5 (0 2)767) v+ Qf(af, 2. a)
1/H + ZaEA\{ag} exp ((b(xh , )TB*)
_ masac o) o0 (001, 2)76;) Q11 2t a))

1/H + maXae 4\ {40} €XP (gi)(x?, a)TO,*L)

Recall that for any a’ # aJ, ag, we have - @Z (zgj), a;,a’) > Qh(xh ,a') by Equation Thus,
we get

3 Pulalz)), A)Qp (), a) < Y. Pulalzy’, A)Q; (2}, a)))

acA acA
< > Puala, Ayy - Qi (), ap, &)
acA

MmaXae A\{ag} €XP (¢($§j)a a)T92> Qh(xgz)a aj, 55:))
<

1/H + maXac A\ {ag} ©XP (th ’ WH*)

This concludes the proof of Lemma [F.2 O

G NUMERICAL EXPERIMENTS
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Figure G.1: The “online shopping with budget” environment with |S| = 5. Each state represents the
user’s budget level of 1,2, 3,4, or 5. The solid line indicates the transition when the user purchases
an actual item a; (with a reward of (¢/100N + j/|S|) /H), and the dashed line shows the transition
when the user does not purchase any item (with a reward of 0). The initial state is s3.

In this section, we empirically evaluate the performance of our algorithm, MNL-VQL, in linear MDPs.
We consider an online shopping with budget (refer Figure[G.I) environment under linear MDPs and
an MNL user preference model. We denote the set of states as S = {s1,. .., 55|} and the set of items
asZ = {ai1,...,an,ao} (ag denotes the outside option). Each state s; € S corresponds to a user’s
budget level, where a larger index j indicates a higher budget (e.g., s|5| represents the state with the
largest budget). The initial state is set to the medium budget state sj|s|/2]. Furthermore, we let the
transition probabilities P, rewards 7, and preference model P}, be the same for all k € [H], and
thus we omit the subscript h.

At state s;, the agent offers an assortment A € A with a maximum size of /. The user then either
purchases an item a; € A or or opts not to buy anything, represented by the outside option ag € A.
Then, the reward is defined as follows:

o If the user purchases an item a; € A, the reward is: 7(s;, a;) = (1061\/ + ﬁ) JH.

o If the user does not buy anything (ao), the reward is: 7(s;, ag) = 0.
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—e— MNL-VQL(ours)

—a— LSVI-UCB(holistic) —=— Myopic

—+— Optimal

N=10, |A|=637 N=20, |A|=21699 N=40, |A|]=760098
0.7 0.7 07 ©
| //—. 1
05 /" 05 05 r_/
:__,J—w—~—-—:~v‘~—'—-"" T:::::::::j:: ___________ : ____________ §>.:::::::::! =t
0.3 0.3 0.3

10000
Episodes

20000 10000

Episodes

20000 30000 10000

Episodes

20000 3000¢(

Figure G.2: Episodic returns over 10 independent runs. The dotted lines represent estimated (virtual)
episodic returns for cases that could not be run due to excessively long runtimes.

| Myoptic LSVI-UCB | MNL-VQL (ours)
N =10, |A| = 637 0.089 s 0.136 s 0.463 s
N =20,|A| =21,699 | 0.097s 4.861 s 0.526 s
N =40, |A| = 760,098 | 0.113s  453.641s 0.620 s

Table G.1: Average runtime (seconds) per episode.

The reward can be regarded as the user’s rating of the purchased item. It is reasonable to assume
that, at higher budget states, users tend to be more generous in their ratings, leading to higher ratings
(rewards). And the transition probability is defined as follows:

o If the user purchases an item a; € A, the transition probability is:
i i

P(Smin(j+1,s)) 185, ai) =1 — and P(Smax(j—1,0)|55,@i) = N

i

N )

e If the user does not buy anything (ag), the transition probability is:
P(Smin(j-&-l,\S\) |Sja aO) =1

If the user does purchase an item, the budget level decreases with a certain probability that depends
on the chosen item. Conversely, if the user does not purchase any item (ag), the budget level increases
deterministically.

We construct the feature map (s, a) (for linear MDPs) using SVD. Specifically, the transition kernel
P(-|-,-) € RISIIZIXISI has at most |S| singular values, and the reward vector r(-, -) € RIS!IZI has one
singular value. Consequently, the feature map (s, a) € R%= lies in a space of dimension |S| + 1,
i.e., djin, = |S| + 1.

For MNL preference model, the true parameter 8* € R?, and the feature ¢(s,a) € R? (for MNL
preference model) are randomly sampled from a d-dimensional uniform distribution in each instance.

We set K = 30000,H = 5, M = 6,|S| = 5,d = 5 (feature dimension for MNL preference
model), d*™ = 6 (feature dimension for linear MDP), N € {10, 20, 40} (the number of items), and

Al = 3771 () € {637,21699, 760098} (the number of assortments). Moreover, for simplicity,

m/=1
we set 52 = 1 in our algorithm. As a result, we use unweighted regression to estimate the (-values.

We compare our algorithm with two baselines: Myopic and LSVI-UCB [2020). Myopicis a
variant of OFU-MNL+ adapted for unknown rewards. It is a myopic algorithm that
selects assortments based only on immediate rewards, ignoring state transitions. LSVI-UCB
treats each assortment as a single, atomic (holistic) action, requiring enumeration of all possible
assortments. To demonstrate the effectiveness of our approach, we also include the performance of
the optimal policy (Optimal) to highlight that our algorithm is converging toward optimality. We run
the algorithms on 10 independent instances and report the episodic return across all episodes.

Figure demonstrates that our algorithm significantly outperforms other baseline algorithms.
And Table shows that our algorithm remains robust even as the total number of assortments
| A| increases. Although the runtime of Myopic is approximately 5.3 times faster than ours, its
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performance is substantially worse, converging to a suboptimal solution. This underscores a key
limitation of the myopic strategy—it can completely fail in certain environments, highlighting the
importance of accounting for long-term outcomes. Additionally, the runtime of LSVI-UCB increases
exponentially as N grows, because it requires enumerating all possible assortments. Due to the
extremely slow runtime of LSVI-UCB, we did not include its performance results for N = 20 and
N = 40. Instead, for these cases, we used dotted lines to represent the average episodic return
observed for N = 10. Even for the smaller case of N = 10, LSVI-UCB demonstrated the worst
performance. Based on this observation, we suspect that its performance is unlikely to improve as N
increases.
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