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Abstract

Deep learning-based methods helped solve NLP tasks more efficiently than tradi-
tional methods and adversarial attacks for these methods have been extensively
explored. However, Large Language Models (LLMs) have set up a new paradigm
of few-shot prompting, opening up the possibility for novel attacks. In this study,
we show that LLMs can be vulnerable to adversarial prompts. We develop the first
method to attack the few-shot examples in the text classification setup. We can
degrade the model performance significantly during the test time by only slightly
perturbing the examples based on optimization. Our method achieves a perfor-
mance degradation of up to 50%. The perturbed examples are semantically similar
to the original examples as shown by the sentence similarity score.

1 Introduction

Deep Neural Networks (DNNs) achieved good end-to-end performance on Natural Language Process-
ing (NLP) tasks without handcrafted features. Recently, the emergence of transformer architectures
made language models even more powerful. BERT [6] is able to solve a variety of downstream
tasks through finetuning on the corresponding dataset with only a little cost. GPT [16] established a
new prompting paradigm that enables users to provide instructions and few-shot examples as input.
With only human instructions and a few labeled examples in the context, the GPT model is able
to perform the corresponding task and gives high-quality answers. Furthermore, instruction-tuned
LLMs [19, 5, 17] can solve NLP tasks including language generation even in zero-shot setting.

Adversarial robustness of the previous DNN-based methods has been extensively explored [8, 9, 3, 14].
However, the new paradigm of prompting makes it possible to perform novel attacks. Recent studies
have shown that the GPT model might be vulnerable to handcrafted prompts. [15] showed that GPT
can be easily misled by human-made instructions telling the model to perform a totally unrelated
task. Their simple methodology demonstrated that users can attack GPT without using complicated
algorithms. Although powerful, adversarial instructions can be easily detected by humans.

We instead propose a method to generate adversarial perturbations for the in-context examples
without human intervention. A large number of applications involve situations where the victim
would be solving the text classification task (for example topic prediction) using the same base model
and in-context samples across days. The attacker only needs to run the attack once and perturb
the in-context examples. This setting is similar to backdoor attacks [3, 14] where the attacker can
poison the training data of the victim. In this case, the attacker is perturbing the in-context examples.
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Furthermore, we believe our setting is more reasonable since few-shot examples are often long and
not provided by humans. Our adversarial examples barely change the content and hence are hard
to be detected by humans. However, they are able to fool the text classification result. To the best
of our knowledge, we are the first to show that it is possible to degrade the performance of LLMs
significantly through word substitutions in the few-shot examples. Our method has the following
strengths:

• The adversarial examples are hard to detect and preserve the original semantic meanings.

• Our attack can reduce the model performance by up to 50%.

• Our pipeline is fully automatic.

We formally introduce our method in the section 3.

2 Related works

Adversarial perturbations in NLP TextFooler [8] proposed a method using synonyms and other
heuristics for generating imperceptible adversarial texts. More specifically, given a sample during the
inference time, they generate an adversary that stays similar to the sample but fools the system. [9, 7]
propose using BERT-based substitutions, leading to better substitution strategy and more successful
attacks.

Backdoor attacks in NLP Inspired by backdoor attacks in computer vision, [3] proposed backdoor
attacks in NLP. The attacker poisons the training data of the victim by adding secret triggers. During
inference time, texts with these triggers would fool the model. [14] propose a backdoor attack based
on manipulating the style of the text. The attack operates by rephrasing some of the training samples
using an alternate stylistic form, such as Shakespearean or poetic language. Test time samples that
use these styles are able to fool the model. While the defenses for trigger-based backdoor attacks
have been explored [11], defenses for style-based backdoor attacks are still an open problem.

Robustness of LLMs LLMs generate objectionable content when used "out-of-the-box" and re-
searchers have used alignment [13, 1] to prevent the same. [23] showed that it is possible to find
triggers using optimization which when appended to user query can lead to LLMs generating ob-
jectionable content. [18] also show that it’s possible to attack GPT models to make them generate
toxic and biased outputs, and leak private information in training data. [4] study the robustness of
GPT models during test time inference. [20, 12] quantify the uncertainty in prediction and language
generation tasks respectively.

3 Methodology

Problem Formulation We focus on text classification using LLMs in the few-shot prompting
paradigm. The victim uses an LLM M and has a prompt c which consists of an instruction I and
few-shot example sentence-label pairs D = {(si, yi)}. To make an inference for a test sentence t,
it is appended to the prompt c, and the concatenated string is passed as input to M to predict the
class for t. Let M(x, c) be the output of the LLM for the sample x when prompt c is used. The
attacker knows the model M to be used by the victim, can modify the samples in c, and has access
to additional labeled data D dev. The attacker’s aim is to modify c to get c′ such that the adversarial
prompt c′ is semantically similar to c and can reduce the model performance significantly during
the inference. We don’t modify the instructions or the labels of the examples, since humans write
instructions and the changes can be detected while changes to the labels would make the example
incorrect. Thus, only si is modified by our algorithm.

Our methodology consists of three main steps. It relies on relevance score, a metric used to compare
two versions of the prompt and decide which would decrease the model performance more. We define
relevance score formally in section 3.1. The relevance score of a word and its substitutes is defined
using this concept later. The three steps are:

1. Finding the substitutes for the words in the in-context examples using Masked Language
Modelling (MLM). These substitutes are used later to get the adversarial examples.
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Figure 1: Overview of the proposed attack. The prompt consists of instructions, few-shot example
sentences, few-shot example labels, and a test sentence. An attacker only adversely alters the few-shot
example sentences into adversarial sentences by substituting a fixed number of words selected by
our algorithm while leaving the other components unattacked. Empirical experiments show that the
adversarial sentences can significantly decrease the model performance in terms of F1 score and
accuracy. Furthermore, adversarial sentences are semantically similar to the original sentences.

2. Getting the relevance score for each word that can be modified. Using the relevance score
for the words, we can determine the order in which we should modify the words.

3. Use the relevance score to choose the substitute leading to a maximum drop in the model
performance during test time inference.

3.1 Relevance score

We define the relevance score of a prompt as the average decrease in the probability of the correct
class across the samples in the development split Ddev. The objective of our method is to decrease the
classifier’s performance during the inference time. Thus, the relevance score of the current prompt
should indicate how much the classifier’s performance would degrade compared to the original
prompt. Given two prompts c1 and c2, if the relevance score of c1 is higher, we should expect the
model to perform lower when c1 is used as the prompt compared to the prompt c2.

More formally, let C be the set of all possible prompts in length ℓ and REL : C → [0, 1]. The
relevance score of the adversarial prompt is defined as follows:

REL(c′) =
Σ(x,y)∈Ddev(pM (y|x, c)− pM (y|x, cadv))

|Ddev|
, (1)

where c is the original prompt, cadv is the adversarial prompt and pM (y|x, c) is the probability of
predicting class y when inputs to LLM M are the sample x and prompt c.

3.2 Masked Language Modelling (MLM) based substitutions

This step aims to find substitutes for the words such that the new sentence is semantically similar to
the original sentence. We use the bidirectional language model BERT [6] along with MLM objective
to get the top k possible substitutes for each word in the few-shot example sentences of the prompt.
Compared to using the synonyms of the words, this method finds more substitutes while keeping the
semantics the same and the grammar coherent [7, 9]. We also use Universal Sentence Encoder (USE)
[2] to get the similarity scores between new and previous sentences and do not consider substitutes
where the similarity score is less than the threshold τ . This helps filter out the substitutes that change
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Algorithm 1: Adversarial Attack on the In-Context Examples
Input: LLM M , prompt c, development split Ddev, perturbation percent p, substitute count k, semantic

threshold τ .
Output: Adversarial prompt cadv.
// Substitute Finding and Relevance Score Computation
RelevanceList← [ ]
for i = 0 to len(c) do

Si ← GetCandidates(c, wi, k) // Get candidates using BERT.
Si ← FilterSubstitutes(Si, c, τ) // Filter set of substitutes with USE.
RelevanceList[i]← (REL(cadv, i), i) // Compute relevance score.

// Sort in the order of decreasing relevance score
RelevanceListSorted← ReverseSort(RelevanceList)
// Finding the Adversarial Prompt
cadv ← c
countModified← 0 // Maintain count of number of words modified
for i = 0 to len(RelevanceListSorted) do

j ← RelevanceListSorted[i][1]
m← argmax

t
REL(cadv,j,t)

cadv ← cadv,j,m
countModified← countModified + 1
if countModified ≥ len(c) ∗ p% then

Return cadv

the semantics of the sentence. Formally, let Si denote the set of substitutes of the word wi. Then
Si = {wi,1, wi,2, . . . , wi,ki} where wi,1, wi,2, . . . , wi,ki denotes the ki possible substitutes of word
wi. ki could be different for each i. We use Si in step 3 to find the best substitute.

3.3 Relevance score-based ordering

The relevance score of a word is obtained by substituting the word in the original prompt with the
<MASK> token and finding the relevance score of the newly created prompt. We find relevance
scores for all the words in the prompt. Similar to [7], [9] and [8], we then sort the words based on
decreasing order of relevance score. Intuitively, substituting words having a higher relevance score
would result in prompts that decrease the model’s performance to a greater extent.

Formally, let wi be the i-th word in the prompt c. Let cadv, i be the new prompt where all words are the
same as c but i-th word had been substituted by <MASK>. Let j1, j2, ...., jl be the indices of words
in decreasing order of relevance score i.e. REL(cadv, j1) ≥ REL(cadv, j2) ≥ ... ≥ REL(cadv, jl).

3.4 Modifying the in-context examples

We make substitutions based on the relevance score. Assume we currently have an adversarial prompt.
For a given word, we have a set of substitutes found in step 1 (section 3.2). We create a new prompt
for all possible substitutes by replacing the word with the substitute in the current adversarial prompt.
We then calculate the relevance score for all newly constructed prompts and choose the substitute
whose corresponding prompt has the highest relevance score. Once the new adversarial prompt is
obtained by substituting the given word with the appropriate substitute, we use this prompt as the
adversarial prompt to find the adversarial substitute for the next word.

More formally, let cadv be the current adversarial prompt, and let wj be the word with the highest
relevance score that hasn’t been substituted yet. Then, wj,1, wj,2, . . . , wj,kj are the possible substi-
tutes. Now construct the new prompts cadv,j,1, cadv,j,2, . . . , cadv,j,kj by substituting the word wj in
the original cadv prompt with wj,1, wj,2, . . . , wj,kj respectively. Let m be the index of the substitute
whose corresponding prompt has the highest adversarial score, i.e., m = argmaxt REL(cadv,j,t).
We consider cadv,j,m as the new adversarial prompt cadv. Then, we consider the next word, which has
not been substituted yet, and repeat the process.

The algorithm of our attack is in Algorithm 1 .
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Table 1: Results of attack on GPT2-XL across different datasets.

Agnews Dbpedia TREC Yelp

δ% F1 (Pct ↓) Acc (Pct ↓) F1 (Pct ↓) Acc (Pct ↓) F1 (Pct ↓) Acc (Pct ↓) F1 (Pct ↓) Acc (Pct ↓)
0 36.4 (0.0) 46.2 (0.0) 46.0 (0.0) 50.7 (0.0) 38.5 (0.0) 46.1(0.0) 67.7 (0.0) 69.5 (0.0)
1 33.8 (6.7) 46.1 (0.3) 35.5 (25.6) 42.0 (8.0) 35.8 (7.4) 44.1(4.2) 63.1 (6.8) 65.8 (5.2)
5 23.4 (37.9) 35.2 (24.3) 24.6 (46.2) 32.2 (34.9) 29.4 (25.7) 38.4(17.8) 52.1 (24.1) 58.6 (15.8)
10 17.9 (52.3) 29.6 (35.9) 12.5 (70.5) 22.6 (52.0) 27.7 (29.4) 36.3(21.9) 46.4 (32.0) 54.8 (20.8)

Table 2: Results of attack on GPT-Neo-2.7B and Llama-2-
7B on Dbpedia dataset.

GPT-Neo-2.7B Llama-2-7B

δ% F1 (Pct ↓) Acc (Pct ↓) F1 (Pct ↓) Acc (Pct ↓)
0 53.9 (0.0) 58.8 (0.0) 39.1 (0.0) 43.7 (0.0)
1 47.9 (11.2) 54.5 (7.3) 37.9 (3.0) 42.4 (2.8)
5 41.1 (26.9) 49.3 (17.6) 37.1 (5.3) 41.7 (4.6)

10 35.3 (37.2) 44.4 (25.5) 35.8 (7.5) 40.8 (5.9)

Table 3: Average semantic similarity
of the perturbations with original sen-
tences measured using USE.
δ% Agnews Dbpedia TREC Yelp
0 1.00 1.00 1.00 1.00
1 0.96 0.95 0.95 0.95
5 0.89 0.89 0.93 0.88

10 0.83 0.84 0.91 0.82

4 Experiments

We describe the details relevant to the experiments in this section.

4.1 Experimental settings

We use four datasets for testing the performance of our attack: Agnews [21], Dbpedia [21], Yelp [21]
and TREC [10]. We conducted the experiments with three different seeds and reported the average of
the results. We use GPT2-XL in our experiments. We calibrate as proposed in [22] before getting
the final label. The method helps in mitigating the class bias for LLMs and helps in getting better
initial performance. We report accuracy, weighted F1 score, and percent decrease in the model’s
performance. Perturbation percent reflects the number of words that have been perturbed among
the initial set of words that could have been perturbed. We report the values at three perturbation
percentages: 1%, 5%, and 10%.

4.2 Attack results

The results are reported in table 1. We observe that our model can make the performance deteriorate
across all the datasets. We observe that the maximum decrease comes when the attack is done on
datasets related to topic classification. Across the datasets, the attack performs best on the Dbpedia
dataset, and the F1 score decreases up to 70%. We believe our results are significant because even
with 1% perturbation percent, we observe at least a 4% performance decrease across datasets. We
also experiment with bigger models GPT-Neo-2.7B and Llama-2-7B on the Dbpedia dataset, and the
results are present in table 2. Even though the models are more robust, we observe that our attack can
decrease the performance of the models by more than 25% and 7% respectively.

4.3 Qualitative analysis

We show a sample perturbation in Figure 2. Since the words are substituted by MLM objective, the
substituted words aren’t necessarily the synonyms of the original word but still keep the sentence
coherent and semantically similar. For example, the word Malaysian is replaced by Asian, and Safety
is replaced by portable. Given the semantic similarity of the original and the perturbed sentences, it
logically follows that the labels for the perturbed sentences should be the same as those of the original
sentences. We observe that for Dbpedia and Agnews datasets, our method chooses to substitute the
proper nouns more frequently than other parts of the sentence. Quantitatively, the semantic similarity
between two sentences can be measured using USE. We report the average semantic similarity
between modified and original sentences of the few-shot examples in table 3. We observe that the
average semantic similarity across the datasets stays above 0.8 in all the cases.
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Article: Ex-Enron Official Details Merrill Lynch Deal. HOUSTON, Oct. 7 – The government
prepared Thursday to rest its fraud and conspiracy case against four former Merrill Lynch Co.
executives and two former mid-level Enron Corp. executives, following testimony from a key Enron
executive that a barge forced sale was a sham prank designed to inflate profits. Answer: Business
Article: PowerTech Inc. is a small business located in Collierville Tennessee. It is a privately owned
and operated corporation. Powertech is the exclusive licensee (manufacturer) for Smith Wesson
Flashlights. For one year (2004–05) the company produced Coleman military Safety portable
Products. Answer: Company
Question: Shea lewis and Gould closed their Los Angeles office for what reason? Answer Type:
Description
Review : I have been to this place a few times and enjoyed the flavors. However I was VERY
DISAPPOINTED for their lack of "respect" to what a customer orders. I order my usual the MEE
GORENG with TOFU and as I combed through and had a couple of bites I found a strip of chicken.
I lost my appetite and was gravely disappointed by their lack of detail to a vegetarian dish. This
place is black listed for me and I hope to find a better Malaysian asian place in the Queen City.
Sentiment: Negative

Figure 2: Example of a perturbed few-shot sample from Agnews, Dbpedia, TREC, and Yelp datasets.
Red and blue colors denote words that have been deleted and inserted, respectively.

Semantic similarity of the perturbed sentence with the original sentence is controlled by the parameter
τ . The higher the value of the parameter τ , the more the semantic similarity of the perturbed sentence
with the original sentence. A higher value of τ implies a smaller number of possible substitutes for
any given word and hence a smaller set of perturbations for any given sentence to choose from. Thus,
there is a trade-off between the quality of the perturbations and the attack performance.

5 Conclusion and future work

We demonstrate that LLMs can be easily fooled with small perturbations in the few-shot examples,
which are semantically similar to the original ones and hard to detect. Our study opens a new issue on
the robustness of LLMs against the few-shot adversarial examples. There are two possible directions
for future work: 1) improve the efficiency of our attack by using surrogate models that approximate
the relevance score for a given prompt and reduce the run time, and 2) enhance the robustness of
few-shot prompting-based paradigms based on our proposed attack.
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A Appendix

For our experiments, we use a Ddev of size 100 samples and report the final performance on a test
split of size 300 samples. We do the experiments with 3 seeds and report the average performance
across them. While making the predictions, we use the greedy method to choose the most likely class.
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