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Abstract

This study addresses the interpretability of001
word representations through an investigation002
of a co-occurrence matrix. Employing the003
mathematical methodology of Formal Concept004
Analysis, we reveal an underlying structure that005
is amenable to human interpretation. Further-006
more, we unveil the emergence of hierarchical007
and geometrical structures within word vectors008
as consequences of word usage. Our results009
reveal a significant correspondence between010
semantic and vector spaces.011

1 Introduction012

Word vector representations are central to natural013

language processing, as they capture semantic and014

syntactic features (Lenci, 2018). They are used015

as input for Transformer-based language models016

(Vaswani et al., 2017; Devlin et al., 2019), where017

static embeddings are contextualized. Although018

word representations are effective when perform-019

ing tasks, the interpretability of their dimensions020

remains an active research topic (Şenel et al., 2018).021

Levy and Goldberg (2014a) found neural word em-022

beddings to be uninterpretable while acknowledg-023

ing that sparse vectors capture some latent topics.024

Geva et al. (2022) pioneered efforts to interpret dy-025

namic embeddings in GPT-2 (Radford et al., 2019)026

by projection into the vocabulary space. However,027

the systematic interpretation remains an open issue.028

Many studies have revealed a certain correspon-029

dence between a vector space of word represen-030

tations and its respective semantic space of word031

meanings. The most well-known example of such032

correspondence is the parallelogram formed in the033

vector space by the embeddings of words in ana-034

logical relations (e.g. king:queen::man:woman)035

(Mikolov et al., 2013c). Other semantic rela-036

tionships also exhibit geometrical counterparts,037

such as semantic composition with vector addi-038

tion (Mikolov et al., 2013b; Mitchell and Lapata,039

2008), hypernymy captured by linear projection 040

(Fu et al., 2014), and polysemy as a linear combina- 041

tion of vectors (Arora et al., 2018). Regarding the 042

theoretical analysis of embeddings, Levy and Gold- 043

berg (2014b) suggested that word2vec (Mikolov 044

et al., 2013a) is equivalent to the factorization of 045

a word co-occurrence matrix. Arora et al. (2016) 046

proposed a generative model in which PMI-based 047

word embeddings exhibit linear structures. These 048

studies collectively hint that the latent structure in 049

the matrix reflects linguistic regularities and is in- 050

herently embedded within vector representations. 051

Therefore, understanding the word co-occurrence 052

matrix represents a cornerstone in elucidating the 053

interpretability of word representations. 054

Unlike prior studies, we directly address the 055

mathematical structure of a word co-occurrence 056

matrix. To achieve this, we focused on the corre- 057

spondence between a vector space and a semantic 058

space. Specifically, we used Formal Concept Anal- 059

ysis (FCA), a field of applied mathematics (Gan- 060

ter and Wille, 2012), to formally characterize the 061

internal structure of a matrix. We claim that a for- 062

mal concept mathematically defined in the word 063

co-occurrence matrix corresponds to interpretable 064

categories. Furthermore, we demonstrate that a hi- 065

erarchical structure of formal concepts emerges as 066

a geometric formation in the vector space. 067

Our contributions are threefold. First, we pro- 068

pose two methods that apply FCA to real-valued 069

data: binarization by varying thresholds, and fuzzi- 070

fication of FCA. Second, we empirically show that 071

the formal concepts in the word co-occurrence ma- 072

trix coincide with interpretable categories. Third, 073

we present a novel algorithm to detect formal con- 074

cepts, which is capable of disambiguating polyse- 075

mous words. 076

To our knowledge, this is the first study to apply 077

FCA to a word-word co-occurrence matrix. Our 078

study offers a new approach to uncover linguis- 079

tic structures, bridging the gap between semantic 080
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cognition and mathematical representation.081

2 Formal concept analysis of word082

co-occurrence matrix083

2.1 Basics of FCA084

FCA is related to order theory and abstract algebra.085

It mathematizes concepts and conceptual hierarchy086

(Ganter and Wille, 2012). A concept comprises087

a pair of its extents (objects) and its intents (at-088

tributes). Concepts can form a hierarchy known089

as a lattice. FCA has been empirically applied for090

data mining and ontology (Poelmans et al., 2013),091

especially in bioinfomatics (Roscoe et al., 2022).092

A formal context K := (G,M, I) consists of093

two sets G,M and a binary relation I ⊆ G ×M .094

The elements of G and M are called objects and095

attributes, respectively. For g ∈ G and m ∈M , a096

relation (g,m) ∈ I means that the object g has the097

attribute m. We define two derivation operators;098

↑: 2G → 2M maps a subset of objects to a subset099

of attributes, and its reverse ↓: 2M → 2G maps100

attributes to objects. For A ⊆ G,B ⊆M ,101

A ↑:= {m ∈M | (g,m) ∈ I (∀g ∈ A)} (1)102

B ↓:= {g ∈ G | (g,m) ∈ I (∀m ∈ B)} (2)103

A ↑ ⊆ M is the set of attributes common to all104

objects in A, whereas B ↓ ⊆ G is the set of ob-105

jects that possess all the attributes in B. It can106

be shown that A ⊆ B ↓ ⇔ B ⊆ A ↑, which107

is a structure-preserving (order-reversing) corre-108

spondence between ordered sets known as a Galois109

connection (Davey and Priestley, 2002).110

A formal concept of the context (G,M, I) is111

defined as a pair (A,B) ∈ 2G × 2M where both112

A ↑= B and B ↓= A hold. A and B are con-113

sidered the extent and intent, respectively, of the114

concept (A,B). The compositions of two deriva-115

tion operators ↑↓: 2G → 2G and ↓↑: 2M → 2M116

are closure operators (Davey and Priestley, 2002),117

with a formal concept defined as the fixed point of118

these operations. If a formal context is represented119

as a binary matrix, it corresponds to a maximal120

rectangular (submatrix) with all ones in its entries121

when the rows and columns are appropriately re-122

ordered.123

A formal concept can also be equated with a124

maximal biclique, i.e., a complete subgraph of125

a bipartite graph (Chiaselotti et al., 2015). All126

elements of A and B are completely connected127

within that subgraph.128

2.2 Rational and benefit of using FCA 129

A word co-occurrence matrix, used as input data to 130

learn word embeddings, is constructed by counting 131

the frequency of a target-context word pair that co- 132

occurs in the neighborhood. By regarding target 133

words as objects and context words as attributes, we 134

can express this co-occurrence as a binary relation. 135

Thus, we can treat a co-occurrence matrix as a 136

formal context. 137

FCA is effective in analyzing co-occurrence ma- 138

trices for three reasons. First, it can characterize 139

a local structure within the matrix. Second, for- 140

mal concepts can capture relations between more 141

than three words, which cannot be represented by 142

individual pairwise relationships, yielding a richer 143

analysis of the structure. Third, we can define (par- 144

tial) order relation between formal concepts. A 145

semantic relationship such as hypernymy can be 146

formalized by such an order relation. We further 147

demonstrate the function of FCA in Section 3. 148

To apply the crisp (binary) FCA to a real-valued 149

co-occurrence matrix, we tested two approaches. 150

First, we simply binarized the matrix values by 151

thresholds, with a varying threshold method de- 152

ployed to flexibly locate formal concepts (Section 153

4). Second, we extended the crisp FCA to an FCA 154

built on fuzzy logic (Section 5). 155

3 Demonstration using synthetic data 156

3.1 Artificial toy corpus 157

We examined how FCA handles a word co- 158

occurrence matrix using a toy corpus. We demon- 159

strated that formal concepts capture semantic cat- 160

egories emerging from word usage in the corpus, 161

and introduced a concept lattice of FCA to illus- 162

trate the hierarchical structure of concepts. 163

The demonstration contains 1) a corpus of 24 164

synthetic sentences with 17 words (Appendix A), 165

2) a co-occurrence matrix obtained from the cor- 166

pus, and 3) word vectors acquired from the matrix 167

(Fig. 1). The corpus is designed to replicate a geo- 168

metric formation of the analogy relation. Specifi- 169

cally, we targeted eight words—king, queen, man, 170

woman, and their plurals—so that their vectors 171

formed a parallelepiped. The sentences were ex- 172

pressed analogously: E.g., ‘king (queen) live in 173

palace”, whereas “man (woman) live in house”. 174

The co-occurrence matrix X ∈ {0, 1}17×17 is bi- 175

nary, where Xij = 1 if two words co-occur in a 176

sentence and Xij = 0 otherwise. Each row of this 177

matrix represents a word vector. Projected on the 178
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Figure 1: Binary co-occurrence (sub)matrix: Each entry
is 1 if shaded and 0 otherwise. Each row is a word
vector. Three submatrices with shade patterns indicate
formal concepts fi, ej , vk.

3-dimensional space, the eight word vectors form179

a parallelepiped (Fig. 2).

x 3.03.54.04.55.05.56.0
y

3.0
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king man

queen woman

kings men

queens women

Figure 2: A parallelepiped emerges when eight word
vectors (rows) are projected onto 3-dimensional space.

180

3.2 Detecting formal concepts181

We now apply FCA to the matrix X . Although182

formal concepts can be determined by applying183

the closure operator ↑↓, a simplified method is to184

find a rectangular in the matrix. For example, the185

submatrix of rows i ∈ {1, 3, 4, 7} and columns186

j ∈ {1} represents a formal concept, as all of187

its entries are 1s and no other rectangular matrix188

contains it. This concept represents a pair of the ex-189

tent {king, queen, kings, queens} and the intent190

{palace}, interpreted as "royal."191

There are a total of 28 formal concepts in this192

matrix (see Appendix B for the list and notation).193

They are classified into five types, including two194

trivial ones wherein one element is empty. Ex-195

amples of the three non-trivial types include the196

following: 197

f1 := ({king,man, kings,men}, {tie}) (3) 198

e1 := ({king,man}, {tie, alone}) (4) 199

v1 := ({king}, {tie, palace, alone}) (5) 200

To see hierarchical relations between formal 201

concepts, we first define the order relation. Let 202

B(G,M, I) be the set of all concepts of (G,M, I). 203

Given (A1, B1), (A2, B2) ∈ B(G,M, I), 204

(A1, B1) ≤ (A2, B2)
def⇐=⇒ A1 ⊆ A2 ⇔ B1 ⊇ B2

(6) 205

Thus, if the extent A1 is contained by the extent 206

A2, then the formal concept (A1, B1) is less than or 207

equal to (A2, B2). Owing to the Galois connection, 208

A1 ⊆ A2 holds if and only if B1 ⊇ B2. Then, 209

⟨B(G,M, I) : ≤⟩ is a complete lattice known as 210

a concept lattice, a nonempty ordered set where a 211

join and a meet exist for all elements and subsets. 212

Fig. 3 visualizes all ordered relations between the 213

formal concepts identified in the matrix X . We

f1 f2 f3 f4 f5 f6

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

v1 v2 v3 v4 v5 v6 v7 v8

T

B

Figure 3: Lattice of formal concepts. Each node rep-
resents a formal concept. The nodes correspond to ge-
ometric simplices of the parallelepiped: 8 vertices, 12
edges, 6 faces.

214
observe that the lattice of formal concepts (Fig. 3) 215

corresponds to the parallelepiped (Fig. 2). This 216

suggests that geometric relations between word 217

vectors reflect the hierarchical structure latent in 218

the word co-occurrence matrix. 219

3.3 Three implications of FCA 220

First, FCA allows us to easily interpret the identi- 221

fied formal concepts. For example, f1 should be 222

labeled as masculine from its extent {king, kings, 223

man, men}, whereas f6, with the extent {queen, 224

queens, woman, women}, must be labeled as fem- 225

inine. The other f -type concepts can be labeled 226

as royal, common, singlular and plural. Thus, 227

formal concepts coincide with semantic concepts. 228
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Second, the formal concept v1 (king) can be229

seen as the intersection of three others—f1, f3, f5—230

analogous to a vertex included in three faces. Se-231

mantically, king is something royal, masculine, and232

single. This relation can be algebraically formu-233

lated as v1 = f1 ∧ f3 ∧ f5 where ∧ is a meet234

operation.235

Third, pairs of opposing faces in the paral-236

lelepiped form complementary concepts such as237

masculine vs. feminine. Mathematically, we can238

construct a formal concept algebra by defining ad-239

ditional operations as axioms (Wille, 2004). Using240

this algebra, the formal concept of masculine can241

be demonstrated to complement that of feminine;242

¬f1 = f6 where¬ is a negation. Thus, we can char-243

acterize antonymy as an algebraic complement.244

In summary, the co-occurrence matrix exhibits245

the geometrical and algebraic structures formed by246

interpretable formal concepts, revealing a structural247

correspondence between the semantic and vector248

spaces.249

4 Experiment 1: FCA by binarization250

4.1 Applying FCA to a real data251

We now demonstrate that formal concepts can be252

defined on actual word co-occurrence data and cor-253

respond to both semantic and syntactic categories.254

We compared two methods that apply the crisp255

FCA to a real-valued matrix: binarization by thresh-256

olding, and Fuzzy FCA.257

For binarization, we apply a certain threshold to258

a value in each entry of the co-occurrence matrix.259

We adopted PPMI (positive point-wise mutual in-260

formation; Niwa and Nitta, 1994) as it yields the261

best results in the semantic task (Bullinaria and262

Levy, 2012). We found it to be more useful to flex-263

ibly adjust a threshold that is locally determined264

in the PPMI matrix, rather than applying a single265

value.266

4.2 Algorithm to identify formal concepts267

We designed a novel algorithm to locate formal268

concepts through the conversion of two derivation269

operators (Eq. 1 and 2). The corresponding pseudo-270

algorithm is shown in Algorithm 1. Given a PPMI271

co-occurrence matrix X and set of target words S272

as a seed, the algorithm returns a formal concept273

(S ↑↓, S ↑), which is a pair of two subsets of the274

vocabulary. Here, S ↑↓ is the closed set of S.275

The first derivation operator ↑ must identify con-276

text words that co-occur with all target words in277

Algorithm 1 Varying Threshold Method

Input: X ∈ RN×N , S := {wi}i∈IS , k ∈ N
Output: FC := (S ↑↓, S ↑), t ∈ R

1: function FINDFORMALCONCEPT(S, k)
2: for j ← 1 to N do
3: mj ← mini∈IS Xij

4: end for
5: Sort [mj ] in descending order← [mp(j)]
6: JS↑ ← {p(j)}j≤k

7: S ↑← {wj}j∈JS↑

8: t← mp(k)

9: IS↑↓ ← ∅
10: for i← 1 to N do
11: µi ← minj∈JS↑ Xij

12: if µi ≥ t then
13: IS↑↓ ← IS↑↓ ∪ {i}
14: end if
15: end for
16: S ↑↓← {wi}i∈IS↑↓

17: return (S ↑↓, S ↑), t
18: end function

S. In other words, a context word is selected when 278

it has all PPMI values exceeding the threshold t 279

for the target words in S. Equivalently, any PPMI 280

value that the seed words have with the context 281

word should not be less than t, meaning that their 282

minimum must be greater than or equal to t. As 283

indicated in Line 3, the algorithm finds the mini- 284

mum value that the seed words (in rows ∀i ∈ IS) 285

have against a certain context word (in a column 286

j ∈ {1, . . . , N}), sorts them in descending or- 287

der (Line 5), and selects the first k context words 288

(columns) S ↑ (Line 6). The threshold is auto- 289

matically determined as the kth largest minimum 290

value (Line 8). Next, an inverse operation executes. 291

Given S ↑, the algorithm finds a minimum value 292

over the context words S ↑ (JS↑ in the column in- 293

dex) against a target word in a row i (Line 11) and 294

selects the target words (rows IS↑↓) with minimum 295

values exceeding the threshold (Line 13), which 296

form S ↑↓. 297

IS↑↓ and JS↑ are subsets of rows and columns 298

corresponding to S ↑↓ and S ↑, respectively. t is 299

the determined threshold. The algorithm ensures 300

that a submatrix (Xij)i∈IS↑↓, j∈JS↑ satisfies: 301

Xij ≥ t (i ∈ IS↑↓, j ∈ JS↑) (7) 302

Xij < t (∀j /∈ JS↑, ∃i ∈ IS↑↓) (8) 303

Xij < t (∀i /∈ IS↑↓,∃j ∈ JS↑) (9) 304
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Note that the submatrix of IS↑↓ × JS↑ is discrimi-305

nated from its neighbouring area. Its inner region306

has higher values than t (Eq. 7), whereas each of307

its exterior rows and columns horizontally (Eq. 8)308

and vertically (Eq. 9) adjacent to the submatrix309

contains at least one cell below the threshold.310

4.3 Semantic categorization test311

The following experiment was conducted to ver-312

ify that the formal concepts identified from the313

co-occurrence matrix coincide with interpretable314

categories.315

Test set We adopted two existing test sets from316

Lindh-Knuutila and Honkela (2015) containing se-317

mantic categories: the Battig set (Bullinaria and318

Levy, 2012), comprising 53 categories with 10319

words for each, and BLESS (Baroni and Lenci,320

2011), containing 17 categories with 5-17 words321

for each. We also compiled two additional sets: Se-322

ries and Syntactic. The categories tested are listed323

in Appendix D.324

Procedure For each category, we systematically325

furnished the algorithm with all possible word pairs326

as seeds derived from the category’s word set. Next,327

we identified the optimal seed that yields the most328

extensive set of accurately classified words. We329

then assessed how effectively the algorithm re-330

trieves the correct words from the optimal seed for331

the given category (Precision, Recall). Because332

the word sets are not necessarily exhaustive, we333

also regarded those missed words as correct, based334

on our human judgement (Extended precision)1.335

Data The co-occurrence matrix, constructed336

from the English Wikipedia dump (20171001)2,337

spanned 2.9B tokens, counted with a window size338

of 10 and converted into PPMI values. To keep the339

matrix size manageable, we limited the vocabulary340

to the 10K most frequent words.341

4.4 Results342

Qualitative results Table 1 presents output sam-343

ples produced by the algorithm. When given {large,344

huge} as a seed, the algorithm returned {large,345

huge, enormous, vast} as the extent and {sums,346

amounts, quantities} as the intent, which consti-347

tutes a formal concept. All PPMI values within this348

concept exceeded 3.95. This formal concept can be349

1The annotation was done by one of the authors, who is
non-native but has educational experience in the U.S.

2CC BY-SA 3.0; https://dumps.wikimedia.org/legal.html

labeled as "largeness" or adjective of size, which 350

implies that it is indeed interpretable. Similar re- 351

sults held for other seeds. 352

Quantitative results Table 2 shows that 61.5– 353

84.3% of the identified extent words matched the 354

category labels in the test sets (Extended preci- 355

sion). Furthermore, 56.3–76.8% of the words in the 356

test sets were retrieved by the algorithm (Recall). 357

Semantic categories in Battig, BLESS, and Series 358

were more effectively captured by formal concepts 359

than syntactic categories. We also observed that 360

homogeneous categories (e.g., Country) frequently 361

formed formal concepts. 362

4.5 Analysis 363

The results suggest that formal concepts overlap 364

with interpretable categories. Furthermore, we find 365

it intriguing that FCA mathematically character- 366

izes the internal structures of the matrix. Recall 367

that higher PPMI values discriminate the submatrix 368

of a formal concept from its neighbors, forming 369

a local plateau-like structure that is not necessar- 370

ily captured by the cosine similarity. This insight 371

offers two use cases for the proposed algorithm. 372

Disambiguating polysemy A target word can 373

participate in multiple formal concepts. By in- 374

putting seed words with different associations, we 375

found that polysemous words such as tie and spring 376

have multiple formal concepts, as shown in Table 377

3. We observed that separate formal concepts (e.g., 378

clothing, match, fasten) may contain the same word 379

(e.g., tie) in their extents. Three separate plateaus 380

may share the same row as visualized in Fig. 4.

Intent for tie1 Intent for tie2 Intent for tie3

jacket
shirt

dress
pants

tie

winning
tie

teams
championship

loosing

rope
tie

cable
neck

0

1

2

3

4

5

6

7

Figure 4: PPMI submatrix of three formal concepts
containing the same polysemous word tie. For ease of
visibility, the row for tie is presented multiple times.

381
Arora et al. (2018) discovered that the embed- 382

dings of polysemous words can be decomposed as 383
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Seed Formal Concept (upper:extents; lower:intents) Th. Category

large, huge
large, huge, enormous, vast

3.95 Adjective of size
sums, amounts, quantities

church, temple, mosque
chapel, church, mosque, synagogue, temple

2.85
Religious

worship, jpg,ruined Buildings

quicker, bigger, warmer
bigger, brighter, colder, cooler, heavier, hotter, louder,...

2.45 Comparatives
than, considerably, deeper

Table 1: Examples of formal concepts identified from a binarized PPMI matrix. Given seed words, the algorithm
returns an extent-intent pair representing a formal concept. The parameter k was set to 3. Th. means threshold.

Test set Prec. Ex.prec. Recall LKH
Battig 51.0 81.7 64.4 (37.0)

BLESS 57.8 84.3 67.0 (64.7)
Series 62.8 82.7 76.8 -

Syntactic 57.1 61.5 56.3 -

Table 2: Average precision, extended precision, and
recall over the categories (k = 3), expressed as per-
centages. LKH lists % of the categories identified by
Lindh-Knuutila and Honkela (2015).

linear combinations of sense vectors. Our finding384

suggest that these vectors reflect separate formal385

concepts, and that the embeddings inherit the inner386

structure of the co-occurrence matrix.387

Measuring a similarity in subspace The pro-388

posed algorithm generates a byproduct that can389

be used to investigate the relationship between the390

multiple vectors (the rows of the matrix) in a sub-391

space. By reusing Lines 3–5 in the algorithm, we392

can determine whether target words in a seed share393

certain context words in limited dimensions and394

are semantically related in the shared context.395

Specifically, we propose the subspace similarity396

ϕ(S) defined as397

ϕ(S) :=
1

k

k∑
i=1

mp(i) (10)398

for a group of words S = {wi}i∈IS , where mj :=399

mini∈IS Xij , p(i) is a permuted index in descend-400

ing order and k is a hyperparameter for the scope401

of subspace. The notation is the same as in Algo-402

rithm 1. The subspace similarity is the mean of the403

thresholds t determined over different parameter404

values up to k selected dimensions. Fig. 5 shows405

the computed values of the subspace similarity for406

several word groups. These results indicate that407

semantically related groups share certain context408

words locally, even if their cosine similarities are409

low. Generally, randomly chosen vectors in high- 410

dimensional space tend to be orthogonal, which 411

implies a low chance of detecting correlations in 412

any dimension. In contrast, a higher subspace simi- 413

larity should suggest that a certain structure can be 414

defined more than incidentally.
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music instruments (drum, bass, guitar, piano, violin)
colors (blue, green, orange, pink, purple)
science (science, geology, chemistry, mathematics, physics)
usstate-midwest (illinois, minnesota, michigan, wisconsin, indiana)
random (desert, debug, playing, discovering, garnered)

Figure 5: Subspace similarity for groups of five words.
Semantically related groups exhibit significantly higher
values than the randomly selected set.

415

5 Experiment 2: Applying Fuzzy FCA 416

5.1 Fuzzification of FCA 417

Our second application of FCA to a real-valued ma- 418

trix involves the fuzzification of the crisp FCA by 419

incorporating fuzzy set theory (Ojeda-Hernández 420

et al., 2023). A fuzzy set formalizes an ambigu- 421

ous set, such as "a set of tall people," by assigning 422

a degree of membership to each element. In Ap- 423

pendix C, we give the definition of a fuzzy formal 424

concept and show that it is equivalent to a rank-one 425

submatrix under our proposed specification. 426

The problem of finding fuzzy formal concepts 427

can be regarded as that of identifying nonnegative 428

rank-one submatrices in a PPMI matrix. Because 429

it is NP-hard to exactly decompose a matrix into 430

nonnegative factors (Vavasis, 2010), we obtained 431

an approximation by deploying nonnegative matrix 432
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Word (sense) Seed Extent of Formal concept
tie1 (clothing) tie, pants, shirt collar, jacket, pants, shirt, tie, wears
tie2 (match) tie, teams, winning championship, playoffs, teams, tie, winning
tie3 (fasten) tie, cable, rope cable, loose, neck, rope, tie
spring1 (season) spring, autumn, month autumn, cold, coldest, cooler, dry, month, rainfall,...
spring2 (metal) spring, wheel, suspension fitted, mounted, rear, spring, suspension, wheel, wheels
spring3 (water) spring, creek, river basin, brook, creek, reservoir, river, spring, stream

Table 3: The extent of multiple formal concepts comprises polysemous words. The proposed algorithm is able to
disambiguate these contexts in response to the seeds associated with them. The parameter k was set to 5 except for
the case of spring1 (k = 10).

factorization (NMF; Lee and Seung, 1999), as its433

L1 regularization on factor matrices is considered434

effective in making them sparse. We controlled435

the sparseness so that the decomposed submatrices436

became disjoint.437

NMF decomposes X ∈ Rm×n
+ into two matri-438

ces W ∈ Rm×r
+ and H ∈ Rn×r

+ so that X =439

WHT =
∑r

k=1wkh
T
k , where wk and hk are the440

kth columns of W and H , respectively. The outer441

product wkh
T
k is of rank one and preferably sparse,442

thereby approximating a fuzzy formal concept. The443

loss function is444

Lα(W,H) =
1

2
∥X −WHT ∥2F

+αn∥W∥1 + αm∥H∥1
(11)445

We recursively applied NMF 3 over three rounds—446

first to the PPMI matrix as in Section 4, then twice447

to the positive residual matrices resulting from448

decomposition—factorizing into r = 300 compo-449

nents each round. Parameters for the L1 norms450

were set to α = 5, 3, 1× 10−4 for each round.451

5.2 Results452

We manually labeled 900 rank-one submatrices by453

reviewing the words corresponding to the largest454

entries in wk and hk (see Appendix E.1 for de-455

tails). We then classified the submatrices among456

four categories to assess how well the labels de-457

scribe the words in each formal concept4 (Table 4).458

More than 95% of the acquired formal concepts459

were interpretable to some extent.460

5.3 Analysis461

We found that Fuzzy FCA reveals the same formal462

concepts as the crisp FCA. For example, the three463

categories listed in Table 2 also appear as rank-one464

3NMF from Scikit-learn library: BSD license.
4The same as the footnote 1.

Class R1 R2 R3 LKH
Descriptive 182 75 73 27

Partial 56 63 48 72
Meaningful 56 150 158 2
Nonsense 6 12 21 11

Total 300 300 300 112

Table 4: Decomposed rank-one submatrices in four
classes for each round, indicating how the submatrices
coincide with labeled categories. Definitions are pro-
vided in Appendix E.2 and the numbers under LKH are
cited from Lindh-Knuutila and Honkela (2015).

submatrices. In fact, NMF detected more eligi- 465

ble words (e.g. immense, massive for Largeness, 466

shrine for Religious Buildings). This observation 467

demonstrates the robustness of FCA, as well as the 468

correlation between the two methods. 469

Another interesting finding is that two types of 470

rank-one submatrices were discovered: a clique 471

type with identical rows and columns, and a bi- 472

clique type with different rows and columns. An 473

example of the latter is ({explain, describe, discuss, 474

...}, {beliefs, concepts, ideas,...}), which represents 475

a verb phrase for an act of communication. 476

6 Discussion 477

6.1 Why do formal concepts correspond to 478

intepretable categories ? 479

As noted in Section 2, a formal concept is equiva- 480

lent to a biclique, which means that the words in it 481

are densely connected. A group of words form a 482

dense community if the words are repeatedly used 483

together. Furthermore, if the same latent state al- 484

ways emits the same set of words, then those words 485

are repeatedly counted as co-occurrence, thereby 486

forming a formal concept. The random walk model 487

of Arora et al. (2016) captures the same mechanism 488

to generate linearly structured embeddings. 489
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However, a latent state is not necessarily limited490

to a topic, i.e., a state based on thematic proxim-491

ity. As revealed in Section 4, formal concepts may492

reflect functional proximity, e.g. the comparative.493

Furthermore, we observed phrasal proximity, as in494

a verb phrase. We can conjecture that words in495

compound nouns correspond to formal concepts496

by sequential proximity. Thus, a broad range of497

semantic and syntactic patterns of word usage may498

be captured as a formal concept.499

These results open questions regarding why the500

human brain understands and operates formal con-501

cepts, which may be the subject of future studies502

of semantic cognition. Our approach may provide503

a quantitative method to address these questions.504

6.2 How can formal concepts be fully505

captured ?506

We designed two methods that apply FCA to a507

real-valued matrix to detect interpretable formal508

concepts, although we do not yet have a theory to509

assess and relate the methods.510

In general, the challenge of FCA in applied stud-511

ies is scalability stemming from computational512

complexity, which must be addressed when increas-513

ing the size of a co-occurrence matrix. Another514

challenge is posed by heterogeneous data from515

large corpora. Specifically, we observed that inter-516

pretable formal concepts are detected at different517

threshold levels (Section 4) and by layered factor-518

ization (Section 5). The latent structures at different519

scales indicate that multiple formal contexts co-520

exist in the matrix as if they were superposed, and521

they were probably generated separately. Thus, the522

rank-one submatrices may be disjoint, superposed,523

or overlapping. To ensure appropriate extraction,524

the algorithm must depend upon the modeling of525

generative processes, which is also a topic for a526

future study.527

6.3 What do embeddings represent after all?528

Recall that formal concepts defined as rank-one529

submatrices appear as components of matrix factor-530

ization X = WHT (Section 5). While a column531

of W corresponds to a fuzzy set that constitutes532

each formal concept, a row of W is used as a word533

embedding. Thus, a value in each dimension of the534

embedding can be seen as the "coordinate" of the535

corresponding formal concept. The other matrix536

H is considered to encode attributes. The embed-537

dings, acquired by matrix factorization or implicit538

factorization (Levy and Goldberg, 2014b), must in-539

herit the structures of formal concepts, as the factor 540

matrices can be mutually transformed. 541

7 Related studies 542

Several studies demonstrated that sparse embed- 543

dings are interpretable. Murphy et al. (2012) and 544

Biggs et al. (2008) applied nonnegative matrix 545

factorization with a sparsity constraint to word- 546

document co-occurrence data and discovered top- 547

ics. Other studies (Faruqui et al., 2015; Park et al., 548

2017; Jang and Myaeng, 2017) investigated word 549

embeddings to restore interpretability by using spar- 550

sity. We mathematically formalized the latent struc- 551

ture in the word co-occurrence matrix, which prior 552

studies might have empirically detected. 553

FCA has been applied in linguistics (Priss, 2005), 554

primarily for ontology. Cimiano et al. (2005) ap- 555

plied FCA for the automatic acquisition of tax- 556

onomies from a corpus. Moraes and Lima (2012) 557

built a semantic structure by setting the S-V-C tu- 558

ples of the annotated corpora as a formal context. 559

Berend et al. (2018) used FCA by binarizing sparse 560

word embedding for hypernymy discovery. In con- 561

trast to these studies, we deployed FCA to explore 562

the structure of the matrix itself, which revealed 563

the mathematical correspondence between seman- 564

tic and vector spaces. 565

Gastaldi (2021) delved into the underlying mech- 566

anism of word embeddings from a linguistic- 567

philosophical perspective and pointed out simulta- 568

neous codetermination or bi-duality between terms 569

and contexts as a significant feature of language, 570

which we believe to have successfully formalized 571

via FCA. Our mathematical approach to interpret- 572

ing co-occurrence data may shed light on the struc- 573

ture of language, as Bradley et al. (in press) frames 574

language in category theory . 575

8 Summary 576

This study establishes a mathematical characteriza- 577

tion of the relationship between semantic and vec- 578

tor spaces, employing FCA to investigate a word 579

co-occurrence matrix. Our experiments demon- 580

strate that identified formal concepts align with 581

interpretable categories. Using synthetic data, we 582

also illustrated the emergence of hierarchical struc- 583

tures from word usage. Subsequent challenges in- 584

clude theoretical sophistication in applying FCA, 585

exploring generative modeling, and delving into 586

cognitive inquiries. 587
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9 Limitations and risks588

Our study is inherently exploratory, with the aim of589

communicating critical insights in a timely manner590

before exhaustively diving into a comprehensive591

analysis. Consequently, a more thorough investi-592

gation and nuanced analysis are deferred to future593

work, acknowledging that the current study serves594

as a preliminary exploration that lays the founda-595

tion for deeper scrutiny.596

Another limitation of this work stems from the597

reliance on a singular dataset for our analysis. Al-598

though our findings reveal compelling patterns599

within the chosen dataset, generalizability across600

diverse data sets remains an unexplored avenue.601

We anticipate similar trends in other data sets, but602

a comprehensive cross-validation across various603

sources is pending. Future research efforts should604

extend our methodology to encompass a wider605

spectrum of data sets, ensuring the robustness and606

applicability of our observed trends across different607

contexts.608

The study constitutes a fundamental analy-609

sis aimed at identifying mathematical properties610

within linguistic statistical data, thus enhancing in-611

terpretability. Notably, no significant material risks612

were identified throughout the investigation and613

will not be seen due to the nature of the analytical614

approach employed.615
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Lütfi Kerem Şenel, Ihsan Utlu, Veysel Yücesoy, Aykut803
Koc, and Tolga Cukur. 2018. Semantic structure804
and interpretability of word embeddings. IEEE/ACM805
Transactions on Audio, Speech, and Language Pro-806
cessing, 26(10):1769–1779.807

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob808
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz809
Kaiser, and Illia Polosukhin. 2017. Attention is all810
you need. Advances in neural information processing811
systems, 30.812

Stephen A. Vavasis. 2010. On the complexity of non-813
negative matrix factorization. SIAM Journal on Opti-814
mization, 20(3):1364–1377.815

Rudolf Wille. 2004. Preconcept algebras and general-816
ized double boolean algebras. In Concept Lattices:817
Second International Conference on Formal Concept818
Analysis, ICFCA 2004, Sydney, Australia, February819
23-26, 2004. Proceedings 2, pages 1–13. Springer.820

A Toy corpus 821

The corpus contains 24 synthetic sentences shown 822

in Table 5. The target words—king, queen, man, 823

woman and their plurals—are subjects of the sen- 824

tences. Each of the eight words appears with three 825

verbs—live-in, wear, eat—once for each. The 826

remaining six words—palace, house, tie, dress, 827

alone, together—discriminate the subject words 828

so that they are in the analogical relations of three 829

dimensions.

king live-in palace kings live-in palace
queen live-in palace queens live-in palace
man live-in house men live-in house
woman live-in house women live-in house
king wear tie kings wear tie
queen wear dress queens wear dress
man wear tie men wear tie
woman wear dress women wear dress
king eat alone kings eat together
queen eat alone queens eat together
man eat alone men eat together
woman eat alone women eat together

Table 5: 24 sentences in the toy corpus
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B List of formal concepts831

There are 28 formal concepts in the co-occurrence832

matrix derived from the toy corpus.833

Suppose that the set of objects (target words)834

and the set of attributes (context words) be G,M835

respectively, defined as:836

G = {king,man, queen, queens,837

kings,men, queens, women, }838

M = {tie, dress,839

palace, house,840

alone, together}841

Then, all the formal concepts are identified as842

below:843

T = (G, ∅)844

f1 = ({king,man, kings,men}, {tie})845

f2 = ({man,woman,men,women}, {house})846

f3 = ({king, queen,man,woman}, {alone})847

f4 = ({kings, queens,men,women}, {together})848

f5 = ({king, queen, kings, queens}, {palace})849

f6 = ({queen,woman, queens, women}, {dress})850

e1 = ({king,man}, {tie, alone})851

e2 = ({king, kings}, {tie, palace})852

e3 = ({man,men}, {tie, house})853

e4 = ({kings,men}, {tie, together})854

e5 = ({king, queen}, {palace, alone})855

e6 = ({man,woman}, {house, alone})856

e7 = ({kings, queens}, {palace, together})857

e8 = ({men,women}, {house, together})858

e9 = ({queen,woman}, {dress, alone})859

e10 = ({queen, queens}, {palace, dress})860

e11 = ({woman,women}, {house, dress})861

e12 = ({queens, women}, {dress, togther})862

v1 = ({king}, {tie, palace, alone})863

v2 = ({man}, {tie, house, alone})864

v3 = ({kings}, {tie, palace, together})865

v4 = ({men}, {tie, house, together})866

v5 = ({queen}, {dress, palace, alone})867

v6 = ({woman}, {dress, house, alone})868

v7 = ({queens}, {dress, palace, together})869

v8 = ({women}, {dress, house, together})870

B = (∅,M)871

872

C Fuzzification of FCA 873

Formally, a fuzzy set A is a function A : X → L 874

where X is a ground set and L = [0, 1], which 875

assigns the value to each member of X . A sub- 876

sumption relation A ⊆ B holds if and only if 877

A(x) ≤ B(x) for all x ∈ X . In Fuzzy FCA, a 878

formal concept is K := (G,M, I, L). We consider 879

two fuzzy sets A ∈ LG, B ∈ LM as objects and 880

attributes and a fuzzy relation I ∈ LG×M . Mathe- 881

matically, L can be generalized to a residuated lat- 882

tice that includes [0, 1] as its special case. Similar 883

to the crisp setting, two fuzzy derivation operators 884

↑: LG → LM and ↓: LM → LG are defined as 885

follows: For all m ∈M and g ∈ G, 886

A ↑ (m) :=
∧
g∈G

(
A(g)→ I(g,m)

)
∈ L (12) 887

B ↓ (g) :=
∧

m∈M

(
B(m)→ I(g,m)

)
∈ L (13) 888

Note that A ↑∈ LM , B ↓∈ LG and (→) : L × 889

L→ L , which is a binary operation defined on L. 890

In plain English, the degree to which an object g 891

belongs to the fuzzy set A should imply the level 892

of co-occurrence between g and an attribute m, 893

which retrospectively should determine the degree 894

to which the attribute m belongs to another fuzzy 895

set A ↑. Then, fuzzy formal concepts are defined 896

as a pair of fuzzy sets (A,B) where A ↑= B and 897

B ↓= A hold as in the crisp FCA. 898

We need to specify operations such as (→) to 899

numerically compute them. Three specifications, 900

named as Lukasiewicz, Gödel and Goguen, have 901

already been proposed (Belohlavek and Vychodil, 902

2012), but instead we propose our own specifica- 903

tion tailored to the analysis of a word co-occurrence 904

matrix. 905

a→ b :=

{
b/a if a > 0

⊤ if a = 0
(14) 906

where ⊤ is the greatest element in L. This specifi- 907

cation is a slight modification of the one proposed 908

by Goguen. The meet ∧ is numerically calculated 909

as a minimum. 910

Our specification is equivalent to defining 911

(A,A ↑) and (B ↓, B) as a rank-one submatrix. 912

Recall that the fuzzy set A ∈ LG assigns a value 913

x ∈ L to the element g. Similarly, the fuzzy set 914

A ↑∈ LM assigns a value y ∈ L to the element 915

m. Thus, the specification in Eq. (14) ensures that 916

12



y = xy/x for x > 0. This means that nonnega-917

tive entries of both fuzzy sets A,A ↑ constitute a918

rank-one submatrix.919

D Semantic categorization test920

We used the four test sets for categorization test,921

Battig, BLESS, Series and Syntactic.922

Battig test (Bullinaria and Levy, 2012), origi-923

nated from Battig and Montague (1969), contains924

53 categories with 10 words for each category, of925

which we used 44 categories in the experiments,926

since the others have less than two words in our927

vocabulary of the co-occurrence matrix.928

BLESS (Baroni and Lenci, 2011) contains 17929

categories with 5-17, of which we used 12 cate-930

gories for the same reason.931

Both of Series and Syntactic are developed932

by the authors to supplement Battig and BLESS,933

which contain only common nouns. Series is hinted934

by Hashimoto et al. (2016) that proposed the series935

completion task (penny:nickel:dime:?) for word936

embeddings. Syntactic is motivated by our early937

finding that comparative adjectives such as quicker,938

faster, ... emerge as a salient formal concept with939

a high threshold in the binary FCA experiment.940

In both test sets, each category consists of 4 to 5941

words, which are manually selected by one of the942

authors. In the development process, we partly use943

AI assistance5 to generate a list of candidates for944

a category and its word set, by prompting with an945

example "Direction: north, east, south, west".946

Examples of a category in each test set are shown947

below (Table 6)948

Test set Category Word set
Battig Metal gold, iron, lead, steel,...

BLESS Fruit apple, banana, pear,...
Series Direction north, east, south, west

Syntactic Verb (go) go, goes, went, gone

Table 6: Examples of test sets

We used only the categories that contain more949

than or equal to three words in our vocabulary,950

which are listed in Table 7.951

5https://chat.openai.com/

E Decomposition by NMF 952

E.1 Decomposed submatrices by NMF 953

We applied NMF recursively in three rounds. In the 954

first round, we decomposed the PPMI matrix as in 955

X0 ≈W1H
T
1 into 300 components (α = 0.0005). 956

In the second round, we applied NMF to the pos- 957

itive residual matrix after the first decomposition: 958

X1 := max(X0−W1H
T
1 , 0) as decomposed as in 959

X1 ≈ W2H
T
2 (α = 0.0003). In the third round, 960

the residual matrix X2 := max(X1 −W2H
T
2 , 0) 961

was decomposed into X2 ≈W3H
T
3 (α = 0.0001). 962

Note that each component (rank-one matrix) wkh
T
k 963

was forced to be sparse by L1 regularization. Thus, 964

their nonnegative rows and columns make a non- 965

negative rank-one submatrix, which we regard as a 966

fuzzy formal concept. 967

The components derived in the first round were 968

indexed from 1 to 300. Similarly, those in the 969

second round were indexed from 301 to 600, and 970

the ones from the third round were indexed from 971

601 to 900. We ordered each component by the 972

Frobenius norm within each round. Therefore, the 973

smaller ID number implies that the submatrix has 974

a greater norm in each round. 975

Samples of the components are presented in Ta- 976

ble 8. The class was evaluated by one of the authors 977

according to the definition given in the Appendix 978

E.2. The author also labeled a category from the 979

words that comprise the submatrix wkh
T
k . More 980

specifically, for each vector wk and hk, we picked 981

20 words that correspond to the largest elements 982

in the vectors, respectively. In Table 8, the only 983

four top words are presented for both wk as extents 984

and hk as intents. For ease of visibility, categories 985

were labeled with more general expression, though 986

they could be labeled with more focused category 987

names. 988

Table 9 shows a supplemental analysis of the 989

type of relatedness between words participating in 990

each submatrix. 991

E.2 Types of qualitative classes 992

The set of words corresponding to the largest di- 993

mensions within each component is classified into 994

four qualitative classes, as in the below definition 995

(Table 10), following Lindh-Knuutila and Honkela 996

(2015) . These classes indicate how well an iden- 997

tified formal concept (a rank-one matrix) is inter- 998

pretable as a category. 999
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Battig BLESS Series Syntactic
Disease Ground mammal Emotion Demonstrative adverb
Metal Furniture Season Comparative adjective
Carpenter’s tool Tool Sea Preposition
Crime Container Great lakes Verb conjugation
Substance for flavoring food Fruit Direction Manner adverb
Elective Office Vehicle Art form Adverb of frequency
Toy Appliance Part of a tree Personal pronoun
Weapon Weapon Book part Linking verb
Member of clergy Musical instrument Continent Demonstrative determiner
Four-footed animal Building Movie genre Coordinating conjunction
Nonalcoholic beverages Clothing Number Adjective of taste
Building for religious services Bird US president Possessive pronoun
Precious stone Stage of life Frequency adverb
Part of human body Planet Quantitative determiner
Fruit Weekday Subordinating conjunction
Sport Music genre Action verb
Part of a building Natural disaster Modal auxiliary
Male’s first name Decathlon Total pronoun
Relative Family Adjective of size
Human dwelling Ocean Interrogative pronoun
Insect Adverb of time Article
Type of fuel Month Totality adverb
Music instrument Communication act Verb conjugation
Furniture Match
Ship Religion
Kind of money Time of day
Color Writing
Kind of cloth Style of architecture
Unit of distance Midwest U.S. state
Type of music
City
Country
Reading material
Military title
Natural earth formation
Unit of time
Part of speech
Kitchen utensil
Vehicle
Science
Weather phenomenon
Occupation or profession
Bird

Table 7: Used categories of the test sets

14



ID Class Category Extents (top 4 words) Intent (top 4 words)
2 D Geography iran, kerman, khorasan, province iran, kerman, khorasan, province

5 N None pineapples, tasteful, lilongwe, unimpressive dawn, windsor, batting, relegation

8 D Music chart, charts, billboard, singles chart, charts, billboard, singles

14 D Sports discus, javelin, jump, hurdles discus, javelin, jump, hurdles

22 D Education degree, bachelor, doctorate, laude degree, bachelor, doctorate, laude

35 D Diplomacy embassy, ambassador, diplomatic, relations turkmenistan, tajikistan, kyrgyzstan, uzbekistan

46 D Sports baseman, pitcher, outfielder, shortstop baseman, pitcher, outfielder, shortstop

89 D Religion rabbi, yeshiva, synagogue, hebrew rabbi, yeshiva, synagogue, hebrew

90 D US states idaho, montana, dakota, wyoming idaho, montana, dakota, wyoming

95 D Climates cyclone, hurricane, storm, typhoon cyclone, hurricane, storm, typhoon

98 D Politics polling, votes, voters, vote polling, votes, voters, vote

102 D Phrases increases, decreases, decrease, increase temperature, concentrations, accuracy, velocity

104 D Politics incumbent, reelection, democrat, republican incumbent, reelection, democrat, republican

116 P Medical ligament, knee, ankle, injury ligament, knee, ankle, injury

125 P Career postdoctoral, professor, adjunct, emeritus postdoctoral, professor, adjunct, emeritus

137 P TV show starring, roommate, daughters, actress jennifer, laura, jessica, nicole

146 P Legal convicted, guilty, sentenced, imprisonment convicted, guilty, sentenced, imprisonment

147 P History nazi, nazis, deported, camps nazi, nazis, deported, camps

159 P Geography mountain, peaks, summit, mountains mountain, peaks, summit, mountains

160 M Expression acclaim, garnered, reviews critical garnered, acclaim, reviews, critical

165 P Expression regain, recover, conquer, attract trying, attempting, attempt, attempts

181 M Expression tasked, thereby, prevented, intention securing, obtaining, capturing, creating

184 M Expression lied, intentions, poisoned, whereabouts reveals, realizes, believing, realises

192 D Music punk, hop, hip, folk punk, hop, hip, folk

210 D Religion christianity, catholicism, islam, beliefs christianity, catholicism, islam, beliefs

212 M Religion you, think, really, know you, think, really, know

214 M Syntactic various, numerous, several, these genera, disciplines, locations, dialects

237 D Comparative faster, stronger, heavier, than faster, stronger, heavier, than

239 D Politics obama, barack, reagan, clinton obama, barack, reagan, clinton

313 D Religion quantities, amounts, sums, amassed enormous, huge, immense, considerable

329 P Time spends, spend, spent, spending summers, much, time, remainder

341 P Geography maui, oahu, hawaii, honolulu maui, oahu, hawaii, honolulu

370 D Unit millions, billions, million, billion millions, billions, million, dollars

405 M Linguistics vowel, vowels, stressed, accent vowel, vowels, stressed, accent

408 P Travel immigration, nationals, emigration, citizen immigration, nationals, emigration, citizen

419 D Proposal proposal, offer, invitation, plea rejected, accepted, rejects, accepting

431 M Expression poorly, properly, carefully, fully handled, treated, understood, trained

435 D Buildings housed, built, constructed, build synagogue, mosque, mansion, convent

484 D Auxiliary did, does, doesn, didn speak, exist, suffer, appear

507 D Movement down, forth, out, into fell, put, falling, fallen

514 D War pistol, revolver, magnum, rifle pistol, revolver, magnum, rifle

517 M Plants botanical, zoological, garden, gardens botanical, zoological, garden, gardens

577 P Expression totally, completely, virtually, almost totally, virtually, completely, vanished

605 D Number vii, ix, viii, xiii fantasy, corps, intensity, chapter

626 P Accounting collect, collecting, exception, collected taxes, debt, debts, fees

645 D Month june, july, august, september premiered, consecrated, baptised, inaugurated

667 D Expression taking, take, taken, takes hostage, advantage, seriously, refuge

669 D Geography gaza, palestinians, palestinian, israeli strip, gaza, rockets, barrier

679 D Geography colombian, venezuelan, peruvian, chilean peso, divisi, primera, aut

774 P IT java, server, windows, software java, server, windows, software

781 D Expression bought, purchased, buying, buy shares, stake, tickets, tracts

784 M Marketing advertising, commercials, campaigns, marketing advertising, commercials, campaigns, marketing

804 M Expression about, detail, matters, topics discuss, discussed, discussing, discusses

855 M Expression heavily, originally, by, recently influenced, inspired, invented, borrowed

864 D Expression currently, presently, still, today currently, resides, owns, produces

874 P Expression launching, pursued, launched, developed ventures, venture, scheme, initiative

Table 8: Samples of decomposed submatrices labeled with a category name. Classes are abbreviated; D:Descriptive,
P:Partial, M:Meaningful, N:Nonsense
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Proximity R1 R2 R3
Categorical 74 64 53
Contextual 171 147 148

Combinatorial 41 59 62
Syntactic 9 18 19

None 5 12 18
Total 300 300 300

Table 9: Proximity types of word relations in each NMF-
decomposed component. Categorical: words are in the
same category, Contextual: words are related in a shared
context, Combinatorial: words are a part of possible
phrases, i.e., paradigmatic, Syntactic: words are in the
same syntactic category.

Class Description

Descriptive

Words are related in some
way, and the majority label
given is as descriptive
as possible of the words
in the set.

Partial

Words are related in some
way, and the majority label
is somewhat descriptive,
but a more descriptive
account can be easily given.

Meaningful
Words are related, but no
majority label describes
the words.

Nonsense

There is no majority label,
nor is there any perceived
relation between
the words in the set.

Table 10: Definition of qualitative classes assessing
how well the labels describe the words in each formal
concept. (Lindh-Knuutila and Honkela, 2015)
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